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Summary

Current LID systems have difficulties in dealing with languages with insufficient or small amount of
training data available. This issue concerns not only exotic languages with small number of native
speakers, but also languages like Thai with 65 million native speakers.

We aim to develop techniques, that will allow us to automatically obtain training data for these
troubled languages and use them in Language Recognition systems. As the present LRE systems
are trained and evaluated on Continuous Telephone Speech (CTS), the task will be to obtain speech
samples, that went through the telephone channel. This task leads us to developing an automatic
system, which obtains recordings from public broadcasts and automatically detects telephone calls
that are consequently used for training. The system was implemented and used for building the data
sets which were used for subsequent experiments.

In order to use the data obtained from broadcasts, we have to cope with several issues related to
this data. The first problem is channel compensation, as the data comes not only through telephone
channel, but also through wide-band broadcast. The second problem is that the telephone calls into
broadcasts are usually less spontaneous than data commonly used for current systems.

We have conducted several experiments using both CTS and broadcast data to uncover possible
problems, which can arise when using this type of data in training or evaluating current LRE systems.
The results of these experiments show that if the broadcast data only are used for training and standard
telephone data for testing, the performance of such system is worse, than the performance of standard
LRE systems trained and tested on CTS.

The experiments also show, that if the broadcast data are used both for training and testing the
system, the results are very good. This can indicate, that the information about channel is very strong
in these broadcast data and that the systems are learning this information and it heavily affects the
final recognition.

Cooperation with Linguistic Data Consortium on creating a broadcast database was part of this
work. We used the developed systems to provide pre-labeling of broadcast data, see Appendix C.

Acknowledgments

This work was supported by US Air Force European Office of Aerospace Research & Development
(EOARD) under Grant No. 083066.
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Chapter 1

Introduction

We introduce a process of automatic acquisition of speech data from the various media sources for
the language identification task. The last editions of NIST Language Recognition (LRE) evaluations
have shown that both acoustic and phonotactic approaches have reached a certain maturity level in
both modeling of target languages and dealing with the influences of different channels. However, we
are still facing the common problem: the lack of training data. There is no good or large enough
database of training data for many languages including even languages like Thai, which is spoken by
65 million speakers. Also, there is an increasing demand to recognize languages from smaller and less
populous regions (many of them relevant for security of defense domain). For some of these languages,
no standard speech resources exist.

This work aims at solving this problem using the data acquired from public sources, such as satellite
and Internet TVs and radios, which contain conversational speech or telephone calls. This approach
can provide us with large amount of data that we will use to conduct experiments, which will help
to answer the question whether these data can replace or augment standard conversational telephone
speech (CTS) data. The results will also show that if we had no standard CTS training data, these
data obtained from broadcasts can be used to process the languages that we were unable to recognize
due to absence of the training data.

First, the obtained data has to be preprocessed in order to acquire clean speech segments or
individual phone calls. The task is to examine the obtained telephone calls by training and evaluating
the systems on languages for which we have both CTS and broadcast data. The results of the
experiments will show, how the systems perform, when the CTS or broadcast data are used for
training or testing.

The main challenge is channel compensation, as the obtained data are acoustically very different
from the conversational telephone speech (CTS) commonly used in LRE. Broadcast data contain a
great deal of unspontaneous speech as well. Another task is to explore how unspontaneous speech
affects current LRE systems (which are supposed to be trained on spontaneous data). The notion of
channel compensation will therefore have to be extended to cope with these factors.

In the Phase 1 of the project, we have done experiments on Dari, English, French, Hindi, Korean,
Mandarin, Spanish and Vietnamese languages, these languages are the intersection of languages we
obtained from broadcast sources and the languages present in standard databases available.

After the initial experiments in the Phase 1 of the project, we have concentrated our work on
advanced techniques such as Joint Factor Analysis (JFA) and i-vector based systems, which both
can very well compensate for the channel variabilities. Also, we participated in the NIST 2009 LRE
evaluation and consecutive workshop, where the general discussion addressed new problems related to
the nature of broadcast data.

Many laboratories confirmed that a small speaker diversity (repeating speakers for training the
system) can significantly decrease the performance of the LRE system. We have investigated this issue
using our speaker verification system.

7



Another difference of the broadcast data to the standard conversational telephone speech (CTS)
databases are the issues of spontaneity, hesitations and other psycho-linguistic factors. This is caused
by presence of many professional speakers or speakers calling in a broadcast with a premeditated
speech. We are investigating this character of the data by experimenting with inter-session variability
compensation (PIVCO) techniques.
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Chapter 2

Methods, Assumptions and Procedures

2.1 Data Acquisition Principles

There is unlimited source of speech data available from the broadcast media. We can acquire data
from several sources, each of which has different channel parameters, quality and number of available
languages. The list of available sources in a standard industrialized country (such as the Czech
Republic) is shown in Table 2.1 [1].

All of the listed sources except Internet radios are geographically dependent regarding location.
The quality of different Internet sources varies a lot and it is important to carefully choose them. We
have used an archive1 of Voice of America Internet radio to obtain data for all languages.

This particular data of VoA were obtained in MP3 format, bit-rate is 24 Kbit/s, sampling rate
22,050 Hz, 16 bit encoding, mono. Original media data include a great portion of music and speech
with the music in background. We have to deal with this problem and select only clean speech
segments. Also, we should deal with the problem of a low speaker variability in the obtained data,
for instance as it is common in news programs, which are moderated by the same speaker. So far, we
have not investigated into this problem and used only telephone calls in broadcasts, where speaker
variability should be sufficient.

2.1.1 Detecting Phone Calls

Our phone call detector is based on the fact that a telephone channel acts like a band-pass filter, which
passes energy between approximately 400 Hz and 3.4 KHz. On the other hand, regular wide-band
speech contains significant energy up to around 5 KHz. Common media sources like satellite radio or
Internet radios are usually sampled at 22 kHz so they support this bandwidth, which means that if we
place a phone call into the regular radio transmission, we will see a significant change in the spectrum
(Figure 2.1).

For the detection, we first re-sample the signal to commonly used 16 kHz. The signal is divided
into frames of 512 samples with no overlap and Fourier spectrum is computed for each frame. To
detect boundary between wide-band and telephone speech, we concentrate on the frequency range
between 2350 and 4600 Hz. The power spectral density (PSD) in this range was used (see Figure 2.2).
At first, the PSD was normalized to zero mean and unit variance. Then values in the first half (from
2350 to 3475 Hz) and values in the second half (from 3475 to 4600 Hz) of the PSD were summed.
A ratio between these two sums was compared with a threshold and the decision was made. If the
ratio is higher than selected threshold, there is more energy in lower frequencies and we considered
the segment a telephone call speech. For the block diagram of this process, see Figure 2.3.

1FTP server 8475.ftp.storage.akadns.net directory /mp3/voa

9



Table 2.1: Overview of different channels. DVB stands for Digital Video Broadcasting - Terrestrial,
Cable and Satellite. By parallel recording we mean the possibility of acquiring more broadcasts
simultaneously using one recording device (i.e. one DVB-S receiver).

