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Developing Autonomy for USVs by Using 
Virtual Environments 

Abstract 

We address the problem of automated synthesis of an action se- 
lection policy for an unmanned vehicle operating in an environment 
with a deceptive adversary. We introduce a new synthesis approach 
using which an initial version of the policy is automatically generated 
and then gradually refined by detecting and fixing its shortcomings. 
The synthesis mechanism consists of the automated extraction of the 
vehicle's states of exception and Genetic Programming (GP) for au- 
tomated generation of corrective sequences of action commands to be 
applied locally. 

Our focus is specifically on automated synthesis of a policy used 
for blocking the advancement of an intruder boat toward a valuable 
target. This task requires the USV to utilize reactive planning com- 
plemented by short-term forward planning to generate specific ma- 
neuvers for blocking. The intruder is human competitive and exhibits 
a deceptive behavior so that the USV cannot exploit regularity in its 
attacking behavior. 

We compared the performance of a hand coded USVs blocking pol- 
icy to the performance of a policy that was automatically synthesized. 
Our results show that the performance of the automatically generated 
USVs policy exceeds the performance of the hand coded policy and 
thus demonstrates the feasibility of the proposed approach. 

1    Introduction 

Manual development of a truly robust unmanned robotic vehicle for tasks in 
which the unmanned system has to autonomously face a human-competitive 



adversary exhibiting deceptive behavior is a challenge. This scenario is typ- 
ical for a combat mission task where even a single mistake in the decision 
of the vehicle can have fatal consequences. In such scenarios, the unmanned 
vehicle has to be prepared to rapidly execute specialized maneuvers to its 
default strategy in specific situations as defined by its control algorithm, 
or policy to successfully accomplish its task. The difficulty in the devel- 
opment of such a policy consist in manual handling of the vehicle's failure 
states that arise in the encountered environments. This requires intensive 
repeatable testing of the overall vehicle's behavior using a large suite of dif- 
ferent test scenarios, identifying the shortcomings, and implementing various 
contingency-handling behaviors (Baker et al 2008). 

In this report, we present a new approach for automated policy synthesis 
for unmanned vehicles operating in a continuous state-action space. This 
approach can be viewed as a synthesis process during which an initial ver- 
sion of the policy is automatically generated and then gradually improved by 
detecting and fixing its shortcomings. Each iteration of this process involves 
extensive evaluation of the overall vehicle's behavior in multiple simulation 
runs, automatically finding states of failure in which the vehicle exhibited 
deficiencies in accomplishing its task, selecting a state from which the vehi- 
cle can avoid the largest amount of the detected faulty states by executing 
an appropriate maneuver, and letting the vehicle to learn an improved ma- 
neuver. This way, the focus of the synthesis process is always on the most 
crucial encountered states of failure. At the end of the policy synthesis, the 
vehicle thus knows which additional maneuvers to execute in which states to 
enhance the performance of its default policy. 

The synthesis mechanism is completely automated and consists of the 
extraction of the vehicle's states of exception and Genetic Programming (GP) 
(Koza 2003) for generation of corrective sequences of action commands to be 
applied locally. During the whole process, no external information on how 
the policy should be synthesized is therefore needed. The policy is internally 
represented as a composite consisting of one default high-level controller and 
a set of specialized action plans. The default controller is used to control the 
vehicle's behavior in all situations besides the situations for which specific 
maneuvers represented as action plans are needed. The action space of the 
vehicle is represented by a set of primitive commands, each having continuous 
parameters. The commands are combined, parametrized, and composed into 
a structure by the synthesis process to perform the overall task. The inherent 
symbolic representation of the policy greatly simplifies the analysis of its 



Figure 1: Virtual environment: Unmanned Surface Vehicle (USV) is protect- 
ing an oil tanker by blocking the advancement of an intruder boat 

behavior. Moreover, the symbolic representation allows integrating human 
knowledge and the analysis of the policy can provide the basis for improving 
the code. 

Our approach was tested in the context of a large project aimed at the 
development of a general mission planning system (Schwartz et al 2009; Svec 
et al 2010) for the automated synthesis of action selection policies for Un- 
manned Surface Vehicles (USVs) (Corfield and Young 2006; Finn and Sched- 
ing 2010). In this report, we extend our previous work (Svec and Gupta 
2010) in which the focus is specifically on automated synthesis of a policy 
used for blocking the advancement of an intruder boat toward a valuable 
target (see Fig. 1). This task requires the USV to utilize reactive plan- 
ning complemented by short-term forward planning to generate local action 
plans describing specific maneuvers for the USV. The intruder is human- 
competitive in the sense that its attacking efficiency approaches the attacking 
efficiency of deceptive strategies exhibited by human operators. Our aim is 
to reach the level 3 of autonomy as defined in (Board 2005). In this level, the 
unmanned vehicle automatically executes mission-related commands when 
response times are too short for operator intervention. 

An overview of the overall approach is shown in Fig.   2.   First, we de- 



veloped a physics-based meta-model using a detailed dynamics model of the 
USV to be able to test the policy in a simulation environment in real-time 
(Thakur and Gupta 2010). Second, we developed a mission planning system 
that contains a policy synthesis module (see Section 5). The necessary sys- 
tem architecture of the USV including the policy and state representation is 
described in Section 3. In order to combine the elements of the project into 
a cohesive system, we designed a USV simulation environment (see Section 
4) (Svec et al 2010). The USV simulation environment integrates various 
components of the project into a complete simulation system and acts as a 
simulation platform for the synthesis module. One of the components of the 
USV simulation environment is the virtual environment (VE) based simula- 
tor (see Fig. 1) which serves as an emulator of the real USV environment 
that allows human players to play against each other or against the com- 
puter. Finally, we present an experimental evaluation of the approach in a 
challenging simulated combat-like scenario to demonstrate the feasibility of 
the proposed approach (see Section 6). 
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Figure 2: Overview of the overall approach 



2    Related Work 

Computational synthesis (Lipson et al 2003) deals with the problem of how 
to automatically compose and parametrize a set of functional building blocks 
into a hierarchical solution structure with the desired functionality. This is 
in contrast to classical optimization in which the number and structure of 
modules and parameters being optimized is known in advance. 

Evolutionary Robotics (ER) (Floreano and Mattiussi 2008) is a methodol- 
ogy that uses evolutionary algorithms to automatically synthesize controllers 
and body configuration for autonomous robots. As opposed to the use of 
standard temporal difference methods to approximate a value function (Sut- 
ton and Barto 1998), simulated evolution searches directly for a policy that 
maps states to actions. 

In literature, there are many successful applications of evolutionary tech- 
niques to robots' controllers synthesis. In many cases, the representation 
of the evolved controllers is a neural network. In the domain of neuroevo- 
lution, a popular method is the Neuroevolution of Augmenting Topologies 
(NEAT) (Stanley and Miikkulainen 2002) that was successfully applied to 
many controller synthesis problems. The main issue with the neural network 
representation, however, is the difficulty of analyzing the evolved solutions. 

Besides the possibility to use methods for rules extraction from the evolved 
neural networks (Diedcrich et. al 2010), controllers can also be directly synthe- 
sized in a symbolic form. One of the techniques used to generate symbolic 
controllers is Genetic Programming (GP) (Koza 2003). GP as one of the 
robust evolutionary techniques has been used for automatically generating 
computer programs that usually have a tree structure and are generated vis- 
ing an algorithm similar to the traditional genetic algorithm (GA) (Goldberg 
1989). Most of the controllers were successfully evolved for a wide variety 
of behaviors as obstacle avoidance (Barate and Manzanera 2007; Nehmzow 
2002), wall-following (Dain 1998), line following (Dupuis and Parizeau 200G), 
light seeking, robot seeking (Nehmzow 2002), box pushing (Koza and Rice 
1992), vision-driven navigation (Gajda and Krawiec 2008), homing and cir- 
cling (Barlow and Oh 2008), predator versus prey strategies (Haynes and Sen 
1996), co-evolution of control and bodies morphologies (Buason et al 2005), 
game playing (Jaskowski et al 2008; Togelius et al 2007; Doherty and ORior- 
dan 2006) or group control for survey missions (Richards et al 2005). GP was 
also utilized for the automated synthesis of human-competitive strategies for 
robotic tanks run in a closed simulation area to fight other human-designed 



tanks in international leagues (Shichel et al 2005). There was also some 
progress on development of limited machine intelligence for classical strate- 
gic games like backgammon or chess endgames (Sipper et al 2007). 

