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Abstract

Despite the great amount of research devoted to the visibility problem, very little
attention has been devoted so far to measure or compare visibility data in a way which
is consistent with “human-based” goals as of interest in typical military applications.
In fact, terrains are usually compared using mathematical norms which are unable to
measure distances in terms of their visibility properties. The objective of this report is
to introduce a functional-theoretic framework to deal with the notion of visibility and
develop mathematically well-defined and practically effective tools to process visibility
information, including the comparison, analysis and classification of visibility data. In
particular, a new notion of difference of visibility distance is introduced, as a theoretical
and computational tool for the comparison of terrain models from the point of their
visibility properties.

∗Department of Mathematics, University of Houston, Houston, TX 77204, USA (dlabate@math.uh.edu)
†Institute of Mathematics, University of Osnabrück, 49069 Osnabrück, Germany

(kutyniok@uni-osnabrueck.de)

1



Contents

1 Introduction 3
1.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Analysis of viewshed function 6
2.1 Continuity Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Set-theoretic Properties of Vf . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Difference of Visibility Distance 9
3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Analysis of the Difference of Visibility Distance . . . . . . . . . . . . . . . . 14

3.3.1 Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Equivalence Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Approximations with respect to DV distance. . . . . . . . . . . . . . . 18

4 Summary of Results and Future Work 20

2



1 Introduction

The visibility problem is a among the most important research topics in computational geom-
etry and is of interest in both military applications such as surveillance and reconnaissance
and civilian applications such as robotics, geographic information systems and computer
graphics. Due to its importance, this problem has been extensively investigated and several
efficient algorithms have proposed to produce detailed terrain models, compute the visibil-
ity regions and address viewpoint-based placement problems such as the classical “museum
problem” and its generalizations (see, for example, [1, 13, 17, 18]).

However, despite all this effort, certain very relevant aspects of the notion of visibility
have not received the proper amount of attention. In particular, there is no satisfactory
way to measure or compare visibility data in a way which is consistent with “human-based”
goals. This is of particular importance to effectively assess, for example, how well a visibility
model approximates the ground truth, or to compare different visibility models and algo-
rithms. In addition, very little effort has been devoted in the scientific literature to examine
the functional-analytic properties associated with the notion of visibility. Indeed, in virtu-
ally all studies, the visibility problem has been examined in the context of discrete rather
than continuous data. While traditional methods from computer science and computational
geometry are very effective to compute visibility structures and deal with many practical
issues related to visibility computations, our point of view is that, by making use of the con-
tinuous setting, one can take advantage of the power of functional analysis to gain a deeper
insight into the visibility problem and develop more sophisticated tools for the analysis and
processing of visibility data. .

The main goal of this work is to introduce a novel mathematical approach to deal with
the notion of visibility. By setting a proper functional-analytic framework, we will develop
mathematically well-defined and practically effective tools to better process visibility infor-
mation, including the comparison, analysis and classification of visibility data in a way which
is consistent with “human-based” goals.

The report will be organized as follows. Section 1.1 contains the notation and definitions
which will be used throughout the report. Section 2 sets the proper mathematical framework
for the description and characterization of the viewshed function and sets the groundwork for
next section. Section 3 contains the main results of this work. Specifically, a new definition
of Difference of Visibility Distance is introduced and validated on a number of examples to
show its consistency with human-based goals. Using this notion, continuity, equivalence and
approximation properties on a simple model of univariate terrain models are examined.

1.1 Notation and Definitions

We start by introducing the basic definitions and notations which will be used throughout
this report.
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A topographic surface or terrain is defined as the graph of a bivariate function f : Q ⊂
R2 → R, that assigns a height or elevation f(x) to every point x in a domain Q ⊂ R2. We
will assume that Q = [0, 1]2 and that the function f is bounded.

In practical situation, the values of the function f are known only at a finite set S ⊂ Q
of sample points. This gives rise a discrete version of a terrain which are known as a Digital
Elevation Model (DEM), consisting of elevation measures on the discrete set of points S ⊂ Q,
where S is either a regular grid, or an irregularly scattered set of points. In the first case,
we have a Regular Square Grid (RSG), which is obtained by partitioning S into equally
sized rectangles. Using this model, the function f is defined piecewise over each rectangle,
e.g., using a constant or bilinear function. Each rectangle can be further divided into two
triangles, with linear interpolating functions defined on them. In the second case, when the
points in S are irregular samples, we have a Triangulate Irregular Network (TIN), which is
defined by introducing a triangulation T of the set S. Also in this case, f is piecewise defined,
for example by using linear functions over each triangle of T . Hence in both cases the result
is a polyhedral terrain, which is the graph of a piecewise linear function and provides an
approximation of the continuous terrain function f . We refer to [2, 9, 10] for additional
information about these discrete terrain models.

Figure 1: Examples of a natural (left) and a urban (right) terrain model showing the visible
and not visible locations from a viewpoint denoted as the Observer.

