
Hardware Trust Implications of 3-D Integration

Ted Huffmire, Timothy Levin, Michael Bilzor, and Cynthia E. Irvine
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

{tdhuffmi,levin,mbilzor,irvine}@nps.edu

Jonathan Valamehr†, Mohit Tiwari‡, and Timothy Sherwood‡
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
{valamehr,tiwari,sherwood}@cs.ucsb.edu

Ryan Kastner
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92903

kastner@cs.ucsd.edu

Abstract
3-D circuit-level integration is a chip fabrication technique
in which two or more dies are stacked and combined into
a single circuit through the use of vertical electroconductive
posts. Since the dies may be manufactured separately, 3-D
circuit integration offers the option of enhancing a commod-
ity processor with a variety of security functions. This paper
examines the 3-D design approach and provides an analysis
concluding that the commodity die system need not be inde-
pendently trustworthy for the system of joined dies to pro-
vide certain trustworthy functions. In addition to describing
the range of possible security enhancements (such as crypto-
graphic services), we describe the ways in which multiple-die
subsystems can depend on each other, and a set of processing
abstractions and general design constraints with examples to
address these dependencies.

1. INTRODUCTION
3-D integration is a promising technology for designing high-
performance, low-power systems by stacking multiple inte-
grated circuit dies and connecting them at the circuit level
with conductive posts. While the history of 3-D technol-
ogy can be traced back to 1978, it is not yet a mainstream
technology, and there are not yet standard protocols and
paradigms for composing circuits. Most current efforts are
at the electro-mechanical level of getting 3-D to work effi-
ciently and cost effectively.

We use the term computation plane to refer to a commodity
processor die, and we use the term control plane to refer to
an additional die, containing customized security functions,
that is joined to the computation plane. Since the computa-
tion plane must be able to function correctly in the absence
of the control plane, circuit-level primitives, described in
Section 2.2, are used in conjunction with the posts for com-
munication between the planes. We describe basic classes
of 3-D “applications” that can be constructed. However,
a first order consideration when building composite secure
systems is whether or not the security properties of individ-
ual components are preserved under their composition. A
classic example is running a “secure” application on an in-
secure operating system, in which the security properties of
the application may be undermined by the OS.

Key aspects of secure composition are self-protection and
dependency layering among components. Thus, trustwor-
thy 3-D design requires making smart choices about the use
of resources, I/O, and power in order to limit dependencies
and ensure the protection of key components. The question
addressed by this paper is, “Can a 3-D control plane provide
useful secure services when it is conjoined with an untrust-
worthy computation plane?” Design-level investigation of
this question yields a definite yes. This paper explores 3-
D applications and their dependencies, and presents general
solutions to resolve these dependencies such that secure 3-D
applications and services can be presented from the control
plane, taking into account the tradeoffs of each solution.

2. BACKGROUND
Developing customized trustworthy processors is costly to
the consumer, largely because there is not a large base of
customers over which to amortize the costs. The relatively
small market also means that custom designed, trustwor-
thy hardware components are likely to lag their commercial

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Hardware Trust Implications of 3-D Integration

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Annual Computer Security Applications Conference (ACSAC), ACM, Austin, Texas,
December 6, 2010

14. ABSTRACT
3-D circuit-level integration is a chip fabrication technique in which two or more dies are stacked and
combined into a single circuit through the use of vertical electroconductive posts. Since the dies may be
manufactured separately, 3-D circuit integration offers the option of enhancing a commodity processor
with a variety of security functions. This paper examines the 3-D design approach and provides an analysis
concluding that the commodity die system need not be independently trustworthy for the system of joined
dies to provide certain trustworthy functions. In addition to describing the range of possible security
enhancements (such as cryptographic services), we describe the ways in which multiple-die subsystems can
depend on each other, and a set of processing abstractions and general design constraints with examples to
address these dependencies.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

counterparts in performance and other expensive cutting-
edge features. Thus, it is attractive for builders of trustwor-
thy systems to use the latest, high-performance, low-cost
commercial processors, except where they lack the desired
security features that may be available in slower and more
costly custom processors. In other words, because of the
security shortcomings of commercial processors – e.g., most
are manufactured in other countries – critical systems like
the Space Shuttle are limited to using components that have
lower performance than the gaming consoles used by con-
sumers. We believe that 3-D integration offers the poten-
tial of shifting the economics of trustworthy system devel-
opment, while providing greater design flexibility, to solve
this conundrum.

2.1 3-D Basics
Circuit-level 3-D integration is a promising technology for
manufacturing integrated circuits [4, 5]. Two or more chip
dies are manufactured separately and then bonded together
in a vertical stack. Posts, which can be created before or
after bonding, provide connections between selected points
in the two circuits and carry power and data between them
at high bandwidth and ultra-low latency. “Going vertical”
reduces the distance between two points of the combined
circuit, allowing more transistors to be placed closer to each
other. The reduced global interconnect length, and the op-
tion to parallelize communication through the use of parallel
posts, provides the means to increase the performance and
energy efficiency of the design. In addition, the manufactur-
ing technology of each layer can be optimized for different
requirements, e.g., in terms of feature size and verification
techniques.

The control plane can be fabricated separately (e.g., in a
trusted foundry) from the commodity computation plane,
offering several advantages. A different lithography process
can be used, e.g., 500nm for the control plane vs. 90nm for
the commodity computation plane, or vice-versa, depending
on performance and economic factors, e.g., using 500nm for
a custom die is much cheaper than using the latest technol-
ogy. The control plane can be subjected to more rigorous
design and control practices, based on the customer’s needs,
than the commodity design of the computation plane. Sub-
sequent security evaluation of the control plane can be inde-
pendent of the security evaluation of the computation plane.
Finally, implementing services in the control plane supports
a “layering” design discipline as a way of assuring correct
dependencies.

