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Modeling and Direct Electric-Field Measurements
of Passively Mode-Locked Quantum-Dot Lasers

Nicholas G. Usechak, Member, IEEE, Yongchun Xin, Member, IEEE, Chang-Yi Lin, Student Member, IEEE,
Luke F. Lester, Senior Member, IEEE, Daniel J. Kane, Member, IEEE, and Vassilios Kovanis

Abstract—A delay differential equation model of a passively
mode-locked two-section quantum-dot laser reveals pulse asymme-
try that is experimentally confirmed through direct electric-field
measurements using frequency-resolved optical gating. This find-
ing indicates that conventional autocorrelators, which obscure the
underlying pulse structure due to the symmetry inherent in auto-
correlation, are of limited utility in the characterization of these
lasers.

Index Terms—Delay differential equations (DDEs), mode-locked
semiconductor lasers, quantum-dot lasers.

I. INTRODUCTION

QUANTUM-DOT lasers have been the focus of consider-
able excitement in recent years due to their low threshold

currents [1], ease of mode locking [2], low linewidth enhance-
ment factors [3], and temperature insensitivity [4]. They hold
promise as compact and robust amplifiers, continuous-wave
(CW) lasers, and mode-locked lasers. Moreover, they have even
recently been used as building blocks in optical switches [5]
indicating the role they may play in device integration. These
lasers may also prove useful in applications that require a train
of stable pulses such as clocks for computers and video game
systems. In comparison with quantum-well lasers, quantum-dot
lasers have shown themselves to mode-lock more easily, which
hints at an underlying robustness that should also lead to im-
proved environmental stability [6], [7].

Despite the progress made to fully understand these lasers,
there are still obstacles that need to be overcome, for example,
resolving issues surrounding the measurement of the linewidth
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enhancement factor [8]. The focus of this paper is another area
that warrants improvement: the exclusive use of autocorrelation
to characterize the mode-locked pulses generated by these
devices. For the purpose of improving understanding and
comparing with models, autocorrelation should be augmented
by a full electric-field characterization, a matter that has gone
largely unnoticed in the quantum-dot laser community until
recently [9], [10]. Although autocorrelation provides a rough
estimate of pulsewidth, it offers no real insight into pulse shape.
Nevertheless, the straightforward sounding task of measuring
the electric field directly from a mode-locked semiconductor
laser is frustrated by the low peak powers (�1 W) routinely
generated by these devices. Low power levels can make auto-
correlation itself difficult due to the weak nonlinear conversion
efficiencies that accompany them. Therefore, electric-field
measurement approaches, which rely on spectrally resolving
the nonlinear autocorrelation signal, suffer an additional
SNR degradation at low power levels limiting the utility of
off-the-shelf commercial systems. One convenient solution is
to amplify the output of the laser using a semiconductor optical
amplifier (SOA) [11]; however, SOA’s add chirp and distort the
pulse properties especially when working with short (�1 ps),
broadband, or heavily chirped pulses.

In Section II, we begin our investigation of the shape of a
mode-locked pulse by using a reduced system of equations
governing the optical field and the carriers in a gain/absorber
region of a generic two-section laser. These equations are then
simplified through a Galilean transformation, normalization,
and the application of the laser’s periodic boundary condition to
reduce the system of partial differential equations (PDEs) into
a system of delay differential equations (DDEs). Section III
consists of an investigation of the optical pulses produced by
this model. One of the main findings of this section is that, in
general, the mode-locked pulses possess asymmetry. In this
section, we also introduced an ansatz to use for fitting the pulse
shape that agrees well with the results of the model. Section IV
describes the fabrication and packaging of the quantum-dot
laser used to experimentally investigate the mode-locked pulse
shape and our experimental setup. The laser was characterized
by measuring its optical spectrum, the optical autocorrelation
signal, and the microwave spectrum, as discussed in Section V.
Meanwhile, a highly sensitive frequency-resolved optical
gating (FROG) device was built and the pulse structure was
more carefully investigated using this system. Finally, the
model, analytic fit, and experimentally extracted optical field
are compared before concluding remarks are given. Our
conclusions are summarized in Section VI.