For a fixed x ∈ Q, we say that the point (y, f(y)), y ∈ Q, belongs to the line of sight of f
at x if the interior of the line segment through (x, f(x)) and (y, f(y)) lies strictly above the
surface. In this case, we write that

(y, f(y)) ∈ LOSf (x, y),

the point (x, f(x)) is called a viewpoint and y is visible from x. It is clear that, if (y, f(y)) ∈
LOSf (x, y), then (x, f(x)) ∈ LOSf (y, x). Hence, two points which belong to the line of sight
of each other are mutually visible.
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More generally, we can assign an elevation h ≥ 0 to a viewpoint. Hence, for a fixed
elevation h ≥ 0, we say that a point (y, f(y)) belongs to the line of sight of x with elevation
h, if the interior of the line segment through (x, f(x) + h) and (y, f(y)) lies strictly above
the surface. In this case, we write:

(y, f(y)) ∈ LOSf (x, y; h),

and the point (x, f(x)) is a viewpoint with elevation h.
For each x ∈ [0, 1]2, we define the viewshed of f , at the location x with elevation h ≥ 0,

as the set
Vf (x; h) = {y ∈ Q : (y, f(y)) ∈ LOSf (x, y; h)} ⊂ Q.

Hence, Vf (x; h) is the set-valued function consisting of the coordinate points of Q which are
visible from the viewpoint (x, f(x)) with elevation h (see Figure 1).

It follows from this definition that if h1 ≤ h2 then Vf (x; h1) ⊂ Vf (x; h2).

Equivalent Definitions
For (x1, z1), (x2, z2) ∈ Q × R, let L((x1, z1), (x2, z2)) be the line segment through the points

(x1, z1) and (x2, z2). We define the viewshed of f at x ∈ Q, with elevation h, as the set

Vf (x; h) = {y ∈ Q : ∀z ∈ −→xy, f(z) < Lz, where (z, Lz) ∈ L((x, f(x) + h), (y, f(y)))}.

The Line of Sight of f with elevation h is

LOSf (x, y; h) =

{
L((x, f(x) + h), (y, f(y))), if y ∈ Vf (x;h);
∞, otherwise.

Other useful visibility structures for a terrain are the horizons, describing the locations
on Q which belong to the line of sight at the viewpoint x, and block the view of points lying
immediately beyond them. Specifically, the local horizons of the viewpoint x are the points
p ∈ Q such that (p, f(p)) ∈ LOSf (x, p; h) and there is no q ∈ Q, q 6= p, such that p ∈ −→xq
and all points in −→pq are visible from x. The global horizons of the viewpoint x are the points
p ∈ Q such that (p, f(p)) ∈ LOSf (x, p; h) and for every point q ∈ Q such that p ∈ −→xq, q is
not visible from x. It is clear that if p is a global horizon point, then it is also a local horizon
point.

Several variants of the notion of viewshed are proposed in the literature [4, 5, 6, 7, 11].
Usually, this definition is introduced in the discrete setting and it is denoted as a function of
the viewpoint rather than the viewpoint location in Q. Also recall that there are generalized
or extended notions of viewsheds [6, 7], where the visibility is restricted within a certain
distance from the viewpoint, that is

Vf (x, r; h) = {y ∈ Q : (y, f(y)) ∈ LOSf (x, y; h) and |(y, f(y))− (x, f(x) + h)| < r)}.
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Another useful extension is the situation where, for each points y ∈ Q, a richer information
than a simple Boolean classification (visible / not visible) is provided. function. Finally,
it is also possible to let the elevation h be a function of the viewshed location x, so that
h = h(x).

Notice that, in our notation, we make explicit the dependence on the terrain function f ,
since this functional relation will be specifically considered in the following.

2 Analysis of viewshed function

Our first objective is to examine the properties of the viewshed function Vf (x; h) as a function
of the viewpoint location x ∈ Q = [0, 1]2 and the elevation h ≥ 0. This will set the
groundwork for the analysis of the difference of visibility function which will be introduce in
Section 3.

It is clear that, for each x ∈ Q and each h ≥ 0, the set Vf (x; h) is non-empty, since
it always contains the point (x, f(x)). It is also easy to see that, without some regularity
assumptions on f , it is virtually impossible to deduce interesting or realistic statements
about the viewshed function Vf . In particular, if f is highly irregular, then Vf (x; h) might
consist of a single point. For example, let f(t) = 0 for rational t and f(t) = 1 for irrational
t. Then, for each rational x, Vf (x; h) = {(x, f(x))} (a singleton set), provided h < 1.
It is interesting to observe, however, that even if f satisfies some regularity it does not
necessarily follow that Vf (x; h) is larger than a singleton. Consider, for example, the terrain

model f(x1, x2) = (x2
1 + x2

2) sin

(
1√

x2
1+x2

2

)
. Notice that f is continuous at the origin, but

Vf ((0, 0); 0) is the single point {(0, 0, 0)}. While both examples are not very realistic models
of terrains, they are useful to illustrate that, for a more realistic setting, one has to impose
some control on the number of discontinuities of f and some regularity on its derivative as
well.

Hence, in the following, we will assume that f is a piecewise C1 function, where the
first derivative is bounded. These assumptions are consistent with most terrain models of
practical interest, including urban and natural terrains.