Separating policy enforcement mechanisms (i.e., the trusted
computing base, or TCB) from the computation mechanisms
(i.e., the target of enforcement) is a fundamental principle
in the engineering of trustworthy systems but is a double-
edged sword: while a compromise of the non-security system
functionality is isolated from the security mechanisms, the
adversary can target the security functionality more easily,
which is less obscured than it would be entangled with the
code and circuitry. Since our security design does not de-
pend on its obscurity we find the advantages of separation
to be more compelling.

We leverage these 3-D advantages to offer enhanced security
in commodity hardware. The basic approach is to slightly

modify the design of an existing integrated circuit so that
it can accept connections from an optional layer called the
control plane, without significantly increasing the complex-
ity or cost of the commodity layer, called the computation
plane. This provides the framework with which the func-
tions, economics, and complexity of security features can
be isolated from the underlying computing hardware, and
can be managed as customer-selectable fabrication options.
Similar to co-processors, the lineage (e.g., venue of manufac-
ture) and developmental assurance of the control plane are
also separated from the computation plane.

The interface between a processor and a traditional copro-
cessor is limited to the established I/O buses and ports, and
the long distance severely limits bandwidth and latency. On
the other hand, with 3-D integration, the control plane can
observe and modify any element in the computation plane
at its native granularity, effectively creating interfaces to the
computation plane at the selected points in the circuitry,
and the physical proximity can provide much higher band-
width and throughput to the computation plane than can
co-processors.

In summary, the key advantages of 3-D integration are (1)
high bandwidth and low latency; (2) direct, granular ac-
cess to chip features; and (3) controlled lineage (e.g., use
of a trusted foundry). Additionally, we find the following
general advantages: (4) the ability to change the economics
of developing critical systems; (5) application-specific secu-
rity enhancements to commodity hardware; (6) the ability
to decouple security and non-security functionality; (7) the
ability to create “interfaces” to the commodity processor at
chosen locations; (8) the ability to combine independently
optimized dies into a single stack; and (9) the ability to
reduce delay by locating electrical functions on the control
plane close to their counterparts on the computation plane.
In addition, all hardware security approaches share the ad-
vantages that, when they are designed to do so, they have
the ability to operate below the lowest level of the software
stack in terms of privilege and dependency; and they can im-
pose strong spatial separation on the software components.

However, 3-D integration is not without cost. The primary
issues at this time are thermal and design expense. Push-
ing integrated circuits into three dimensions naturally adds
a vector of heat, and various research efforts [36] are inves-
tigating how to deal with thermal concerns, including ad-
vanced external heat sinks and internal through-silicon vias
(TSVs) dedicated to cooling. Also, the design of the com-
modity computation plane must be analyzed for the optimal
placement of posts, and then it must be modified to accom-
modate the optional control plane.

Other potential problems with 3-D are that some yield loss
can occur when joining dies together; although the increase
in the cost of fabricating the modified computation plane is
marginal. As with any new hardware solution, the designer
also bears the brunt of describing how to bridge the semantic
gap between low-level abstractions presented by hardware
and the higher level semantics of how those abstractions are
intended to be used in software.

In the following sections we describe circuit-level primitives

2

Native Disabling

Transistor
(Connection)

Resistor-
Transistor
(Severing)

Tapping Rerouting Inserting Overriding

Post to the 3-D control plane Signal flow

Figure 1: Circuit-level primitives for trustworthy 3-D design [42].

and application design abstractions for 3-D to address this
gap and describe what attributes of security can be ensured,
even if the security of the entire computation plane cannot
be ensured.

2.2 Circuit Level Primitives
Five circuit-level primitives are defined for utilizing the con-
ductive posts between the stacked dies [42]. These primitives
form the lower-level building blocks of trustworthy 3-D de-
sign: disabling, tapping, rerouting, inserting, and overriding,
as shown in Figure 1:

• The disabling circuit can stop a signal in the computa-
tion plane from flowing, based on the control plane’s
command, which is sent through a dedicated post.

• The tapping circuit copies a signal from the computa-
tion plane to the control plane. Two posts are needed:
one to carry the signal to the control plane and another
for the command to connect the signal.

• The rerouting circuit combines tapping and disabling
so that the original signal only goes to the control
plane. Three posts are needed: two for the tapping
and one for the disabling.

• The inserting circuit carries a signal from the control
plane to a circuit on the computation plane. Two posts
are needed: one for the signal itself and another for the
command to connect the signal.

• The overriding circuit combines inserting and disabling,
first disabling the original signal in the computation
plane and then introducing a new signal from the con-
trol plane. Three posts are needed: one for the dis-
abling and two for the inserting.

3. THREAT MODEL
Our threat model includes unintentional flaws in the hard-
ware design of the computation plane and malicious soft-
ware in the computation plane. The threats of hardware

malicious inclusions, physical probing of the control plane,
and compromising RF emanations are beyond the scope of
this research (see Future Work).

3.1 Hardware Threats
An unintentional flaw in the hardware design of the com-
putation plane is an example of a hardware vulnerability.
Our threat model excludes malicious modifications to the
design, known as hardware Trojans or Malicious Inclusions
(MIs) [41] which could nullify self-protection of the control
plane. Research in this area is discussed under Future Work,
but here we assume that the computation plane is not able to
selectively reconfigure itself in order to change its behavior.

Our threat model does not include physical tampering or
probing of the control plane: we are not proposing the use
of 3-D integration to provide physical tamper resistance. We
also do not include the threat of side channel attacks aris-
ing from compromising radiofrequency (RF) emanations or
analysis [27]. While it is conceivable that the control plane
could be used to insert RF and power signals, that is not
part of our current research. Furthermore, we do not ad-
dress second order threats such as MI scenarios in which the
posts themselves have been bypassed by MIs. Methods to
address this threat are described as part of inspection, in
future work.

3.2 Software Threats
In the insecure environment of the computation plane, ma-
licious software resulting from compromised source code or
compilers can also be executing.

4. SECURITY MODEL
Our premise is that, in a hostile execution environment, se-
cure applications can be constructed if the application can
be protected from attack and the application does not de-
pend on any components of lesser trustworthiness. Self-
protection is a foundational concept in computer security:
e.g., a security kernel would never call one of its applications.
Applied to the 3-D context, self-protection requires that the

3

designer not include interfaces that allow the computation
plane to reach into the control plane. I.e., the designer must
not place a post that allows the control plane to accept ex-
traneous power (e.g., short-circuit or overvoltage), requests
(e.g., overflowing buffers), or modifications.

