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ABSTRACT 
Botnet-bascd hosting or redirection/proxy services provide 
botmasters with an ideal platform for hosting malicious and 
illegal content while affording them a high level of misdirec- 
tion and protection. Because of the unreliable connectivity 
of the constituent bots (typically compromised home com- 
puters), domains built atop botnets require frequent updates 
to their DNS records, replacing the IPs of offline bots with 
online ones to prevent a disruption in (malicious) service. 
Consequently, their DNS records contain a large number of 
constantly-changing (i.e.. "fluxy") IPs. earning them the de- 
scriptive moniker of fast-flux domains—or. when both the 
content and name servers are fluxy, double fast-flux domains. 
In this paper, we study the global IP-usage patterns exhib- 
ited by different types of malicious and benign domains, in- 
cluding single and double fast-flux domains. We have de- 
ployed a lightweight DNS-probing engine, called DIGGER, 
on 240 PlanctLab nodes spanning 4 continents. Collecting 
DNS data for over 3.5 months on a plethora of domains, 
our global vantage points enabled us to identify distinguish- 
ing behavioral features between them based on their DNS- 
query results. We have quantified these features and demon- 
strated their effectiveness for detection by building a proof- 
of-eoncept. multi-leveled SVM classifier capable of discrim- 
inating between five different types of domains with mini- 
mal false positives. We have also uncovered new, cautious 
IP-management strategies currently employed by criminals 
to evade detection. Our results provide insight into the cur- 
rent global state of fast-flux botnets, including the increased 
presence of double fast-flux domains and their range in im- 
plementation. In addition, we discover potential trends for 
botnet-based services, uncovering previously-unseen domains 
whose name servers alone demonstrate fast-flux behavior. 

1.    INTRODUCTION 
A botnet is a vast collection of compromised computers 

under the control of a botmaster utilizing a Command-and- 
Control (C&C) infrastructure. By exploiting Internet Re- 
lay Chat (IRC), peerrto-peer (P2P). and other protocols as 
flexible and extensible means for C&C, botnets have gained 
a great deal of versatility in providing malicious services 
and generating illicit profit. Among the numerous criminal 
uses of botnets. one of the more advantageous is the botnet- 
based hosting service, which proxies or redirects unsuspect- 
ing users to illegal or nefarious content. Since botnets are 
essentially an abundant source of disposable IPs, they can 

easily be turned into a large network of redirection/proxy 
servers pointing to malicious content hosted elsewhere—on 
anything from a powerful central server to another bot. 

Used as a misdirection mechanism for evading detection, 
botnet-based hosting services often come in tandem with a 
variety of other criminal scams, constituting an essential por- 
tion of botnets' overall operation. For example, spam/phishing 
campaigns often utilize botnets for misdirection. They be- 
gin by using some spamming mechanism to send seemingly 
interesting phishing emails embedded with innocuously dis- 
guised links whose domain names resolve to IP addresses 
of compromised computers in a botnet. Once victims click 
the embedded links, they connect to the bots, which then 
redirect them to—or serve as proxies for—the host of the 
nefarious content. This strategy grants criminals a high level 
of anonymity while enabling easy and centralized manage- 
ment of the malicious content. However, because botnets arc 
composed primarily of compromised home computers with 
unreliable connectivity, it is not uncommon for them to un- 
predictably go offline (e.g.. the computer is turned off or the 
installed malware is discovered and removed). Botnet-bascd 
hosting services, therefore, must be protected against the 
failure or disruption of individual bots, ensuring the avail- 
ability and stability of the hosted service/content. As a re- 
sult, they adopt fast-flux (FF) DNS techniques, which fre- 
quently change the domain-name mappings to different bots" 
IP addresses. When the victim tries to visit the malicious 
domain, the DNS server responds with a set of up-to-date, 
active bot IPs. By recruiting a large pool of IPs and sup- 
plying a large number of IPs per query, botmasters can en- 
sure, with high probability, that the malicious domain re- 
solves to an online bot's IP. An additional level of control 
and resilience is attained by giving the domain's IP map- 
pings a short time-to-live (TTL) value, allowing botmasters 
to quickly replace offline bots. I 'sing this FF technique, bot- 
masters effectively turned their botnets into a global Content 
Delivery Network (CDN), providing highly available and 
reliable content-hosting services despite frequent node fail- 
ures/disconnectivity. This extends the lifetime of illegal ac- 
tivities the botnets provide, complicating disruption efforts 
by introducing an additional layer of misdirection. 

Previous research focused on the features of FF botnets 
and their malicious uses in phishing scams [14] (e.g.. Storm 
Worm and Rock Phish). However, little has been reported on 
botnets' IP-usage behavior from a global perspective. Be- 
cause botnets arc formed with myriad compromised hosts 
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dispersed around the world, accurate characterization of how 
botmasters manage this vast number of IPs can only be achieved 
by collecting and analyzing data from a global perspective. 
In this paper, we attempt to achieve this goal and explore the 
global usage patterns of botnets' IP addresses. The contribu- 
tion of our work is four-fold. First, we build a global query 
engine called DIGGER that monitors—for an extended pe- 
riod of time—complete DNS behavior from 240 geographically- 
dispersed vantage points spanning four continents. This pro- 
vides us with a global view of how different types of do- 
mains vary in their IP-usage patterns. Second, we propose 
effective methods to characterize and quantify the temporal 
and spatial IP-usage patterns of FF botnet domains, facilitat- 
ing the classification and detection of different domain types. 
This also allows us to reveal several previously-unknown 
features of FF botnets and uncover new, discreet IP-management 
strategies currently employed by criminals to evade detec- 
tion. Third, we design and implement a proof-of-concept 
classifier based on a multi-leveled machine learning algo- 
rithm. Utilizing the behavioral features of a domain's IP 
usage, the classifier accurately and automatically identifies 
different types of malicious and benign domains. Finally, 
we apply the classifier on more than three months" worth of 
globally-collected data. The results demonstrate the current 
trend of FF botnets and the effectiveness of using the dis- 
tinguishing behavioral features we identified with our global 
DNS-monitoring system 

The remainder of this paper is organized as follows. Sec- 
tion 2 discusses related work. Section 3 defines the termi- 
nology we use. Section 4 explores the global DNS IP-usage 
patterns for different domain types. Section 5 presents our 
proof-of-concept classifier and its experimental evaluation 
results. Section 6 discusses the limitations of our system and 
our future work, and finally. Section 7 concludes the paper. 

2.    RELATED WORK 
Researchers have focused on the operations and threats 

of botnets by collecting and analyzing bot-related activities, 
such as IRC traffic 117|, spam emails |22]. and DNS queries 
[18). For example, Rajab et al. [17] constructed a distributed 
infrastructure to measure IRC botnet activities and showed 
that botnets contribute the majority of unwanted traffic in 
the Internet. Grizzard et al. [6] analyzed the architecture and 
communication protocol of a most recent P2P botnet, Pea- 
com (a.k.a. Storm Worm) [5], demonstrating that P2P bot- 
nets arc more robust to node failures and difficult to take 
down. All these methods fall into the category of passive 
analysis. To gain a botnet's insider view, researchers also 
took active approaches, infiltrating botnets with actual mal- 
ware samples or customized crawlers. For example. Holz 
et al [12| crafted a specific P2P client to join the Storm 
Worm's P2P botnet and analyzed its in-depth features. More 
recently. Stone-Gross et al. [20] successfully took over the 
Torpig botnet for 10 days by preemptively registering DNS 
domains the bots would be contacting as C&C servers in the 

near future, allowing them to reveal detailed operations of 
the botnet and accurately estimate the number of compro- 
mised hosts. 

