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INTRODUCTION 
BACKGROUND  Prostate cancer is the most frequently diagnosed cancer and the second leading 

cause of cancer death in men in the United States, in 2009, approximately 192,000 men were diagnosed 
with prostate cancer with 27,000 succumbing to this disease,[1,2] currently, there is no cure for locally 
advanced or metastatic prostate cancer.  

Gene therapy has emerged as a potentially promising strategy for treatment of prostate cancer.[3-
15] The prostate is particularly amenable to gene therapy.[11-16] However, there are major issues in 
terms of assessing the delivery to target tissue, assessing the uniformity (versus heterogeneity) of 
biodistribution and determining whether the genes are expressed.[15-33] A viral construct is often 
readministered on successive occasions, but this should optimally be timed to coincide with loss of 
expression. Inevitably gene therapy has associated risks, and thus non-invasive in vivo determining the 
duration of gene expression in an individual tumor could greatly enhance the viability of the approach. 
Gene expression now is commonly monitored by in situ hybridization techniques or by introducing a 
marker gene to follow the regulation of a gene of interest. Since β-galactosidase (β-gal) activity is 
readily assessed by histology or in culture, in hosts as evolutionarily diverse as bacteria, yeast, and 
mammals, its introduction has become a standard means of assaying clonal insertion, transcriptional 
activation, protein expression, and protein interaction, lacZ gene encoding E. coli β-gal has already been 
recognized as the most commonly used reporter system.[34] A variety of lacZ gene reporters has been 
developed, such as colorimetric,[35-39] fluorescence,[40-53] chemiluminescence,[54-61] radiotracers 
for positron emission tomography (PET) or single-photon emission computed tomography (SPECT),[62-
66] magnetic resonance imaging (MRI) probes,[67-69] and 19F-NMR approaches,[70-77] though most of 
them have only been utilized in in vitro detection, with a very few successful applications in vivo so 
far.[39,49,50,51,60,63-65,67,68,76,77] Therefore, the development of non-invasive lacZ gene reporter 
techniques based on appropriate molecules and imaging modalities is still a high desire.  

The superb spatial resolution and the outstanding capacity of differentiating soft tissues have 
determined the widespread success of magnetic resonance imaging (MRI) in clinical diagnosis.[78] The 
contrast in an MR image is the result of a complex interplay of numerous factors, including the relative 
T1 and T2 relaxation times, proton density of the imaged tissues and instrumental parameters. It was 
shown that contrast agent causes a dramatic variation of the water proton relaxation rates, thus providing 
physiological information beyond the impressive anatomical resolution commonly obtained in the 
uncontrasted images. Contrast agents are widely used clinically to assess organ perfusion, disruption of 
the blood-brain barrier, occurrence of abnormalities in kidney clearance, and circulation issues.[78-82] 
The responsive MRI contrast agents holds great promise in the gene therapy arena.[83,84] The abilities 
of these contrast agents to relax water protons is triggered or enhanced greatly by recognition of a 
particular biomolecule opening up the possibility of developing MRI tests specific for biomarkers 
indicative of particular disease states and aiding in the early detection and diagnosis of tumors. Desreux 
et al [80,85] demonstrated that, by chelating Gd(phen)HDO3A with Fe(II) to form a highly stable tris-
complex, as shown in Figure 1, the relaxivity increased 145% at 20MHz and 37°C from 5.1mM-1s-1 per 
Gd(III) in Gd(phen)HDO3A form to 12.2 mM-1s-1 in the tris-complex. Desreux et al [80,85] also 
synthesized another iron-sensitive MRI contrast agent with a tris-hydroxamate (Figure 2). After the tris-
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hydroxamate groups formed a chelate with Fe(III), free rotation at the Gd(III) centers was restricted, 
thereby increasing relaxivity by 57% from 5.4 to 8.5mM-1s-1 at 20 MHz. 