4.1 Importance of Dependencies
It is well known that a component can be no more trusted
than the components upon which it depends [28] since the
dependency might be unfulfilled at any time. The design
paradigm of dependency layering is used in complex systems
to prevent looping and to ensure that the most trustworthy
components are not undermined through dependence on less
trustworthy components, which in the worst case, can reduce
the trustworthiness of the entire system to that of the weak-
est element. Similarly, 3-D applications should not depend
on the computation plane. In general, many control plane
applications can be designed so as to not request service
from, or wait on, the computation plane. Following this de-
sign constraint, and similar constraints for self protection,
enables control applications to be secure in the presence of
an insecure computation plane.

Trusted Software Stack Trusted 3D Stack

Secure Kernel

Applications

OS Libraries

D
ep

en
de

nc
ie

s

Control Plane

Software

Computation Plane

D
ep

en
de

nc
ie

s

Figure 2: Layered Dependencies

This approach is also used to build secure software, where
the security kernel is not allowed to depend on its appli-
cations (see Figure 2). Looking at the analogous control-
plane/computation-plane layered system it says: what point
would it be to build 3-D services if the security of any re-
sult is limited by the security of the insecure computation
plane? If the computation plane is responsible for providing
some service on which the control plane depends, then the
control plane may be subverted whenever the computation
plane fails to fulfill its responsibilities. Another form of this
same question, which is the central theme of this paper, is:
is it possible to build any highly secure (“trustworthy”) ser-
vice on the control plane when there is a commercial-grade
OS on the computation plane?

4.2 Dependency Properties
Several possible forms of dependency exist between planes.
Traditional software dependencies include service, call, pro-
tection and resource creation/provision. Traditional hard-
ware dependencies include computation, storage, and syn-
chronization. We consider all of these traditional dependen-
cies in the context of 3-D integrated hardware. If the con-
trol plane is dependent on the computation plane for power,
then untrustworthy functionality could disrupt the supply
of power to the control plane, preventing it from operating.

If the thermal characteristics of the two planes are not de-
signed well, the control plane may depend on the computa-
tion plane not to overheat the control plane. The thermal

challenges of 3-D integrated circuits are well-established [36].
Suppose that a 3-D system is designed such that the device
stays within acceptable thermal parameters, provided that
the computation plane stays within a given activity pro-
file. In this scenario, the computation plane could perform
a large amount of computation, exceeding thermal param-
eters and causing the chip to fail or even to melt. Even if
temperature sensors included in the packaging shut off the
entire chip if it gets too hot, the availability dependency
still exists even though the chip is prevented from melting.
Hadzic described an attack on FPGAs in which a malicious
design would short-circuit the device, resulting in its self-
destruction [18].

4.2.1 Service Dependency
In a service dependency, the control plane depends on the
computation plane to provide a service, such as communica-
tion, including off-chip I/O, and synchronization. In an I/O
dependency, the control plane depends on the computation
plane to make available or insert data at an expected time
or in an expected order. The confidentiality of this I/O can
be eroded because untrustworthy logic in the computation
plane could observe the traffic as it passes through the com-
putation plane in violation of the security policy. Dependen-
cies in which the malefactor has access to control plane data
can also erode the integrity of communications, processing,
and data. Continuing with the off-chip I/O example, un-
trustworthy logic in the computation plane could modify
the traffic as it passes through the computation plane.

Synchronization between the two planes is the coordination
of the activities of the two circuits so that they operate to-
gether as a unified system. The cooperation of the two dies
may be essential to prevent them from interfering with each
other. Timing and synchronization dependencies present
significant challenges for the 3-D system designer, especially
when the two planes are manufactured, using disparate tech-
nology, resulting in different electrical properties. Even if
the two dies are manufactured using the same technology,
re-routing a bus in the computation plane to the control
plane presents obvious timing issues, such as the small delay
caused by introducing posts into the critical path. Clearly,
synchronization of the activities of the two dies is critical.

4.2.2 Call Dependency
In a call dependency, the control plane depends on the com-
putation plane to perform a function, such as a mathemat-
ical function. This type of dependency can be mitigated
by implementing the function (e.g., an ALU) in the con-
trol plane [15] rather than in the computation plane, or by
validating the correctness of the computation that was per-
formed in the computation plane with a checker unit in the
control plane [3]. A computation dependency is the same as
a call dependency, except that it is a term better suited for
the hardware context. A computation dependency can be
addressed by implementing the computation hardware in the
3-D control plane. If the computation plane performs oper-
ations on data belonging to the control plane, the potential
exists for violating the security (integrity) policy.

4.2.3 Resource Creation and Provision, Contention
In a resource creation and provision dependency, the compu-
tation plane has a responsibility to create memory objects

4

and tasks and to provision resources to the control plane
appropriately. A contention dependency, on the other hand,
is when a component depends on another component to not
use up all of the resources. A storage dependency is a type of
resource creation and provision dependency that is specific
to memory, both on-chip and off-chip. Storage dependencies
can be mitigated by implementing the storage in the control
plane [8, 16, 29, 35].

5. 3-D APPLICATION CLASSES
This section describes several classes of 3-D applications for
the control plane having to do with observing, controlling,
and servicing the processes executing on the computation
plane. An inspector observes, tests, and reports on how
the state of the processor and resource usage change over
time, with high integrity. A conflict resolution manager ob-
serves the state of the processor and resource usage over
time, and responds by altering certain of the subsequent
related actions in order to avoid interference between ac-
tions or to prevent actions that would violate e.g. an access
policy. A secure alternate service, or SAS provides a trust-
worthy enhancement or alternative alternate to the service
provided in the computation plane. Earlier, we discussed
six circuit primitives achievable with posts, with which the
control plane communicates with the computation plane, en-
abling the various 3-D applications.