Because of the significant threats botnets have posed to In- 
ternet services and applications, researchers have proposed 
various botnet detection approaches. Some exploit the net- 
work behavior typical of botnets' C&C protocols. For exam- 
ple, BotHunter [8] attempts to detect bots using IDS-driven 
dialog correlation based on IRC C&C communication and 
other common actions taken during the life cycle of a hot. 
BotSniffer |9] identifies HTrP- and IRC-based C&C chan- 
nels by capturing the coordinated and synchronized commu- 
nication patterns in the C&C traffic. To eliminate the re- 
liance on IRC- or HTTP-based C&C protocols, Gu el al. 
proposed BotMiner [7], which clusters similar communica- 
tion and malicious traffic and performs cross-cluster corre- 
lation to identify bot-infected hosts. 

Another common method for botnet detection is identi- 
fying the unique network patterns of scams they perpetrate. 
Among the numerous criminal uses of botnets, their use as 
hosting or redirection/proxy servers for illegal content and 
phishing scams provides an ideal platform for financial gain. 
However, because of the unreliable nature of bots, more bot- 
masters have adopted fast-flux DNS techniques to ensure the 
availability and stability of their malicious service/content. 
FF techniques were first reported and analyzed as part of 
the HoncyNct project [21]. Holz et al. [II] and Passcrini 
et al. [15] both studied the characteristics of FF networks 
and developed detection algorithms. They gathered URL 
domains from spam emails and monitored their DNS-qucry 
results for an extended period of time, extracting a set of 
unique features such as number of unique IPs. number of 
AScs, lifetime of the domains, TTl, values, etc. A linear de- 
cision function [11) and a naive Bayesian classifier 1151 were 
applied on these features to identify FF networks. Nazario 
and Holz [14] later applied a similar approach to track the 
use of FF domains and characterize additional properties of 
FF botnets, including their member size, lifetime, and top- 
level domain distribution. Their results demonstrated that 
continuous data mining of FF DNS records can yield insight* 
into the operations of FF botnets. More recently, Konte et 
al\\"S\ studied the dynamics of the FF network from the 
perspective of online scam hosting infrastructures lor dif- 
ferent spam campaigns, measuring the change rates of DNS 
records, distribution of TTL values, and location of IP ad- 
dresses. Their measurement results suggested that some per- 
sistent features may be useful in the detection of FF botnets. 

Our work is unique and different from this previous work 
as follows. First, all of the previous work collected data from 
a single vantage point, and hence, may fail to capture useful 
features that can only be discovered from a global perspec- 
tive (e.g., different IP-advertisement strategies used by FF 
networks, CDN and non-CDN domains). By contrast, we 
deployed a large number of sensors around the world, pro- 
viding a global perspective of IP-usage patterns for differ- 



cm types of FF botnets (in particular, double FF domains). 
Second, both approaches in [II] and [ 15] separate FF do- 
mains indiscriminately from normal domains without distin- 
guishing their types (e.g.. single and double FF networks). 
In this paper, wc provide detailed categorization of FF do- 
mains (including two types of single FF networks and a dou- 
ble FF network) and developed a multi-level classifier capa- 
ble of discriminating between different types of both FF and 
non-tluxy domains. This finer-grained classification allows 
us to gain insight into the current stale-of-art and potential 
trends of different FF botnets, as well as their range in im- 
plementation. Moreover, to create an efficient classifier with 
minimal false positives/negatives, we carefully selected and 
quantified 7 distinguishing features (some were reported pre- 
viously [11, 15, 13] but others are new) and apply a subset 
of features at each level of our classifier. Third, because the 
purpose of using FF botnets is to reliably distribute mali- 
cious content to users despite bot failures, the DNS behavior 
of FF botnets resembles that of traditional CDNs [4] cm- 
ploying DNS techniques for load-balancing. As a result, 
some features used in the previous work (e.g., TTL values, 
IP-change rate, number of unique IP addresses and ASes) 
appear similar between FF and CDN domains, potentially 
leading to false positives. In this paper, we conduct a com- 
parative analysis of different IP-management schemes used 
in FF botnets and popular CDNs. This allows us to accu- 
rately filter CDN domains beforehand, and thus, minimize 
the false positives of the classifier. 

3.    TERMINOLOGY 
I his section defines the terminology we have adopted for 

succinctness and clarification when discussing the various 
domain types and DNS records m this paper. The primary 
DNS record components we consider are defined in fable I. 

• The address |AI record in a DNS query on a comarn. 

• The IP addresses of f^e domain s content servers. 

• The name server (NS> record m a DNS query on a domain 

• The domain names {not IP adressesi of the domain s NSes 

• The A rec n a DNS query on a doma n's nome servers 

• The IP addresses of :re domain s NSes. 

• The result o* a DNS query request, for an IP s domain rame 
Reverse DNS       |i e , PTR request) 

lookup/narrM     " When performing a DNS query on a domain, we also do a 

reverse DNS lookup on the domain s A and NA rec iPs 

fable 1: DNS record terminology 

In Fig 1, we have plotted the global IP usage—as seen 
from the DNS queries—for some representative domains of 
the different domain types. In this figure, the Time axis 
represents the time (in seconds) since our distributed DNS 
query engine (DIGGER. Section 4.2) was deployed; Node 
Index represents the node (from those dispersed around the 
globe) that the IP was observed on, with positive values in- 
dicating an A rec IP and negative values an NA rec IP; IP In- 
dex is a unique index incrementally assigned to each newly- 

observed IP. In what follows, we explain the terms we use to 
describe these various domain types and how they behave 
Their global behavior will be explained further in Section 4. 

FF domains are malicious domains utilizing a fast-flux 
(FF) DNS-advertisement strategy, typically built atop bot- 
nets. Because hots may unexpectedly go offline. FF do- 
mains advertise numerous IPs in their DNS-query results, 
helping ensure some of the IPs belong to a functional bot. 
The TTL of the IPs used by FF domains tend to be relatively 
short; this permits the botmasters a finer level of control in 
replacing IPs advertised to the DNS servers, increasing the 
availability of an online bot and access to the malicious pay- 
load. It is this excessive number of constantly-changing IP 
addresses that qualifies a domain's DNS records and adver- 
tisement strategy as "fluxy". and the domain is considered a 
FF domain. Domains exhibiting FF behavior in only a sin- 
gle record type (i.e., A rec or NA rec, but not both) are con- 
sidered FFxI domains (single fast flux). More specifically. 
FFxl domains that are fluxy in their A recs (i.e.. content 
servers) are termed FFxl-Arec domains, while those thai 
are fluxy in their NA recs (i.e.. name servers) are termed 
FFxl.NArec domains; FFxl.NArec domains are able to 
evade current detection strategies that focus on A recs by 
migrating their fluxy behavior to their NA recs. where it is 
less likely to be noticed. When FF domains are fluxy in both 
their A and NA recs. they are considered double fast flux, or 
FFx2 domains. A FFx2 domain can provide unprecedented 
control in the management of the domain and its resources— 
botnet or otherwise with the DNS service, affording the 
botmaster a high level of misdirection and protection. 

CDN domains are valid, benign domains that uses a CDN, 
such as Akamai, to improve the delivery of their content 
CDNs consisting of a system of computers networked to- 
gether for the purposes of improving the performance and 
scalability of content distribution- produce DNS-query re- 
sults resembling those of malicious FF domains: numerous, 
changing IPs per query with short TTL values. This affin- 
ity is a consequence of their similar goal to provide reli- 
able content delivery despite node failure, as well as (heir 
shared assumption that any node can temporarily or perma- 
nently fail at any time. However, CDN domains demon- 
strate geographic awareness (i.e., IPs geographically close 
to a DNS server will be advertised with higher probability at 
that server) and load balancing (i.e.. techniques improving 
performance and scalability not observed in FF domains). 