Relaxivity: 5.4                8.5mM-1s-1
20MHz, 37C

Increasing 57%

Figure 2. The iron(III)-sensitive MRI 
agent Gd(III)-Trishydroxamic acid 
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Most recently, Merbach et al [86-88] observed the remarkably high 

T1 relaxivity gain by the heterometallic, self-assembled metallostar 
formation with six efficiently relaxing GdIII centers from (tpy-
DTTA)Gd(H2O) with 7.3mM-1s-1 to {FeII[GdIII

2(tpy-DTTA)2(H2O)4]3}4- 
with 15.7mM-1s-1 at 20MHz and 37°C (Figures 3), significantly, their 
detailed studies on structure and dynamics of the trinuclear complex 
{FeII[GdIII

2(tpy-DTTA)2(H2O)4]3}4- indicate that the heterometallic self-
assemblies attain high T1 relaxivities by influencing three factors: water 
exchange, rotation, and electron relaxation. 

DESIGN  Prompted by these findings, we proposed a novel class of enzyme responsive Gd3+-based 
MRI contrast agent for high sensitivity and specificity for β-gal detection, based on the tumor biology 
and Fe-chelation therapeutic strategy. Cancer cells, as compared with their normal counterparts, exhibit 
increased uptake and utilization of more iron, as evidenced by an increase in transferrin receptors at the 
cancer cell surface, mediating a high level and rate of iron uptake.[89] More recently, an emerging class 
of Fe-chelator agents have shown effective antitumor activity in vitro and in vivo, which can overcome 
resistance to standard chemotherapy, due to their ability to affect multiple molecular targets including 
the enzyme responsible for the rate-limiting step of DNA synthesis, ribonucleotide reductase, molecules 
involved in cell cycle control (e.g. cyclin D1, p21CIP1/WAF1) and the inhibition of metastasis (i.e. N-myc 
downstream regulated gene-1).[89-94] The FDA has approved five Fe-chelators for use in anticancer 
therapy so far, some others are in clinical trials for the treatment of various metastatic and solid 
cancers.[89,95-97] In our design, the lacZ responsive Gd3+-based MRI contrast agent is comprised of 
three moieties: (A) a signal enhancement group, such as Gd-DOTA or Gd-PCTA; (B) an Fe3+ chelating 
group; (C) β-D-galactose. Upon encountering with β-gal in tumor cells, the released, activated Fe3+-
ligand will spontaneously scavenge tumor abundant Fe3+ at the site of enzyme activity forming a highly 

 
Figure 3. {Fe[Gd2L2(H2O)4]3}4- 
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stable Fe-complex, to localize and accumulate the signal enhancement groups (e.g. Gd-DOTA or Gd-
PCTA) in tumor, revealing regional β-gluc activity, and verifying the location and magnitude of tumor to 
evaluate the gene therapy. Also, the formation of the Fe-complex will restrict motion of the Gd3+ 
chelates, then enhancing additional relaxivity. Figure 4 depicts the mechanism for detection of lacZ gene 
expression through Fe3+-trapped MRI contrast agent formation. 
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Figure 4. Detection of lacZ gene expression by β-gal activated in situ Fe3+-trapped MRI contrast agent formation. 

Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein with 
enzymatic activities: N-acetylated α-linked L-amino dipeptidase (NAALADase) and γ-glutamyl 
carboxypeptidase (folate hydrolase).[97-99] Studies with the monoclonal antibodies have demonstrated 
that PSMA is the most well-established, highly restricted prostate cancer cell surface antigen, it is 
expressed at high density on the cell membrane of all prostate cancers.[100-102] The high prostate tissue 
specificity of PSMA has been identified as an ideal therapeutic and diagnostic target for prostate cancer, 
this potential was exemplified by the recent FDA approval of an 111In-labeled PSMA monoclonal 
antibody (Prostascint®) for diagnostic imaging of prostate cancer.[103-110] Furthermore, phase I and II 
trials have begun using immunotherapy directed against PSMA.[106-108] By introducing γ-glutamate 
residue instead of D-galactose in the Figure 4, we intend to develop a novel class of PSMA responsive 
Gd(III)-based MRI approach specific for prostate cancers detection with high sensitivity (Figure 5). 
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Figure 5. PSMA responsive Gd(III)-based MRI approach specific for prostate cancers detection. 