Inet. radio DVB-T DVB-C DVB-S Analog

Languages approx. 100 1 - 3 approx. 5 20 - 30 3 - 5
Quality variable good good good bad
Parallel recording yes yes yes yes no

Figure 2.1: Phone Call in a Radio Broadcast.

2.1.2 Detecting Wide-band Speech Segments

Recordings obtained from media broadcasts contain great deal of music, speech with music in the
background or other non-speech sounds. The task is to detect clean speech segments which can be
used in language recognition or possibly in the other applications.

The detection is done by estimating frame by frame likelihoods, of classes speech and other (non-
speech). GMM models were used to estimate these likelihoods. These models contain 1024 Gaussians
and were trained on 12.7 hours of speech and 18.7 hours of non-speech wide-band data. MFCC
coefficients with deltas and double deltas were used as features for training. These data (containing
several languages) were obtained from Linguistic Data Consortium and were manually annotated for
these two classes.

Once we obtain frame by frame log-likelihoods for each class, we filter them using simple median
filter2 and subtract these two sets of values. The resulting log-likelihood ratios are averaged over 100
frames and compared to empirically set thresholds. Depending on the threshold, we decide whether we
are in the speech segment or non-speech segment or whether we are not sure (segments to be checked
by human annotator). For the block diagram of this process see Figure 2.4.

2.2 Dealing with repeating speakers

Having the audio segments with repeating speakers in the training and development data sets, (the
later being also used for training of the calibration and fusion parameters), causes over-training of
the system. Especially for languages with little amount of data, this can cause large decrease in
performance when testing on an evaluation data set, which does not include speakers who were seen
in the training and calibration phases. This problem is especially serious for the acoustic systems,
where we saw a huge drop in performance when comparing results on our development set with results
on the evaluation set.

2Window size of this median filter is 5.
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Figure 2.2: Power Spectral Density of telephone call in the broadcast (left figure) and wide-band
speech (right figure).

16 KHz signal Compute PSD in the
window of 512 samples

Sum the values of PSD from
 2350 to 3475 Hz

Sum the values of PSD from
 3475 to 4600 Hz

Divide the sum from lower 
frequencies by the sum from

higher frequencies and obatin
a ratio

If the ratio is higher than the
threshold, mark segmet under

window as telephone,
 else mark the segment

as wideband

Shift  the window

Figure 2.3: Block diagram of detecting telephone calls in the wide-band signal.

We decided to address this problem by training a speaker ID system for each training utterance
and scoring all development utterances from the corresponding language.

2.3 Improved channel variability compensation

We followed a novel design for acoustic feature-based language recognizers [2]. Our design is inspired
by recent advances in text-independent speaker recognition, where intra-class variability is modeled by
factor analysis in Gaussian mixture model (GMM) space. We use approximations to GMM likelihoods,
which allow variable-length data sequences to be represented as statistics of fixed size [3, 4, 5].

We use these statistics for all further computation, in both training and test. The advantage
of this approach is an efficient implementation of speaker-recognition-style channel compensation.
Specifically, we use a factor-analysis model for the kth component mean of the GMM for segment s:

msk = tl(s)k + Ukxs, (2.1)

where l(s) denotes the language of segment s; tlk are language location vectors; xs is a vector of C
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Figure 2.4: Block diagram of detecting speech and non-speech segments in the wide-band signal.

segment-dependent ’channel factors’ ; and Uk is a 56-by-C factor loading matrix. The channel factors
are assumed to be drawn independently from the standard normal distribution. As in the case of
the first-order statistics, we stack component-dependent vectors into super-vectors ms and tl and we
stack the component-dependent Uk matrices into a single matrix U, so that (2.1) can be expressed
more compactly as:

ms = tl(s) + Uxs. (2.2)

We refer to U as the channel matrix.
Following [3], we estimate the channel matrix with maximum likelihood, by using the EM-

algorithm. We tested different sizes for U and found C = 50 to be a good choice. Then, we use
all speech segments for all of the languages that we have available in our development set. Next, we
apply channel compensation: Given the channel matrix U and the statistics fsk, nsk for a speech seg-
ment s and Gaussian component k, we perform language-independent maximum-a-posteriori (MAP)
point-estimate of the channel factors xs relative to the universal background model (UBM) [6, 7]. This
estimate is computed as:

x̂s =

(
I +

∑
k

nskU′kUk

)−1

U′fs. (2.3)

Next, the effect of the channel factors can be approximately removed from the first-order statistics
thus:

f̃sk = fsk − nskUkx̂s. (2.4)
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We refer to f̃sk as the compensated first-order statistic. In our experiments, we try both uncompen-
sated and compensated statistics. We find the compensation to dramatically improve the accuracy.

2.4 Phonotactic intersession variation compensation

JFA has become state-of-the-art technique in speaker recognition and it has been also successfully
applied to language recognition. The principle of this technique lies in probabilistic approach to
modeling various types of target model parameter variability. These parameters are usually means
of the GMM, but they can be also N-gram probabilities. The idea of our approach is to adapt this
technique to multinomial models.

Multinomial distribution is a generalization of binomial distribution, specifying trials to result
in one of some fixed finite number C of possible outcomes, with probabilities θ = (p1, ..., pC). All
probabilities follow:

∀i pi ∈ 〈0, 1〉. (2.5)

C∑
i=1

pi = 1. (2.6)

Formally, all parameters pi lie on C − 1 simplex, see Figures in Appendix B.
In the N-gram language model, words with the same history of N > 1 follow multinomial distri-

bution. For example:

Γ = {swimming, party, pool}

p(pool|swimming)
+p(party|swimming)

+p(swimming|swimming)
= 1.

Let the succession of N events be a matrix Γ of size C × N , where columns are zeros except for
the event index, which is 1. If we sum the columns of Γ (N-gram counts), we can write log-likelihood
of data as

log p(γ|θ) =
C∑

i=1

γi log pi. (2.7)

In JFA, the aim was to find a parameter subspace (parameters were means of GMM), in which we
could effectively adapt our model. Here, in multinomial model, the only parameters we can modify, are
probabilities pi. The restrictions pi > 0,

∑
pi = 1 do not allow us to directly model these parameters

as a linear combination of some kind.
What we can do, is to linearly combine parameters in the log domain:

qi(θ̂) = mi + uix, (2.8)

where mi can be set to log pi, ui is the ith row of a factor loading matrix U and x is a vector of
factors. The second condition

∑
pi = 1 can be enforced by normalizing in the linear domain:

ωi(θ̂) =
qi∑C
î=1

qî
, (2.9)

and ωi will now be correct parameters of multinomial distribution.
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We can now rewrite (2.7) as

log p(γ|θ̂) =
C∑

i=1

γi, logωi(θ̂) (2.10)

where ω is a valid probability distribution given by

ωi(θ̂) =
emi+uix∑C
î=1

emî+uîx
(2.11)

and θ̂ represents all parameters in the exponent. Channel subspace is then represented by a curve
laying on a simplex, see Figure B.2.