However, for high-level strategy problems, e.g. the keep-away soccer 
(Kohl and Miikkulainen 2008), the discontinuous structure of the state-action 
space prohibits the standard evolutionary algorithms to generate good solu- 
tions. The monolithicity and the reactive behavior of the evolved controllers 
limit their usage for complex fractured domains (Kohl and Miikkulainen 
2008) in which the robot's best actions can radically change as the robot 
is moving continuously from one state to the other. 

In the domain of symbolic controllers, Learning classifier system (LCS) 
(Bacardit et al 2008, Lanzi 2008, Ryan et al 2009) can be considered as one 
of the best options to cope with the fractured state-action space problems in 
robot learning. LCS represents a comprehensive class of evolutionary systems 
that solve reinforcement learning problems by evolving a set of classifiers or 
rules responsible for handling different local parts of input spaces of the 
problems. Our proposed approach extends the general paradigm of these 
systems to highly dynamic and continuous environments. In LCS, the genetic 
algorithm searches for an adequate decomposition of the problem into a set of 
subproblems by evolving classifier conditions. In our approach, we iteratively 
detect states in which the robot exhibits deficiencies in fulfilling its task and 
then find new states from which synthesized specialized action plans can be 
executed to avoid the failure states. We use GP as a discovery component 
for the action part of the classifiers. 

In the neuroevolution domain, there are examples of methods used for 
synthesizing different behaviors for different circumstances (so called multi- 
modal behaviors (Schrum and Miikkulainen 2009) arising in continuous state- 
action spaces. However, it is difficult to learn such behaviors reliably and 
without extensive human intervention, e.g. as is the case of the layered evo- 
lution combined with the subsumption architecture (van Hoorn et al 2009). 
Moreover, the number of behaviors to evolve is usually determined in advance 
by a human designer. In most applications, the behaviors are learned and the 
control mechanism is hand coded, or the control mechanism is learned and 
the behaviors are hand-coded. In some cases, both behaviors and the control 
mechanism are learned but separately and with extensive human help. 

Recently, neuroevolutionary methods have been developed that discover 
multi-modal behaviors automatically and do not depend on knowledge of 
the task hierarchy.  For example, a special mutation operator was proposed 



in (Schrum and Miikkulainen 2009) for evolving special output nodes that 
control the mode of the behavior. However, the potential number of modes 
needed to be evolved can be very high for some tasks. Another work (Kohl 
and Miikkulainen 2008) extends NEAT to use radial basis function (RBF) 
(Buhmann 2001) nodes to evolve controllers with better performance for 
complex problems. Similarly, HyperNEAT has been developed as another 
extension of the NEAT method with the ability to evolve highly complex 
compositional neural networks (CPPN) (Stanley et al 2009) having the reg- 
ularity, modularity, and hierarchy properties for some problems. 

3    USV System Architecture 

In this work, we focus on the automated synthesis of an action selection 
policy for the USV to block the advancement of an intruder boat toward a 
particular target. For this task the USV is required to utilize reactive plan- 
ning complemented by short-term forward planning to generate local action 
plans representing specific maneuvers. The developed policy synthesis ap- 
proach is closely coupled to the underlying system architecture of the USV. 
The architecture consists of several modules that are responsible for differ- 
ent tasks, e.g. sensing, localization, navigation, planning, behavior control, 
communication, human interaction, or monitoring (Corfield and Young 2006; 
Finn and Scheding 2010). 

The high simulation speed of the USV's dynamics model is critical for 
policy synthesis and therefore we use its simplified version with 3 degrees 
of freedom. This simplified model has been adapted from the full-blown 6 
degrees of freedom USV dynamics model as described in (Thakur and Gupta 
2010). The full-blown model considers disturbances from the surroundings 
and is used for high-fidelity physics-based real-time simulations inside the 
virtual environment. 

3.1    USV Virtual Sensor Models 

The planning system of the USV needs to only process relevant key sensory 
information abstracted from the raw sensor data. The sensory information 
is thus represented as a vector containing only the features required for a 
successful fulfillment of the mission task. The values of the relevant features 
are computed using the data from the virtual sensors (LaValle 2009) that 
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Figure 3: USV sensor model 

provide intermediate abstraction of the raw sensor data. Some of the features 
can also have one or more parameters using which their final values are 
computed. 

The planning system uses virtual visibility, relational, and velocity sen- 
sors. The virtual visibility sensor is a detection sensor with cone-shaped 
detection regions (see Fig. 3). The dimension of the overall sensor area is 
defined by its reach and range parameters. Each region returns a boolean 
value expressing the presence of other objects and a normalized distance to 
the closest object. The relational virtual sensor provides relevant information 
on how other objects are situated with respect to the USV or to each other. 
It provides boolean values for computation of the values of the relational 
features. The velocity virtual sensor returns the velocities of other objects 
inside the environment. 

3.2    Planning Architecture 

3.2.1     Policy Representation 

The sequential decisions made by the vehicle depends on its action selection 
policy 7r. The policy n is defined in the context of the semi-Markov decision 
process (SMDP) (Ibe 2009) and consists of one default policy n^ and a set 
of specialized local policies ni that map macro-actions to a specific set of 
overlapping regions IT = {Si,..., Sn} of the state space S. The SMDP models 
temporally extended actions and is defined as a tuple (S, A, T, R, F), where 



5 is a finite set of states, A is a finite set of actions, T : S x A x S —> [0,1] is a 
probabilistic transition function, where T(s, a, •) is a probability distribution 
for any s € S and a £ A, R : S x A —• K is a reward function that computes 
vehicle's immediate reward for taking action a in s, and F is a function giving 
probability of transition times for each state-action pair. The transition 
distribution is defined as F(s',N\s,a) and specifies the expected number of 
steps TV the action a takes starting in state s and terminating at state 5'. 

Hence, the policy n allows the USV to make a decision from a set of 
allowable actions based on observations of the world state. The default pol- 
icy •Kd is represented as a high-level controller (see Fig. 4). This controller 
is represented as a decision tree consisting of high-level parameterized com- 
mands NC, conditional variables CV, standard boolean values and operators 
BVO, program blocks PB, and system commands SC (see Tab. 1). The local 
policies are represented as action plans. The action plans are sequences of 
parametrized high-level action commands NC and program blocks PB. The 
action plans are internally represented as trees so that the same synthesis 
mechanism used to generate the default controller can also be used to gener- 
ate the plans. The leaves of the decision tree can be conditional variables or 
action commands. The inner nodes can be conditionals, action commands, 
or system commands. Each action command corresponds to a particular 
high-level controller, which is a parameterized composition of simple behav- 
iors according to the behavior-based control architecture (Brooks 1991). The 
section 3.2.3 describes this in detail. 