Especially, PSMA has a large extracellular domain,[108] so the expression of PSMA tethered to 
the surface of the prostate cancer cells makes that the above novel peptide-based MRI contrast agents 
can be activated extracellularly around prostate cancers,[109] thus the need for a peptide-based MRI 
contrast agent to penetrate the prostate tumor cell membrane is no longer a prerequisite. The 
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permeability is always one of the greatest challenges in the development of in vivo MRI contrast 
agents.[111] 

Accordingly, depending upon the enzyme sources either being the lacZ transgene or the PSMA 
from prostate tumors, this new platform could provide in vivo lacZ gene expression assay or in vivo 
prostate cancer imaging (in particular, through extracellular contrast agents), with combining the factors 
of reaching the high relaxivities. Furthermore, this new class of responsive MRI contrast agent is 
composed of three functional moieties, in which the signal enhancing and Fe3+ chelating parts are 
changeable allowing modification in a search for ideal Fe3+-trapped MRI contrast agents. Importantly, 
the combination of three functional moieties is based on the clinically applied strategies on cancer 
therapy. These facts strongly suggest the potential of the proposal to future clinical application. 

STATEMENT OF WORK 

Specific Aim 1 Design and synthesize model “smart” MRI contrast agents to report β-gal or PSMA 
activities with the ability of trapping Fe3+ ion.  

Task 1 Design and optimization of synthetic strategies for reporter molecules. (Completed) 
Task 2 Structural characterizations of the synthesized molecules. (Completed) 
Specific Aim 2 Test the properties of molecules in solution and in vitro with cultured prostate 

cancer cells. 
Task 3 Evaluation the basic properties of the agents in solution. (Completed) 
Task 4 Evaluation of the properties of the optimal molecules in vitro with cultured prostate 

cancer cells. (Completed) 
Specific Aim 3 Scale up synthesis of the most promising MRI contrast agent(s) and apply to 

animal investigations. 
Task 5 Scale up synthesis of the most promising 1H MRI contrast agent(s). (Completed) 
Task 6 Apply the most promising 1H MRI contrast agent(s) to assess β-gal transfection efficiency, 

lacZ gene expression (spatial and temporal) in prostate tumors in vivo. (Completed) 
Task 7 Test dosing protocols, timing, MR detection protocols  (Completed) 
Task 8 Prepare manuscripts and final report (Completed) 

BODY 

SEYNTHESIS Initially, we started the syntheses of the target molecules with the strategy of 
constructing the structures of Gd3+ and Fe3+ chelators simultaneously in the fused way as designed in the 
proposal, in order to maximize the restriction for the motion of the Gd3+ chelates, then obtaining the 
optimal relaxivity.   

In the years 1 and 2, the syntheses according to the original plan met the challenges on (1) selective 
removal of benzyl ether (in blue) in the presence of benzyl ester (in magenta) by Pd/C hydrogenolysis; 
(2) selective removal of esters to accomplish the expected compound D, then to the target molecule M1 
(see Figure 6). Because M3~M6 are analogues of M1 and M2, similarly, their syntheses had encountered 
the same situations. Although we put in much time and effort for solving these issues even partially in 
year 3, the failure made us modify the synthetic strategy by using tert-Butyl (instead of Ethyl) (see 
Figure 7), since they can be readily and selectively removed.     
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Figure 6. Initial Synthetic Strategies for M1~M6. 
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Figure 7. Modified Synthetic Strategies for M1~M6. 
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Following the modified synthetic strategy, we eventually achieved the designed target molecules 