For simplicity, in the following we only consider the situation where f is a univariate
function; that is Q = [0, 1]. The extension to the bivariate case is straightforward for many
of the results reported below. The general analysis of the bivariate case will be presented in
a successive study. Notice that, since f is defined on a compact domain Q, it follows from
our assumptions that f ′ is uniformly bounded on Q. Also, in the following, we will always
assume that the elevation h of the viewpoint satisfies h > 0.
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x

x+d

x+2d
I

Figure 2: When the viewpoint location moves from x to x + d, the function V (x) decreases
abruptly. This is due to the fact that the line of sight has the same slope as the graph of f
on a interval I of positive measure. As the viewpoint moves to x + d, the whole interval I
which was visible becomes invisible.

2.1 Continuity Properties

It is not difficult to show that, even for a regular terrain f , the set-valued function Vf (x; h)
is very sensitive to changes in x and h.

Indeed, let f ∈ C1 on Q and consider the function V (x) = µ (Vf (x; h)). To show that
V (x) is not continuous in general, consider the example illustrated in Figure 2. In this case,
because the graph of f has constant slope on an interval of positive measure, a small change
of the observer location x will change abruptly the size of the viewshed Vf (x; h). It is clear
that V (x) is even more sensitive with respect to variations in x if f is discontinuous.

The same terrain f as the one in Figure 2 can be used to show that Vf (x; h) is not a
continuous function of h. In fact, it suffices to fix the viewpoint at x + d and vary h so that
the interval I is or is not visible.

However, as observed above, we have that:

h1 ≤ h2 ⇒ Vf (x; h1) ⊂ Vf (x; h2).

Hence the function U(h) = µ (Vf (x; h)) is monotonic increasing and lower semicontinuous.
Indeed, recall that a function f is lower semi-continuous at x0 if for every ε > 0 there exists
a neighborhood U of x0 such that f(x) ≥ f(x0) + ε for all x ∈ U . Equivalently, this can be
expressed as

lim inf
x→x0

f(x) ≥ f(x0).

2.2 Set-theoretic Properties of Vf

In this section, we make some observations about the geometry of the set-valued function
Vf (x; h). Notice that the assumption h > 0 will play an important role in the following.
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The first observation is that Vf (x; h) is a set of nonzero measure, since there is at least
one interval (containing the viewpoint x) which is contained in Vf (x; h). Indeed, we have
the following observation.

Lemma 2.1. Let f be piecewise C1 on Q, with bounded derivative everywhere. Then there
exists an interval containing x which is contained in Vf (x; h),

Proof. Let x be a regular point of f , that is, f is C1 in a neighborhood of x, and let
|f ′(x)| < M for each x ∈ Q. It is clear that x ∈ Vf (x; h). By the continuity of f , for ε > 0
small enough, f(y) < f(x) + h for all y ∈ (x− ε, x + ε). In addition, let ε > 0 be such that
ε < h/M . Hence, for each y ∈ (x − ε, x + ε), the line from (x, f(x) + h) to (y, f(y)) has
slope larger than M (indeed, h/ε > M). This implies that, for any such y ∈ (x − ε, x + ε),
(y, f(y) ∈ LOSf (x, y; h).

If x is a point of discontinuity of f ′, a similar argument will hold. Indeed, if x is a
jump discontinuity, then there will be an interval I1 = [x, x + ε) or I2 = (x− ε, x] such that
(y, f(y) ∈ LOSf (x, y; h) for all y ∈ I1 or y ∈ I2. 2

Notice that, even for x a regular point of f , Vf (x; h) need not be an open or a closed set.
In fact, it is easy to find examples where Vf (x; h) contains half-open or half-closed intervals.

The main result of this section states that, under our assumptions on f , then Vf (x; h)
must be a finite union of intervals.

Proposition 2.2. a Let f ∈ C1([a, b]), where [a, b] is a bounded interval. Then, for each
x ∈ Q and h > 0, the set Vf (x; h) is a finite union of intervals.

In order to prove this result, we first show the following lemma, showing that the line
joining a viewpoint to the terrain at a local horizon must be tangent to the terrain at the
horizon.

Lemma 2.3. Let f ∈ C1([a, b]) and suppose that p ∈ (a, b) is a local horizon of the viewpoint

b with elevation h > 0. Then f ′(p) = f(b)+h−f(p)
b−p

.

Proof. Suppose, by contradiction, that f ′(p) 6= f(b)+h−f(p)
b−p

. If f(b)+h−f(p)
b−p

> f ′(p) > 0, then

(p, f(p) /∈ LOSf (x, p; h), because the line L((x, f(x) + h), (p, f(p))) will either not intersect
the graph of f at p or will meet an obstacle before intersecting the graph. The situation is
analogous if f ′(p) < f(b)+h−f(p)

b−p
< 0, and also in this case (p, f(p) /∈ LOSf (x, p; h). On the

other hand, if f ′(p) > f(b)+h−f(p)
b−p

> 0, then there is an interval (p, p+ε) which is all contained

in Vf (b; h). In fact, there is an ε > 0 such that, for all p∗ ∈ (p, p + ε), the tangent line at
(p∗, f(p∗) intersects the line L((b, f(b) + h), (p∗, f(p∗))). Hence, p is not a local horizon of

b. Similarly, if 0 > f ′(p) > f(b)+h−f(p)
b−p

> 0, then there is an interval (p, p + ε) which is all

contained in Vf (b; h), and also in this case p is not a local horizon of b. 2

Notice that, if J ∈ [a, b] is an interval where f ∈ C1 is strictly monotonic and y1, y2 ∈
J ∩ Vf (x; h), it does not necessarily follow that [y1, y2] ∈ Vf (x; h). In fact, there may be a
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point y ∈ (y1, y2) where f ′(y) = f(x)+h−f(y)
x−y

and y is a local horizon. Using this observation,
we deduce the following observation.