The conditional variables, action, and system commands are parameter- 
ized. The parameters of an action command define its underlying property. 
The positional commands (e.g. go-intruder-front) are defined using 5 param- 
eters. The first two parameters represent the USV's relative goal position 
(in polar coordinates) around the intruder. This effectively allows the vehi- 
cle to cover all feasible positions, as defined by its policy in a certain area 
around the intruder. The next two parameters represent a cone-shaped block- 
ing area around the relative goal position. Once the vehicle gets inside the 
blocking area, it starts slowing down to limit the intruder's movement. The 
last parameter represents the length of the command execution. The turning 
action commands have two parameters that represent the turning rate and 
the length of the command execution. The translation velocity is explicitly 
controlled by the velocity commands. The usv-sensor system command ef- 
fectively changes the parameters of the USV's sensors allowing it to explicitly 
control the risk level of the obstacle avoidance behavior. Each parameter of 



NC go-intruder-front (front-left, left, front-right, right) 
turn-left (right) 
go-straight 

cv intruder-on-the-left (right, front, at-the-back) 
intruder-has-target-on-the-left (right) 
usv-has-target-on-the-left (right) 
usv-intruder-distance-le-than 
usv-closer-to-target-than-intruder 
usv-facing-intruder 
usv-left (right, front-left, front-right) 

BVO if, true, false, and, or, not 
PB seq2, seq3 
SC usv-sensor,      usv-velocity,      usv-match-intruder- 

velocity 

Table 1: Policy primitives 

the command is propagated to the underlying primitive behaviors of each 
corresponding high-level controller. 

The input into the policy is data from the virtual sensors. The values 
of all conditional variables are computed using this data. So for example, 
the boolean value of the intruder-on-the-left variable is directly provided by 
the virtual relation sensor while the data for computation of the intruder- 
velocity-le-than parameterized variable is provided by the virtual velocity 
sensor. 

3.2.2     Policy Execution 

During the mission, the USV periodically senses its surroundings and clas- 
sifies its current state with respect to the intruder and the target. The 
classification mechanism of the policy executor decides whether the current 
state is close enough to one of the states for which a corresponding action 
plan exists. If such a plan exists, the policy executor directly executes the 
plan, otherwise it executes the default controller to generate a new sequence 
of actions. The decision whether to execute a specific plan depends on the ac- 
tivation distance parameter <). This parameter defines the minimal distance 
that has to be achieved between the current USV's state and any state in the 
predefined set to activate a specific plan. The state space S = S\ US2 is thus 
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Figure 5: USV's state in respect to the intruder and target 

divided into two regions where in the first region Si the USV generates and 
executes plans using the default controller, whereas in the other region 52 the 
USV directly executes previously generated or manually defined plans. The 
action plan thus represents a certain maneuver the USV executes in a cer- 
tain situation to increase its performance. The distance between normalized 
states is computed using the standard Euclidean distance metric. 

The full state of the USV (see Fig. 5) is represented by a 8-dimensional 
vector of state variables s = [QI , 0:2, /3\. /32, t'i ,v2.^,d] that encodes attributes 
of the environment for the task. The angle a\ represents an angle between 
the USV's heading and the direction to the target, a2 is an angle between the 
intruder's heading and the direction to the target, Q\ is the USV's steering 
angle, /^ is the intruder's steering angle, V\ is the USV's translation velocity, 
v2 is the intruder's translation velocity, 7 is an angle between the USV's 
heading and the direction to the intruder, and d is the distance between the 
USV and the intruder. 

3.2.3    Hierarchical Control Architecture 

By acquiring and processing sensor data in short-term cycles, and planning, 
the planning system determines an action command to be executed through 
the behavior-based control system to direct the vehicle inside the environ- 
ment. The policy executor of the planning system takes as inputs sensor 
data, mission parameters, USV meta model, and the policy. It decides which 
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component of the policy to execute to generate a plan based on the current 
vehicle's state. The plan consists of a number of action commands, each 
being executed for a certain amount of time. The ultimate outputs of an 
activated command are way points that are directly translated by a low-level 
controller into motor commands for device drivers of a particular actuator. 

The control architecture is hierarchical and follows the behavior-based 
paradigm (Brooks 1991). It consists of planning, executive, and reactive 
layers (see Fig. 6). The planning layer is responsible for interpreting stored 
policy and generating action plans. The commands are stored in a queue 
to be further dispatched for execution by the dispatcher in the executive 
layer. The commands are usually planned for short-term execution, such 
as planning of strategic maneuvers. The vehicle thus does not act purely 
reactively to its surroundings unless an exception occurs. 

Each command corresponds to a high-level controller, which is a param- 
eterized composition of simple behaviors organized into layers according to 
the behavior-based control architecture (Brooks 1991). The executive layer 
is responsible for processing the commands in the queue and invoking the 
corresponding high-level controllers in a series for planned periods of time. 
The length of the execution is defined as a parameter of the command. The 
executive layer is also responsible for monitoring execution of the controllers 
and handling exceptions. An exception occurs if the current state of the 
vehicle substantially deviates from the predicted trajectory defined by the 
plan. The policy executor remains inactive until all the commands from the 
queue are processed in which case the dispatcher requests new commands 
from the executor and the control process continues. 

The reactive layer implements the behavior-based subsumption architec- 
ture (Brooks 1991). This architecture decomposes a complicated high-level 
controller into a set of simple behaviors (steer left / right, go straight, arrive) 
organized into layers. These primitive behaviors are finite state machines 
acting in response to sensor inputs and producing actuator action outputs. 
Multiple behaviors can be activated simultaneously producing different con- 
flicting motor commands. This means that a certain amount of coordination 
is needed. Due to its robustness, we have chosen a priority-based arbitra- 
tion mechanism, picking the actuator action output of the behavior with the 
highest priority as the overall action output of the currently activated high- 
level controller. This closely follows the behavior-competitive paradigm that 
imposes that only one behavior can have control over the robot's actuators 
while each of them can access all sensors. In this paradigm, the behavior in 
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the highest layer has the highest priority (for example obstacle avoidance) 
while the behavior in the lowest layer represents the most abstract function- 
ality. In the architecture, each high-level controller specifies a fixed priority 
ordering of behaviors as defined by (Brooks 1986). 

The primitive behaviors are of a great importance as they are able to 
quickly produce an action in a highly dynamic environment where fast re- 
sponse is crucial. A behavior is a simple unit that produces an output of 
a pre-defined type, in our case a two-dimensional vector containing desired 
translation velocity and steering angle. Conditions for activating behaviors 
are preprogrammed. The architecture defines the following primitive behav- 
iors: obstacle avoidance, go to location, go straight, turn left, and turn right. 

By default, the behaviors always choose such translation and steering 
velocities that maximize the USV's performance. So for example, go-straight 
behavior uses maximum translation velocity to get to the requested position 
in the shortest amount of time. The policy can override this by calling 
usv-velocity system command. This command switches the vehicle to its 
controlled velocity mode in which the USV's translation velocity is controlled 
by the higher-level policy. 

3.2.4     Obstacle Avoidance 

The behavior of many standard avoidance methods is driven by its carefully 
tuned parameters. These parameters control the behavior of the vehicle, 
particularly how much steering should be applied when a nearby obstacle is 
positioned at a certain distance and angle, and how fast the vehicle should be 
moving in that situation. Hence, for our mission task, the resulting behavior 
can be quite different with different parameters essentially controlling the 
vehicle's safe distance from the adversary and blocking efficiency at the same 
time. Insufficient avoidance steering can lead to collisions. On the other 
hand, too much steering will veer the vehicle away from the adversary leading 
to ineffective blocking. 

The obstacle avoidance behavior is a necessary part of all high-level con- 
trollers. It uses the virtual visibility sensor (see Fig. 3) in order to identify the 
location of detectable obstacles. It directly produces desired translation ve- 
locity and steering angle to safely steer the vehicle away from the closest iden- 
tified obstacles. The desired steering angle increases with the proximity to 
the obstacles while the translation velocity decreases. We have implemented 
a collision avoidance method that uses high-level sensory information, e.g. 

11 
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positions, orientations, and dimensions of obstacles, to directly decide which 
steering angle and translation velocity to request. The avoidance mecha- 
nism uses a fixed set of control parameters. However, the behavior can be 
conveniently controlled by modification of the underlying parameters of the 
visibility sensor. This way, the USV can get closer to obstacles than it would 
be otherwise possible and thus effectively define a balance between safe and 
aggressive maneuvering. The command usv-sensor of the policy modifies the 
reach and range parameters of the virtual visibility sensor cones. Moreover, 
as far as computational requirements are taken into account, the obstacle 
avoidance mechanism should be very fast so that it does not consume much 
of the simulation time. 