M1~M6 and M7, M8 (see Figure 8). 
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Figure 8. Reaction Conditions: (a) K2CO3, MeCN, 75%; (b) CF3CO2H, CH2Cl2, 81%; (c) GdCl3, Pyridine, 
82%; (d) MeOH, MeONa, 89%. 
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The test of the target molecules M1~M8 using 1H-MRI by comparing the contrast enhancement 
with that of the control in sodium phosphate buffer solution (PBS) (0.1 M, pH=7.4) in the presence of ferric 
ammonia citrate (FAC) with β-galactosidase E801A or PSMA (from lysed LNCaP cells in Tris buffer) 
indicated that: (1) the reporter molecules M1, M3, M5, M7 can not be hydrolyzed by β-galactosidase 
E801A; (2) the reporter molecules M2, M4, M6, M8 cannot be hydrolyzed by PSMA; so no MRI contrast 
changes before and after addition of β-galactosidase E801A or PSMA can be seen (Figure 9 and Table 
1).   
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Figure 9 
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Table 1. 1H-MRI contrast of the reporters M1~M8 in the presence of FAC. [Conditions: T1-weighted 1H MRI, 
200MHz, TR=300ms, TE=20ms, 1.5mm slice, 128×128, 50×50mm2. (A) Control, M1, M3, M5, M7 each (5μmol), 
FAC (2.5μmol), PBS (0.1M, pH=7.4, 1.5mL); M2, M4, M6, M8 each (5μmol), FAC (2.5μmol), Tris buffer (50 
mM, pH=7.4, 1.5mL);  (B) Complex, M1~M8 each (5μmol), FAC (2.5μmol), E801A (10 units), PBS (0.1M, 
pH=7.4, 1.5mL)], or PSMA (from lysed LNCaP cells 5×106), Tris buffer (50 mM, pH=7.4, 1.5mL). 

Enzyme β-galactosidase E801A PSMA 

Molecule M1 M3 M5 M7 M2 M4 M6 M8 

T1-weighted 1H MRI (Control) 
      

T1-weighted 1H MRI (Enzyme) 
      

The molecular modeling shows that the fused structure of Gd3+ and Fe3+ chelator results in the 
molecular structures of M1~M8 very rigid (see Figure 10 as an example of M1, M2). Therefore, we 
deduced that these too rigid molecules would be hard to coordinate with PSMA or lacZ proteins and 
dock into the cleft of the active site of the enzymes for interaction.[112,113] 

 
Figure 10 

The molecular modeling and docking studies provide us a better understanding of the interactions 
between our designed target molecules and PSMA or lacZ proteins. We found that selecting a suitable 
structure with certain features (e.g. flexibility, linkage, appropriate angles, versatile binding modes, and 
coordination to Fe3+ with plastic chelating geometry) is crucial to the construction of the enzyme 
responsive enhanced MRI contrast agents. We also realized that the previous design and synthesis 
involved too many steps of reactions, not briefly and efficiently, displaying the increasing difficulty 
either in synthesis and purification with lower yields, especially, when the molecules grew bigger. 

With these considerations in mind, we tried to introduce diethylenetriamine-N,N’,N”,N”-
tetraacetate (DTTA) instead of the cyclic DOTA or PCTA as Gd(III) chelator (see Figure 11) with a 
straightforward strategy. Most importantly, molecule M9 can be hydrolyzed by β-galactosidase E801A in 
the presence of FAC in PBS (0.1 M, pH=7.4), producing obvious MRI contrast change before and after 
reaction with β-galactosidase E801A (see Figure 12), implying we found the right way. Inspirited by 
these results, we extended this strategy further for the synthesis of other new molecules by using the Fe-
chelation agents in anticancer therapy as the Fe-chelator for construction of the responsive MRI contrast 
agents. We firstly proved that the clinically applied Fe-chelators, such as Pyridoxal 
IsonicotinoylHydrazone (PIH), and its analogues Salicylaldehyde BenzoylHydrazone (SBH), 
Salicylaldehyde IsonicotinoylHydrazone (SIH) and Salicylaldehyde NicotinoylHydrazone (SNH), can act as 
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Fe-based 1H MRI contrast agents to produce strong T1-weighted contrast effects (Figure 13, TABLE 2), 
suggesting that the Fe-complex formation could not only localize, accumulate and restrict the motion of 
the linked Gd-based 1H MRI moiety, but also itself can produce the additional relaxivity.  