Lemma 2.4. Let f ∈ C1([a, b]). If y1, y2 ∈ J ∩ Vf (x; h) and f ′(y) 6= f(x)+h−f(y)
x−y

for all

y ∈ (y1, y2), then [y1, y2] ∈ Vf (x; h).

Proof. This follows from Lemma 2.3, by observing that no local horizons are possible in
the interval (y1, y2). 2.

Notice that Lemma 2.4 is satisfied if, for example, y1, y2 ∈ J ∩Vf (x; h) and f ′′(y) 6= 0 for
all y ∈ (y1, y2).

Proof of Proposition 2.2. If f ∈ C1([a, b]) and x is a viewpoint with elevation h, one
can identify a set S containing all the local horizons of f as follows as the set of the locations
p where f ′(p) = f(x)+h−f(p)

x−p
. If this set is discrete then the set Vf (x; h) can be identified as

the union of those intervals between distinct local horizons. On the other hand, the set S
need not be discrete since it may contain an interval I corresponding to values where f ′ is
constant and it satisfies the equation f ′(p) = f(x)+h−f(p)

x−p
for all p ∈ I ⊂ S. However, if this

is the case, then the interval I cannot be visible. Hence, the set Vf (x; h) is again determined

by the discrete set of points where f ′(p) = f(x)+h−f(p)
x−p

. 2

3 Difference of Visibility Distance

Since in both military and civilian applications it is important to compare different terrain
models, it is useful to introduce an appropriate notion of distance defined on terrains. Un-
fortunately, the usual mathematical norms such as the Lp or the Sobolev norms, are not
particularly effective to compare terrains on the basis of their visibility properties. In fact,
as further illustrated in the examples below, it is easy to produce examples of terrains which
are close with respect to an Lp norm, but have completely different visibility properties.
In contrast with those norms, we will introduce a new notion of distance which is not de-
fined directly on the space of terrain models and will be useful to precisely compare terrains
according to the properties of the associate viewshed functions. Specifically, we define the
Difference of Visibility Distance between the terrains f and g as:

DV(f, g; h) =

∫

Q

µ (Vf (x; h) M Vg(x; h)) dx, (1)

where A M B is the symmetric difference of two sets (defined as (A∩Bc)∪ (Ac ∩B)), h > 0
is fixed, and µ is the Lebesgue measure. Notice that it is easy to modify the above definition
by using the generalized versions of the Visibility Region function mentioned in Section 1.1.
However these generalizations will not be considered in this report. Finally, notice that a
notion of Difference of Visibility with some similarities to the one given above was recently
proposed in [15].

9



For functions f, g satisfying simple measurability conditions, DV(f, g; h) is a well-defined
function with range on [0, 1] (since we have chosen functions with support on the normalized
domain Q = [0, 1]2). In particular, DV(f, g; h) = 0 if f and g are associated with the same
viewshed function for all values of the viewpoint.

Notice that DV(f, g; h) is not properly a distance, in the sense that it does not satisfy
the mathematical conditions of a metric; in particular, the triangle inequality does not hold
in general.

3.1 Examples

As a first test to motivate and justify this notion of distance, we will compute the Difference
of Visibility Distance on a number of simple models of terrains to show that this notion
will provide a satisfactory way of assessing the closeness of the viewsheds associated with
different terrain models. In the following, we assume that the viewpoint elevation is a fixed
constant 0 < h < 1.

1

1

1

1

1

1

(a) (b) (c)

Figure 3: Examples of map functions: (a) Example 1, (b) Example 2; (c) Example 3.

Example 1

Let f(x1, x2) =

{
0 if (x1, x2) ∈ [0, 1]2 and x1 6= x2

1 if (x1, x2) ∈ [0, 1]2 and x1 = x2

. This is illustrated in Figure 3(a).

Now, if x = (x1, x2) is chosen so that x1 = x2, then Vf (x; h) = [0, 1]2. If x1 < x2, then
Vf (x; h) = {(x1, x2) : x1 < x2}

⋂
[0, 1]2. Finally, if x1 > x2, then Vf (x; h) = {(x1, x2) : x1 >

x2}
⋂

[0, 1]2. Notice that, in the first case, the Lebesgue measure µ(Vf (x; h)) = 1, but in the
other two cases µ(Vf (x; h)) = 1/2 (that is, unless the observer is at the ridge x = y, only
half of the map is visible from any location).
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Let g(x) = 0 for all x ∈ Q. Notice that the set Vf (x; h) M Vg(x; h) is empty if x1 = x2,
while it is a half-plane if x1 6= x2. Since µ(Vf (x; h) M Vg(x; h)) = 1/2 for a.e. x ∈ Q, we
conclude that:

DV(f, g; h) =
1

2

This is consistent with the intuition that g and f are associated with very different
viewsheds. In fact, the value of DV(f, g; h) = 1

2
can be interpreted as the assessment that

using g as an approximation model for f we would be wrong 50% of the time.
Notice that, using the traditional Lp norm, with 1 ≤ p < ∞, to measure the distance

between f and g, we obtain ‖f − g‖p = 0 (while ‖f − g‖∞ = 1). This would not be an useful
measure for the difference of the visibility sets associated with f and g.