4    Simulation Environment 

4.1    New Design of the Simulation Environment 

The Energetics Technology Center (ETC) is in the process of developing a 
USV simulation environment in support of several tasks assigned to the USV 
project. This software currently consists of four main components with. The 
four components are Virtual Environment-based (VE) Simulator, Controller 
Model, Mission Planner and the Sensor Model. The four modules are pic- 
tured in Fig. 7. The four modules may run within a single application on a 
single machine or as four separate processes, possibly on remote machines. 
The modules pass data using sockets along with send and receive queues. 
The queues are managed by separate threads as depicted by "T" in the di- 
agram. The transfer rates are configurable. The numbers in the diagram 
were arbitrarily chosen. A centralized memory manager is used only when 
the modules run within a single application. One of the motivations for this 
design is to allow Hardware-in-the-loop (HIL) simulations to be done in the 
future. 

In the older version of the system, the Mission Planner module was com- 
pletely responsible for calculating the positions and orientations of the boats 
using an internal dynamics model. This was a simple car dynamics model. 
The Mission Planner then passed the positions and orientations on to the 
VE Simulator module, which then applied some simple physics calculations 
in order to modify the pose fed in by the Mission Planner and rendered the 
scene. The Mission Planner and VE Simulator used to be embedded in one 
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application and communicated with each other using function calls instead of 
network sockets. Consequently, the monolithic application containing both 
software components quickly became challenging to manage and upgrade. 

In the latest, redesigned, version of the system the Controller Model takes 
inputs for each boat from the Mission Planner module in the form of: 

• object id 

• desired speed 

• desired acceleration 

• desired angular speed 

• either desired heading or waypoint (longitude, latitude) 

The Controller then uses a built-in PID controller to calculate forces 
which need to be applied on the boat in order to meet the desired results. 
The forces    torque and drive force - are then sent to the virtual environment 
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based simulator which is responsible for using physics models to determine 
actual motion. The torque and thrust which the Controller calculates are 
roughly equivalent to forces the boat may experience from the propeller and 
rudder. There is a feedback loop from the VE Simulator to the Controller 
Model, supplying current pose, velocity, acceleration and other information. 

Upon receiving the drive force and the torque from the Controller Model, 
the VE Simulator first calculates the motion of the boat based on just these 
two forces. Then, it has two options for calculating motion resulting from 
wave action. It can use the built-in high fidelity physics engine or it may use 
a simple high performance method of producing bobbing motion. After the 
motion has been calculated and rendered, the VE Simulator passes off the 
positions and orientations of all objects to the Sensor Model. 

The Sensor Model is tasked with feeding sensor data into the Mission 
Planner, completing the loop. It receives ground truth from the VE Simu- 
lator. The Sensor Model loads the collision mesh of the object, which also 
.selves as a point outline, from a shared configuration file. The Sensor Model 
then applies a transformation, based on positional data it received from the 
VE Simulator, on each of the outline points. The transformation takes into 
account the perspective of the USV or intruder in order to rotate and trans- 
late the points representing terrain and boat obstacles. Those points are 
then shipped to the Mission Planner. The intent is for the Mission Planner 
to make collision avoidance decisions based on terrain and obstacle polygons 
arriving over the network. One of the tasks of the Sensor Model is to first 
add some error into the data. Currently, data is not altered, however. Future 
work will address the issue of adding noise and error to the data. 

The communication between the four modules is carried out over the 
network. The modules use connectionless datagram sockets for fast com- 
munication. Data is sent over the network in binary format to reduce the 
payload size. Four classes encapsulate the messages sent from each module. 
The modules can access the data inside the messages simply by calling ac- 
cessor functions. Whereas the real controller will likely have access to a GPS 
receiver, it was important for the communication interface to support trans- 
mission of realistic longitude and latitude. Representing position data using 
longitude and latitude is a good way to standardize exchange of positions 
in general because longitude and latitude are well known and well defined 
means of specifying global locations. The size of the message classes had 
to be expanded so as to accommodate the new size of position data. Both 
latitude and longitude had to be transmitted as doubles instead of floats in 
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order to allow conversion to meters. Due to the fact that each longitude or 
latitude degree represents a distance that is far larger than a meter, these 
two measurements had to be encoded in a data type with very high precision 
(e.g. support for high number of decimal digits). Internally the modules use 
meters. The conversion is made using a set of convenient static functions. 

In addition to the separation of the four main components of the system 
and the redesign of the communication mechanism they use, several modules 
have also been internally upgraded. The virtual environment simulator mod- 
ule no longer has hardcoded terrain models. Rather, the configuration file 
and the class which loads it have been expanded to allow a comma separated 
list of terrain files. The obstacle positions are also no longer hardcoded. Ob- 
stacle data is now stored in separate files, one file per obstacle. The main 
configuration file has a comma separated list of obstacle configuration files. 
The class which loads the configuration files has been made available to all 
four modules. This allows all modules to initialize their environment with 
the same shared data. 

4.2    Development of the Infrastructure for Physical Test- 
ing of Generated Policy 

Significant coding effort has been spent on the second version of the image 
processing application. This application will be used to keep track of model 
boats. The environment in which these small boats are meant to operate is 
a 50 foot wide tank within the Neutral Buoyancy Research Facility (NBRF) 
at University of Maryland. Although the first version was fully operational, 
it was very user unfriendly and difficult to configure. This configuration dif- 
ficulty is what led to several human errors in the past, resulting in a lot of 
lost time diagnosing and then reconfiguring the system at the NBRF. The 
second version of the system was designed to fix these problems by allow- 
ing easy reconfiguration of the system with a lot of automatic computations, 
taking the potential for user error out of many configuration tasks. In the 
month of July, all the coding work was related to user interfaces of the appli- 
cation (e.g. windows, dialogs, context menus, etc.) and the communication 
between them. During most of the month of August, work on this project at 
ETC dealt with wrapping up the implementation and testing of the second 
version of the image processing software used to keep track of model boats. 
The objective of the second version of the software was mainly to streamline 
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and optimize the tracking and calibration process. Work on this image pro- 
cessing application falls under Task #14 validate and assess the quality of 
computer generated software by conducting tests on USSV-HTF. 

The first version of the software was divided into two separate compo- 
nents. The tracking component was built at ETC while the calibration com- 
ponent was created at UMD. Much of the input needed for the calibration 
component had to be generated by hand in the first version of the system. 
This opened up many opportunities for human error and slowed down the 
calibration process. Output produced by the calibration component, in the 
form of a binary file, was used as input in the tracking component. All 
tracking attributes and settings from the number of targets and their colors 
to world coordinate adjustments were static tracking application had to be 
restarted, after changes to a configuration file were made, for new changes 
to take effect. 

The second version of the software solved these problems by (1) fully 
integrating the calibration module into the tracking software, (2) calculating 
much of the calibration data automatically, and (3) providing a mechanism 
for changing the tracking attributes dynamically. The latest version of the 
software has streamlined the tracking and calibration process in two tangible 
ways: 

• Once the physical setup is in place, software calibration can now be 
performed in about 10 minutes instead of 25 minutes. 

• As a result of heavy use of multi-threading, tracking speed has been 
raised from 10 fps to 14 fps. 

4.3    Modeling of Shorelines 

The last week of August was used to work on Task #8 incorporate models of 
shorelines in the simulation environment. ETC was able to take advantage of 
some talented new personnel within the organization to create new models of 
terrain a task previously performed by interns. The models of terrain were 
created using a software tool called LightWave and then converted into a file 
format used by the USV simulation environment. Although there is a reliable 
process for translating CAD models of terrain created with LightWave and 
Blender into the file format used in the simulation environment, the process 
still requires some hand tuning and often takes a good amount of time. In 
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addition to representing a shoreline with a CAD model inside the simulation 
environment, appropriate collision handling had to be implemented. Collision 
detection has been enabled between boats and terrain, in addition to collision 
detection between just boats. The same simple collision physics which was 
used for boat-to-boat interactions in phase 1 of this project is now used for 
boat-to-terrain interactions. 