Native functions are normal features provided by the compu-
tation plane. The control plane can create applications for
the measurement, enhancement, and control of (and alter-
native to) native functions. Measurement of native functions
includes audit, performance profiling, and fault logging. En-
hancement of native functions involves a reconfiguration or
repackaging of a native function, including encryption of I/O
or routing computation plane bus traffic through the con-
trol plane. An alternative to native functions (SAS) is an
optional runtime choice (e.g., of the program or system) to
use control plane features to communicate between compu-
tation cores or encrypt data, for example. Finally, control of
native functions involves, for example, imposing a policy on
the use of resources like devices (at the device or device ad-
dress level) and memory (at different points in the memory
hierarchy).

We describe three classes of 3-D applications based on their
basic interactions with the computation plane: enhancer or
provider of service, imposer of policy or other discipline, and
observer of behavior. In addition, the 3-D application can,
itself, request service from the computation plane, e.g., for
access to resources, which is intrinsically an insecure opera-
tion, given an untrustworthy computation plane. In the fol-
lowing sections we describe examples from each class of 3-D
application, and describe how each might be constructed to
protect itself and to avoid dependencies on the computation
plane.

5.1 Secure Alternate Service
An example of a secure alternate service is a cryptographic
processor and secure storage implemented in the control
plane, like a traditional coprocessor but with much higher
bandwidth. Cryptographic keys and other valuable data
can be stored and protected in the control plane. Other se-
cure alternate services include computation logic (e.g, ALU,

stack, etc.) and processor-core interconnect (e.g., bus and
network-on-chip grids), which can be implemented in the
control plane either as an addition or enhancement to exist-
ing mechanisms in the computation plane or as a duplicate
but more highly assured service.

5.1.1 Examples
Examples of secure alternate service include cryptographic
transform, key generation, memory cache, and secure gen-
eral storage including keys. Placing a cryptographic copro-
cessor on the control plane is another example of a secure
alternate service. The bandwidth between a traditional co-
processor connected at the board level to a CPU by a bus is
much lower than the bandwidth possible between a crypto
coprocessor implemented in the control plane and connected
to the commodity computation plane by vertical posts [5, 4,
34].

Cryptographic keys can reside on the control plane rather
than in main memory or disk. Keys can be hard-wired, re-
programmable, or based on physical unclonable functions
(PUFs) [39]. In addition to the storage of keys, other valu-
able data can be stored in the control plane rather than
the computation plane. This alternate storage service can
restrict access to the resource by using encryption where
a request for data is accompanied by a key, or the control
plane can restrict access by task ID or process ID, if that
information is available to the control plane (e.g., through a
post).

In addition to security advantages, implementing functional-
ity in the control plane as an alternative to implementing it
in the computation plane also offers benefits for fault toler-
ance for critical systems. Failure of a computational unit in
the computation plane, detected by static tests or runtime
checks, can trigger various responses such as shut down and
the activation of an identical backup computational unit in
the control plane. In the latter case, Circuit-level primitives
are used to disable the unit in the computation plane and
force signals to take a detour to the unit in the control plane.
Designs for 3-D memory [8], ALUs [15], and reconfigurable
logic [37] have been devised.

5.1.2 Design Example: Processor Interconnect
Another example of a secure alternate service is the imple-
mentation of multicore interconnect (e.g., bus or network-
on-chip) in the control plane rather than the computation
plane. The security policy may require that two cores be iso-
lated, which may impact the design of the interconnect. Lo-
cating an alternate interconnect (which can consume a large
percentage of on-chip real estate [10]) in the control plane
decouples the interconnect from the commodity design, al-
lowing for the enforcement of an application-specific or dy-
namic isolation policy for a multi-core computation plane.
For example, imposing a secure arbitration scheme on a bus,
such as time division multiplexing or lattice scheduling [20].
For systems with many cores, network-on-chip (NoC) tech-
nology has been proposed [11]. Implementing the routers in
the control plane allows for flexible, adaptable routing poli-
cies and has potential for reducing power usage and heat
production on the computation plane. Kim et al. have pro-
posed the use of 3-D integration for the implementation of
NoC routers [25].

5

Design Example: For our design example, we pick the
simplest possible design: two CPU cores in the computation
plane and a bus in the control plane. Each core is connected
to the bus by tapping circuits (used for signals going from
the cores in the computation plane to the bus in the control
plane), and inserting circuits (used for signals going in the
other direction). We can design our bus to enforce whatever
security policy we wish, e.g., only enabling the bus at certain
times or in certain directions (see Figure 3).

Computation Plane

Control Plane

Core1 Core2

Bus

Posts

Figure 3: Design example.

Several types of dependency are possible. For a particu-
lar bus protocol, a synchronization dependency can occur if
the control plane is stuck waiting for a response from the
computation plane. This can be mitigated by selecting a
bus protocol that gracefully handles the case when a core is
abusing the protocol. If the control plane is dependent on
the computation plane for power or I/O, a denial of service
could result. We discuss mitigation of the I/O and power de-
pendencies in Future Work, e.g., for designs in which denial
of service would be critical.

5.2 Isolation and Protection
Another category of control plane application actively over-
rides the computation plane to enforce some security policy,
such as for access control1. In one form, this type of mecha-
nism can eliminate points of interference2, such as the cache
and branch prediction unit [1]. Disabling connections (e.g.,
“cutting” wires) to isolate or control the flow of information
between cores in a multi-core computation plane (viz., per
the reference monitor concept) also falls under this category.

1Isolation and access control are distinct concepts. If a sys-
tem perfectly isolates partitions, access control shouldn’t be
necessary; however, in the real world, inter-partition flows
are required, and access control can be used to check whether
or not requested accesses are violating the partition policy.
2Having separated the system into partitions, if some inter-
ference occurs, it happens on some datum in a particular
partition or in the neutral, system area, and that datum (a
bit or byte) is the point of interference.