Example 2

Let f(x1, x2) =

{
0 if (x1, x2) ∈ [0, 1]2 and x1 6= x2 + 1/2

1 if (x1, x2) ∈ [0, 1]2 and x1 = x2 + 1/2
. This is illustrated in Figure 3(b).

Direct computation shows that µ(Vf2(x; h)) = 7/8 and µ(Vf2(x)) = 1/8, respectively.
Again, letting g(x) = 0 for all x ∈ Q and proceeding as above we find that

DV(f, g; h) =
1

8

7

8
+

7

8

1

8
=

7

32

Notice that, if the traditional Lp norms are used to measure the distance between f and
g, as in Example 1, we obtain ‖f − g‖p = 0, for 1 ≤ p < ∞, and ‖f − g‖∞ = 1.

(a) (b) (c)

R1

R2

R3

Figure 4: Example 4: (a) f1 = 1 in the dark set, f1 = 0 in the white set, (b) f2 = 1 in the
dark set, f2 = 0 in the white set; (c) f1 = f2 on the sets R1 and R3, f1 6= f2 on the set R2.

Example 3

Let f(x1, x2) = 1− x1 − x2, (x1, x2) ∈ Q. This is illustrated in Figure 3(c).
For each x ∈ Q, we have that Vf (x; h) = [0, 1]2. Hence µ(Vf (x; h)) = 1.
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Letting g(x) = 0 for all x ∈ Q, we find that Vf (x; h) M Vg(x; h) is the empty set, for each
x ∈ Q. Hence

DV(f, g; h) = 0.

This is the expected result since f and g are associated with the same visibility regions.
Notice that, if the traditional Lp norms are used to measure the distance between f and

g, we obtain ‖f − g‖p 6= 0. In particular, ‖f − g‖1 = 1/6 and ‖f − g‖∞ = 1.

Example 4

Let f1(x1, x2) =

{
1 if (x1, x2) ∈ [0, 1]2 and x1 ≤ x2

0 if (x1, x2) ∈ [0, 1]2 and x1 > x2

.

Let f2 be a perturbed version of f1: f2(x1, x2) =

{
1 if (x1, x2) ∈ [0, 1]2 and x1 ≤ x2 − δ

0 if (x1, x2) ∈ [0, 1]2 and x1 > x2 − δ
.

We refer to the notation of Figure 4. We observe that if x ∈ R1, then Vf1(x; h) M Vf2(x; h)
is empty; if x ∈ R2, then Vf1(x; h) M Vf2(x; h) is R2; if x ∈ R3, then Vf1(x; h) M Vf2(x; h) is
empty. Hence, combining these observations, we have that

DV(f1, f2) = µ(R2) µ(R2) = γ2.

where γ = µ(R2) is the area of region of perturbation.

3.2 Extensions

The Difference of Visibility DV(f, g; h) provides a global information about the difference of
visibility properties of the terrains f and g. A natural way to introduce a “local” notion for
the difference of visibility distance is to consider the quantity:

DVV (f, g; h) =

∫

V

µ (Vf (x; h) M Vg(x; h)) dx, (2)

where V ⊂ Q is the viewpoint domain. That is, the viewsheds of the terrains f and g are
compared on a subset of Q rather than on the whole domain Q. More generally, it is useful
to introduce a weighted version of the Difference of Visibility Distance as

DVw(f, g; h) =

∫

Q

µ (Vf (x; h) M Vg(x; h)) w(x) dx,

where w(x) is a positive weight function. It is clear that, in the special case where w(x) =
χV (x), then we recover the definition (2). In general, by choosing the function w appro-
priately, it is possible to compare the viewsheds of f and g by weighting in different ways
viewpoints located at different regions.
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Figure 5: (a) Map function f , (b) Plot of µ(Vf (x)), as a function of the location x. For this
example, a numerical computation gives DV(f) = 0.1475 and, hence, the distance between f
and the ground truth g is DV(f, g) = 0.8525.

As illustrated in some examples in Section 3.1, if g(x) is constant for all x ∈ Q, then
the Difference of Visibility Distance DV(f, g; h) can be interpreted as a measure of the close-
ness of the terrain f to a terrain which is completely visible. That is, DV(f, g; h) yields
the proportion of the map which is non-visible from a typical location. Indeed, a simple
computation shows that

DV(f, g; h) = 1−
∫

[0,1]2
µ (Vf (x; h)) dx

and, hence, DV(f, g; h) = 0 if and only if the Vf (x; h) = 1 for a.e. x ∈ Q. This shows that
the number

DV(f ; h) = DV(f, f ; h) =

∫

[0,1]2
µ (Vf (x)) dx

describes a property intrinsic to the map f .
More precisely, this quantity yields the expected value of the measure of the visibility

region of f for a randomly selected observation point (assuming uniform distribution on
[0, 1]2. This is also the probability that any two randomly selected locations in the map f are
in the Line of Sight of each other (since the size of the map is normalized to 1).