4.4    Additional Visualization Features of the USV Sim- 
ulation Environment 

Improvement of the rendering quality of the ocean is something that has 
been gradually carried out at ETC, often during a brief lull in activities. 
Previously, the ocean geometry had a single water texture applied to it. The 
texture was static. It did not shift based on the motion of the waves. Vari- 
ous lighting, texture and color calculations for rendering the ocean were also 
performed mainly on the CPU using the Ogre rendering engine. In July 
new features were added which shifted many calculations to the GPU us- 
ing OpenGL Shading Language (GLSL). Currently, most of the lighting and 
color calculations are performed using OpenGL vertex and fragment shaders. 
This enables a much more fine grained level of control over how the ocean 
is rendered. These techniques will allow many other improvements in the 
future. The most immediate improvements are multi-texturing and dynamic 
shifting of textures. The rendered appearance has been improved with the 
addition of a second sky texture which is blended with the water texture. 
Texture coordinates for both textures are now continuously recalculated ev- 
ery frame update to shift based on the motion of the waves, making the water 
look more "alive". One added side effect of integrating GLSL into the USV 
simulation environment is that much of the ocean physics calculations may 
be performed on the GPU (implemented in GLSL) in the future. This should 
allow us to significantly boost the speed of high fidelity physics simulations 
at some point down the road. Some preliminary planning has already started 
between the UMD team and ETC team. Fig. 1 presents a scene from the 
simulation environment with improved graphics. 
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5    Policy Synthesis 

In this section, we describe our approach for policy synthesis that can be 
viewed as a completely automated process during which an initial version 
of the policy is automatically synthesized and then gradually refined by de- 
tecting and fixing its shortcomings (see Fig. 8). In this iterative process, 
the states in which the vehicle has a high probability of failing its task are 
identified and new specific action sequences are generated for the vehicle to 
avoid these failure states in future planning. Plans are incrementally synthe- 
sized for a sequence of representative states of exception and their immediate 
neighborhoods in which the vehicle has the highest potential of avoiding the 
largest amount of the detected failure states. In this way, the new plans 
are incrementally associated with specific isolated groups of nearby states to 
improve the efficiency of the defaidt policy. The synthesis process takes the 
advantage of the fact that a large proportion of the state space is not encoun- 
tered during the actual policy execution so that the possible state explosion 
can be avoided. A diagram describing a detailed portion of the the overall 
synthesis process is depicted in Fig. 9. It particularly shows the evaluation 
- action plan generation section of the whole cycle (see Fig. 8) as discussed 
next. 

The actual algorithm for computing the policy takes input as a SMDP 
model and computes a stationary policy n : S —» A that attempts to maxi- 
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mize expected accumulated reward. The main steps of the algorithm are as 
follows: 

1. Employ GP to evolve an initial version of the policy 1:4. 

2. Evaluate -n^ inside the simulator in m distinct evaluation runs. This 
evaluation returns a set of states of failure 5/ = {s/i, ...,s/„},n < m 
in which the vehicle fails its mission task. 

3. Given Sj, compute a corresponding set of states of exception Se = 
{sex, ...,sen} in which proximity (given by the activation distance pa- 
rameter 8) the vehicle has the potential to avoid the states of failure if 
it executes appropriate corresponding action plans. 

4. Compute a representative state of exception seTep € Se, as described in 
detail in Section 5.1, in which the vehicle has the potential to avoid the 
largest amount of the detected failures. The vehicle thus can execute a 
specific action plan in serep and its neighboring states to decrease the 
probability of occurrence of the corresponding states of failure. In this 
way, the focus is always restricted to the most critical states of failure 
first while leaving the rest for possible later processing. 

5. Employ GP to synthesize a new specific action plan for the represen- 
tative state of exception serep. To prevent over-specialization of the 
new plan, evaluate its performance using all states of exception found 
within serep activation distance S during the overall policy evaluation 
in step 2. 

6. Optimize the new plan and integrate it into the whole policy together 
with its corresponding seTep. If the termination condition is not satis- 
fied, continue to step 2. The distance between the normalized states is 
computed using the Euclidean distance metric. 

5.1     Extraction of a representative state of exception 

The overall algorithm identifies states of failure Sj in which the vehicle has 
a high probability of failing its task due to the execution of inappropriate 
actions. The algorithm for extraction of the representative state of exception 
seTep (see Alg. 1) always extracts a state in which the vehicle can execute an 
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appropriate action plan to avoid the largest portion of the detected states of 
failure. 

The algorithm iterates over all states of exception se G Se and for each of 
them finds its neighboring states seNeighbor!l = {seNeighbor\ \\se, seNeighbor\\ < 
6} within the activation distance 5. Then, for se and each neighboring state 
from the set se Neighbors^ a corresponding state of failure sf is found and all its 
neighbors sfNeighbors = {sfNeighbor\ \\sf,sfNeighbar\\ < 6} within the distance 
5. The algorithm terminates by returning se that is associated with the 
largest amount of corresponding states of failure. 

Algorithm 1 Extraction of a representation state of exception se rtji 

Require: States of exception Se, states of failure 5/ 
serep <— NIL 
sizemaj <    u 
for all se G 5P do 

seNeighbars <— FINDNEIGHBORS(.ST. 5) 
Sf*-0 
for all seNetghbor G se U seNeighbors do 

Sf «- FlNDCORRESPONDINGFAILURE(sejvejgh5or) 
Sf Neighbor, *~   FlNDNEIGHBORS(s/. S) 

bf = Jf U SJNeighbors 

end for 
if | Sf | > sizemax then 

i o I sizemax <    \<Jf\ 

S^rep *      Se 
end if 

end for 
return   serep 

In the context of our mission task, a state of failure defines a situation in 
which the USV has a high probability of losing a future chance to block the 
intruder. Its corresponding state of exception is found by reverting back in 
time for a predefined number of time steps T to record a state from which a 
new specific action plan can be executed to prevent a possible future failure. 
This simple way of determining a state of exception can be further improved 
by developing a special task-related heuristics that precisely determines a 
state from which the vehicle will have the highest chance of successfully 
avoiding the largest amount of possible failure states. 
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5.2    Evolution 

The evolution searches through the space of possible plan configurations to 
find the best possible action plan for a particular state. Both the default 
controller and specialized action plans as components of the policy are au- 
tomatically generated using separate simulated evolutionary processes. The 
specific evolutionary method we used is the strongly-typed Genetic Program- 
ming imposing type constraints on the generated Lisp trees (Poli et al 2008). 
This is a robust stochastic optimization method that searches a large space of 
candidate program trees while looking for the one with the best performance 
(fitness value). 

The evolutionary process starts by randomly generating an initial popu- 
lation of individuals represented as GP trees using the Ramped half-and-half 
method (Poli et al 2008). The initial values of parameters of all action com- 
mands and conditionals are either seeded or randomly generated. The default 
cont roller of the policy is generated using a human written template for which 
GP supplies basic blocking policy. The first portion of the template encodes 
a maneuver using which the vehicle effectively approaches the intruder at the 
beginning of the run as there is no need for it to be explicitly evolved. 

The terminal T and function sets F consists of action commands, system 
commands, conditional variables, boolean values and operators, and program 
blocks as defined in section 3.2.1. The sets arc defined as 

1 controller = 1 plan =WC   U AC 

Fcontroller =CV U  BVO U BP; Fplan =PB 

Within the population, each individual has a different structure responsi- 
ble for different ways of how it responds to its environment. The individuals 
are evaluated in the context of the whole policy inside the simulator. The 
sensory-motor coupling of the individual influences the vehicle's behavior re- 
sulting in a specific fitness value that represents how well the USV blocks 
the intruder. 