( B )

O
OAc

OAc

OAc

OAc

NH2

O

O

OAc

OAc

OAc

OAc

O

O
OAc

OAc

OAc

OAc

NO2

O

O

OAc

OAc

OAc

OAc

OO2N

OH

OH

c d

b Br
N

CO2Bu-t

CO2Bu-t
HO

N

CO2Bu-t

CO2Bu-t

( A )

aHO
NH2

 
Reaction Conditions: (a) BrCH2CO2Bu-t, KHCO3, 88%; (b) Ph3P, NBS, 86%; (c) 2,3,4,6-tetra-O-acetyl-a-D-
galactopyranosyl bromide, Hg(CN)2, 4Å M.S., CH2Cl2, 92%; (d) H2, Pd/C, 100%. 
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Figure 11.  Reaction Conditions: (a) K2CO3, MeCN, 78%; (b) CF3CO2H, CH2Cl2, 84%; (c) GdCl3, Pyridine, 
80%; (d) MeOH, MeONa, 86%. 
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Figure 12. T1-weighted 
(TR/TE 250/12 ms) MR 
images of solutions and 
the signal intensity in test 
tubes at 4.7 T MR 
scanner: (A) PBS with M9 
and FAC; (B) PBS with 
M9, FAC and β-
galactosidase E801A. 
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Then, we synthesized M10, M11 and M12 

by using SBH, SIH and SNH as the Fe-chelators 
(see Figure 14). The MRI evaluation of the 
reporter molecules M10, M11 and M12, 
respectively, in sodium phosphate buffer 
solution (PBS) (0.1 M, pH=7.4) in the presence 
of ferric ammonia citrate (FAC) with β-
galactosidase E801A indicated that: (1) Again, 
the reporter molecule M10, similarly like M9, 
can be hydrolyzed by β-galactosidase E801A, 
producing apparent MRI contrast change upon response to β-galactosidase E801A; (2) Unlike M9 and 
M10, M11 and M12 have no MRI contrast enhancements with galactosidase E801A in the presence of 
FAC in PBS (0.1 M, pH=7.4), but with strong MRI contrast changes with galactosidase G5160 in the 
presence of FAC in PBS (0.1 M) at pH=4.5 (Table 3). 
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Figure 14. Reaction Conditions: (a) K2CO3, MeCN, 42%; (b) CF3CO2H, CH2Cl2, 64%; (c) GdCl3, Pyridine, 
70%; (d) MeOH, MeONa, 85%. 

Chelator  PIH  SBH  SIH  SNH

T1‐weighted 1H MRI (Control)1   

T1‐weighted 1H MRI (Control)2 
 

T1‐weighted 1H MRI (Complex)   
TABLE 2.    (A)  (1) Control, PIH,  SBH,  SIH or  SNH each  (1.6mM)  in 
PBS; (2) Control, ferric ammonia citrate (FAC) (0.8mM) in PBS; 
(B) Complex, PIH, SBH, SIH or SNH each (1.6mM), FAC (0.8mM) in 
PBS; CONDITIONS: T1‐weighted 1H MRI, 200MHz, TR=300ms, TE 
=20ms, 1.5mm slice, 128×128, 50×50mm2.  
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Table 3. 1H-MRI contrast of the reporters M10~M12 in the presence of FAC with E801A in PBS (0.1M, pH=7.4) 
or G5160 in PBS (0.1M, pH=4.5). [Conditions: T1-weighted 1H MRI, 200MHz, TR=300ms, TE=20ms, 1.5mm 
slice, 128×128, 50×50mm2. (A) Control, M10~M12 each (5μmol), FAC (2.5μmol), PBS (0.1M, pH=7.4, 1.5mL);  
(B) Complex, M10~M12 each (5μmol), FAC (2.5μmol), E801A (10 units), PBS (0.1M, pH=7.4, 1.5mL)], or G5160 
(10 units), PBS (0.1M, pH=4.5, 1.5mL)]. 