When training the system, we use N-gram probabilities to define the model parameter space, then
we search for their subspace, which best describes the inter-session variability. In the test phase, we
let the model adapt to the test utterance in this subspace, see [8] for details.

2.4.1 Using binary trees to obtain N-gram probabilities

It was shown [9, 10], that clustering the N-gram history by using binary decision trees (BT) improves
the performance. Growing the tree is based on finding questions about the history, following the
maximum entropy reduction (or likelihood increase) criterion. Each of these questions clusters the
data into two subsets. The conditional probabilities are then stored in the leaves and are estimated
from the clustered data. Two approaches to BT estimation are proposed—building the whole tree
for each class in one case, and adapting from a UBM in the other case. We have adopted the latter
framework and used it in conjunction with other techniques, see [8] for details.

2.5 Channel compensation in a low dimensional i-vector space

Recent results in the NIST SRE (Speaker Recognition) evaluations demonstrated, that using a single
low-dimensional space for modeling both speaker and channel variability can improve and simplify
state-of-the-art speaker verification systems. In this approach inspired by the Joint Factor Analysis
framework introduced in [3, 11], we model the total variability or i-vector space using a simple factor
analysis [12]. By applying this technique, we are able to reduce the large-dimensional input data to
a low-dimensional feature vector while retaining most of the relevant information. We have success-
fully applied this technique to the language identification task, where, instead of variability between
speakers, we model the variability between languages.

2.5.1 Theoretical Background for Extracting i-vectors

Let us first state the motivation for the i-vectors. The main idea is that the language- and channel-
dependent GMM super-vector s can be modeled as:

l = m + Tw, (2.12)

where m is the UBM GMM mean super-vector, T is a low-rank matrix representing M bases spanning
subspace with important variability in the mean super-vector space, and w is a standard normal
distributed vector of size M .

For each observation X , the aim is to estimate the parameters of the posterior probability of w:

p(w|X ) = N (w; wX ,L−1
X ) (2.13)

The i-vector is the MAP point estimate of the variable w, i.e. the mean wX of the posterior distribution
p(w|X ). It maps most of the relevant information from a variable-length observation X to a fixed-
(small-) dimensional vector. T is referred to as the i-vector extractor.
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Data

The input data for the observation X is given as a set of zero- and first-order statistics — nX and fX .
These are extracted from F -dimensional features using a GMM UBM with C mixture components,
defined by a mean super-vector m, component covariance matrices Σ(c), and a vector of mixture
weights ω. For each Gaussian component c, the statistics are given respectively as:

N
(c)
X =

∑
t

γ
(c)
t (2.14)

f (c)
X =

∑
t

γ
(c)
t ot (2.15)

where ot is the feature vector in time t, and γ(c)
t is its occupation probability. The complete zero- and

first-order statistics super-vectors are fX =
(
f (1)
X
′
, . . . , f (C)

X
′)′

, and nX =
(
N

(1)
X , . . . , N

(C)
X

)′
.

For convenience, we center the first order statistics around the UBM means, which allows us to
treat the UBM means effectively as a vector of zeros:

f (c)
X ← f (c)

X −N
(c)
X m(c)

m(c) ← 0

Similarly, we “normalize” the first-order statistics and the matrix T by the UBM covariances, which
again allows us to treat the UBM covariances as an identity matrix3:

f (c)
X ← Σ(c)− 1

2 f (c)
X

T(c) ← Σ(c)− 1
2 T(c)

Σ(c) ← I

where Σ(c)− 1
2 is a Cholesky decomposition of an inverse of Σ(c), and T(c) is a F ×M sub-matrix of T

corresponding to the c mixture component such that T =
(
T(1)′, . . . ,T(C)′

)′
.

Parameter Estimation

As described in [11] and with the data transforms from previous section, for an observation X , the
corresponding i-vector is computed as a point estimate:

wX = L−1
X T′fX , (2.16)

where L is the precision matrix of the posterior distribution, computed as:

LX = I +
C∑

c=1

N
(c)
X T(c)′T(c). (2.17)

The computational complexity of the whole estimation for one observation is O(CFM +CM2 +M3).
The first term represents the T′fX multiplication. The second term represents the sum in (2.17) and
includes the multiplication of L−1

X with a vector. The third term represents the matrix inversion.
The memory complexity of the estimation is O(CFM + CM2). The first term represents the

storage of all the input variables in (2.16), and the second term represents the pre-computed matrices
in the sum of (2.17).

Note that the computation complexity grows quadratically with M in the sum of (2.17), and
linearly with C. This becomes the bottle-neck in the i-vector computation, resulting in high memory
and CPU demands.

3Part of the factor estimation is a computation of T′Σ−1f , where the decomposed Σ−1 can be projected to the
neighboring terms, see [11] for detailed formulae.
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Model Training

Model hyper-parameters T are estimated using the same EM algorithm as in case of JFA [11]. Note
that our algorithm makes use of an additional minimum divergence update step [13, 14], which yields
a quicker convergence, but is not described here.

In the E-step, the following accumulators are collected using all training observations i:

C =
∑

i

fiw′i (2.18)

A(c) =
∑

i

N
(c)
i

(
L−1

i + wiw′i
)

(2.19)

where wi and Li are the estimates from (2.16) and (2.17) for observation i. The M-step update is
given as follows:

T(c) = CA(c)−1
(2.20)

2.6 Training and Test Sets used in Phase 1

In order to compare, how our LRE systems perform when using broadcast and standard CTS data,
we created a data set from broadcast data. We selected eight languages4 from the Voice of America
ftp archive. We have chosen these particular languages, because we have the data for these languages
present in CallFriend, NIST LRE 2003 and NIST LRE2007 databases. In order to create reasonably
robust experiment, we have chosen these languages even if we expected problems with French and Dari
language: the French language in the Voice of America archive is recorded in the Africa region and
therefore the obtained samples can substantially differ from the utterances spoken by native French
speakers in our CTS databases. The Dari language was chosen, because this language is very close to
the Farsi language which is present in CallFriend, NIST LRE 2003 and NIST LRE 2007 databases.
We decided to relabel Farsi to Dari in those databases for the purpose of the experiments.

Additionally, we expect, that the people calling into the Voice of America broadcasts speak the
same language as the language label denoting particular recording of broadcast. We did not have
resources to manually check all data, so errors can occur in labeling of the training and test data.
We have to keep in mind all of these compromises we have made when analyzing the results of the
experiments.

2.6.1 Telephone Call Segments

We decided to select only telephone calls which are present in the Voice of America broadcasts, because
we believe these data will be affected by passing through the telephone channel and will better match
our CTS data. First, our phone call detector was used to detect phone call segments in the wide-band
data. The telephone call into broadcast can be interrupted by a moderator and we want to reconstruct
the call from the segments of the calling person. A post-processing of this detection was made in order
to obtain these reconstructed segments.