We favor individuals which can rapidly establish basic blocking capabil- 
ities and optimize them to push the intruder away from the target over the 
entire trial duration. To do so, the fitness F is defined as the sum of nor- 
malized squared distances of the USV from the target over all time steps. 
If a collision occurs, either caused by the USV or the intruder, the zero fit- 
ness value is assigned to the individual, and the selection pressure eliminates 
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the policy component with low-safety guarantee.  The fitness function is as 
follows: 

1   T 

1
 i=i 

(i) 

where T is the total number of time steps, d, is the distance of the intruder 
from the target at time step i, and d0 is the initial distance of the intruder 
from the target in a particular test scenario. The total fitness value of the 
individual is maximized and computed as an average of the fitness values 
resulting from all scenarios. 

The default controller is evaluated using a human-competitive intruder 
in 8 different scenarios. In each scenario, the intruder has a different initial 
orientation, and the USV always starts from an initial position closer to the 
target. The evaluation lasts for a maximum amount of time steps which 
equals to 300 seconds in real time. The maximum speed of the USV is set to 
be 10% higher than the speed of the intruder, other properties of the vehicles 
are the same. The action plan is evaluated using all states of exception found 
within the activation distance of its corresponding serep. The evaluation lasts 
for a maximum amount of time steps which equals to 10 seconds in real time. 

The individuals in the initial population mostly exhibit random behav- 
ior. By selecting and further refining the individuals with high fitness, their 
quality gradually improves in subsequent generations. During this process, 
the individuals are randomly recombined, mutated, or directly propagated 
to the next generation. These operations are applied with the predefined 
probabilities (see Tab. 2). The following evolutionary operators are used: 

1. Reproduction - copies one individual directly to the next generation 
without any modification. We use a strong elitism to propagate the 
best individual directly into the next generation. This makes sure that 
the best individual is not lost during the evolutionary process as a 
consequence of recombination. 

2. Mutation - we use three types of mutation operators: structural muta- 
tion of a randomly selected sub-tree, preventing bloat (Poli et al 2008) 
by shrinking a randomly chosen sub-tree to a single node, and Gaussian 
mutation of chosen parameters. 

3. Crossover - randomly selects sub-trees from two input trees and swaps 
them. 
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Population size / 
number of generations 

500 / 100 (controller) 
50 / 30 (plan) 

Tournament size 2 
Elite set size 1 
Min. and max. initial 
GP tree depth 

3 and 6 (controller) 
2 and 4 (plan) 

Maximum 
GP tree depth 

50 (controller) 
10 (plan) 

Crossover prob. 0.84 
Structure mutation prob. 0.05 

Shrink   structure   muta- 
tion prob. 

0.01 

Mutation prob.     of pa- 
rameters of action com- 
mands 

0.5 

Crossover probability 0.84 

Table 2: GP parameters 

During the policy synthesis, the USV learns the balance between a safe 
and dangerous maneuvering by mutating the reach and range parameters of 
its virtual visibility sensor. The policy is thus co-evolved with the sensor 
parameters of the vehicle to control the obstacle avoidance mechanism. 

The optimization of the generated default controller removes all branches 
of the code that have not been executed during evaluation scenarios. More- 
over, each generated action plan is truncated to contain only the action 
commands that do not exceed the maximum execution time of the plan. 

A detailed description of the functionality of all the operators used can 
be found in (Koza 2003). The control parameters of the evolutionary process 
used for evolution of the default controller and plans are summarized in Tab. 
2. 
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6    Experiments 

6.1 General Setup 

We tested the developed approach in the context of a combat mission task 
during which the USV protects a valuable target against an intruder boat. 
In this task, the intruder boat has to reach the target as quickly as possible 
while the USV has to block and delay the intruder for as long time as possible. 
We set up an experiment to compare the performance of the automatically 
generated USV's policy to the USV's policy coded by hand. We compare 
the performance in terms of pure time delay imposed by the USV on the 
intruder. To get a fair assessment of the USV performance, the time values 
being compared must be normalized by 40 seconds baseline. This baseline 
represents the amount of time needed to reach the target if the intruder 
is completely unobstructed. Any additional time above this baseline thus 
represents the effective delay time of the intruder when being blocked by the 
USV. 

The policy of the USV is evaluated in 800 runs to account for the in- 
truder's nondeterministic behavior. Each evaluation run lasts for a maxi- 
mum amount of time steps which equals to 300 seconds in real time. The 
dimension of the scene is 800 x 800 m with the target positioned in the center. 
At the beginning of each run, the USV and the intruder are oriented toward 
each other with random deviation of 10 degrees and the USV is positioned 
on a straight line between the intruder and the target. The initial distance of 
the USV from the target is approximately 240 m while the intruder's initial 
distance is 360 m. The maximum time for the evaluation run is set to 5 min- 
utes. The USV's maximum velocity is 10 m/s while the intruder's maximum 
velocity is 9 m/s. 

6.2 Experimental Protocol 

First, we manually implemented an initial version of the intruder's attacking 
policy and tested it against human players to evaluate its performance in 
the virtual environment. The policy was further improved in multiple itera- 
tions in the span of 6 weeks. Its overall size reached 485 lines of Lisp code. 
The outline of the policy functionality is described in the next section. We 
evaluated the performance of the policy by pitting human players against it 
playing as USVs. The human players achieved 90 seconds of pure time delay 
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imposed on the intruder in average. This shows that the intruder's attacking 
policy is quite sophisticated as it exhibits a deceptive behavior. 

Second, we implemented the USV's blocking policy against the hand 
coded intruder. The policy was improved iteratively in the span of 3 weeks. 
Its overall size reached 500 lines of Lisp code. 

Third, we used the mission planning system to automatically generate 
the USV's blocking policy using the hand coded intruder as the competitor. 
The activation distance parameter S was set to 0.2 for all action plans. In 
the current version of the approach, a state of failure is determined to be the 
state in which the intruder is closer to the target than the USV. A state of 
exception is computed by going back in time for 150 time steps from a given 
state of failure. 

Finally, we compared the performance of the automatically synthesized 
USV's policy to the hand coded one. 

6.3    Intruder's Policy 

The design of the intruder's attacking policy was a crucial step during the 
initial stages of the experimental setup. The level of aggressiveness of the 
intruder's attacking behavior is defined such that the intruder presents a high 
challenge for human players playing as USVs but at the same time executes 
relatively safe obstacle avoidance. 

The evaluation scenario is nondeterministic, i.e. the intruder may exe- 
cute different actions in the same state which may lead to different outcomes. 
The nondeterminism of the intruder's policy thus allows the intruder to re- 
peatedly deceive the USV during the combat so that the USV is not able to 
find a motion pattern in intruder's behavior that can be easily exploited for 
blocking. 

The nondetcrminism of the intruder's behavior puts a great challenge on 
the USV policy synthesis since the same USV's policies may acquire different 
fitness values when evaluated in the same test scenario. Thus for the purpose 
of fair evaluation, we use one specific type of the intruder's policy for com- 
puting the fitness values of all USV individuals from one specific population. 
The behavior expressed by the intruder is influenced by a set of randomized 
action commands that are parts of its policy. The randomized commands 
take a random number as one of their inputs based on which they produce 
an action. The random number is generated by a random number generator 
that is initiated by explicitly provided random seed. The random seed thus 
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indirectly defines a particular type of the intruder's policy and is kept to be 
the same during evaluation of USV individuals within the same population. 

The hand coded intruder's policy is represented as a single decision tree 
that contains standard action commands as well as their randomized ver- 
sions. The intruder's policy can be divided into five main sections. Each of 
these sections handles a different group of situations that can arise during 
the combat. The first section handles situations in which the distance of the 
intruder from the target is larger than 130 m and the angle between its trans- 
lation direction and the target is more than 80 degrees. In these situations, 
the intruder attempts to rapidly change its direction of movement toward 
the target by aggressively turning left or right depending on the position of 
the USV. 