Non-CDN domains arc valid, benign domains that Jon V 
use a CDN for delivery of their content. Typically. non-CDN 
domains use a few stable content servers and a modest num- 
ber of NSes, with the same A and NA rec IPs appearing in 
the query results regardless of the queried DNS server's ge- 
ographic location. 

MAL domains arc domains that aren't fluxy enough to 
be considered FF domains, nor benign enough to be con- 
sidered non-CDN domains. While not necessarily malicious 
domains, their DNS behavior demonstrates potentially sus- 



Figure 1: Global IP-usage (in DNS query results) for some examples of the domain types 

picious behavior often attributed with malicious domains. 
They tend to recruit more IPs than a non-CDN, but not nearly 
as many as a FF domain. For example, during a monitoring 
period of a few months, a FF domain is likely to advertise 
thousands of different IPs with DNS; even a fairly slow FF 
domain will advertise in the hundreds. A MAL domain, on 
the other hand, will advertise perhaps a total of 20-30 IPs— 
roughly one or two IPs every few days. This is different from 
a non-CDN. While a non-CDN may have 20-30 IPs, they arc 
all seen essentially at once and are stable for the duration of 
the monitored period. MAL domains will tend to slowly 
add more IPs because they will slowly lose some as their 
malicious activities are detected and their IPs arc blocked. 
The IPs used by MAL domains may consist of bots or valid 
servers being used for malicious means. Additionally, be- 
nign websites hosted on home computers with dynamic IP 
addresses could be considered MAI. domains by our defini- 
tion. However, we consider this acceptable since most valid 
websites are not hosted on home computers, causing those 
that arc to be inherently suspect. 

4.    GLOBAL IP-USAGE PATTERNS 

4.1 Overview 
In this section, wc explore the DNS IP-usage patterns of 

the previously-described domain types, identifying interest- 
ing and differentiating features among them. We accom- 
plish this by analyzing numerous domains' DNS-qucry re- 
sults from vantage points dispersed around the world. This 
provides us with a unique, global perspective of how the dif- 
ferent types of domains advertise their IP addresses to DNS 
servers. First, we will describe how we set up a globally- 
distributed DNS monitoring system and then discuss the var- 
ious features we have identified that could be useful in the 
classification of the different domain types. 
4.2 System Architecture 

We created a distributed DNS-query engine called DIG- 
GER, deployed on 240 geographically disparate nodes in the 
Planetl.ab testbed [16]. The nodes were chosen based on the 
location of the DNS servers they queried, such that DIGGER 
would issue queries to DNS servers in different geographic 
locations around the world. Fig. 2 shows the distribution of 
DIGGER nodes, wtiich is reflective of the overall distribu- 
tion of available PlanetLab nodes. 

On each node, for malicious and benign domains, DIG- 
GER performs DNS-query digs on their A rec, NS rec, NA 

Figure 2: Global distribution of DIGGER nodes by continent 

rec and the reverse DNS lookup for the A and NA rec IPs. 
Based on a domain's most recently returned DNS-query re- 
sults. DIGGER classifies the domain as either active or of- 
fline. DIGGER continues to dig active domains periodical!) 
based on their observed TTL, ensuring fresh DNS-qucry re- 
sults. Domains determined to be offline are intermittently 
dug, so that DIGGER can discover if they come back online. 
Every 24 hours, DIGGER compresses the raw DNS-qucry 
data and uploads the results to our analysis server. This way 
we aggregate the global DNS-query results for over 106.000 
different domains from 240 nodes around the globe The set 
of domains monitored by DIGGER is compiled from mul- 
tiple sources, including online repositories of phishing [3] 
and malware [1] websites. In addition, we extract domains 
from URL links embedded in spam emails found in our per- 
sonal mail boxes, a spam relay trap, and recent additions 
to online repositories [10] during DIGGER'S active period 
While DIGGER is active, wc continue to gather additionally 
suspicious domains, adding them to DIGGER'S monitoring 
set. DIGGER has been deployed and gathering global DNS- 
usage patterns for a little over 3.5 months. Based on the 
analysis of this data, we have identified several differentiat- 
ing features between malicious FF botnet and valid domains, 
as described in the following subsections. 

4.3    Overlap between IPs of A and NA Records 
While analyzing our data, it quickly became apparent that 

FF domains tend to exhibit some IP overlap. We were seeing 
IPs advertised for a domain's A rec reappearing in the same 
domain's NA rec. We discovered that the malicious domains 
were not only reusing their available IP pool for both A and 
NA recs, but were also returning IPs from the same IP pool 
regardless of which NS was queried, resulting in different 
NSes with identical IPs. 

Table 2 shows the total number of A rec, NA rec, and 
overlap IPs (i.e., IPs appearing in both the A and NA rec) for 
some representative domains from each domain type. This 



Domain Type Domain Arec NArec Overlap 

frxl.Arec 
arugsn com 

wvrw couldchooie.com 

932 

486 

li 

17 

0 

lUl.Narec . 1c4usmvox.com 16 370                1 

'F«2 
old-and girl.com S.227 3.047 879 

rrountvnreMry.com 4,060 2.219 |     2.144 

MAL 
dL.eire4dy.c0m lb 32 15 

tvlfsny|UXutuxe(.cn 23 42 20 

CDN www.rnsntx: msn com 1 160 5.412 0 

non-CDN hostmiprod com 18 32 0 

non-CDN: nostlngprod com (A lee) non.COM: hosxingprod com (NA reel 
20, 

Table 2: Total A, NA. & overlap IPs for diff domain types 
FFx2: old-end-girl net (A nci 
6000 

FFx2   old-and-girl.net (NA rec| 
3000 

Time (ivcs) 

Figure 3: Global IP usage for example FFx2 domain 

overlap phenomenon was much more prevalent in FFx2 do- 
mains than cither type of FFxl; wc never observed it in valid 
domains. The FFxl domains almost entirely use valid IPs 
for one record type and the IPs of compromised computers 
for the other. While the representative MAL domains have a 
small number of total unique IPs (like a non-CDN domain), 
their IP overlap is exceptionally high, with almost all of their 
A rec IPs also used for their NA recs. thus setting them 
apart from valid domains. The IP overlap we empirically 
observed demonstrates that valid domains use separate ma- 
chines for their content and name servers most likely for 
redundancy and fault-tolerance purposes, preventing a single 
point of failure. FF and MAL domains, on the other hand, 
attempt to make the most of their limited resources, reusing 
IPs for both the A and NA records. Clearly, the amount of 
observed IP overlap can prove a useful feature for differenti- 
ating between valid and malicious domains, especially FFx2 
and MAL domains. 
4.4    IP Recruiting 

Due to their different resources and management tech- 
niques, one would expect FF, CDN, and non-CDN domains 
to demonstrate distinct strategies when advertising IPs to 
DNS servers. To confirm/refute this expectation, we have 
analyzed the advertisement strategies for the various domain 

msnocmsn com (A rec| CDN. VAvw.nunbc.min.com (NA rac) 

scyjo 

«4000 

cJOOO 

— 2000 

1000 11 
Time (sect!     l10» Time (sees!     no* 

Figure 4: Global IP usage for example CDN domain 
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Figure 5: Global IP usage for example non-CDN domain 

types. For a given domain, we assumed a global vantage 
point across all DIGGER nodes and assigned a unique IP in- 
dex (in ascending order) to each newly-seen IP in the DNS 
query results. This IP index is plotted against time for exam- 
ple FFx2, CDN, non-CDN, and MAL domains in Figs. 3-6, 
with the y-axis representing the unique IP index and the x 
axis representing the time in seconds since DIGGER was 
deployed. The example domains were added to DIGGER 
about I month after its deployment, resulting in the plots' 
initial lack of data. The points in the gTaphs represent when 
an IP was returned in a DNS query on a global scale (i.e.. 
across all nodes monitored by DIGGER). Thus, the slope 
of each curve demonstrates the rate, or speed, with which a 
domain seems to globally "recruit" more unique IPs. 