For the purpose of the post-processing of label file created by phone detector, an algorithm which
marks particular phone segments as phonecall1, phonecall2 . . . was designed. This algorithm
marks individual phone call segments in order to join them into longer segments. The algorithm
accepts segments which are longer than 10 seconds, because our phone call detector makes a lot of
short segments, which are more likely to contain some wide-band portion. Phone call segments are
assigned the same label until there is a maximum 120 seconds of wide-band segment between them.

4Dari, English, French, Hindi, Korean, Mandarin, Spanish and Vietnamese
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Table 2.2: Training data in hours after segmentation for each language.
Language CallFriend Broadcast
Dari/Farsi 21.2 6
English 39.8 6
French 21.5 6
Hindi 19.6 6
Korean 18.4 6
Mandarin 41.7 6
Spanish 43.8 6
Vietnamese 20.6 6

When the wide-band segment between phone calls is longer than 240 seconds, the next phone segments
will be assigned new label (e.g. phonecall2).

When the label file created by the telephone detector is processed by the algorithm explained
above, we cut and join the segments with the same label. BUT phone recognizer [15], [16] was used
to determine the pause in the speech at the borders of each segment and these time stamps were used
to cut the segments out of the original recordings. Then the cut segments with the same label were
concatenated into one file to obtain the reconstructed telephone call.

Using this approach, we obtain significantly smaller number of telephone segments than we would
get taking directly the output of the telephone detector. The benefit is that the segments contain
less wide-band caused by errors in detecting the phone calls and the speaker variability is increased,
because we have less segments with the same speaker. On the other hand, it is possible, that the final
segments contain more different speakers.

2.6.2 Broadcast Data Sets

Using the procedure explained above, we created broadcast test set, selecting 150 segments for each
language. Each selected segment was cut out from the detected telephone call in such way, that it
contained 30 seconds of speech. Our phone recognizer was used to determine the length of speech.

Broadcast training set was created by taking the merged phone call segments5 until we reached
the limit of six hours of speech per language.

2.6.3 CTS Data Sets

CTS test sets were created by taking subsets of NIST LRE 2003 [17] and 2007 [18] evaluation data.
Only 30 second segments were used. Training set was created by taking subset of languages from
CallFriend database. All data sets are listed in tables 2.2 and 2.3.

2.7 Training and Test Sets used in Phase 2

The motivation to use new data sets for experiments with more advanced systems in Phase 2 of the
project was to obtain results on a more complex, more challenging and publicly defined task. The
ideal solution was to report results on NIST LRE 2007 and 2009 task. As we took part in both 2007
and 2009 NIST LRE evaluations, we have used the same training and test sets as in our original NIST
LRE submissions.

Table 2.4 lists the corpora (distributed by LDC and ELRA) used to train our systems.

5Described in section 2.6.1
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Table 2.3: Number of 30 second test segments for each language.
Language NIST 2003 NIST 2007 Broadcast
Dari/Farsi 80 88 150
English 240 266 150
French 80 80 150
Hindi 80 268 150
Korean 80 108 150
Mandarin 80 496 150
Spanish 80 256 150
Vietnamese 80 168 150

Table 2.4: Training databases for LRE2007 and LRE2009 systems

CF CallFriend
CH CallHome

F Fisher English Part 1.and 2.
F Fisher Levantine Arabic
F HKUST Mandarin

SRE Mixer (data from NIST SRE 2004, 2005, 2006, 2008)
LDC07 development data for NIST LRE 2007

OGI OGI-multilingual
OGI22 OGI 22 languages

FAE Foreign Accented English
SpDat SpeechDat-East6

SB SwitchBoard
VOA Voice of America radio broadcast

2.7.1 Data sets for the experiments on NIST LRE 2007

Table 2.5 lists the training data in hours for each language and source database. Our development
and test set were based on segments from previous NIST LRE evaluations plus additional segments
extracted from longer files in the training databases, which were not contained in the training set.

2.7.2 Data sets for the experiments on NIST LRE 2009

Table 2.6 lists a detailed breakdown of the amounts of training data per language and source.
Our data was separated into two independent subsets, which we denoted TRAIN and DEV. The

TRAIN subset had 54 languages (including the 23 target languages) and had about 80 000 segments
in total. The DEV subset had 57 languages (including the 23 targets) and a total of about 60 000
segments. The DEV subset was split into balanced subsets having nominal durations of 3s, 10s and
30s. The DEV set was based on segments from previous evaluations plus additional segments extracted
from longer files from CTS and VOA databases (which were not contained in the TRAIN set).
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Table 2.5: Training data in hours for each language and source.
sum CF CH F SRE LDC07 OGI OGI22 Other

Arabic 212 19.5 10.4 175 5.93 1.45 0.33
Bengali 4.27 2.86 1.42
Chinese 93.2 41.7 1.64 17.2 44.9 4.2 0.87 0.85
English 264 39.8 4.68 162 34.9 6.77 0.52 15.6 (FAE)
Hindustani 23.5 19.6 0.64 1.32 1.53 0.42
Spanish 54.3 43.8 6.71 2.63 1.18 0.38
Farsi 22.7 21.2 0.03 1.00 0.42
German 28.2 21.6 5.10 1.12 0.38
Japanese 23.9 19.1 3.47 0.87 0.35
Korean 19.7 18.4 0.09 0.72 0.5
Russian 15.1 3.38 1.33 0.43 10.0 (SpDat)
Tamil 19.6 18.4 0.96 0.26
Thai 1.45 0.15 1.23
Vietnamese 21.6 20.6 0.79 0.27
Other 62.5 20.7 1.10 3.29 37.4 (SpDat)
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Table 2.6: Training data for NIST LRE 2009 in hours for each language and source.

Language CTS VOA
#files #hours #files #hours

alba 0 0 104 3.4
amha 0 0 1724 77.7
arab 4085 201.8 0 0
azer 0 0 510 29.3
bang 213 5.2 3871 83.4
bosn 0 0 268 7.0
burm 0 0 3365 81.6
cant 482 6.9 34 2.1
creo 0 0 425 14.8
croa 0 0 150 5.3
czec 241 0.3 0 0
dari 0 0 2410 78.8
engi 714 2.2 0 0
engl 10560 290.9 3963 132.5
fars 656 22.6 0 0
fren 403 21.8 3679 88.7
geor 0 0 100 4.7
germ 685 23.1 0 0
gree 0 0 851 16.6
haus 0 0 2599 74.4
hind 755 26.0 358 15.7
hung 287 0.4 0 0
chin 1226 29.9 0 0
indo 267 0.4 226 3.0
ital 294 1.3 0 0
japa 718 23.1 0 0
khme 0 0 1297 53.0
knkr 0 0 1307 66.7
kore 691 21.3 342 16.3
mace 0 0 344 15.1
mand 1321 64.8 1049 35.7
ndeb 0 0 945 64.4
orom 0 0 399 15.1
pash 0 0 6317 102.3
pers 0 0 1673 70.6
poli 284 0.4 0 0
port 294 0.5 1069 48.7
russ 643 8.4 3071 82.2
serb 0 0 175 2.9
shon 0 0 553 58.6
soma 0 0 1909 70.9
span 1001 47.5 1623 67.6
swah 194 0.3 1965 70.9
swed 290 0.5 0 0
taga 24 0.6 0 0
tami 623 19.6 0 0
thai 209 6.6 0 0
tibe 0 0 349 2.0
tigr 0 0 395 24.6
turk 0 0 262 9.8
ukra 0 0 105 3.0
urdu 24 1.4 1242 67.2
uzbe 0 0 241 3.5
viet 743 25.7 113 8.9
SUM 27927 853.7 51382 1696.8