“Points of interference” in the computation plane include
architectural elements such as the cache and branch predic-
tion units which are hardware features that the OS must
securely multiplex among processors from different protec-
tion domains. 3-D control functions that actively override
the connections to these shared resources can eliminate their
misuse, for example, if one process can observe the cache use
of another process, a covert channel can be established be-
tween them. A function in the control plane can eliminate
this covert channel by overriding the computation plane such
that each process is restricted to its designated region of
the cache. Side channels have become a vexing problem as
new points of interference are realized, e.g., in the cache or
branch prediction unit. To solve this requires identification
of all of the cut points required to isolate a processor, sev-
ering the ones that are not critical and saving and restoring
the rest.

Design Example: Returning to our earlier design exam-
ple, in the context of actively overriding the computation
plane to enforce a security policy, we modify our design ex-
ample slightly: now there is a bus in the computation plane
connecting the two cores, and we wish to force the two cores
to use the bus in the control plane that enforces our secu-
rity policy. Instead of using tapping and inserting circuits as
before, we use rerouting and overriding circuits. In an alter-
native scenario, the control plane just has logic for disabling
the bus in the computation plane at certain times, according
to the policy. In this case, we simply use disabling circuits.

Overriding on-chip interconnect presents significant timing
issues. For example, if a signal is expected in a specific
time frame, to resolve this issue, synchronization logic could
be added to the control and computation planes. However,
A synchronization dependency can occur when the control
plane depends on the computation plane for synchronization
primitives or for promptness or regularity with respect to the
bus protocol. If the computation plane is able to interfere
with the proper operation of the synchronization primitives
(e.g., by slowing down), this can affect the correct operation
of the control plane. This can be mitigated by providing the
control plane with synchronization primitives that are not
dependent on the computation plane.

5.3 Passive Monitoring
Another broad category of control plane application is that
which passively monitors the computation plane. These ap-
plications may record various properties and values from
the computation plane, but do not alter any data or behav-
ior. Examples include auditing and information flow track-
ing [40, 9], or computing and reporting a checksum on the
architectural state of the computation plane to ensure a se-
cure boot sequence, for example [17]. Passive monitoring
can also be used to perform runtime checks on the compu-
tation plane for security and correctness, enhancing runtime
self-tests of the processor and performance profiling.

5.3.1 Information Flow Tracking
A common form of information flow tracking associates a
tag with each datum specifying its security attributes [9,
40], and tracking logic, e.g., with shadow circuits, is used to
follow data through the system. 3-D offers the advantage
of relocating the shadow logic to a separate plane rather

6

than attempting to cram everything into a single plane. 3-
D integration also offers security advantages since the tags
must be immutable. Implementing the tracking logic in the
control plane provides better protection of the tags as com-
pared with implementing the shadow logic in the compu-
tation plane, although capability architectures have used
hardware support to protect the tags by preventing their
modification as a distinct data type. Additionally, the con-
trol plane can be enhanced to actively respond to certain
flow behaviors, by, e.g., stopping the process or preventing
access to related data: forms of isolation and protection.

5.3.2 Runtime Correctness Checks
A testing application residing in the control plane can test
for design flaws, malicious inclusions, or manufacturing flaws
in the computation plane, much like runtime self-tests that
execute during idle time. For example, a functional unit
such as a multiplier may have a design flaw that causes the
result of a multiply to be intermittently incorrect, poten-
tially disrupting asymmetric encryption [33]. Passive mon-
itoring can be used to implement these runtime checks on
the correctness of the computation plane. For example, the
DIVA architecture uses a small hardware unit that checks
the correctness of a much larger, more complex out-of-order
processor. [3]. Other runtime checks include program anal-
ysis requiring full system data [34, 5, 4], which can benefit
from the high bandwidth between the two planes provided
by posts. The ability to monitor the processor’s internal
structure means that, potentially, the entire state space can
be captured, and given values can be captured redundantly,
e.g., at different points in a circuit, allowing for additional
error checking. Passive monitoring could also be used to
periodically compute a checksum on the architectural state
of the computation plane to detect deviations from known
good checksum values [17]. A crypto core in the control
plane can compute cryptographic hash values to be used as
validation checksums.

5.3.3 Runtime Security Auditing
In addition to runtime checks for correctness and perfor-
mance optimization, control plane applications based on pas-
sive monitoring can also perform runtime security checks,
e.g., monitoring every instruction or every memory access
in order to detect and report on policy violations for audit.
Since 3-D integration provides direct access to the internal
state of the processor via the posts at very high bandwidth
and low latency, the runtime checks can potentially be car-
ried out more efficiently than using coprocessors [21], virtual
machines [14], or binary instrumentation [38].

Design Example: Returning to our earlier design exam-
ple, in the context of passively monitoring the computation
plane, we modify our design example slightly: here we are
just monitoring the traffic across the bus in the computa-
tion plane, e.g., for the purposes of auditing or performance
profiling. In this scenario, tapping circuits are used.

6. RELATED WORK
This paper builds on the work of Valamehr et al., focusing
specifically on the fundamental question of whether a 3-D
control plane can provide useful secure services when joined
with an untrustworthy computation plane, taking into ac-
count the requirements of self-protection and dependency

layering. Valamehr et al. present the details of the circuit-
level modifications that allow the two planes to function cor-
rectly when joined, while permitting the computation plane
to work properly in the absence of the control plane [42].

While 3-D integration is an emerging technology, several suc-
cessful designs have been built. Toshiba has mass-produced
a Chip Scale Camera Module (CSCM), an image sensor for
mobile handsets [44]. An implantable stacked retinal pros-
thesis chip is a medical application of 3-D integration [22].
Like the human retina, which has separate layers of cells
each with its specific function, the stacked retinal chip con-
tains a photodetector layer, a signal processing layer, and a
stimulus current generator. High energy physicists have de-
manding requirements for the pixel sensors used in particle
accelerators, for which 3-D integrated designs have been pro-
posed [12]. Georgia Tech researchers have successfully fab-
ricated a 3-D integrated microprocessor with stacked mem-
ory [5, 36, 31, 30]. In addition to memory, the implemen-
tation of network-on-chip (NoC) routers in a separate 3-D
layer has been proposed [25]. Even 3-D Field Programmable
Gate Arrays (FPGAs) have been proposed to reduce rout-
ing delay for reconfigurable hardware [37]. The work pre-
sented here differs from those previous efforts by focusing
on security, presenting a taxonomy of 3-D applications and
describing abstractions for the secure use of 3-D including
active monitoring.