It should be noted that, by definition. FFx I _Arec and FFx l NArec 
domains are essentially specific subsets of FFx2 domains. 
They behave like a FF domain in one record type and like a 
non-CDN in the other. Thus, their plots are not included as 
they are mostly redundant. 

MAL  tsorsny.lukutuxef.cn (A rec)    MAL: tsofsnyJukutuxeT en {NA rec) 

c 20' 

.  liW<A 

Time (sees)    x10* Time (sees)      x 10« 

Figure 6: Global IP usage for example M4L domain 
Recruitment Speed: refers to the speed (or rate) at which 

one observes new, unique IPs for a given domain when mon 
itoring that domain's DNS queries over time. 

Fig. 3 shows how a FFx2 domain slowly and nearly con- 
tinuously accrues unique IPs over its entire online lifetime, 
with short, intermittent periods of stability. These results 
indicated that FF domains—-consisting primarily of compro- 
mised home/office computers that may go offline arbitrarily— 
must continue to recruit new IPs to help ensure reliable de- 
livery of their nefarious content. In addition, the bots used 
by FF domains often obtain dynamic IP addresses from their 
Internet Service Provider (ISP) via DHCP (Dynamic Host 
Configuration Protocol). Consequently, a hot may be as- 
signed different IPs over time, causing our DIGGER nodes 
to observe the apparent recruitment of new IPs; this effect is 
called DHCP churn, and it is not present for valid domains 



using stable servers with static IPs. 
Meanwhile, when viewed globally, we have discovered 

that CDN domains (Fig. 4) achieve a much faster recruit- 
ment speed, indicating that they advertise IPs from a large 
pool of stable IP addresses, which they rotate quickly and 
efficiently for performance purposes, such as load balanc- 
ing. Our data also reveals that CDNs advertise their IPs in 
a geographically-conscious manner. For a given CDN do- 
main, a DNS query in Asia will often result in a different 
set of IPs than would the same query originating in Europe. 
This is because the CDN would mostly advertise (from its to- 
tal pool of IPs) IPs located in Asia to Asian DNS servers and 
IPs located in Europe to European DNS servers. As a result, 
DIGGER'S global perspective observes most of the CDN's 
IPs in a short period of time. In contrast, FF domains appear 
to be at the whim of the currently available and online bots. 
preventing the level of control necessary for geographic IP 
management. Consequently, they tend to advertise the same 
pool of IPs irrespective of the DNS servers' geographic lo- 
cation. Thus, while they may change their advertised IPs as 
quickly as a CDN, they do so on a global scale (i.e., nearly 
the same IPs are seen regardless of query location), whereas 
a CDN is more localized (i.e., IPs returned are dependent 
on the queried DNS server's location). Hence, for FF do- 
mains. DIGGER'S global perspective doesn't allow it to ob- 
serve many more IPs than at any given local vantage point, 
resulting in the comparatively slower IP recruitment rate. 

From our analysis, we have found that non-CDN domains 
(Fig. 5) hardly recruit any additional IPs over time. Rather, 
their IP pools consists of a small number of stable content 
servers that are almost simultaneously advertised to DNS 
servers around the world. 

Looking at Fig. 6, wc can see that tsqfany.jukutuxef.cn 
demonstrates the slow and somewhat steady recruitment of 
IPs common to MAI. domains. This behavior is likely there- 
suit of the MAI. domains' malicious activities being detected 
and their IPs blocked, requiring them to register fresh IPs 
with DNS in order to maintain content availability. Closer 
examination reveals that, unlike FF domains which recruit 
hundreds to thousands of IPs, MAL domains recruit only 
tens of IPs over more than 3.5 months. This is a drastic 
difference, and it should prove beneficial in distinguishing 
MAI. domains from non-CDN and FF domains. 

Recruitment Period: represents the amount of time dur- 
ing which new IPs arc seen for a given domain when mon- 
itoring that domain's DNS queries over time. Our data in- 
dicates that non-CDN domains (Fig. 5) use a small pool of 
very stable IPs with almost no recruitment period; all the IPs 
used arc advertised initially and used throughout the lifetime 
of the domain. On the other hand, wc have found that CDN 
domains utilize much larger IP pools, from which IPs are 
advertised based on geographic location and load balancing. 
When viewed from a global perspective, the fast recruitment 
speed of CDN domains causes DIGGER to quickly observe 
most of their available IPs, resulting in a short recruitment 

period at the onset of monitoring followed by a longer, stable 
period consisting mainly of previously-seen IPs. As demon- 
strated in Fig. 4, we can sec that the CDN's recruitment pe- 
riod is smaller than its total online period; after its initial 
recruitment period, the CDN domain stabilizes and adver- 
tises a much smaller set of IPs before a quick advertisement 
spike followed by another stable period. We have also dis- 
covered, as shown in Fig. 3. that the fluxy records for FF 
domains recruit new IPs for nearly the entire duration of the 
domains' online period, with only short, intermittent periods 
of stability. That is. nearly the entire time wc observe a FF 
domain to be online, its fluxy records are recruiting new IPs. 
This constant IP recruitment is a result of DHCP churn and 
the unreliable nature of the compromised computers serving 
as bots. The varying recruitment periods we have discovered 
for the different domain types should provide a useful metric 
for distinguishing between them. 

4.5    Continental Distribution of IPs 
Next, wc examine how the various domain types differ 

in their IP distribution (i.e., where the IPs returned in DNS 
queries arc geographically located). Wc examine the geo- 
graphic location of IPs based on continent rather than coun- 
try, because the close proximity of European countries made 
a country-based resolution too finely-grained. When view- 
ing the IP distribution based on continent, however, distin 
guishing trends between the domain types became more ap- 
parent. In analyzing a domain's IP distribution we asked the 
following questions; 

Ql: What percentage of IPs returned in DNS queries are 
located in a different continent than the queried DNS server? 
We restate this, for succinctness, as the percentage of IPs 
from the wiring continent. 

Q2: From the perspective of each continent containing 
queried DNS servers, what percentage of IPs returned are 
located in each continent? likewise, for succinctness, we 
restate this as the continental IP distribution. 

The answer to Q1 can be seen in Fig. 7 for some represen- 
tative domains. For each domain, wc plotted the percentage 
of A and NA rec IPs from the wrong continent. From Fig. 7, 
it is evident that the CDN domain has a considerably smaller 
proportion of IPs from the wrong continent than the other 
domain types. For both the CDN's A and NA rec IPs, the 
percentage from the wrong continent is less than half that of 
the next lowest domain. 

Insight into continental IP distribution (02) can be found 
in Fig. 8 for some sample domains. For brevity, wc have not 
plotted any FFxl domains, since their results arc a subset 
of the FFx2 domain type; likewise, we have omitted plots 
for a MAL domain (since their distribution is functionally 
similar to non-CDN domains) and for the NA recs' distri- 
bution (since the results arc similar to those for the A recs). 
In Fig. 8, the bars represent the continental IP distribution 
from ditferent perspectives. In each domain's plot, the lirst 
bar represents the continental IP distribution from a global 



perspective, while the other bars are from the perspective of 
the different continents where we deployed DIGGER nodes. 
For example, the bar labeled "Asia" under old-emd-girl.com 
(Fig. 8) indicates the percentage of A rec IPs located in each 
continent base on queries to Asian DNS servers. 