Enzyme β-galactosidase E801A β-galactosidase G5160 

Molecule M10 M11 M12 M10 M11 M12 

T1-weighted 1H MRI (Control) 
      

T1-weighted 1H MRI (Enzyme) 
      

The experience accumulated on the development of enzyme responsive enhanced MRI contrast 
agents opened our mind, and the desire for an ideal in vivo MRI probe prompted us to design and 
syntheses another two kinds MRI agents: (1) through phenylthioureido as linkage connecting Gd3+ and 
Fe3+ chelators for suitable flexibility of the molecules M13 and M14 (see Figure 15), both like M9 
produced apparent MRI contrast differences upon response to β-galactosidase E801A.  
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(2) “Click Chemistry” Approach   Because of regioselectivity, high yields in reasonable reaction 

times under mild conditions, “Click Chemistry” has been applied in a wide range of fields from synthetic 
chemistry to biomedicine and materials science. Our attention is on the versatile triazole rings as linkers 
between Fe3+ and Gd3+-ligands to functionalize with tolerance for the interaction with lacZ protein (see 
Figure 16).  

In Vitro MRI Studies   (1) Cell preparation  (a) Stably transfected PC3 cell line: E. coli lacZ 
gene (from pSV-β-gal vector, Promega, Madison,WI) was inserted into high expression human 
cytomegalovirus (CMV) immediate-early enhancer/promoter vector phCMV (Gene Therapy Systems, 
San Diego, CA) giving a recombinant vector phCMV/lacZ, which was used to transfect PC3 cells using 
GenePORTER2 (Gene Therapy Systems). Cells were grown in DMEM (Dulbecco's Modification of 
Eagle's Medium, Mediatech, Inc, Herndon, VA), 10% FBS (Fetal bovine serum, Hyclone, Logan, UT) 
with 1% Penicillin-streptomycin Solution (Mediatech). The highest β-gal expressing colony was selected 
using G-418 disulfate (C20H40N4O10. 2H2SO4, Research Products International Corp, Mt. Prospect, IL) 
(800 μg/ml), which was also included for routine culture (200 μg/ml). with 1% Penicillin-streptomycin 
Solution (Mediatech). The highest β-gal expressing colony was selected using G-418 disulfate 
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(C20H40N4O10. 2H2 SO4, Research Products International Corp, Mt. Prospect, IL) (800 μg/ml), which was 
also included for routine culture (200 μg/ml).  
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Figure 16. Reaction Conditions: (a) BrCH2CO2Bu-t, KHCO3, 88%; (b) Ph3P, NBS, 86%; (c) NaN3, DMF, 
80C, 88%, (d) CHCCH2Br, K2CO3, DMF, rt, 86%, (e) (A), CuSO4, NaAsc, t-BuOH, rt, 69%, (f) CF3CO2H, 
CH2Cl2, 74%; (g) GdCl3, Pyridine, 
71%; (h) MeOH, MeONa, 82%. 

 (b) X-gal and S-gal 
staining for β-gal: cells were 
fixed in PBS plus 0.5% 
glutaraldehyde (5 min) and 
rinsed in PBS prior to staining. 
Staining was performed using 
standard procedures for 2 hours 
at 37 oC in PBS plus 1 mg/ml X-
gal (Sigma, St. Louis, MO), 1 
mM MgCl2, 5 mM K3Fe(CN)6,  

and 5 mM K4Fe(CN)6 or with 1.5 
mg/ml S-gal (Sigma) and 2.5 
mg/ml  FAC (see Figure 17). (c) 
β-Gal activity assay: The β-gal 
activity of tumor cells and tissues 
in mice was measured using the 
β-gal assay kit (Promega, 
Madison, WI) with yellow o-

PC3-WT (X-gal) PC3-lacZ (X-gal) PC3- lacZ (S-gal)
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C
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C