7. FUTURE WORK
In this section we describe preliminary ideas for protecting
the control plane from malicious inclusions in the computa-
tion plane as well as for mitigating I/O and power depen-
dencies.

7.1 Malicious Inclusions
In the face of compromised hardware, whether intentional or
not, it cannot be ensured that a given post implements its in-
tended semantics within a 3-D application, since the seman-
tics of the computation plane are unclear. Detection and
prevention of malicious inclusions is an unsolved research
question. Detecting any, arbitrary digital modification made
by a devious attacker requires a brute-force search, in gen-
eral. This problem is well-known in software security and is
related to undecidability, complexity, and the halting prob-
lem. An absence of malicious inclusions might be ensured
through a thorough verification and validation (V&V) of the
computation plane, although assurance is difficult to obtain
through testing alone, since they can be triggered to occur
after the V&V stage of development.

Another approach would be to detect zero day malicious
inclusions through runtime monitoring in the field. This
monitoring would seem to be more difficult were it to be im-
plemented in the computation plane, where it would be sub-
ject to bypass and attack by the MIs themselves! However,
if MI monitoring tools were to be located in the safe haven
of the control plane, real-time monitoring for MIs might be
effective, if and when we learn to recognize them. We plan
to investigate recognition and monitoring techniques, e.g.,
using approaches discussed in Section 5.3.2, so that the con-
trol plane can protect itself from malicious inclusions in the
computation plane.

7

7.2 Off-Chip I/O
The control plane needs to be able to communicate with the
outside world to transmit and receive data. In addition, it
is necessary to configure the control plane. Different control
plane applications will have different off-chip I/O bandwidth
and availability requirements. Some control plane applica-
tions will not require any I/O. An example of such an appli-
cation is a static reference monitor or a mechanism that par-
titions the cache to prevent side channels [42]. While some
3-D applications just require configuration settings during
the boot phase of the processor (e.g., loading an executable
for a CPU), other 3-D applications require a great deal of
off-chip I/O (e.g., real-time program profiling).

7.2.1 Dependency Paradigms
Several structural paradigms are available for implementing
off-chip I/O in 3-D chips: (1) Independent I/O for each plane
is ideal from a security standpoint but could be costly. (2)
The computation plane depends on the control plane. If the
control plane is fabricated using a different process than the
computation plane (e.g., .5um vs. 45nm), I/O performance
may suffer when the dies are joined. (3) The control plane
depends on the computation plane. This is the least desir-
able choice. In addition, various technical solutions may be
available in the future for providing independent I/O to the
control plane.

7.2.2 Wireless
Wireless options for providing independent I/O to the con-
trol plane include capacitive/inductive coupling, short-range
RF, short-range optical, and EEPROM. Capacitive and in-
ductive couplings are used to test wafers wirelessly [24].
While inductive coupling permits communication over longer
distance, this comes at the cost of area resources and power
consumption. Capacitive coupling, on the other hand, is less
costly but works over shorter distances. Capacitive coupling
can be used to transfer digital data between two dies with
high bandwidth and energy efficiency [7]. This scheme will
also require modification to the motherboard.

Short-range RF can also be used to transmit information
between a die and the motherboard. Sony has developed
a short-range link based on millimeter-wave wireless tech-
nology capable of 11 gigabits per second at 56 GHz over
14 mm (50 mm with a secondary antenna) [6, 23], which
is both compact and energy efficient. Wireless interconnect
offers simpler packaging and greater reliability, and its short
wavelength is amenable to silicon miniaturization. In ad-
dition to requiring modification to the motherboard, this
scheme also requires power for transmitting data.

The control plane can house a silicon laser for transmitting
data to a component on the motherboard through free space
or a fiber optic link [26]. LEDs can also be used as a light
source (emitter) [32, 43, 19] and even as a receiver (detec-
tor) [13] for bidirectional communication (although duplex
communication requires both a transmitter and a receiver).
It might not be necessary to encrypt the light beam if phys-
ical control over the system is maintained (i.e., if the threat
model does not include physical probing). Implementing
this scheme will require significant changes to the package
and motherboard.

While not truly wireless, an EEPROM chip can be used to
program the control plane. The chip is inserted into a socket
located on the package of the 3-D chip, and wires connect
the socket to the control plane. In the simplest scenario,
the EEPROM contains instructions, which are loaded onto
the control plane and executed by a CPU. In a more com-
plicated scenario, a general-purpose, secure bootstrapping
mechanism orchestrates initialization of EEPROM, CPU,
and memory.

7.2.3 Wired
Wired options for providing independent I/O to the con-
trol plane include JTAG interface, serial cable, dedicated
pins, TDMA over HyperTransport, and dedicated memory
ranges. IEEE Standard 1149.1, Standard Test Access Port
and Boundary-Scan Architecture, also known as Joint Test
Action Group (JTAG), is used for testing circuits [2]. We
assume that a similar physical interface can be provided to
the control plane, e.g., for initialization. Alternatively, a se-
rial cable can connect the chip to a port on the motherboard
or directly to an output port of the machine (e.g., USB). An-
other option is to dedicate a set of pins to the control plane.
If the pin field is saturated, any additional pins dedicated to
one plane must be taken away from the other.

To avoid the material and engineering cost of adding extra
pins or dedicating some pins for the control plane, one option
is to share the pins between the two planes using a Time Di-
vision Multiple Access (TDMA) protocol. In this scenario,
the computation plane has an I/O controller that uses all
of the pins in the absence of the control plane. When the
control plane is attached, however, an I/O controller in the
control plane overrides the I/O controller in the computa-
tion plane. This I/O controller forces the pins to be shared
between the two planes such that each plane uses the pins
during its assigned time slice. This also potentially reduces
modification to the motherboard, since the modified chip
operates within the existing communication protocol (e.g.,
HyperTransport). Modification to other users of the pins
would be required to demultiplex the signal.