1077-260X/$25.00 © 2009 IEEE
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II. MODEL

Considerable effort has been devoted to the modeling of
mode-locked semiconductor lasers. Nevertheless, the different
dimensionality of quantum-dot media opens up the possibility
that these lasers exhibit different microscopic properties than
quantum-well lasers. This could result from markedly different
values for operating parameters such as the linewidth enhance-
ment factor [3]. Of greater interest would be the erroneous treat-
ment of presumably “constant” terms as constants, when they
actually have a pronounced nonlinear dependance that must be
accounted for [8]. These issues are still under investigation and
are best determined through careful experimental work coupled
with numerical simulations.

In this paper, we restrict our attention to seeking a simple
macroscopic model of a two-section mode-locked quantum-dot
laser able to capture the salient features with the objective of
comparing with experiential results. We begin with a generic
system of PDEs that govern the evolution of the optical field
and the carriers in the gain (k = g) and saturable absorber
(k = abs) sections of any two-section semiconductor laser

∂E(t, z)
∂z

= −1
ν

∂E(t, z)
∂t

+
gkΓk

2
(1 − iαk)

[
Nk(t, z) − N tr

k
]
E(t, z) (1)

∂Nk(t, z)
∂t

= Jk − Nk(t, z)
τk

− νgkΓk
[
Nk(t, z) − N tr

k
] |E(t, z)|2 . (2)

Equation (1) describes the effect of propagation on a slowly
varying electric field E(t, z) inside the semiconductor where it
has been assumed that dispersive and nonlinear effects are negli-
gible. The group velocity dispersion ν is assumed to be constant
in the gain and absorber sections while the gain/loss gk , con-
finement factors Γk , and linewidth enhancement factors αk are
assumed to differ. This rate equation model assumes charge
neutrality leaving us to keep track only of electron carrier densi-
ties Nk(t, z) and their threshold values N tr

k in (2). Equation (2)
also accounts for injected current Jk and the carrier lifetimes
τk in each section. To complete the model, it is assumed that
spectral filtering can be treated as a lumped parameter located
at one of the facets of the laser without compromising accuracy.

If it is assumed that the gain spectrum is symmetric, that
negligible intracavity pulse breathing exists, and that the lumped
filtering and (1) and (2) form an accurate model for the laser,
the laser’s periodic boundary condition can be used to reduce
the coupled PDE system into a nonlinear DDE system [12],
[13]. DDEs have only recently been applied to mode-locked
lasers [12]; however, they have been used extensively in other
areas of optics, in particular, to describe feedback instabilities in
semiconductor lasers [14] as well as passive optical devices [15]
for the past three decades. During this time, they have enjoyed a
substantial level of success in modeling observed experimental
behavior.

Our treatment follows from the work of Vladimirov and
Turaev [12], [13] in which (1) and (2) are simplified through

TABLE I
PARAMETER VALUES USED IN NUMERICAL SIMULATIONS

a coordinate transformation to a moving time frame τ that has
been normalized to the carrier lifetime in the saturable absorber
τabs . Integrals are then performed on the system of normalized
PDEs to remove the spatial dependence of the carriers and ul-
timately obtain a system of DDEs [12], [13]. This introduces a
new set of terms that are functions of only time for the carriers in
the gain media G, the carriers in the absorber Q, and the optical
field A; these terms are governed by [13]

dA(τ)
dτ

= γ
√

κexp

[
1
2
(1 − iαg)G(τ − T )

− 1
2
(1 − iαabs)Q(τ − T )

]
A(τ − T ) − γA(τ) (3)

dG(τ)
dτ

= g0 − ΓG(τ) − e−Q(τ )(eG(τ ) − 1)|A(τ)|2 (4)

dQ(τ)
dτ

= q0 − Q(τ) − s(1 − e−Q(τ ))|A(τ)|2 . (5)

In these equations, γ incorporates the effect of spectral filter-
ing, αg and αabs are the linewidth enhancement factors in the
gain and absorber media, respectively, and κ accounts for lin-
ear cavity losses. DDEs incorporate history that shows up in (3)
through the evaluation of the optical field A, gain carrier density
G, and absorber carrier density Q at the times τ − T, where T
is the normalized round-trip time. Γ = τabs/τg is the ratio be-
tween the gain and absorber relaxation times and s = gabs/gg
is a ratio between the gain and loss coefficients in the separate
media. Finally, g0 and q0 are gain and absorption parameters
obtained by spatially integrating over the normalized currents
in each section.