In particular that, for the map f from Example 1, DV(f ; h) = 1/2; for the map f from
Example 2, DV(f ; h) = 25/32; for the map f from Example 3, DV(f ; h) = 1. Each of these
numbers gives precisely the probability that a pair of randomly selected points is the line of
sight of each other. An example of computation of the number DV(f ; h) for a more general
terrain model is given in Figure 5 (the value of DV(f ; h) for this example is computed using
a numerical routine which adapts the Matlab functions available in the Mapping Toolbox).
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It is clear that if DV(f ; h) = 1 then a single observer is able to have visibility over the
whole map f . More generally, if DV(f ; h) is “close” to 1, then most of the map f is visible
from a single location. This suggests that DV(f ; h) could be useful as a tool to deal with
viewpoint-based placement problems concerning the distribution of observations points on a
terrain.

3.3 Analysis of the Difference of Visibility Distance

In this section, we examine the properties of the Difference of Visibility Distance DV(f, g; h)
defined by (1).

We will only consider the univariate case, under the assumption that the terrains f, g
are piecewise polynomial functions on Q = [0, 1]; that is, they are polynomials except for
finitely many points t1, . . . tN where jump discontinuities are allowed. More precisely, for
m = 0, 1, . . . , we consider the spline function spaces

Sm,N = {f : f(t) =
N∑

i=1

p
(m)
i (t) χIi

(t), t ∈ Q},

where, for each i, the term p
(m)
i (t) is a polynomial of degree m, and Ii = [ti−1, ti). Notice

that we make no regularity assumptions at the knots {t1, . . . , tN}. In our notation for Sm,N ,
the index m is associated with the degree of the polynomial and the index N to the number
of knots, corresponding to possible jump discontinuities.

Questions to be investigated include the continuity of the distance of visibility function
on these spaces and the construction of “best” approximations with respect to the notion of
distance of visibility. For simplicity, in the following we will consider mostly the space S0,N ;
that is, the case of terrain models which are piecewise constant. This will allow us to get a
sufficiently clear insight into the properties of the Difference of Visibility Distance.

3.3.1 Continuity.

The first observation is about the continuity of the Difference of Visibility Distance on the
space S0,N .

Proposition 3.1. Let f, g ∈ S0,N . Given ε > 0, there is a δ = δ(ε,N) such that, with
probability 1, ‖f − g‖∞ < δ implies that

DV(f, g) < ε.

To prove this result, we need the following observation.
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Figure 6: A change in f by δ on two consecutive intervals changes the size of the visible
region by 2δ

tan θi

Lemma 3.2. Let f, g ∈ S0,N , i.e., f(t) =
∑N

i=1 ci χIi
(t), and suppose that f(x0) + h 6= ci,

for all i = 1, . . . , N. Then, given ε > 0, there is a δ = δ(ε,N) such that ‖f −g‖∞ < δ implies
that

|µ(Vf (x0, h)− µ(Vg(x0, h)| < ε.

Proof. Since f(x0) + h 6= ci for all i, the slope of each line segment joining f(x0) + h
to f(xi) satisfies | tan θi| > ∆ for some ∆ > 0. Suppose that ‖f − g‖∞ < δ(ε,N) = ∆ ε

N
. It

follows (see Figure 6) that, for each pair of consecutive intervals Ii and Ii+1, the change of
visibility affects at most a subinterval of size 2δ

tan θi
= 2ε∆

N tan θi
< 2ε

N
. This may happen for at

most N/2 locations, so that

|µ(Vf (x0, h)− µ(Vg(x0, h)| < N

2

2ε

N
= ε. 2

For x0 ∈ Q and h > 0 being fixed values, let the mapping Φx0,h be defined by

Φx0,h : f → µ(Vf (x0, h). (3)

Lemma 3.2 shows that, for each x0, h, the mapping Φx0,h is continuous on the space S0,N ,
except for a subset of measure zero. Hence we can state that, with probability 1, the mapping
Φx0,h is continuous on the space S0,N . This also completes the proof of Proposition 3.1.

Similar computations can be used to extend the above results to the space S1,N .

3.3.2 Equivalence Properties.

The next group of results are dealing with the issue of establishing a notion of equivalence
with respect to the Difference of Visibility Distance. In fact, as observed in Section 3.1,
terrains f and g with the same viewshed need not be the same.
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Definition 3.3. f and g are V-equivalent if, for all x ∈ Q and for all h > 0, Vf (x, h) =
Vg(x, h).

Proposition 3.4. Let f, g ∈ S0,N . f and g are V-equivalent if and only if f = g + c, where
c is a constant.

Proof.
(⇐) It is clear that if the line segment from f(x) + h to f(y), y ∈ Q, meets no obstacle

then the same holds for the line segment from f(x) + c + h to f(y) + c, for any c ∈ R.
(⇒) Fix h > 0 and let Vf (x, h) = Vg(x, h). Suppose that f(t) 6= g(t) for some t ∈ Q.