A similar approach involves tapping the connection between
the on-chip components and the pin array used for off-chip
memory, and dedicating a range of memory for the exclusive
use of the control plane using diversion and injection of the
computation plane I/O signals. A hardware reference mon-
itor in the control plane ensures that any attempt by the
computation plane to access the range of memory dedicated
to the control plane is denied.

7.3 Power
Similar to off-chip I/O, the control plane needs an indepen-
dent source of power to avoid denial of service attacks from
the computation plane. Just as the circuit-level primitives
can disable, tap, re-route, insert, and override computation
signals, these same primitives can also be used for power
(e.g., to reroute power from the computation plane to the
control plane). Near-field wireless power transmission tech-
nology can also be used to transmit power to the control
plane. In addition, in the future, advanced packaging tech-
niques may be able to provide independent power to the
control plane.

8

8. CONCLUSION
3-D integration is a promising technology for the develop-
ment of trustworthy systems. In this paper, we have de-
scribed several classes of applications for the control plane.
We have also described the ways in which the control plane
depends on the computation plane, and we have described
the conditions necessary for implementing 3-D applications
that can behave securely despite the untrustworthy nature
of the computation plane, or that can improve the security of
the computation plane. The independence of a control plane
from interference by the computation plane through active
corruption of the processing or passively, via withholding of
services, is a primary requirement for trustworthy behavior
of the control plane.

The detection and protection from malicious inclusions on
the computation plane is a complex problem that is not
within the scope of this research. To be clear, we believe it is
not yet possible to add a layer of hardware to a computation
plane that is riddled with malicious inclusions–effectively
bearing an unknown degree of resemblance to its design–
in the hopes that the composition of the two layers will be
highly trustworthy. Nevertheless, provided that the require-
ments of self protection and dependency layering are met for
the control plane, it is possible to offer an alternate service
to the computation plane, to actively override the compu-
tation plane for enforcement of policies, and to passively
monitor the computation plane with high integrity. We de-
scribe potential future work regarding malicious inclusions
and independent I/O. Additionally we anticipate that 3-D
may prove to be a useful approach to provide fault-tolerant
chips for critical systems.

9. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers
for their insightful comments. This research was funded in
part by National Science Foundation Grant CNS-0910734.

10. REFERENCES
[1] O. Acíıçmez, J. Seifert, and C. Koc.

Micro-architectural cryptanalysis. IEEE Security and
Privacy Magazine, 5(4), July–August 2007.

[2] I. S. Association. IEEE standard test access port and
boundary-scan architecture-description. Technical
Report IEEE Std 1149.1-2001, Institute of Electrical
and Electronics Engineers, Piscataway, NJ, 2001.

[3] T. M. Austin. DIVA: A reliable substrate for deep
submicron microarchitecture design. In Proceedings of
the 32nd international symposium on microarchitecture
(MICRO-32), Haifa, Israel, November 1999.

[4] J. Baliga. Chips go vertical. IEEE Spectrum, 41(3),
March 2004.

[5] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale,
L. Jiang, G. H. Loh, D. McCaule, P. Morrow, D. W.
Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb. Die stacking (3D)
microarchitecture. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO), Orlando, FL, December
2006.

[6] J. Boyd. Walkie-talkies for chips. IEEE Spectrum,
April 2010.

[7] R. Cardu, M. Scandiuzzo, S. Cani, L. Perugini,
E. Franchi, R. Canegallo, and R. Guerrieri.
Chip-to-chip communication based on capacitive
coupling. In Proceedings of the IEEE International
Conference on 3D System Integration, San Francisco,
CA, September 2009.

[8] X. Chen and W. R. Davis. Delay analysis and design
exploration for 3D SRAM. In Proceedings of the IEEE
International Conference on 3D System Integration,
San Francisco, CA, September 2009.

[9] J. R. Crandall and F. T. Chong. Minos: Control data
attack prevention orthogonal to memory model. In
Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture,
Portland, OR, December 2004.

[10] W. J. Dally. Computer architecture is all about
interconnect (it is now and it will be more so in 2010).
In Eighth International Symposium on
High-Performance Computer Architecture (HPCA)
Panel: What Will Have the Greatest Impact in 2010:
The Processor, the Memory, or the Interconnect?,
Boston, MA, February 2002.

[11] W. J. Dally and B. Towles. Route packets, not wires:
on-chip interconnection networks. In Proceedings of
the 38th Design Automation Conference (DAC), Las
Vegas, NV, June 2001.

[12] M. Demarteau, Y. Arai, H.-G. Moser, and V. Re.
Developments of novel vertically integrated pixel
sensors in the high energy physics community. In
IEEE International Conference on 3D System
Integration, San Francisco, CA, September 2009.

[13] P. Dietz, W. Yerazunis, and D. Leigh. Very low-cost
sensing and communication using bidirectional LEDs.
In Proceedings of the International Conference on
Ubiquitous Computing, Seattle, WA, October 2003.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: enabling intrusion analysis
through virtual-machine logging and replay. In
Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA,
December 2002.

[15] R. Egawa, J. Tada, H. Kobayashi, and G. Goto.
Evaluation of fine grain 3-D integrated arithmetic
units. In Proceedings of the IEEE International
Conference on 3D System Integration, San Francisco,
CA, September 2009.

[16] Y. Funaya, R. Egawa, H. Takizawa, and H. Kobayashi.
3D on-chip memory for the vector architecture. In
Proceedings of the IEEE International Conference on
3D System Integration, San Francisco, CA, September
2009.

[17] B. Glas, A. Klimm, O. Sander, K. Muller-Glaser, and
J. Becker. A system architecture for reconfigurable
trusted platforms. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE),
Munich, Germany, March 2008.

[18] I. Hadzic, S. Udani, and J. M. Smith. FPGA viruses.
In Proceedings of the Ninth International Workshop on
Field-Programmable Logic and Applications (FPL),
Glasgow, UK, August 1999.