Equations (3)–(5) were derived directly from (1) and (2) and
as such are applicable to any laser governed by these equa-
tions as long as the approximations made remain reasonable.
In quantum-dot lasers containing wetting layers, a more thor-
ough treatment for the carriers has been investigated using a
rate equation approach [16] and through the introduction of an
additional set of carrier equations in a DDE system [17]. The
devices investigated in this paper did not contain wetting layers,
and for the reasons noted in the end of Section V, we did not
pursue such a model.

III. NUMERICAL RESULTS

The performance of a laser suitably described by (1) and (2)
is now investigated through the DDE model of (3)–(5) using
the judiciously chosen values given in Table I. To provide an
overview of the parameter space, Fig. 1 summarizes the stability
of the pulse trains about a fixed set of parameters. In this case, all
extrema of the magnitude of the optical field have been plotted
over 20 round-trips well after convergence was found while

2
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Fig. 1. Bifurcation diagram shows different regimes of operation for this laser
as a function of the gain parameter. In this case, the figure predicts the following
states: below threshold, Q-switched mode locking, stable mode locking with
one, two, three, and four pulses, a region of noisy oscillation, and a CW oper-
ation. The gray scale (color online) of the points indicates whether they were
generated by seeding the simulation with noise or the result of a previous simu-
lation with a smaller (forward) or larger (backward) gain value. The parameter
values used to generate the figure are given in Table I. The y-axis plots the
magnitude of the field to simplify comparison with Fig. 2.

the value of the gain term g0 is varied to indicate its role on
performance.

This figure provides a simple way to identify different op-
erating domains, for example, five distinct regions are identi-
fied. Fig. 1 also provides an indication of the laser’s robustness
about a specific point by noting the extent to which that loca-
tion is isolated from the other attracting solutions found. As the
gain is increased, the laser transitions from below threshold to
Q-switched mode locking at g0 = 0.14, and this region persists
until g0 = 1.1 where the laser enters a region of steady-state
mode locking. As the gain is further increased, a coexisting
attractor appears around g0 = 2.15, and this state may be de-
scribed as a steady-state mode-locked solution where the laser
has two pulses simultaneously circulating within the cavity.
Q-switched mode locking appears again above g0 = 2.65,
which is similar to the findings in [7]; however, using the forward
history, we find the reemergence of a coexisting mode-locked
state for 3.2 < g0 < 3.45. It is worth pointing out that this region
of Q-switched mode locking disappears for linewidth enhance-
ment factors below 0.25. A mode-locked state with three pulses
is found above g0 = 3.6, likewise above g0 = 3.27, a state with
four pulses exists. The CW background accompanying the four-
pulse state (barely visible in Fig. 1) is due to incomplete relax-
ation of the absorber between subsequent optical pulses; this
prevents realizing a state with more than four pulses for this
cavity length unless the relaxation time is decreased and also
makes the experimental realization of this state unlikely. Further
increases in gain push the laser into a noisy region of oscillation
with an increasing CW background. For values of g0 > 5.55,
the laser completely deteriorates into CW behavior although the
forward history predicts the presence of an oscillatory state up

Fig. 2. Optical pulse train taken from specific points in the bifurcation diagram
of Fig. 1 to illustrate the different regions of operation. (a) Q-switched mode
locking (g0 = 0.5). (b) Fundamental mode locking (g0 = 2.0). (c) Mode lock-
ing with two pulses (g0 = 3.0). (d) Mode locking with four pulses (g0 = 4.0).
(e) Oscillation (g0 = 5.0). (f) CW output (g0 = 6.0). The y-axis plots the mag-
nitude of the field (not intensity) in order to facilitate comparison between the
different subfigures while using the same axis scale.

till g0 = 6.38. Although this figure does not capture all of the
available states, it does reveal hysteresis, an effect frequently
observed in passively mode-locked lasers [18].