It is interesting to note in Fig. 8 that the continental IP 
distribution for both FFx2 and non-CDN domains is fairly 
consistent across the different continents, hardly deviating 
from the global distribution. For CDN domains, on the other 
hand, the distribution varies greatly. These results clearly 
reveal the location-aware DNS advertisement employed by 
t'DN.s Their DNS query results often contain a majority 
of IPs located near the DNS server and the issued query, 
providing fast, reliable services and quicker content delivery 
to end users by reducing the data's travel distance. Conse- 
quently, CDNs demonstrate a smaller percentage of IPs from 
the wrong continent and a larger variance in continental IP 
distribution than other domain types. 

From our data, we found that MAL and non-CDN do- 
mains operate in a similar manner. With a smaller set of 
stable servers (both content and name) than CDN and FF 
domains, they don't require complicated load balancing or 
location-aware DNS advertisement. Instead, we discovered 
that they adopt a form of naive DNS advertisement and in- 
discriminately advertise their small pool of server IPs around 
the world nearly simultaneously (Fig. 5). This causes the 
continental IP distribution at each continent to be (he same 
as the global distribution. Consequently, the percentage of 
IPs from the wrong continent will reflect the global distri- 
bution of our DIGGER nodes, depending on the location of 
the non-CDN domain's servers. Fig. 8 shows that for the 
non-CDN domain hostingprod.com, all of the A rec IPs are 
in N. America. Because about 46% of our nodes are lo- 
cated in N. America (Fig. 2). we find that 53.77% of host- 
ingprod.com's IPs are from the wrong continent (Fig. 7). ap- 
proximately (due to rounding) the same percentage as nodes 
not in N. America. 

Our analysis suggests that FF domains adopt an advertise- 
ment strategy dictated by the unstable nature of their con- 
stituent bots, which we term necessity-based DNS advertise- 
ment. Since bots can go offline at any time, FF domains 
must rely on whichever bots are currently available, regard- 
less of geographic location. While FF domains don't concur- 
rently advertise their entire IP pool globally (as non-CDNs 
do), they eventually advertise most of their IPs globally. FF 
domains appear to advertise available IPs to DNS servers 
around the globe as necessity dictates, with little or no re- 
gard to location, resulting in a large percentage of IPs from 
the wrong continent and a fairly consistent continental IP 
distribution across continents. 

Our findings indicate that the percentage of IPs from the 
wrong continent and the variance of the continental IP dis- 
tribution could serve as features for distinguishing CDN do- 
mains from the other domain types. This can greatly sim- 
plify the detection of FF domains by helping identify them 

I j 
Figure 7: Percentage of IPs from the wrong continent 

from CDNs, which arc often very similar in other respects 

4.6    Number of Unique IP Addresses per Node 
Another interesting feature is the number of unique IPs 

seen across the DIGGER nodes over time. Fig. 9 shows the 
CDFs for the numbers of unique A and NA rec IPs observed 
by our 240 DIGGER nodes during the w3.5 month monitor- 
ing period. Again, MAL domains have been omitted in the 
plots due to their similarity to non-CDN domains. Our em- 
pirical data reveals that non-CDN and FFxl .NArec domains 
(whose A recs behave like a non-CDN) use a small set of 
stable content servers. For example, in Fig. 9(a), neither of 
them contains more than 18 unique A rec IPs per node. CDN 
domains arc found to exhibit a large number of unique A rec 
IPs on some nodes, though the number of nodes is consid- 
erably fewer than observed for FF domains. For example, 
for the CDN in Fig. 9-(a), =84% of the DIGGER nodes ob 
served less than 22 unique A rec IPs and no node observed 
more than 200. On the other hand, for the FFxl-Arcc and 
FFx2 domains, we observed a greater number of unique A 
rec IPs on a larger percentage of nodes. For the FFxl .Arcc 
domain in Fig. 9-(a), =45% of the nodes detected over 100 
unique A rec IPs, more than 35% detected over 200, and a 
few observed over 700. The numbers observed for the FFx2 
domain are even higher, with over 80% of the nodes observ- 
ing more than 100, ^s43% more than 500. and several with 
more than 2,500. Clearly, the FFxl.Arcc and FFx2 domains 
possess a much higher average number of unique A rec IPs 
per node— a direct consequence of the bots' unreliable con- 
nectivity and, to a lesser extent, DHCP churn. 

While the number of unique A rec IPs per node appears 
a promising distinguishing feature, our data implies that this 
is not the case for the average number of unique NA rec IPs. 
For example, from Fig. 9-(b) it is apparent that CDN and 
FFx2 domains possess many more unique NA rec IPs per 
node than the other domain types. Although the CDN do- 
main appears to utilize more unique NA rec IPs per node on 
average, the FFx2 domain demonstrates a greater number of 
unique IPs at a single node: 999 IPs to the CDN domain's 
727. It seems that, over time, CDNs can advertise numerous 
NScs with DNS, resulting in an excessive number of unique 
NA rec IPs per node. This behavior might arise from the 
CDN trying to ensure the availability of its NSes. afford- 
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Figure 9: CDF: # of unique A and NA rec IPs per node 

ing it belter control when performing load balancing. In any 
case, we found the behavior of the FF and CDN domains to 
be too similar, causing the number of unique NA rec IPs to 
be an indistinctive feature 

4.7 Total Number of Unique IPs 
Based on our data, we learned that non-CDN and MAL 

domains advertise only a few stable content and name servers 
with DNS. In the case of non-CDN domains, nearly all the 
A and NA rec IPs are advertised ubiquitously around the 
globe. For MAL domains, a smaller number of IPs arc used 
at any given time; however, over time, as the MAL domain 
becomes detected and its IPs blocked, the number of unique 
IPs will slowly increase. In either case, the total number of 
unique A and NA rec IPs for MAL and non-CDN domains is 
meager when compared to CDN and FF domains (Table 2), 
making it a useful distinguishing feature. 

4.8 Reverse DNS Lookup and TTL 
Because an IP's reverse DNS name is set by its ISP and 

not the owner of the domain, it cannot be faked by a bot- 
master. This makes it a fairly useful metric for identify- 
ing bots, which would contain reverse DNS names typical 
to home computers (i.e., containing words like comcast, dy- 
namic, dial-up, etc.). Unfortunately, the reverse DNS lookup 
is highly unreliable, often not returning a result. Addition- 
ally, we don't have a complete list of suspicious words, and 
occasionally, the presence of such words may not be indica- 
tive of a bot. Therefore, we have decided not to incorporate 
the reverse DNS name for automatic domain classification, 
hoping to gain better insight into more reliable features. In- 

stead, when present, we use it to help reinforce or confirm 
our manual identification of the different domain types. 

The A and NA rces' TTL values also appear highly use- 
ful for differentiating between the domain types. However, 
unlike many of the other features we have previously ex- 
plored, the TTL value is not an uncontrollable consequence 
of FF domains; it is set by the owner of the domain, afford- 
ing botmasters a convenient mechanism for circumventing 
TTL-dcpendent detection metrics. In addition, it has been 
shown in [13J that the TTL distribution of FF domains and 
many popular websites (especially CDN domains) are simi- 
lar. Consequently, we have decided not to use the TTL as a 
classification feature. It should be noted that other features, 
like the recruitment speed and period, cannot be as easily 
manipulated by the botmaster, since the unstable bot IPs ne- 
cessitate constant recruitment. 