The second section handles situations in which the USV is very close to 
the intruder, positioned relatively to its front left, and the target is on the 
intruder's left side (see Fig. 10a left). In this case, the intruder has two 
options. Either it executes a random turn with probability 0.9 or it proceeds 
with a complete turn. In both cases, the intruder can slow down rapidly with 
probability 0.3 to further confuse the adversary. This section handles also 
similar type of situations when the USV is on the front right of the intruder 
and the target is on the right. 

The third section is very similar to the second section with the exception 
that the USV is directly on the left or right side of the intruder (see Fig. 10a 
right). In these cases, the intruder deceives the USV by randomly slowing 
down to get an advantageous position, proceeding with a complete turn, or 
executing a partial turn. The probability of the complete turn is 0.1 and the 
probability of slowing down is 0.2. 

The fourth section deals with the situations during which the intruder is 
positioned behind the USV inside the rear grey area as shown in Fig. 10b 
left. The larger distance of the intruder from the USV gives it opportunity to 
exploit the USV's tendency to over shoot a little in the process of blocking. 
In this case, if the USV has high velocity, the intruder slows down and 
turns toward the stern of the blocking USV, passing the USV from behind. 
Otherwise, the intruder randomly turns with probability 0.7 or it proceeds 
with a complete turn (see Fig. 10b right). Again, the intruder can rapidly 
slow down with probability 0.3. 

Finally, if the intruder is not in a close proximity to the USV, it computes 
the best sequence of actions in order to get to the target as fast as possible. 

The intruder's policy can modify the reach and range parameters of its 
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virtual visibility sensor to control the balance between a safe and aggressive 
obstacle avoidance mechanism. For example, if the intruder wants to make 
an aggressive turn in a close proximity to the USV it has to take risk by 
decreasing the reach of the sensor to be able to quickly proceed with the turn. 
In this case, the sensitivity of the obstacle avoidance behavior is reduced for 
a short period of time so that the intruder can easily pass the USV from 
behind. If the intruder always aimed to safely avoid the adversary, it would 
not get any chance to get to the target, especially if it competes against a 
human player. 

6.4    Results and Discussion 

The experimental run that generated a blocking policy with the highest per- 
formance is shown in Fig. 11. The horizontal axis of the graph shows differ- 
ent versions of the policy consisting of gradually increasing amount of action 
plans. The vertical axis shows the blocking performance in terms of the 
intruder's pure time delay for each version of the USV's policy. The best 
performance is reached by the version 82 of the policy and amounts to 47 
seconds of pure delay in median. This can be compared to the pure time 
delay of 46 seconds in median imposed by the hand coded USV on the same 
intruder. This result thus shows that the best performance of the automati- 
cally generated USV's policy exceeds the blocking performance of the hand 
coded policy. 

The automated generation of the policy took approximately 1 day to 
generate the default controller and approximately 5 days on the average to 
generate action plans for 81 automatically defined states of exception on a 
machine with configuration Intel(R) Core(TM)2 Quad CPU, 2.83 GHz. Its 
overall size reached 900 lines of code. From the set of 10 experimental runs, 
only 2 were able to find a policy with the similar performance to the best 
one. The remaining 8 runs prematurely stagnated due to over-specialization 
of some of the evolved action plans. Even a single defective action plan 
synthesized for one of the key situations can significantly influence the per- 
formance of the whole policy. This shows that the synthesis of a policy for 
the USV to block the intruder utilizing a nondeterministic attacking policy 
is a challenging task. 

The results show that the performance of the first few versions of the 
policy is low as they contain only a few action plans describing specialized 
maneuvers for a small number of key situations.  However, as the synthesis 
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Figure 11: Evaluation of the USVs blocking performance. The performance 
is expressed as a pure time delay applied on the intruder. Each version of 
the USVs policy was evaluated in 800 runs. 

process progresses, more and more action plans handling new situations are 
added and the overall performance gradually improves. This way the initial 
policy becomes sophisticated due to newly evolved action plans. The syn- 
thesis process continues until the version 82 of the policy after which the 
performance stagnates. This can be attributed to difficulty in solving new 
complex situations in which problems with the generalization of action plans 
arise. 

Evolution of a single policy against an adversary exhibiting nondeter- 
ministic behavior thus generates a highly suboptimal solution. To further 
improve the performance of the policy, distinctive states are automatically 
isolated for which optimal short-term action plans are generated. As a result 
of that, the final policy demonstrates a clear performance advantage over the 
policy without the optimal substitutes. 

An example of a run in which the USV reached 45 seconds of pure time 
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/2.1 

Figure 12: Example of a run in which the USV managed to block the intruder 
for 45 seconds. The start position of the USV is marked as 1.1 while the start 
position of the intruder is marked as 2.1. 

delay imposed on the intruder is shown in Fig. 12. The USV starts at the 
location 1.1 while the intruder starts at the location 2.1. The first situation 
in which the USV executes a specific maneuver is marked as 1.2. In this 
situation, the USV steers sharply to the left in an attempt to intercept the 
intruder. The run continues until 1.3 where the USV attempts to deflect 
the intruder's heading by first carefully turning to the left and then aggres- 
sively blocking from the side. The intruder, however, instantly responds by 
executing a sharp left turn, which makes the USV to take another trial in 
intercepting him in the situation 1.4. Yet the USV overshoots in the process 
of blocking. The run continues for the next 23 seconds all the way up to 
the target. In the situation 1.5, the intruder executes a random sequence of 
two sharp turns to deceive the USV and thus to increase its chances for the 
attack. The USV, however, successfully follows and takes another attempt 
in intercepting the intruder but overshoots in 1.6 and the intruder finally 
reaches its goal 1.7. 
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7 Main Accomplishments 

The main accomplishments for Year #1 include: 

1. Developed a new general approach for automated action selection policy 
synthesis for unmanned vehicles operating in continuous state-action 
spaces. 

2. Utilized the approach in Item #1 for automated synthesis of an ac- 
tion selection policy for USV to block the advancement of an intruder 
boat toward a valuable target. The intruder is human-competitive and 
exhibits a deceptive behavior so that the USV cannot exploit any reg- 
ularity in its attacking behavior. 

3. Developed a customized hierarchical behavior-based planning architec- 
ture utilizing reactive and forward planning for USVs. 

4. Developed a simulation environment that integrates various compo- 
nents of the project into a complete simulation system and acts as a 
simulation platform for the synthesis module. 

5. Performed performance comparison of the hand coded and automati- 
cally generated USVs blocking policy. The performance of the auto- 
matically generated policy exceeded the performance of the hand coded 
policy. 

8 Future Plans 

We do not anticipate any change to the plan presented in the proposal. 
During Year #2, we plan to work on Task #5, Task #6, Task #7, Task #8, 
and Task #10 described in the proposal. 

9 Conclusions 

We have presented a new approach for automated action selection policy 
synthesis for unmanned vehicles operating in adverse environments. The idea 
behind this approach is to generate an initial version of the policy first and 
then further improve its performance by evolving additional components that 
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increase the performance of the policy in certain states. These components 
are represented as short-term action plans that can reliably handle specific 
local failure situations that can arise during the mission. 

Our particular focus was on the synthesis of a symbolic policy for an au- 
tonomous USV operating in a continuous state-action space with a deceptive 
adversary. We have developed a mission planning system to automatically 
generate a policy for USV to block the advancement of an intruder boat 
toward a valuable target. The intruder is human competitive and exhibits 
a deceptive behavior so that the USV cannot exploit any regularity in its 
attacking action rules for blocking. The USV's policy consists of a controller 
and multiple specialized action plans describing specific maneuvers that al- 
low the USV to rapidly execute sequences of high-level commands in specific 
situations. 

In our experiments, we compared the performance of the hand coded 
USV's blocking policy to the performance of the policy that was automati- 
cally generated. The results show that the performance of the automatically 
generated policy (47 seconds of pure delay in median) exceeds the perfor- 
mance of the hand coded policy (46 seconds in median). Both of the USV's 
policies were evaluated against the same set of manually implemented hu- 
man competitive intruders. Hence, the approach described in this report 
clearly demonstrates the viability of our approach for automat ically synthe- 
sizing symbolic policy for autonomous unmanned vehicles operating in highly 
dynamic environments. 