Hence we can write

f(t) =
N∑

i=1

ci(f) χIi
(t), g(t) =

N∑
i=1

ci(g) χIi
(t),

where ci(f) 6= ci(g) for some i. Suppose that ci+1(g) ≥ ci(g) and let x = xi + δ for some
δ > 0. Notice that Vf (x, h) ∩ Ii = Vg(x, h) ∩ Ii and, thus, it must be that

ci+1(g)− ci(g) = ci+1(f)− ci(f).

A similar argument holds if ci+1(g) ≤ ci(g). Also, the argument can be repeated for each
interval Ii. This shows that, for each i, ci+1(f) = ci+1(g) + ci(f) − ci(g), so that f = g + c
for some constant c. 2

Lemma 3.5. Let f ∈ S0,N and suppose that Vf (x, h) = 1 for all x ∈ Q. Then f is constant.

Proof. Arguing by contradiction, suppose that f is not constant at t0. Then f has a
jump at t0. WLOG, let f(t−0 ) < f(t+0 ). It follows that, for x > t+0 , Vf (x, h) < 1 since an
interval around t−0 will not be visible from x. This is a contradiction and, hence, f must be
constant. 2

If f ∈ Sm,N , m > 0, the argument above does not hold any more. However, we can make
the following observation.

Lemma 3.6. Let f ∈ S1,N and suppose that Vf (x, h) = 1 for all x ∈ Q. Then f is continuous
and monotonic.

Proof. Arguing by contradiction, suppose that f is not constant at t0. Then f has a
jump at t0. WLOG, let f(t−0 ) < f(t+0 ). It follows that, for x > t+0 , Vf (x, h) < 1 since an
interval around t−0 will not be visible from x. This is a contradiction and, hence, f must be
continuous. A similar argument shows that f must be monotonic. 2

We will now show that the mapping Φ defined by (3) is injective on the space S0,N .
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Figure 7: A shift of the viewpoint by δ changes the size of the visible region by γ = J δ
h

Proposition 3.7. Let f, g ∈ S0,N and suppose that

µ(Vf (x, h)) = µ(Vg(x, h)) for all x ∈ Q, h > 0.

Then f and g are V-equivalent. In fact, f = g + c, where c is a constant.

Proof. The first observation is that µ(Vf (·, h)) has a jump whenever f has a jump.
Suppose that f has a jump at x0 ∈ Q, that is,

f(x+
0 )− f(x−0 ) = J.

WLOG we can assume that J > 0. For h sufficiently small, the sampling interval to the left
of x−0 will not be visible from x−0 , but it will be visible from x+

0 . Also, if the viewpoint is
chosen to be x+

0 , then all the region Vf (x
−
0 , h) is contained in Vf (x

+
0 , h). Hence µ(Vf (x

+
0 , h))−

µ(Vf (x
−
0 , h)) ≥ 1

N
(recall that the size of a sampling interval is 1

N
).

Suppose that x0 is a regular point. Since f ∈ S0,N , this implies that f is constant near
x0. If the viewpoint x0 is moved by ∆, then all sightlines emanating from f(x0) + h will
be shifted accordingly. In particular, for each interval of visibility or non-visibility, the size
of the visible region is changed by an amount linearly proportional to ∆. This shown that
µ(Vf (x, h)) is a continuous function of x, if x is a regular point.

It follows by the observations made above that µ(Vf (x, h)), as a function of x, has a jump
discontinuity at x iff f has a jump discontinuity at x. Furthermore, since for each regular
point x,

lim
∆→0

µ(Vf (x + ∆, h))− µ(Vf (x, h))

∆
= c,

where c is a constant, then µ(Vf (x, h) is a piecewise linear function of x.
Finally, let

f(x+
0 )− f(x−0 ) = J.

We can consider a viewpoint near x+
0 with elevation h sufficiently small so that “small”

changes of the viewpoint location only affects the visibility of the region near x0. Then, if
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Figure 8: Example of terrain f ∈ S0,6. There is no approximation of f by f̃ ∈ S0,3 such that
DV(f, f̃) < 1

2
.

the viewpoint x0 is shifted to the right by δ, it follows that µ(Vf (x0+δ, h))−µ(Vf (x0, h)) = J δ
h

(see illustration in Figure 7. This shows that, for δ and h fixed, the visibility change only
depends on the jump height J .

Combining all these observations, it follows that if f ∈ S0,N , then µ(Vf (x, h)) completely
determine the locations of the regular and irregular points of f , as well as its jump heights.
It follows that if µ(Vf (x, h)) = µ(Vg(x, h)) for all x ∈ Q, h > 0, then f and g can only differ
by a constant. 2

Open Question. Another natural question is: under which condition is the mapping
Φ on S0,N onto? By the proof of Proposition 3.7, we know that if f ∈ S0,N , then Φx,h(f)
is piecewise linear on Q × R=. Conversely, suppose that Φx,h(f) is a piecewise linear and
bounded function on Q. Does it follow that there exists a function f ∈ S0,N such that
Φx,h(f) = µ(Vf (x; h), where x ∈ Q, h > 0?