4.9    Other Features 
For the various domain types, we also examined the aver- 

age number of nodes per IP and the average IP online time 
While these results proved interesting and potentially useful 
as distinguishing features, we found them less effective than 
the other features when designing our classifier (Section 5). 
Therefore, due to space constraints, we have omitted our re- 
sults concerning these features and refer the interested reader 
to our technical report for their discussion. 

5.    DETECTION METHODOLOGY 

5.1 Overview 
Our observations in Section 4 indicate that the different 

domain types could be identified based on behavioral fea- 
tures of their global DNS activity. To demonstrate this, we 
built a proof-of-concepl classifier, utilizing a multi-leveled 
linear SVM (Support Vector Machine). The rest of this sec- 
tion describes its design and implementation, including how 
we quantified the behavioral features, chose which features 
to apply at each stage (or level), determined the order of the 
stages, and finally, how the SVMs were trained. 

5.2 Classification Features 
Table 3 shows the features we considered using in the 

classifier and how they are likely to group the domain types. 



Each feature has been given a number to simplify its repre- 
sentation throughout the paper. With the exception of fea- 
ture F2, each feature can be applied to a domain's A or NA 
rec, and while not displayed in Table 3, the features can also 
be applied to the combined IP pool of the A and NA rccs, 
represented as (A + NA). Lastly, the column labeled "Do- 
main Type Classification Groups" in Table 3 shows how each 
feature when applied to the A or NA rec will likely group 
the different domain types, represented by square brackets. 
Table 3 does not express hard-and-fast rules for how features 
classify the domain types. Rather, it shows likely groupings: 
domain types tending to produce similar results with respect 
to a given feature and record type. Thus, Table 3 is a help- 
ful visual tool for determining the application of features at 
different SVM levels. 

Classification Feature 
DNS 

Record 
Domain Type 

Classification Groups 

Fl. AV,R a of unique IPs oer Node 

A 
• [CDN:. ion CDN:, MAI,. FFxiJJArec.] 

• [FFX2,. f ROJUM , 

NA 
• {CDN,.FFi2J  -[F-F)(l_NArec.J 

• |non-CDN„ MAL,. FFxl_Arec I 

F2. AS NA rec overlap A A NA 
• ICDNJ, nor.-CDN.-) 

• [MAL., FFX2* FFxl_Arec.,FFxlJYArecJ 

F3. S IPs from wrong continent 
A 

NA 
•[CON,] 

• Inon-CDN , MAi__, FF*2L,. 

FFxl ArecFFxl.NArec-.] 
F4. Continental IP distribution s 

average covne similarity 

A 

NA 

F5, IP recruiting soeed 

A 
• [C0N,1    • lnon-CDN;. FFxl_NArec | 

• (MAL.j    •(FFxi*. FFxl_Arec.. 

NA 
• [CON:j    • Inon-CDN., F-xl_Arec ] 

• |MAL ',    • [FFX2,, FF«l_NAree,l 

F6. IP recruiting period 

A 
• ICDN,]    • (non-CDN,, FFxl  NArec ] 

• [MAL ]    •[FFx2*. FFxl_Arec] 

NA 
• [CDN.]    • (nor CDN., FFxl_Arec.| 

•[MALI     • [FFx2„ i-FxJ   NArec.; 

F7, Total unique l^s 

A 

NA 

• [CDN..;Fx2.,FFxl_Arec.| 

• [nonfDN. MAL.  f-xl_NArec 

• [CDN., -F*2 , FF*l_NAreal 

• [non CDN.. MAL, Ffx:_Arec.) 

The number by each domom type represents the level if is Classified ay our iV.V*. 

when selecting feotures for SVM- x. domains with a number . x can be igno-cd. 

since the/ hove already been classified and removed from the unknown set 

Table 3: Features to classify domain types into Jiff groups 

5.2.1    Feature Quantification 

All of the features, except 1-2, were quantified using the 
IPs of the three different record types—A, NA and (A + NA) 
recs—to produce 3 distinct values. Which of these values 
is used at each stage of the classifier is discussed in Sec- 
tion 5.3.2. Kach feature is calculated for each domain moni- 
tored by DIGGER over the total =3.5 month duration. 

Fl: Let Pj = number of unique IPs on node /", and let 
/V = number of nodes (of the 240 total) where the number of 
unique IPs > 1   Then. Fl is computed as: 

Fl = ^^ fl 
N 

(II 

between the A and NA rccs. Thus, if all the IPs from one 
record type arc also used for the other record type, there will 
be a 100% IP overlap. For a given domain across all nodes, 
let PA be the set of unique A rec IPs and PSA be the set of 
unique NA rec IPs. Then. F2 is calculated as: 

mind^U/V,!} 
F3: Using an online database [2] and whois lookup, we 

were able to determine the country of origin for most IPs 
observed by DIGGER and the continent the IP was located 
on: N. America, S. America, Europe. Asia. Africa, Oceania, 
Antarctica, and—very rarely—unknown. Let W, = number 
of unique IPs on node / that are located in a different (i.e., 
wrong) continent than node i. Let Pi and N be defined as for 
Fl. Then, F3 is computed as: 

F3 (3) 

F4: Let the continents N. America, S. America, Europe, 
Asia, Africa. Oceania, Antarctic and "unknown" be repre- 
sented by the numbers 1-8, respectively. Then, m = num- 
ber of nodes on continent A, for I < A < 4 (continents with 
DIGGER nodes). For node / on continent k, let a' be a vec- 
tor representing the number of unique IPs seen from each 
continent. Thus, a'k is the number of unique IPs from con- 
tinent k that were seen on node j. Then, for each continent 
k with DIGGER nodes, where L < k < 4, we calculate A* 
as shown in Eq. (4). We calculate the cosine similarity— 
shown in Eq. (5)—between every possible pair of vectors 
/T, for 1 < * < 4, and then take the average, producing the 
IP continental distribution's average cosine similarity (F4). 
The closer this value is to 1, the more similar the continental 
IP distributions appear on each continent, and the less likely 
the domain is a CDN domain. 

Ak = Y a>   (4)   Similarity(A\K) =     **\ 
M 11*1111*' 

(5) 

F5/F6: First, we calculate a domain's online time, de- 
noted as T„. Analyzing all available DNS query data from 
all nodes, we consider an online point to be a point in time 
where wc have observed IP addresses in DNS queries on the 
domain. If the difference in time between two consecutive 
online points is less than a threshold of several hours, it's 
added to T0. Next, we calculate the domain's recruit time, 
denoted as Tr. Wc consider a recruit point to be a point in 
time where we have observed a ntw IP address (i.e., one that 
hasn't occurred earlier in time). If the difference in time be- 
tween two consecutive recruit points is less than the thresh- 
old, it's added to T,. Let P = the total number of unique 
IPs observed globally for a domain. Then, the IP recruiting 
speed (F5) and period (F6) are calculated as: 

F2: represents the percentage of unique IPs that overlap 
1 r 

(6) F6 
To 

(7) 



In those instances where all of a domain's IPs are observed 
instantaneously, resulting in a T, = 0, we set F5 to 1. This 
value corresponds to a rate of one new IP every second, and 
it was great enough in magnitude from all other observed 
values to serve as a rough approximation for infinity. 

F7: We look at every DNS query gathered by all the DIG- 
GER nodes, counting the number of unique IPs (F7). It rep- 
resents the total unique IPs used globally by a domain. 