[19] S. K. Hashemi, Z. Ghassemlooy, L. Chao, and
D. Benhaddou. Orthogonal frequency division

9

multiplexing for indoor optical wireless
communications using visible light LEDs. In
Proceedings of the Symposium on Communication
Systems, Networks, and Digital Signal Processing
(CSNDSP), Graz, Austria, July 2008.

[20] W.-M. Hu. Lattice scheduling and covert channels. In
Proceedings of the 1992 IEEE Symposium on Security
and Privacy, Oakland, CA, May 1992.

[21] N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot: A coprocessor-based kernel runtime integrity
monitor. In Proceedings of the USENIX Security
Symposium, San Diego, CA, August 2004.

[22] Y. Kaiho, Y. Ohara, H. Takeshita, K. Kiyoyama,
K.-W. Lee, T. Tanaka, and M. Koyanagi. 3D
integration technology for 3D stacked retinal chip. In
IEEE International Conference on 3D System
Integration, San Francisco, CA, September 2009.

[23] K. Kawasaki, Y. Akiyama, K. Komori, M. Uno,
H. Takeuchi, T. Itagaki, Y. Hino, Y. Kawasaki, K. Ito,
and A. Hajimiri. A millimeter-wave intra-connect
solution. In Proceedings of the IEEE International
Solid-State Circuits Conference (ISSCC), San
Francisco, CA, February 2010.

[24] G.-S. Kim, M. Takamiya, and T. Sakurai. Capacitive
coupling interface with high sensitivity for wireless
wafer testing. In Proceedings of the IEEE
International Conference on 3D System Integration,
San Francisco, CA, September 2009.

[25] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie,
N. Vijaykrishnan, M. S. Yousif, and C. R. Das. A
novel dimensionally-decomposed router for on-chip
communication in 3D architectures. In Proceedings of
the 34th International Symposium on Computer
Architecture, San Diego, CA, June 2007.

[26] B. R. Koch, A. W. Fang, H.-H. Chang, H. Park, Y.-H.
Kuo, R. Jones, O. Cohen, O. Raday, M. J. Paniccia,
and J. E. Bowers. A 40 GHz mode locked silicon
evanescent laser. In Proceedings of the International
Conference on Group IV Photonics, Tokyo, Japan,
September 2007.

[27] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the 19th Annual
International Cryptology Conference (CRYPTO),
Santa Barbara, CA, August 1999.

[28] T. E. Levin, C. E. Irvine, T. V. Benzel, G. Bhaskara,
P. C. Clark, , and T. D. Nguyen. Design principles
and guidelines for security. Technical Report
NPS-CS-07-014, Naval Postgraduate School,
Monterey, CA, November 2007.

[29] D. L. Lewis and H.-H. S. Lee. Architectural evaluation
of 3D stacked RRAM caches. In Proceedings of the
IEEE International Conference on 3D System
Integration, San Francisco, CA, September 2009.

[30] G. H. Loh. 3-D stacked memory architectures for
multi-core processors. In International Symposium on
Computer Architecture (ISCA), Beijing, China, June
2008.

[31] G. H. Loh, Y. Xie, and B. Black. Processor design in
3D die-stacking technologies. IEEE Micro, 27(3),
May-June 2007.

[32] J. Loughry and D. A. Umphress. Information leakage
from optical emanations. ACM Transactions on

Information and System Security (TISSEC), 5(3),
August 2002.

[33] J. Markoff. Adding math to list of security threats.
The New York Times, November 2007.

[34] S. Mysore, B. Agrawal, N. Srivastava, S.-C. Lin,
K. Banerjee, and T. Sherwood. Introspective 3-D
chips. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San
Jose, CA, October 2006.

[35] E. C. Oh and P. D. Franzon. Technology impact
analysis for 3D TCAM. In Proceedings of the IEEE
International Conference on 3D System Integration,
San Francisco, CA, September 2009.

[36] K. Puttaswamy and G. Loh. Thermal analysis of a 3D
die-stacked high-performance microprocessor. In
Proceedings of the 16th ACM Great Lakes Symposium
on VLSI (GLSVLSI’06), Philadelphia, PA, May 2006.

[37] S. A. Razavi, M. S. Zamani, and K. Bazargan. A
tileable switch module architecture for homogeneous
3D FPGAs. In Proceedings of the IEEE International
Conference on 3D System Integration, San Francisco,
CA, September 2009.

[38] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. BitBlaze: A new approach to computer
security via binary analysis. In Proceedings of the
International Conference on Information Systems
Security (ICISS), Hyderabad, India, December 2008.

[39] G. E. Suh and S. Devadas. Physical unclonable
functions for device authentication and secret key
generation. In Proceedings of the 44th annual Design
Automation Conference (DAC), San Diego, CA, June
2007.

[40] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. In Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems (ASPLOS), Boston,
MA, October 2004.

[41] M. Tehranipoor and F. Koushanfar. A survey of
hardware Trojan taxonomy and detection. IEEE
Design & Test of Computers, 27(1), Jan./Feb. 2010.

[42] J. Valamehr, M. Tiwari, T. Sherwood, A. Arfaee,
R. Kastner, T. Huffmire, C. Irvine, and T. Levin.
Hardware assistance for trustworthy systems through
3-D integration. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
Austin, TX, December 2010.

[43] J. Vucic, C. Kottke, S. Nerreter, K. Habel,
A. Buettner, K.-D. Langer, and J. W. Waleski. 230
MB/s via a wireless visible-light link based on OOK
modulation of phosphorescent white LEDs. In
Proceedings of the Optical Fiber Communication
Conference and Exposition (OFCNFOEC), San Diego,
CA, March 2010.

[44] H. Yoshikawa, A. Kawasaki, T. Iiduka, Y. Nishimura,
K. Tanida, K. Akiyama, M. Sekiguchi, M. Matsuo,
S. Fukuchi, and K. Takahashi. Chip scale camera
module (CSCM) using through-silicon via (TSV). In
IEEE International Solid-State Circuits Conference
(ISSCC), San Francisco, CA, February 2009.

10