Observation. Consider the mapping on S0,N given by

Φh(f)(x) = µ(Vf (x; h)),

where h > 0 is a fixed parameter. Then there is a constant c > 0 such that

‖Φh(f)‖BV ≤ c ‖f‖∞,

where BV denotes the Bounded variation norm. In fact, the BV norm of Ψh(f) is controlled
by the L∞ norm of the (distributional) derivative of µ(Vf (x; h)) and this is controlled by the
jump discontinuities of f ∈ S0,N .

3.3.3 Approximations with respect to DV distance.

One main motivation for the introduction of the Difference of Visibility Distance is the need
to compute approximations of terrains which are accurate with respect to their visibility
properties. Because DV is not a norm, the approximation of a terrain in terms of the DV
distance is quite different from a projection into a subspace as frequently done in the context
of Hilbert spaces.

Consider f ∈ S0,N . We are interested in computing approximations f̃ of f , where f̃ ∈
S0,M , M < N , and the approximation is understood in the sense of approximation with
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Figure 9: A

respect to the DV distance. More specifically, our goal is to develop an algorithm such that,
starting from f ∈ S0,N , a function f̃ ∈ S0,N/2 is computed such that

DV(f, f̃) = min
g∈S0,N/2

DV(f, g).

This would be useful, for example, in the context of terrain models with variable resolution
[10, 12, 16], to compute lower resolution approximations of a terrain which are optimal with
respect to their visibility properties.

While we are unable, at the moment, to describe such an algorithm, we have the following
important observations.

The first observation is that, given f ∈ S0,N , in general it is not possible to find a
f̃ ∈ S0,N/2 such that DV(f, f̃) < 1

2
. To show this consider the example of terrain f in

Figure 8 which takes only the values 0 or 1. Assume that h ¿ 1. If the viewpoint is located
on one of the 1-valued regions, then µ(Vf (x; h)) = 1/2, while if it is located in one of the
0-valued, then µ(Vf (x; h)) = 1/6. If f is approximated by f̃ where only the even knots are
preserved, then the best one can do is to set f̃ = 1, so that DV(f, f̃) = 1/2. No other choice
will give a lower values for DV .

The example shows that, in general, we cannot guarantee to produce an approximation
such that DV(f, f̃) < 1/2. In other words:

max
f∈S0,N

min
g∈S0,N/2

DV(f, g) ≥ 1

2
.

The natural question is whether, given any f ∈ S0,N , one can find an approximation
f̃ ∈ S0,N/2 such that DV(f, f̃) ≤ 1

2
. Consider the example of a terrain f ∈ S0,4 illustrated

in Figure 9, with a fixed viewpoint x. It is clear that taking the average value of f over
consecutive subintervals will provide no control on the Difference of Visibility Distance. As
an alternative strategy, one could assign the highest value of two consecutive subintervals,
as indicated in Figure 9 (bottom). At this point, in order to ensure that visible regions are
still visible, one could adjust the height of the new partition intervals, to compensate for
occlusions due to the new sampling.
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4 Summary of Results and Future Work

The main contribution of this report is to introduce a novel notion of difference of visibility
distance which overcomes the limitation of traditional mathematical norms and is consis-
tent with human-based goals as understood in application from surveillance, reconnaissance,
navigation, asset emplacement, robotics, and situational awareness. This method is espe-
cially designed to compare terrains from the point of view of their visibility properties and
the examples described in this report clearly demonstrate the advantages of the new Dif-
ference of Visibility Distance with respect to the traditional mathematical norms which are
frequently used to compare terrains. Furthermore, our new approach opens up a completely
new perspective into the study of the visibility problem, including new notions of terrain
approximation, representation and equivalence which are derived from the new definition of
distance. In addition, our framework leads to an intrinsic characterization of terrains from
the point of view of their viewshed. Within the limited scope of this project, only simpli-
fied models of terrains have been considered, mostly in the univariate case. In this setting,
we have established conditions for terrains to be equivalent with respect to their visibility
properties; we have established conditions for continuity with respect to the Difference of
Visibility Distance; we have investigated a number of properties dealing with the approx-
imation of terrains with respect to this distance. Indeed, the analysis of the Difference of
Visibility Distance presented in this report provides only an exploratory investigation about
the properties of this new notion of distance and its applications to the study of visibility
problems. It is clear that more advanced analytical tools will be needed to deal with more
general problems of approximation of terrains using this framework. Also, a new generation
of numerical algorithms will be needed to incorporate these ideas into effective methods for
visibility computations.

Future work includes the extension of a number of one-dimensional theoretical results de-
scribed to the two-dimensional setting. This is expected to be straightforward in most cases.
More importantly, a deeper investigation will be needed about the notion of approximation
with respect to DV distance, in order to understand the ultimate potential of an approach
based on this distance. In particular, it will be very important to examine the impact of the
DV distance into existing strategies for visibility analysis and computation based on hierar-
chical or multiresolution terrain models. Using these methods, the terrain is modeled with
variable local resolution, in order to reduce the computational effort by focusing selectively
on regions of special interest. However, the effectiveness of this strategy depends heavily
on the ability to accurately approximate terrains at coarser resolution. This is precisely the
situation where the newly introduced DV distance will be able to provide more accurate and
effective strategies for terrain approximations.
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