 
Figure 17 Generation of PC3 cells stably expressing of β-gal. (A) Map of 
recombinant lacZ vector (phCMV/lacZ). (B) Western blot: cell extracts of 
two transfected lines PC3-lacZ1 (lane 1) and PC3-lacZ (lane 3), together 
with PC3-WT (lanes 2 and 4) were examined. (C) PC3 wild-type and PC3-
lacZ cells were stained using X-gal and S-gal: over 90% of PC3-lacZ cells 
were stained blue or black, respectively, while the PC3 wild type cells did 
not stain. 
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nitrophenyl β-D-galactopyranoside. (d) Western blot analysis: Protein was extracted from PC3 tumor 
cells and was quantified by a protein assay (Bio-Rad, Hercules, CA) based on the Bradford method. 
Each well was loaded with 30μg protein and separated by 10% SDS-PAGE (Nu-PAGE) and transferred 
to a polyvinylidene fluoride (PVDF) membrane. Primary monoclonal anti-β-gal antibody (Promega) and 
anti-actin antibody (Sigma) were used as probes at a dilution of 1:5000, and reacting protein was 
detected using a horseradish peroxidase-conjugated secondary antibody and ECL detection (Amersham, 
Piscataway, NJ).  

(2) In Vitro MRI  The in vitro 
evaluation of M9~M14 with PC3-lacZ cells 
in the presence of FAC showed that only 
molecules M9 and M10 exhibited apparent 
MRI differences.  M9 and M10 (6 μmol) 
each in 1:1 DMSO/PBS was added to 
suspensions of 5×106 PC3 wild type and 
PC3-lacZ cells in PBS (1.0 mL) and FAC (3 
μmmol) in wells and maintained at 37oC. 
MRI experiments were performed on a 4.7 T 
Varian Unity INOVA spectrometer. Figure 
18 showed the in vitro MR images of M9 and M10 with lacZ transfected prostate tumor cells, yielding 
obvious MRI contrast changes between in WT and lacZ transfected PC3 prostate tumor cells, indicating 
that both M9 and M10 can penetrate prostate tumor PC3 cell membrane and have no apparent cytotoxicity 
and no physiological perturbation effects on WT and lacZ transfected PC3 cells, the others M11~M14 
cannot cross prostate tumor PC3 cell membrane.  

 In Vivo MRI Studies of M9 and M10  (1) Animal model   All in vivo 
MRI studies were performed with approval from the Institutional Animal Care 
and Use Committee (IACUC). Wild type and stably transfected lacZ PC3 cells 
(2×106) were implanted subcutaneously in the left and right thighs of mice, 
respectively, when the tumors reached ~0.8 cm in diameter, the mouse was 
anesthetized (1.3% isoflurane/air at 1 dm3/min) with a facemask and maintained 
at 37°C by a warm pad with circulating water, and placed into animal coil for 
imaging. MRI data were acquired using a 4.7 T horizontal bore magnet with a 
Varian INOVA Unity system (Palo Alto, CA, USA). T1 and T2 values were 
measured using a spin echo sequence with varying repetition and echo times, 
e.g. T1-weighted 1H MRI, 200MHz, TR=0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 4, 6s, 
TE=12ms, 1.5mm slice, matrix=128×128, FOV=50×50mm2; T2-weighted 1H MRI, 200MHz, TR=6s, 
TE=11, 15, 20, 30, 50, 100, 150ms, 1.5mm slice, matrix=128×128, FOV=50×50mm2. Histology analysis 
confirmed that PC3-lacZ tumor section showed over 90% of tissue stained blue for β-gal, while PC3-WT 
tumor histological section showed little or no blue stain (Figure 19). (2) In Vivo MRI with i.v. injection   
Mice bearing PC3-WT and PC3-lacZ tumors were imaged on a 4.7 T Varian Unity INOVA 
spectrometer. T1-weighted transaxial images were obtained before and after intravenous injection of the 

PC3-WT Tumor (X-gal)

PC3-lacZ Tumor (X-gal)

PC3-WT Tumor (X-gal)

PC3-lacZ Tumor (X-gal)

 
Figure 19 

M9

M10

PC3-WT PC3-lacZ PC3-lacZ

Control 40 min. 90 min.