5.3    SVM Classifier 

5.3.1 Rule-based Filler 

Before testing our SVM classifiers, we applied a simple, 
rule-based filter to remove any domains that were highly un- 
likely to be CDN, FF or MAI. domains. The filter removed 
a domain from the test set only if all of the following four 
rules apply: (1) none of its IPs (in both A and NA rccs) have 
a max TTL < 1 day. (2) its A and NA recs contain < 10 
IPs over the entire monitoring period, (3) none of its IPs had 
reverse DNS lookups containing a suspicious word (e.g., dy- 
namic, dialup, etc.) and (4) none of its IPs had reverse DNS 
lookups indicating it was a known CDN domain (i.e., con- 
taining words like akamai). 

Both CDN and FF domains would be impractical if none 
of the IPs had TTL values < 1 day. Similarly, CDN and FF 
domains should accrue more than 10 IPs after a;3.5 months 
of monitoring, as should any MAL domains using stable 
servers and acting sufficiently suspicious (i.e.. their IPs are 
becoming blocked). Therefore, domains satisfying the first 
two conditions are extremely unlikely to be CDN. FF or 
MAI. domains. As an additional measure, the filter also 
ensures that none of their reverse DNS lookups return any 
suspicious words or indicate that they belong to a CDN. No- 
tice that any domains which were dead (i.e., no IPs) for the 
entire monitoring period will satisfy all 4 conditions and be 
removed from the test set. When applied, the filter removed 
100,889 unsuspicious or dead domains from our initial set of 
106,31 I domains, reducing it to 5,422. Finally, we removed 
253 domains with insufficient DNS query data (250 domains 
were momentarily observed by single nodes and 3 domains 
were monitored by less than 25% of our DIGGER nodes), 
bringing the test set to 5,169 domains. 

5.3.2 Multi-level SVM 

Fig. 10 shows the design of our multi-leveled SVM clas- 
sifier and the results of our training and lest sets. Each level 
of the SVM classifies a domain type from the test set, pro- 
gressively reducing the number of unknown domains and 
thus simplifying subsequent classification. Each oval in the 
figure represents a classified domain type, while each rect- 
angle represents the remaining unknown. The values for 
"Train" show how many examples of a given domain type 
lor group of domain types) were used when training that 
level of the classifier. The values for "Test" indicate the 
number ol domains that were classified (or remained to be 
classified) when we applied each tier of the classifier to our 

test set. We manually identified about 10 representative do- 
mains of each type to be used in training, as show in Fig. 10 
More difficult to detect by hand, we were only able to man- 
ually identify one FFxLNArec domain. 

Table 4 shows the bias and feature weights for each level 
of our classifier. Those features not used at a particular level 
are shaded black. For each SVM, the Result is calculated as 
the bias term plus the product of each feature and its weight. 
The "Result > 0" column indicates how a domain with a pos- 
itive Result will be classified. The exception is FFxLNArec 
domains, which are classified when SVM-5"s Result is nega- 
tive. Additionally, the magnitude of Result signifies the con 
fidence in classification choice. 

As each domain type is classified, it's removed from the 
set of unknown domains before applying the next SVM level. 
Due to the similarities some domain types share between 
certain features, the order we apply the classifiers and which 
features we use at each level becomes important. The proper 
order can exploit the strong differentiating features between 
certain domain types. We will now explain the feahircs used 
at each level of our SVM classifier and justify the order of 
classification. 

SVM-1: From Table 3, wc see that F3 and F4 are strong 
indicators of CDN domains due to their DNS strategy; none 
of the other domain types display this location-aware behav- 
ior. Therefore, we can remove CDN domains from the un- 
known set first with high accuracy. Since CDN domains can 
behave similarly to FF domains in other respects, removing 
them first will improve successive classification. For these 
reasons. SVM-1 was trained on 10 CDN domains and 40 
other domains (i.e., non-CDN, MAL. and FF), using F3 and 
F4 on the domains' A and NA recs. As we can see from 
Table 4, a large percentage of IPs from the wrong continent 
(F3) or similar IP distributions on each continent (F4) will 
generate a negative Result. Wc ran SVM-1 on our test set 
of 5.169 domains. It identified a total of 17 CDN domains, 
which we manually verified then removed from the test set. 

SVIVI-2: While non-CDN domains advertise all their IPs 
nearly instantaneously, both MAL and FF domains will need 
to recruit IPs over time. Additionally. MAI. and FF do- 
mains may possess IP overlap: this should never be the case 
for valid non-CDN domains. Thus, for SVM-2, we use F5. 
F6, and F2 on the combined (A + NA) recs, accounting for 
FFxl domains demonstrating lluxy behavior in only a single 
record type. We trained SVM-2 on 11 representative non- 
CDN domains and 29 of the FF and MAL domains. When 
applied to the remaining 5,152 unknown domains, it classi- 
fied 279 as non-CDN. We manually analyzed the 69 border 
cases with Results closest to 0 and found them to be satis- 
factorily classified: these results will be discussed further in 
Section 5.4.1. From Table 4. we can sec that F6 is the dom- 
inating feature. If the domain demonstrates any significant 
recruitment period, it is unlikely to be a non-CDN domain 
flad CDN domains not been previously classified and re- 
moved, this feature would have been less useful. 
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Table 4: Linear 

SVM-3: After removing (he non-CDN domains identi- 
fied by SVM-2. the lest set was entirely composed of mali- 
cious domains (i.e., FF and MAL). Due to the many similar- 
ities between FFx I and FFx2 domains, it's logical to classify 
MAL domains next. F7 is the most obvious distinguishing 
feature between MAL and FF domains, but we suspected 
that F5 and F6 might also prove useful, since FF domains 
should recruit more IPs over a greater percentage of their 
online time. SVM-3 applies F5, F6 and F7 to the domains' 
(A + NA) recs, accounting for FFx I domains. We trained 
SVM-3 on a representative set of 10 MAL domains and 19 
FF domains. When applied to the test set of 4,873 malicious 
domains, it identified 4.694 MAL domains and 179 IF do- 
mains. Looking at SVM-3 in Table 4, we see that the domi- 
nant distinguishing feature is F7: the number of unique IPs 
Because of their faster IP recruitment rate, FF domains will 
quickly outpace MAL domains, resulting in a much larger 
number of unique IPs. 

SVM-4: After three stages of the classifier, only FF do- 
mains remained in the test set. By definition, the only thing 
distinguishing FF domains is which record type demonstrates 
fluxiness. A combination of the two FFxl domain types, 
FFx2 domains arc the next candidate for classification. From 
Table 3, it appears that applying Fl, F2, F5, F6 and F7 
to the individual A and NA recs should discern FF.\2 from 
FFxl domains. For Fl, F5, F6 and F7, all the FF domains 
will demonstrate fluxy behavior, but the FFx2 domain will 
demonstrate twice as much as either type of FFxl domain. 
Additionally, the IP overlap (F2) experienced by FFx2 do- 
mains should be considerably larger. We trained SVM^ on a 
representative set of 11 FFx2 domains and 8 FFxl domains. 
While 1-5 appears less significant, F2. F6. and F7 contribute 
nearly equally in classification, and Fl is a strong indica- 
tor of FFx2 domains. These results and their implications 
are covered in Section 5.4.3. Applying SVM-4 to the 179 
remaining FF domains identified 38 FFx2 and 141 FFxl do- 
mains, which we manually verified. 