One interesting observation is that this figure does not predict
a region of traditional Q-switching. This has been commented
on in the past and is related to the damping of the relaxation
oscillations [7]. In this DDE model, it is related to the normalized
round-trip time T ; as this value is decreased, we find a region
of classical Q-switching where pulses are emitted but at a rate
far less than that of the cavity’s free-spectral range.

Fig. 2 explores some of the previously noted regions by plot-
ting the amplitude of the optical field in the various domains
identified in the discussion of Fig. 1. Each figure clearly cor-
responds to a different state of operation. Because all of the
results shown in this figure were generated through seeding the
computation in the “backward” direction, the state consisting of
three pulses is not shown.

Shifting our focus to fundamental mode locking, the intensity
of the electric field and the carrier concentrations are plotted
in Fig. 3, where g0 = 2.0. This figure shows that the optical
intensity is temporally asymmetric. Using this result and the
analytic hyperbolic-secant solution admitted by many passively
mode-locked solid-state lasers [19], the applicability of an un-
symmetrized version of this pulse shape in fitting these results

3
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Fig. 3. (a) Optical intensity. (b) Carrier densities in the gain region. (c) Den-
sities in the absorber region. (d) Difference between the carrier densities, which
reveals the fast and slow components of the time-dependent gain. The parame-
ters used are listed in Table I.

Fig. 4. Comparison between the numerical solution of (3)–(5) and the analytic
fit given in (6). In this figure, the round-trip time has been scaled to 200 ps and
the parameters used are listed in Table I.

was investigated in Fig. 4. Such an ansatz takes the form

|A(t)| = c1
2

ec2 (t−t0 ) + e−c3 (t−t0 ) (6)

where cn and t0 are coefficients. In Fig. 4, c1 = 2.18 normalizes
the peak intensity to 7.0, c2 = 0.2 ps−1 characterizes the slope
of the trailing edge of the pulse, c3 = 0.8 ps−1 characterizes
the slope of the leading edge of the pulse, and t0 = −1.65 ps
centers the fit about t = 0. Fig. 4 assumes that the laser operates
at 5 GHz in order to convert the normalized round-trip time in
the device to a physical timescale and facilitate the compari-
son. Although this pulse shape fits the intensity predicted by
(3)–(5) very accurately about the pulse center, the agreement
between the fit and the numerical results begins to diverge in the
pulse wings. This splitting is attributed to the increased impor-
tance of the slow-stage component in the G − Q relationship, as
shown in Fig. 3. Of course, (6) collapses to the commonly used

hyperbolic-secant pulse shape for c2 = c3 ; therefore, this gen-
eral form should remain valid where mode locking is observed
regardless of the symmetry.

IV. DEVICE DESCRIPTION AND EXPERIMENTAL SETUP

In this paper, we experimentally characterized a two-section
quantum-dot laser that was grown by elemental source molecu-
lar beam epitaxy on a (0 0 1) GaAs substrate following standard
ridge waveguide laser processing. The self-assembled quantum
dots were grown in compressively strained quantum wells. This
so-called dots-in-a-well (DWELL) structure [1] uses the quan-
tum wells to capture carriers, thus acting as a carrier bath (for
the dots) that improves the dot’s ability to capture carriers. The
active region of the device investigated was composed of six
DWELL layers, each separated by a 16-nm-thick GaAs barrier
region, resulting in a total waveguide core thickness of 166 nm.

In the transverse direction, the laser had a ridge width of
3.5 μm while it was composed of two electrically isolated sec-
tions along the cavity length; a 1.0-mm region was biased by
4 V to act as a saturable absorber with a measured unsaturated
absorption of 28 cm−1 at 1238 nm and a 7.3-mm region had
100 mA injected into it to serve as the gain medium with a
measured gain at the operating wavelength of 4.8 cm−1 . The
threshold current was 90 mA, and at 100 mA, which was the
current used throughout the rest of this paper, only the ground
state plays a role in performance; the first excited state, located
around 1150 nm, remains well below threshold. Both facets
were cleaved and then coated; the facet near the absorber was
high-reflectivity coated (R ≈ 95%) while the other facet had an
antireflective coating (R ≈ 5%).