20



Chapter 3

Results and Discussion

We performed experiments both with phonotactic and acoustic systems. With both systems, we tested
several techniques to improve the performance to show in which direction the development of LRE
systems using data obtained from broadcasts together with standard CTS data should continue. The
results are evaluated using standard metrics: Detection Error Tradeoff (DET) curve, Decision Cost
Function (DCF) and Equal Error Rate (EER) [18]. All experiments were done on 30 second segments.
We present results of phonotactic and acoustic systems derived from our systems submitted to NIST
LRE 2007 evaluation [19, 8].

3.1 Phonotactic Systems

The first phonotactic system [19, 8] is based on string output of our Hungarian phoneme recognizer.
The second phonotactic system [19, 8] is based on lattice output of our Hungarian phoneme recognizer.
The phoneme recognizer is based on hybrid ANN/HMM approach, where artificial neural networks
(ANN) are used to estimate posterior probabilities of phonemes from Mel filter bank log energies
using the context of 310ms around the current frame [16]. Trigram language models were trained on
CallFriend database for CTS phonotactic system and for broadcast phonotactic system, the language
models were trained on broadcast training set. Linear back-end calibration [20] was applied on the
obtained scores. Calibration of scores was done on the test set, which may lead to overoptimistic
results, but according to our experience, the results for properly trained calibration will not differ
much. Both CTS and broadcast systems were evaluated against all test sets.

3.1.1 Results of Phonotactic Systems

The results are listed in tables 3.1 and 3.2. Phonotactic system based on string output was outper-
formed by the phonotactic system with lattices in all cases.

Table 3.1: Phonotactic systems based on string output - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 1.781 9.072 6.583

Broadcast 11.949 18.593 1.416
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Table 3.2: Phonotactic Systems Based on Lattice Output - Pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 0.900 6.995 5.232

Broadcast 8.958 15.215 1.398

3.2 Acoustic Systems

Our acoustic systems are built on the experience with GMM modeling for speaker recognition [21]
which follows conventional Universal Background Model-Gaussian Mixture Modeling (UBM-GMM)
paradigm [22] and employs number of techniques that have previously proved to improve GMM system
performance [7]. This system was chosen because it can easily compensate for the channel distortion.

Table 2.2 lists the corpora used to train our systems. CTS system was trained on CallFriend
database and broadcast system was trained on our broadcast database.

Our systems use the popular shifted-delta-cepstra (SDC) [23] feature extraction, where 7 MFCC
coefficients (including coefficient C0) are concatenated with SDC 7-1-3-7, which totals in 56 coefficients
per frame. Vocal-tract length normalization (VTLN) [24] performs simple speaker adaptation. VTLN
warping factors are estimated using single GMM (512 Gaussians), ML-trained on the whole CallFriend
database (using all the languages). The model was trained in standard speaker adaptive training (SAT)
fashion in four iterations of alternately re-estimating the model parameters and the warping factors
for the training data. Each language model is obtained by traditional relevance MAP adaptation [25]
of UBM using enrollment conversation. Only means are adapted.

In the verification phase, standard Top-N Expected Log Likelihood Ratio (ELLR) scoring [25] is
used to obtain verification score, where N is set to 10. However, for each trial, both language model
and UBM are adapted to channel of test conversation using simple eigenchannel adaptation [21] prior
to computing the log likelihood ratio score.

Calibration of scores was done on the test set, which may lead to overoptimistic results, but
according to to our experience, the results for properly trained calibration will not differ much. Both
CTS and broadcast systems were evaluated against all test sets.

3.2.1 Results of Acoustic Systems

First, both systems were trained without channel compensation. Then, eigenchannel adaptation was
applied. Two different matrices containing 50 eigenchannels were used. The first matrix was computed
from broadcast training set. The second matrix was taken from our NIST LRE2007 system [19]. This
matrix was trained on CTS databases.

We also experimented with training channel compensation using both CTS and data from broad-
casts, hoping that the channel compensation will solve the mismatch between CTS and broadcasts.
Especially we were hoping to improve the poor results when training on broadcasts and testing on
CTS. However, so far we were not successful with such cross-condition channel compensation.

The results are listed in tables 3.3, 3.4 and 3.5.
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Table 3.3: Acoustic systems without eigenchannel compensation - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 3.407 8.807 8.261

Broadcast 14.423 19.502 3.250

Table 3.4: Acoustic systems with eigenchannels trained on broadcast data - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 1.145 5.644 8.250

Broadcast 9.840 15.013 0.583

3.3 Discussion

The results of both acoustic and phonotactic systems were consistent. Phonotactic systems using
lattices significantly outperform phonotactic systems based on string output in all test cases. See
Appendix A for detailed results.

We expected that the acoustic systems outperform phonotactic systems, but only phonotactic sys-
tem trained on CTS was outperformed by acoustic system trained on CTS with channel compensation
trained on telephone data.

The results of acoustic systems prove that the individual samples are recorded over different chan-
nels, therefore an application of eigenchannel adaptation [26] is crucial to compensate the channel
distortion. In language detection task, channel variability may comprehend not only variability in the
telephone channel or type of microphone, but also session or speaker variability.

Channel compensation trained on CTS is generally better. Broadcast data probably do not reflect
the variations of channels.

The results of acoustic systems trained on broadcast data can imply, that the wide-band channel
added additional distortion to the obtained data, which affects the results obtained when testing
against the CTS data. The decline in performance when testing against the CTS data can be also
affected by different type of speech, that is usually present in the broadcasts. Speech in media
broadcasts is usually less spontaneous. Speech in radio broadcasts in comparison with our CTS
databases does not contain many hesitations, interruptions and is usually grammatically correct.

However, the performance of systems trained on broadcast data and tested on CTS data is worse
than the performance of systems trained and tested on CTS, the results show the similar trend over
individual languages. This trend when EER is approximately two times higher except for the Dari and
French language 1, can be observed on NIST 2007 test set (see figures B.3 and B.4), which consists of
more difficult data for recognition.

1We expected problems for these languages, see section 2.6.
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Table 3.5: Acoustic systems with eigenchannels trained on CTS data - pooled EER

TEST

T
R
A
I
N

NIST 2003 NIST 2007 Broadcast

CTS 0.420 4.296 3.083

Broadcast 9.222 14.290 0.922

When evaluating the acoustic system trained on broadcast data, we obtain excellent performance
on broadcast data, which can indicate, that the system learned also the different channels of individual
radio stations. This hypothesis has to be kept in mind when using broadcast data both for training
and testing. Channel compensation trained on broadcasts even emphasizes this possible problem.