M9

M10

PC3-WT PC3-lacZ PC3-lacZ

Control 40 min. 90 min.  
Figure 18 1H MRI, 200 MHz, TR=300ms, TE=20ms, 1.5mm 
slice, 128×64, 40×40 mm2. (A) control, M9 or M10 (6 μmol), 
FAC (3 μmol), 5×106 PC3 WT, PBS (0.9 mL), DMSO (0.1 
mL); (B) M9 or M10 (6 μmol), FAC (3 μmol), 5×106 PC3-lacZ, 
PBS (0.9 mL), DMSO (0.1 mL)]. 
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mixture of 0.4 mmol/kg M9 and M10 and FAC. Postcontrast scans were obtained every 15 min for one 
and half hours. For both reporters M9 and 
M10, the MR images of animals showed that 
there are no time-signal intensity changes 
between PC3-WT and PC3-lacZ tumors 
before and after M9 and M10 injection (Figure 
20), indicating that both M9 and M10 can 
either be washed out or metabolized very 
quickly, and can’t reach to PC3-WT and PC3-
lacZ tumors on the thighs with enough 
amount. Also, we found that 
mice all died one and half-hours 
later after intravenous injection 
of M9.  (3) In Vivo MRI with 
direct injection into tumors   
However, if a solution of M10 
(0.4 mmol/kg) and FAC 
(DMSO/PBS 1:1 V/V’) was 
injected directly into the tumors 
in a “fan” pattern, strong contrast was detected in the lacZ expressing PC3 tumors (Figure 21).  
 RESEARCH ACCOMPLISHMENTS 

(1) Designed and synthesized a series of reporter molecules, and verified their structures, 
importantly, accumulated solid foundation, experience and expertise for the further investigation on 
molecular imaging.  

(2) Finished the in vitro and in vivo evaluation of the reporter molecules M9 and M10, and the 
results demonstrated this novel mechanism proposed in W81XWH-05-1-0593 for imaging and 
evaluation of prostate cancer gene therapy is reliable. 

REPORTABLE OUTCOMES 

(1) A series of abstracts had been accepted for presentation on the various conferences such as 
World Molecular Imaging Congress, Innovative Minds in Prostate Cancer Today, American Chemical 
Society Meeting.  

(2) Several papers are in preparation. 

CONCLUSIONS 

Prostate cancer is the most commonly diagnosed cancer and the second most common cause of 
cancer death in men in the United States. The advent of effective screening measures can sharply 
decrease the mortality of prostate cancer through detecting this disease at an earlier stage. However, the 
evidence for mortality benefit from prostate cancer screening has been disappointing to date. Expanding 
knowledge of prostate cancer biology with combination of imaging technologies would be of 
considerable value in many ongoing and future clinical prostate cancer diagnosis and gene therapy trials. 

PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ

Control 40 min 90 min

PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZPC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ

Control 40 min 90 min  
Figure 20  1H MRI, 200 MHz, TR=250ms, TE=12ms, 
1.5mm slice, 128×64, 40×40 mm2. (A) control; (B)  M10 
(0.4 mmol/kg), FAC (0.2 mmol/kg), PBS/DMSO (1:1), i.v. 
injection].

PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ

Control 25 min 45 min 75 min

PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ

Control 25 min 45 min 75 min

PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ PC3-WT PC3-lacZ

Control 25 min 45 min 75 min  
Figure 21  1H MRI, 200 MHz, TR=250ms, TE=12ms, 1.5mm slice, 128×64, 
40×40 mm2. (A) control; (B)  M10 (0.4 mmol/kg), FAC (0.2 mmol/kg), 
PBS/DMSO (1:1), i.v. injection].
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Based on the biologic features of prostate cancer, we proposed in this project a new approach for in 
vivo lacZ gene expression assay or in vivo prostate cancer imaging. The ultimate objective is to 
demonstrate the utility and reliability of this new approach to measure β-gal or PSMA activities in vivo. 
We have accomplished a series of target molecules M1~M14, and verified by NMR data. Strong MRI 
contrast changes of target molecules M9 and M10 for detection lacZ in vitro and in vivo demonstrated this 
novel mechanism described in W81XWH-05-1-0593 is feasible and reliable. With screening out the 
ideal reporter molecules, we believe the translation of this novel approach to clinical investigations will 
enable prostate cancer detection comprehensive and infallible.  
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