To simplify handling and provide electrical isolation, the laser
was mounted on AlN using indium. To insure stable mode lock-
ing over the time needed to acquire the experimental data, the
laser assembly was then mounted on a copper block, again using
indium. The temperature of the composite system was held at
20 ◦C by a thermoelectric cooler (which was contacted to the
copper block using thermal grease) and driver (ILX LDC-3916).
The two-section laser was electrically addressed using micro-
probes and the optical output of the laser was coupled into a
polarization-maintaining single-mode optical fiber to facilitate
placement issues associated with characterization. Although the
laser output could have been collimated and relayed through free
space directly into the associated diagnostic systems, the com-
bination of a short 1-m fiber and the low peak power levels
ensures that the fiber does not introduce any pulse distortion
into the setup.

V. EXPERIMENTAL RESULTS

An optical spectrum analyzer, autocorrelator, and a high-
speed detector in conjunction with a microwave spectrum
analyzer provided traditional pulse and pulse train characteri-
zation, and allowed us to quickly find a stable mode-locking
region whose parameters were previously noted. This resulted in
an optical spectrum with a 4.3-nm full-width at half-maximum
(FWHM), as shown in Fig. 5. The satellite peak located at
1236 nm in this figure is evidence of the competition between

4
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Fig. 5. Experimentally measured optical spectrum of our mode-locked pulse
train indicates a spectral FWHM of 4.3 nm.

Fig. 6. Experimentally obtained SHG autocorrelation trace (circles) shown
with a 5.1-ps FWHM Gaussian fit (dashed line) and a 4.9-ps FWHM hyperbolic
secant fit (solid line); the FWHM of the actual field is 5.1 ps.

inhomogeneous and homogeneous broadening in the quantum-
dot medium [10]; it is not related to the excited state of the
quantum dots. Ultimately, these two peaks separate more clearly
and cause the breakup of the pulse at higher bias currents as seen
in [10]; however, in this figure, the two peaks are still coupled.
Another notable feature shown in this figure is that the spectrum
appears to gradually rise on its short-wavelength side whereas
the long-wavelength tail drops rapidly resulting in an asym-
metric optical spectrum. This is also thought to be due to the
different broadening mechanisms having different gain spectra.

As seen in Fig. 6, the autocorrelation trace of the mode-
locked pulses has a 7.2-ps FWHM that corresponds to 5.0-ps or
4.58-ps pulses assuming a Gaussian or hyperbolic-secant pulse
shape, respectively. Fig. 6 also reveals that neither fit is accu-
rate, although the hyperbolic-secant pulse shape provides better
agreement with the data on the pulse wings. The autocorrelation
result also indicates that the pulses are ∼12× their transform
limit (assuming a hyperbolic-secant pulse shape). Finally, the
microwave spectrum analyzer was used to indicate the presence

Fig. 7. Experimentally measured FROG spectrogram.

of mode locking and identified that the laser’s repetition rate
was 5 GHz.

To resolve some of the outstanding issues raised by these
figures, such as the discrepancy between pulse shapes and the
large time–bandwidth product, we constructed a highly sensitive
FROG system that would provide useful data in spite of the low
SNR available. The FROG system had a standard configuration
and consisted of a temporal delay line that performed a tradi-
tional noncollinear type-I autocorrelation using a 1-mm-thick
LiIO3 crystal. The output of the autocorrelator was spectrally
gated, using a 1200 lines/mm grating monochromater with a
0.2-nm resolution, before being detected by a sensitive pho-
tomultiplier tube (Hamamatsu R955). The resulting electronic
signal was low-pass filtered, and then amplified using a low-
noise current preamplifier (SRS SR570). This setup allowed us
to obtain the spectrogram shown in Fig. 7, which indicates the
existence of a mode-locked pulse and whose triangular shape
immediately confirms that these pulses are chirped.