3.4 Experiments addressing repeating speakers issue

To evaluate the effect of speaker filtering, we selected JFA system based on Region Dependent Linear
Transforms, which is the most affected acoustic subsystem in our NIST 2009 submission [27]. A
GMM-UBM based speaker ID system developed by BUT for NIST 2006 SRE evaluation was used
[28]2.

Based on the histogram of scores (example for Ukrainian in Figure 3.1) showing clearly bi-modal
structure of identical and different speakers, we chose a language-dependent threshold of speaker ID
scores for omitting utterances from the development set. The amount of omitted data is in Table 3.7.
This step brings a nice improvement as we can see in Table 3.6.

Table 3.6: Fixing the data.

Eval data, [Cavg] 30s 10s 3s
JFA-G2048-RDLT 3.56 6.36 16.14
+ speaker ID filtration 2.33 5.09 15.06

Table 3.7: Amount of omitted data by speaker ID filtering

language acronym omitted data
Bosnian bosn 92.8 %
Croatian croa 77.9 %
Portuguese port 17.6 %
Russian russ 30.1 %
Ukrainian ukra 93.8 %

3.5 Experiments with Improved Channel Compensation

Our baseline system used no channel compensation. We used uncompensated segment statistics to
make relevance-MAP estimates of the language locations and uncompensated statistics to score new

2This system is available through Phonexia http://phonexia.com/download/demo-sid.
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Figure 3.1: Histogram of speaker ID scores – example for Ukrainian.

test segments. Next, we added a channel compensation: The system is the same, except that we use
channel-compensated first-order statistics everywhere.

We evaluated the systems on the 14 languages of the closed-set language detection task of the
NIST 2007 Language Recognition Evaluation (LRE 2007), with input segments of nominal duration
30 seconds [18]. Our development data, used to train all system parameters, was the same data we
used in preparation for the NIST LRE 2007 evaluations and does not overlap with the LRE 2007
evaluation data, see [6]. We used C∗avg as evaluation criterion, see [27].

The results are C∗avg = 11.32 for the system without the channel compensation and C∗avg = 1.74
for the system with the channel compensation applied. These results show, that the channel com-
pensation gives dramatic reduction in error-rate and that GMM factor-analysis modeling can be used
to build accurate acoustic language recognizers. We expect an improvement also for shorter duration
segments and we plan to experimentally prove this expectation.

3.6 Experiments with PIVCO

The results are reported for the NIST LRE 2007 primary condition, for three tasks reflecting the
nominal length of the testing utterances – 30, 10 and 3 seconds. As the metric, 100×Cavg (see [18] for
formulas) is used. All results are presented for calibrated systems using linear backed (LDA) followed
by linear logistic regression [29] (LLR).

The phonotactic systems are based on hybrid ANN/HMM approach, where artificial neural net-
works (ANN) are used to estimate posterior probabilities of phonemes from Mel filter bank log energies
using the context of 310ms around the current frame. Hybrid recognizer is trained for Hungarian on
the SpeechDat-E databases. For more details see [15, 16].

Table 3.8 describes influence of LFA to the phonotactic system with Binary decision trees. It
mainly helps for 30 second condition. We observed little or no improvement in case of 10 and 3
seconds tasks, where little data for model adaptation was available.

The results indicate, that using the factor analysis for the inter-session variability compensation
in phonetic recognition followed by language model (PRLM) improves the performance in the LRE
systems for 30 second condition.
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Table 3.8: Binary decision trees with PIVCO (100× Cavg)

LRE 2007 30 10 3
HU Tree 5.58 11.54 23.45
HU Tree PIVCO 5.01 11.45 23.83

3.7 Experiments with the i-vector Based System

We have built several classifiers using 400 dimensional i-vectors as feature vectors. The results are
reported on the 30 second closed-set condition of the NIST LRE 2009 task. In all experiments, we
have done the calibration, which was trained on our LRE2009 DEV set. The back-end was a Gaussian
model followed by a Discriminative Linear Regression model [27].

3.7.1 Amount of Data for Training the i-vector Extractor

In the beginning we had run a series of experiments to assess the influence of the amount of the
training data for training the i-vector extractor. Results indicate, that it is beneficial to use as much
data as possible. For this experiment, we used a ML-based classifier described in the following section.
We observed a drop in the accuracy when using a reduced database with 500 utterances3 per language
for training. Performance had dropped from Cavg = 1.85% when training the i-vector extractor on
the whole TRAIN database to Cavg = 1.99% when using the reduced database.

3.7.2 ML-based i-vector System

The best performing classifier is based on a Maximum Likelihood approach. For each language, we have
built a generative Gaussian model, that was trained on all available data for the particular language.
To obtain a score of the test utterance, we compute a log-likelihood over each language model. Using
this simple approach, we were able to obtain already mentioned performance of Cavg = 1.85%.

We have also tried to improve this method by applying the dimensionality reduction and normal-
ization techniques. When applying Linear Discriminant Analysis (LDA), which allows us to reduce the
dimension of the i-vector to just 22 dimensions, we obtained a result of Cavg = 1.92%. The benefit of
this approach is an extremely compact representation of the i-vector and speed of such system for the
price of a small deterioration of the accuracy. In the following experiment, we tried to normalize all
i-vectors to the unit length, which effectively forces them to be Gaussian-distributed. Unfortunately,
applying the length normalization did not bring any improvement as the performance dropped to
Cavg = 1.97%.

3.7.3 PLDA-based i-vector System

The second generative model employs Probabilistic Linear Discriminant Analysis (PLDA) [30]. This
technique models an inter-language space by the across-class covariance matrix of the i-vectors of all
languages and an intra-language space by the within-class covariance matrix of the languages. The
performance of this system was Cavg = 1.97%.

3.7.4 SVM-based and LR-based i-vector Systems

The third system employs a discriminative approach based on Support Vector Machines (SVM), where
the i-vectors are used directly as features. In this case, we obtain Cavg = 2.14%. Applying Nuisance
Attribute Projection (NAP) or LDA did not bring any improvement.

3For the languages with less than 500 utterances we take all of the data available
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The fourth system is based on discriminative L2-regularized Linear Regression (LR). With this
system, we obtain a Cavg = 2.05%. However in this case, by applying LDA we improve the performance
to a Cavg = 1.91% and by applying NAP we obtain a result of Cavg = 1.93%.
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Chapter 4

Conclusions

We introduced a simple but promising approach of acquiring telephone data for LID. Experiments
with selected languages using standard telephone data and telephone data acquired from broadcast
were performed. Both phonotactic and acoustic approaches for recognition were investigated.

Obtained results show, that if systems trained on broadcast data are used to recognize CTS, the
performance is significantly lower than it would be with the systems trained on target data. However,
experiments with channel compensation techniques indicate, there is a possibility to improve the
performance by investigating other compensation techniques to suppress the distortion caused by
passing the telephone call through wide-band channel. On the other hand, training the systems on
CTS data and testing on broadcast data seems to be all right as the same trends are observed for the
CTS-based test sets.