References 

Bacardit J, Bernado-Mansilla E, Butz M (2008) Learning Classifier Systems: 
Looking Back and Glimpsing Ahead. Learning Classifier Systems pp 1-21 

Baker C, Ferguson D, Dolan J (2008) Robust Mission Execution for Au- 
tonomous Urban Driving. Intelligent Autonomous Systems 10: IAS-10 p 
155 

Barate R, Manzanera A (2007) Automatic design of vision-based obstacle 
avoidance controllers using genetic programming. In: Proceedings of the 
Evolution artificielle, 8th international conference on Artificial evolution. 
Springer- Verlag, pp 25-36 

:W 



Barlow G, Oh C (2008) Evolved Navigation Control for Unmanned Aerial 
Vehicles. Frontiers in Evolutionary Robotics pp 596 621 

Board N (2005) Autonomous vehicles in support of naval operations. National 
Research Council, Washington DC 

Brooks R (1986) A robust layered control system for a mobile robot. IEEE 
journal of robotics and automation 2(1):14 23 

Brooks R (1991) Intelligence without representation. Artificial intelligence 
47(1-3):139-159 

Buason G, Bergfeldt N, Ziemke T (2005) Brains, bodies, and beyond: Com- 
petitive co-evolution of robot controllers, morphologies and environments. 
Genetic Programming and Evolvable Machines 6(1):25 51 

Buhmann M (2001) Radial basis functions. Acta numerica 9:1 -38 

Corfield S, Young .] (2006) Unmanned surface vehicles-game changing tech- 
nology for naval operations. Advances in unmanned marine vehicles pp 
311-328 

Dain R (1998) Developing mobile robot wall-following algorithms using ge- 
netic programming. Applied Intelligence 8(1):33 41 

Diederich J, Tickle A, Geva S (2010) Quo Vadis? Reliable and Practical 
Rule Extraction from Neural Networks. Advances in Machine Learning I 
pp 479-490 

Doherty D, ORiordan C (2006) Evolving agent-based team tactics for com- 
bative computer games. In: AICS 2006 17th Irish Artificial Intelligence 
and Cognitive Science Conference 

Dupuis J, Parizeau M (2006) Evolving a Vision-Based Line-Following Robot 
Controller. In: IEEE Proceedings, Citeseer 

Finn A, Scheding S (2010) Developments and Challenges for Autonomous 
Unmanned Vehicles: A Compendium. Springer 

Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, 
methods, and technologies 

38 



Gajda P, Krawiec K (2008) Evolving a vision-driven robot controller for 
real-world indoor navigation. In: Proceedings of the 2008 conference on 
Applications of evolutionary computing, Springer-Verlag, pp 184-193 

Goldberg D (1989) Genetic Algorithms in Search and Optimization 

Haynes T, Sen S (1996) Evolving behavioral strategies in predators and prey. 
Adaption and Learning in Multi-Agent Systems pp 113-126 

van Hoorn N, Togelius J, Schmidhuber J (2009) Hierarchical controller learn- 
ing in a first-person shooter. In: IEEE Symposium on Computational In- 
telligence and Games (CIG 2009), pp 294-301 

Ibe O (2009) Markov processes for stochastic modeling. Academic Press 

Jaskowski W, Krawiec K, Wieloch B (2008) Winning ant wars: Evolving a 
human-competitive game strategy using fitnessless selection. In: Genetic 
programming: 11th European Conference, EuroGP 2008, Naples, Italy, 
March 26-28, 2008: proceedings, Springer-Verlag New York Inc. p 13 

Kohl N, Miikkulainen R (2008) Evolving neural networks for fractured do- 
mains. In: Proceedings of the 10th annual conference on Genetic and evo- 
lutionary computation, ACM, pp 1405-1412 

Koza J (2003) Genetic programming IV: Routine human-competitive ma- 
chine intelligence. Kluwer Academic Pub 

Koza J, Rice J (1992) Automatic programming of robots using genetic pro- 
gramming. In: Proceedings of the national conference on artificial intelli- 
gence, Citeseer, pp 194-194 

Lanzi P (2008) Learning classifier systems: then and now. Evolutionary In- 
telligence 1(1):63 82 

LaValle S (2009) Filtering and planning in information spaces. IROS tutorial 
notes 

Lipson H, Antonsson E, Koza J, Bentley P, Michod R. Alber R, Rudolph S. 
Andronache V, Scheutz M, Arzi-Gonczarowski Z, et al (2003) Computa- 
tional synthesis: from basic building blocks to high level functionality. In: 
Proc. Assoc. Adv. Artif. Intell. Symp, pp 24 31 

39 



Nehmzow U (2002) Physically embedded genetic algorithm learning in multi- 
robot scenarios: The PEGA algorithm. In: 2nd International Workshop 
on Epigenetic Robotics: Modelling Cognitive Development in Robotic Sys- 
tems, Citeseer 

Poli R, Langdon W, McPhcc N (2008) A field guide to genetic programming. 
Lulu Enterprises Uk Ltd 

Richards M, Whitley D, Beveridge J, Mytkowicz T, Nguyen D, Rome D 
(2005) Evolving cooperative strategies for UAV teams. In: Proceedings of 
the 2005 conference on Genetic and evolutionary computation, ACM, p 
1728 

Ryan J. et al (2009) Learning classifier systems: a complete introduction, 
review, and roadmap. Journal of Artificial Evolution and Applications 2009 

Schrum J, Miikkulainen R (2009) Evolving multi-modal behavior in NPCs. 
In: Proceedings of the 5th international conference on Computational In- 
telligence and Games, IEEE Press, pp 325 332 

Schwartz M, Svec P, Thakur A, Gupta S (2009) Evaluation of Automatically 
Generated Reactive Planning Logic for Unmanned Surface Vehicles. In: 
Performance Metrics for Intelligent Systems Workshop (PERMIS'09) 

Shichel Y, Ziserman E, Sipper M (2005) GP-robocode: Using genetic pro- 
gramming to evolve robocode players. Genetic Programming pp 143-154 

Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) Designing an evolution- 
ary strategizing machine for game playing and beyond. IEEE Transactions 
on Systems, Man, and Cybernetics, Part C: Applications and Reviews 
37(4):583-593 

Stanley K, Miikkulainen R (2002) Evolving neural networks through aug- 
menting topologies. Evolutionary Computation 10(2):99-127 

Stanley K, D'Ambrosio D, Gauci J (2009) A hypercube-based encoding for 
evolving large-scale neural networks. Artificial Life 15(2):185 212 

Sutton R, Barto A (1998) Reinforcement learning: An introduction. The 
MIT press 

Id 



Svec P, Gupta S (2010) Automated planning logic synthesis for autonomous 
unmanned vehicles in competitive environments with deceptive adver- 
saries. In: New Horizons in Evolutionary Robotics: post-proceedings of 
the 2009 EvoDeRob workshop, Studies in Computational Intelligence, 
Springer, accepted for publication 

Svec P, Schwartz M, Thakur A, Anand D, Gupta S (2010) A simulation based 
framework for discovering planning logic for Unmanned Surface Vehicles. 
In: ASME Engineering Systems Design and Analysis Conference, Istanbul, 
Turkey 

Thakur A, Gupta S (2010) A Computational Framework for Real-Time Un- 
manned Sea Surface Vehicle Motion Simulation. In: ASME 2010 Interna- 
tional Design Engineering Technical Conferences (IDETC) & Computers 
and Information in Engineering Conference (CIE), Montreal, Canada 

Togelius J, Burrow P, Lucas S, et al (2007) Multi-population competitive 
co-evolution of car racing controllers. In: IEEE Congress on Evolutionary 
Computation (CEC'07), September 25-28, Singapore, pp 4043-4050 

11 