Using the data from Fig. 7 in the standard FROG phase-
retrieval algorithm [20] results in the normalized intensity shown
by the solid (black) traces in Fig. 8(a) and (b) on a linear and log-
arithmic scale, respectively. Fig. 8 reveals pulse asymmetry that
is obscured in any autocorrelation measurement and hidden in
the spectrogram of Fig. 7. In contrast to the intensity, the optical
phase retrieved from the FROG spectrogram was overwhelm-
ingly symmetric to the extent that it was accurately fit by the
parabola φ(t) = 0.55t2 , where t is the time in picoseconds and
φ(t) is the phase in radians. The measurement of a symmetric
phase despite the asymmetric pulse shape is most likely caused
by a nonlinear effect and is currently under investigation [8].

As a consequence of the pulse asymmetry, the field is poorly
fit by both Gaussian and hyperbolic-secant functions. Never-
theless, the unsymmetrized hyperbolic-secant of (6) provides a
good fit, as shown in Fig. 8(a) and (b). The agreement between
the extracted amplitude and (6) is favorable over the pulse’s
entire leading edge to the extent it can be commented on due to
the SNR. During the trailing edge of the pulse, it appears that
the carrier dynamics following the closing of the gain window
(in the “slow stage” region) play an increased role in mediating

5
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Fig. 8. (a) Retrieved electric-field intensity (solid black), the electric-field in-
tensity predicted by our fit (dashed line), and the intensity predicted by our model
(gray). (b) Same as (a). However, the data are shown here on a semilogarithmic
plot.

the field and the fit retains its accuracy over a restricted window
up to 5 ps only. The asymmetric pulse shape also places an
increased importance on resolving the time ambiguity inherent
in the second-harmonic generation based FROG measurement.
Although the parabolic phase indicates that the pulses should
be compressible via optical fiber, attempts to realize this have
only lead to pulse broadening. This result, coupled with our
opinion that the differential absorption is much larger than the
differential gain [10], provides strong evidence that the time axis
orientation reported in this paper is correct.

The results obtained by solving (3)–(5) using the values found
in Table I are also shown in Fig. 8. The comments on their ac-
curacy are identical to those previously made concerning the
analytic fit; however, the agreement during the trailing edge
of the pulse is slightly better. The improvement is due to the
model’s incorporation of the carrier dynamics during the slow
stage although the experimental results indicate that these are
more complicated than assumed by the DDE model. Although
the model used in this paper did not include the full dynam-
ics associated with the carrier capture in the wells, and then
subsequent capture by the dots, it was able to produce fairly
accurate results. As noted in Section II, a more thorough treat-
ment of the carriers has been done for devices containing wetting
layers [16], [17]. Although the same tact could be taken with
these DWELL devices, the likelihood of a nonuniform response
across all DWELL regions complicates matters (they are in se-
ries and so repopulation may be delayed in the different layers);
the lack of compelling experimental evidence, the low SNR of
the data, and the good general agreement between the model
and data justified the decision to investigate the applicability of
the model used.

Although the experimentally extracted phase was predomi-
nantly symmetric, the phase predicted by the DDE model was
asymmetric. This discrepancy, thought to be related to a nonlin-
ear dependence of the linewidth enhancement factor, is currently

under investigation. This should also explain the model’s pre-
diction of an almost transform-limited pulse.

VI. CONCLUSION

In this paper, a system of DDEs was used to form a simple
model to explore different regions of operation in a two-section
quantum-dot laser. By focusing on fundamental mode locking,
an asymmetric hyperbolic-secant function was found to agree
well with the numerical results in the vicinity of the pulse cen-
ter. Experimentally, a two-section quantum-dot laser was in-
vestigated using traditional measurement diagnostics. More im-
portantly, however, a FROG system was constructed and used
to directly measure the electric field outside of a mode-locked
quantum-dot laser, and compared with a DDE model for what
we believe to be the first time. The realization of significant
pulse asymmetry does not preclude the possibility of symmetric
pulses out of these lasers, however, it does provide a strong ar-
gument for the utility of electric-field reconstruction techniques
in the characterization of pulses from these lasers. Finally, the
results from the numerical simulation were overlayed on the
experimental data and good agreement was found for the pulse
amplitude.
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