Performed experiments show, that if broadcast data are used both for training and testing, the
performance is excellent but if the CTS data are used to evaluate the system, the performances
drops dramatically. This is probably because the systems trained and tested on broadcast data have
learned some information about the channel of particular broadcast, especially if all samples of the
same language come from one radio station, but this problem deserves further investigation. As soon a
database exists, where one language comes from different broadcasts, experiments should be conducted
to verify this assumption.

Results of the experiments also lead to a claim, that the broadcast data are “easier”, as they
contain mostly clean, prepared and grammatically correct speech. This idea is supported by the
fact, that broadcast data were always (except the case when the channel compensation trained on
broadcasts was used) recognized by systems trained on CTS data with better accuracy than NIST
2007 data containing a lot of unclean speech.

It should be stressed, that the results of systems trained on broadcasts were obtained on auto-
matically created databases without human annotator checking and several compromises were made,
especially considering Farsi language as Dari and using French spoken in the African region. Also,
only 6 hours of training data per language was used to train systems on broadcast data in comparison
with average 28 hours of training data per language for systems trained on CTS data.

The performance of the systems trained on broadcast data simulates a scenario, when no standard
CTS training data are available and we need to detect a particular language. Although the results are
significantly worse than ones we would get with CTS data for training, using the broadcast data can
be the only option in such situation.

According to the updated work-plan for the second phase of the project, we have concentrated on
the issues of repeating speakers in the broadcast data and we have obtained substantial improvements
of performances by filtering these repeating speakers with a speaker identification system.

Also, we have successfully applied several advanced channel compensation techniques with excellent
results on NIST-defined LRE 2007 and 2009 task.

We have worked on inter-session variability compensation in an acoustic system, by applying
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restricted joint-factor analysis (JFA) technique originally investigated for speaker recognition. This
led to substantial improvement in accuracies.

Next, we have extended the intersession compensation also to the phonotactic approach by sug-
gesting and performing experiments with “PIVCO”, with encouraging results.

Finally, we have adapted the best performing technique from the current state-of-the art speaker
recognition systems by using i-vectors, which are a compact low-dimensional representation of each
utterance in a total variability space. This representation allowed us to build very small language
recognition systems using basic classification techniques. Obtained results are very competitive with
the latest state-of-the art LRE systems.

This work also helped NIST and LDC to analyze and use new sources of the data for building LRE
systems, which were later extensively used in the NIST LRE 2009 evaluations. Using the broadcast
data has allowed NIST and LDC to use the largest number of languages to date, while keeping the
costs of creating such database within reasonable boundaries.

The results of participants and the subsequent discussion during the workshop have revealed, that
using the broadcast data is beneficial for building large-scale LRE systems.
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Appendix A

Detailed Results
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Table A.1: Results of phonotactic system based on string output. System trained on CallFriend
database.

Language NIST 2003 NIST 2007 Broadcast

Dari 1.517 3.858 10.476
English 2.529 10.682 3.761
French 2.440 2.237 10.285
Hindi 2.142 10.202 6.238
Korean 0.208 6.142 5.000
Mandarin 0.952 11.166 4.000
Spanish 0.714 4.343 1.523
Vietnamese 0.684 7.314 5.619
Average 1.398 6.993 5.863
pooled minDET 1.700 7.627 6.261
pooled EER 1.781 7.736 6.583
pooled unweighted minDET 1.794 9.072 6.261
pooled unweighted EER 1.982 9.122 6.583

Table A.2: Results of phonotactic system based on string output. System trained on broadcast
database.

Language NIST 2003 NIST 2007 Broadcast

Dari 19.077 19.371 0.7142
English 11.666 19.698 2.666
French 13.839 20.968 1.285
Hindi 17.440 21.619 0.904
Korean 6.994 12.737 1.142
Mandarin 9.017 22.321 0.238
Spanish 5.000 10.200 0.666
Vietnamese 4.970 12.335 0.285
Average 11.000 17.406 0.988
pooled minDET 11.644 18.286 1.333
pooled EER 11.949 18.593 1.416
pooled unweighted minDET 12.035 18.796 1.333
pooled unweighted EER 12.250 19.122 1.416
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Table A.3: Results of phonotactic system based on lattices. System trained on CallFriend database.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.744 3.707 6.714
English 1.726 11.108 3.761
French 0.803 1.976 7.761
Hindi 0.446 8.609 5.523
Korean 0.208 5.720 3.571
Mandarin 0.535 8.762 2.142
Spanish 0.148 3.904 1.857
Vietnamese 0.625 5.977 4.428
Average 0.654 6.221 4.470
pooled minDET 0.822 6.903 5.083
pooled EER 0.900 6.995 5.232
pooled unweighted minDET 0.866 7.769 5.083
pooled unweighted EER 0.875 7.836 5.232

Table A.4: Results of phonotactic system based on lattices. System trained on broadcast database.

Language NIST 2003 NIST 2007 Broadcast

Dari 14.791 18.498 0.428
English 10.029 17.637 1.904
French 11.339 18.696 1.428
Hindi 12.559 16.958 0.666
Korean 3.839 8.172 1.142
Mandarin 5.446 16.762 0.333
Spanish 2.142 8.616 0.904
Vietnamese 2.886 9.717 0.047
Average 7.879 14.382 0.857
pooled minDET 8.697 15.017 1.220
pooled EER 8.958 15.215 1.398
pooled unweighted minDET 9.258 15.313 1.220
pooled unweighted EER 9.607 15.497 1.398
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Table A.5: Results of acoustic system trained on CallFriend database without channel compensation.

Language NIST 2003 NIST 2007 Broadcast

Dari 2.083 2.359 5.190
English 1.488 13.291 10.619
French 4.077 2.531 12.333
Hindi 4.255 15.340 13.238
Korean 2.291 7.788 6.238
Mandarin 2.559 10.153 5.666
Spanish 4.315 8.564 2.761
Vietnamese 1.160 3.661 4.190
Average 2.779 7.961 7.529
pooled minDET 3.277 8.670 8.184
pooled EER 3.407 8.807 8.261
pooled unweighted minDET 3.276 10.601 8.184
pooled unweighted EER 3.375 10.873 8.261

Table A.6: Results of acoustic system trained on broadcast database without channel compensation.

Language NIST 2003 NIST 2007 Broadcast

Dari 21.577 23.920 1.142
English 9.375 22.564 3.761
French 16.220 20.010 3.666
Hindi 20.952 24.347 2.476
Korean 11.428 15.325 3.190
Mandarin 9.017 20.200 0.714
Spanish 10.000 14.083 1.428
Vietnamese 7.351 7.847 1.857
Average 13.240 18.537 2.279
pooled minDET 13.958 19.317 2.833
pooled EER 14.423 19.502 3.250
pooled unweighted minDET 13.357 20.133 2.833
pooled unweighted EER 13.633 20.350 3.250
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Table A.7: Results of acoustic system trained on CallFriend database with channel compensation
trained on broadcast data.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.625 1.432 11.428
English 1.101 9.014 8.714
French 1.250 0.949 12.333
Hindi 0.654 10.878 7.666
Korean 0.148 4.563 3.238
Mandarin 0.803 7.139 5.619
Spanish 1.011 3.580 2.523
Vietnamese 0.148 3.556 9.761
Average 0.718 5.139 7.660
pooled minDET 1.104 5.447 8.166
pooled EER 1.145 5.644 8.250
pooled unweighted minDET 1.196 6.746 8.166
pooled unweighted EER 1.250 6.959 8.250

Table A.8: Results of acoustic system trained on broadcast database with channel compensation
trained on broadcast data.

Language NIST 2003 NIST 2007 Broadcast

Dari 15.565 17.015 0.142
English 6.517 15.538 0.476
French 11.458 13.324 0.238
Hindi 14.851 17.612 0.000
Korean 6.994 10.583 0.809
Mandarin 6.666 16.875 0.000
Spanish 6.428 10.113 0.714
Vietnamese 2.678 9.773 0.142
Average 8.895 13.854 0.315
pooled minDET 9.471 14.510 0.505
pooled EER 9.840 15.013 0.583
pooled unweighted minDET 9.196 15.939 0.505
pooled unweighted EER 9.508 16.198 0.583
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Table A.9: Results of acoustic system trained on CallFriend database with channel compensation
trained on telephone data.

Language NIST 2003 NIST 2007 Broadcast

Dari 0.178 1.471 3.190
English 0.416 6.850 4.619
French 0.446 0.587 4.619
Hindi 0.178 7.643 2.190
Korean 0.208 2.923 1.285
Mandarin 0.505 8.168 1.285
Spanish 0.119 2.636 0.380
Vietnamese 0.000 2.005 1.142
Average 0.256 4.035 2.339
pooled minDET 0.383 4.258 2.964
pooled EER 0.420 4.296 3.083
pooled unweighted minDET 0.437 5.714 2.964
pooled unweighted EER 0.500 5.730 3.083

Table A.10: Results of acoustic system trained on broadcast database with channel compensation
trained on telephone data.

Language NIST 2003 NIST 2007 Broadcast

Dari 11.220 17.892 0.047
English 7.410 17.296 1.666
French 13.839 13.585 0.238
Hindi 14.970 15.280 0.095
Korean 3.720 6.250 0.714
Mandarin 9.166 20.584 0.000
Spanish 6.726 9.027 0.619
Vietnamese 2.023 5.336 0.000
Average 8.634 13.156 0.422
pooled minDET 9.136 14.136 0.886
pooled EER 9.222 14.290 0.922
pooled unweighted minDET 8.964 15.772 0.886
pooled unweighted EER 9.107 15.860 0.922
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Appendix B

Figures
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Figure B.1: Simplex with two language models
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Figure B.2: Simplex with two language models. Red and blue lines show the subspace defining the
inter-session variability.
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Figure B.3: Equal Error Rate of individual languages for phonotactic systems based on lattices trained
on CTS and broadcasts.
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Figure B.4: Equal Error Rate of individual languages for acoustic systems trained on CTS and broad-
casts with channel compensation trained on broadcast data.
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Appendix C

Cooperation with Linguistic Data
Consortium

We were collaborating with the Linguistic Data Consortium (LDC) on preparation of broadcast data
database, which will contain recording from various radio stations in many languages. Language labels
of all recordings in this database need to be manually verified. Verification of such large amount of
data consisting of tens of languages represents a problem in routing a recordings to an annotator, able
to recognize language of particular recording.

We received a set of various broadcast recordings from LDC without language labels. It was
expected, that these recordings contain 39 different languages. 1 This package contained over 7GB or
10150 files of stereo recordings compressed in mp3 format. Given the fact, that the recordings often
contain different broadcast stations in the left and right channel, more than 14000 hours of data had
to be processed and labeled.

In order to label the data, we downloaded large amount of broadcast data from the Voice of America
archive, where the recordings are labeled according to location of broadcasting and predominant
language. We prepared the data for training using the same techniques explained in section 2.6.1 and
trained a phonotactic system based on string output from our Hungarian phoneme recognizer. The
language models were trained for 43 languages 2 and there was an average of 14.1 hours of speech per
each language for training. However, this number varied from 4.7 hours (for Serbian )to 64 hours (for
Korean).

We provided three top-scoring language labels for each file and each channel to speed up the routing
of files to human annotators. We also provided speech and non-speech labels and labels for the phone
calls detected in the broadcasts. These labels were obtained by techniques explained in sections 2.1,
2.2 and 3.

We have also created software packages for phone call detection and speech/non-speech segmen-
tation. This software was shipped to LDC will allow them to process the recorded broadcast more
effectively.

1Albanian, Amharic, Armenian, Azeri, Bengali, Bosnian, Burmese, Cantonese, Creole, Croatian, Dari, English,
French, Georgian, Greek, Hausa, Hindi, Indonesian, Khmer, Korean, Kurdish, Lao, Mandarin, Pashto, Persian, Por-
tuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tigrigna, Turkish, Ukrainian, Urdu, Uzbek, Viet-
namese

2Albanian, Amharic, Azerbaijani, Bengali, Bosnian, Burmese, Cantonese, Creole, Croatian, Dari (Persian), English,
French, Georgian, Greek, Hausa, Hindi, Indonesian, Khmer, Kinyarwanda, Korean, Kurdish, Lao, Macedonian, Man-
darin, Ndebele, Oromo, Pashto, Persian, Portuguese, Russian, Serbian, Shona, Somali, Spanish, Swahili, Thai, Tibetan,
Tigrinya, ”Talk To America - English”, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese
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Appendix D

List of Abbreviations

ANN Artificial Neural Network
BUT Brno University of Technology
CTS Continuous Telephone Speech
DCF Decision Cost Function
DET Detection Error Trade-off
DVB Digital Video Broadcasting
DVB-C Digital Video Broadcasting - Cable
DVB-S Digital Video Broadcasting - Satellite
DVB-T Digital Video Broadcasting - Terrestrial
EER Equal Error Rate
ELLR Expected Log Likelihood Ratio
GMM Gaussian Mixture Model
HMM Hidden Markov Model
JFA Joint Factor Analysis
LDA Linear Discriminant Analysis
LDC Linguistic Data Consortium
LID Language Identification
LRE Language Recognition
MAP Maximum A-posteriori Probability
MFCC Mel-frequency Cepstral Coefficients
ML Maximum Likelihood
MP3 MPEG-1 Layer III
MPEG Motion Picture Experts Group
NIST National Institute of Standards and Technology
PIVCO Phonotactic Inter-Session Variability Compensation
PLDA Probabilistic Linear Discriminant Analysis
PSD Power Spectral Density
SDC Shifted Delta Cepstra
SRE Speaker Recognition
SVM Support Vector Machines
UBM Universal Background Model
VTLN Vocal Tract Length Normalization
VoA Voice of America
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