SV'M-5: The final level of the classifier is responsible 
for discriminating between FFx 1 _Arec and FFx l-NArec do 

SVM equations 
mains. With the exception of F2, SVM-5 makes use of the 
same features and record types as SVM-4 for similar rea- 
sons. F2 is ignored at this stage since the FFx I domains 
should experience comparable, modest-to-no IP overlap. If 
a FFxl domain demonstrates too much IP overlap, the fluxy 
behavior becomes visible in both record types, and the do- 
main can be considered FFx2. The usefulness of the other 
features is straightforward: for FFx 1 _Arcc domains, the fea 
tures will appear more fluxy in the A recs. and the oppo- 
site holds for FFx I _NArec domains. When applying SVM-5 
to the 141 FFxl domains, we were surprised to find 53 of 
them were actually classified as FFxl.NArec domains. We 
examined the results by hand and discovered they were in- 
deed correctly identified as FFxl.NArec domains. We will 
examine these results and possible explanations in in Sec- 
tion 5.4.4. Table 4 shows that F5 and F6 became negligible 
for SVM-5. Fl holds some influence in classification, but 
the dominating feature is clearly F7, since the fluxy record 
type naturally accrues more IPs with time. 

5.4    Results 

5.4.1    False Positives 
From our classifier's results at each stage, only SVM-2 

was found to experience any false positives: two FFx 1 .Arec 
domains were incorrectly identified as non-CDN due to DNS 
domain IP parking. When we initially analyzed DIGGER'S 
data, we discovered a couple of nodes that reliably partook 
in IP parking using the same set of IPs. Their parking behav- 
ior is easily observed in Fig. 11 as two long, constant lines 
with positive Node Index values, indicating parking in the 
A rec. Appearing as consistent, stable IP addresses, these 
parked IPs cause a domain to seem more benign than it actu- 
ally is, and if their influence dominates, our classifier could 
consider the domain to be non-CDN. We removed the in 
fluence of IP parking due to these two nodes by ignoring 
the associated parking data when present. However, in real 
ity, these were not the only nodes performing IP parking- 
though they were the most consistent. Since we didn't filter 
this behavior for all nodes, it affected classification, account- 
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Figure 12: Cautious MAL domain 

ing for SVM-2's two false positives. For example, consider 
the similar domains in Fig. 11. In both cases, the two known 
nodes were ignored, causing the domain in Fig. 11 -(a) to 
be classified correctly. However, though initially the do- 
main in Fig. 11-(b) appears fluxy. the parking behavior of 
a large majority of nodes dominates over its lifetime, caus- 
ing it to be classified as non-CDN. While considered a false 
positive, this labeling is rather subjective; for the majority of 
the domain's lifetime it does resemble a non-CDN due to IP 
parking. Since our classifier is temporally naive, using all 
available data over the a«3.5 month monitoring period, this 
misclassification is entirely reasonable. 

5.4.2    Cautious MAL domains 

While manually validating SVM-3's results, we discov- 
ered 4 borderline MAL domains exhibiting atypical IP be- 
havior, one of which is shown in Fig. 12. Recruiting less than 
50 A rec IPs over «2.5 months (the domain was parked after- 
wards), it is not fluxy enough to be considered a FFxl-Arec 
domain. However, its uncannily regular IP recruitment dis- 
tinguishes it from other MAL domains. Further analysis 
revealed that the domains advertise only a single A rec IP 
per query, with a max TTL of one minute. Despite this fine 
level of control, the domains only replace the IP about once a 
day, adhering to a meticulously precise schedule. Addition- 
ally, we can see from Fig. 12, that once changed, the A rec 
IPs arc not reused. Since these malicious domains are not 
fluxy enough to be considered FF, they are correctly clas- 
sified as MAL domains, but their behavior implies a man- 
agement strategy different from most MAL domains. They 
appear lo be a type of cautious MAL domain, regularly and 
preemptively replacing their A rec IPs before they can be de- 
tected and blocked—although the short TTL permits rapid 
response when required. With only 4 instances observed, 
this behavior is currently very rare. Nevertheless, the strat- 
egy is interesting and may gain popularity among malicious 
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Figure 14: Classified I-FxI Ji/Arec domain 

domain owners trying to evade current detection technolo- 
gies, warranting future research into the detection and sub- 
version of these domains. 

5.4.3 FF domains 

Another interesting aspect of our classifier is how it dis- 
tinguishes between the various FK domains. Recall from Ta- 
ble 4 that Fl is the dominant feature forSVM-4, with the NA 
rec being 4x as influential as the A rec. From Table 2 and 
Fig. 3, we see that the FF domains recruit more IPs for their 
A recs than their NA recs, making the A recs appear more 
fluxy. Therefore, for SVM-4, behavior that isn't considered 
fluxy enough for the A rec could be sufficient v\hen present 
in the NA rec. The consequence of this asymmetric weight- 
ing of fluxiness can be witnessed for the domains in Fig. 13 
(classified as FFx2) and Fig. 14 (classified as FFxLNArcc). 
Both domains demonstrate definite fluxy behavior in one of 
their record types: Fig. 13 is clearly fluxy in the A rec. while- 
Fig. 14 is clearly fluxy in the NA rec. With only about 20 A 
rec IPs, the recruitment behavior in Fig. 14 resembles that of 
a MAL domain, with an IP overlap of less than 4°o. Thus, 
the classifier has performed correctly: a domain with FF be- 
havior in its NA rec and MAL behavior in its A rec should be 
considered a FFxLNArec domain. However, it isn't imme- 
diately obvious why Fig. 13 is considered fluxy in its NA rec. 
which appears relatively stable. Further analysis revealed 
that the domain has an IP overlap of a26%, corresponding 
with the =s20-30 NA rec IPs demonstrating fluxy behavior. 
Since the fluxy A rec contributes over \ of the NA rec IPs. 
the less stringent fluxiness demands for the NA rec arc met, 
and the domain is correctly classified as FF.\2. 

5.4.4 Domain Type Distribution 

Table 5 shows the number and distribution for each do- 
main type identified by our classifier. Of the 106.311 do- 
mains we monitored, our rule-based filter (Section 5.3.1) 
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identified 101.142 domains as benign or lacking in sufficient 
data—corresponding to 95.14% of our monitored domains. 
This is reasonable, considering the domains monitored were 
extracted from online malwarc and phishing repositories or 
from spam emails. Most malicious domains are only active 
for a short period of time before they are discovered and 
blocked. DIGGER would have collected little-to-no valid 
data for these dead domains, and they would have been fil- 
tered out. Also, not all hyperlinks in spam belong to mali- 
cious or phishing websites; some contain legitimate links. 

After filtering, MAL and FF domains account for 94.27% 
of the remaining 5,169 test domains. Since the domain list 
is generated from suspicious sources, it's unlikely that any 
would utilize the extensive CDN infrastructure typically em- 
ployed by popular and reputable domains. Of the 4,873 ne- 
farious domains, ~96% were MAL domains and 179 were 
FF domains. This plethora of MAL domains results from 
their case of management as the traditional and most popu- 
lar mechanism employed by malicious websites. 

The additional level of misdirection and the nearly lim- 
itless supply of IPs provided by botnets make FF domains 
appealing, despite their more diligent maintenance require- 
ments Thus far, it has been primarily FFxl Arec domains 
observed in the wild, and their popularity is supported with 
our findings: «49% of the FF domains are FFxl-Arec. Un- 
fortunately for botmasters, security professionals have be- 
come aware of the FFx I _Arec botnet technique, devising 
clever detection strategies. While botnets provide a steady 
source of fresh A rec IPs, the NSes can still be blocked, 
crippling the botmaster's control until new NSes can be ac- 
quired. In an apparent attempt by botmasters to overcome 
this limitation, we witnessed a considerable presence of FFx2 
domains, composing %21% of the FF domains. FFx2 do- 
mains provide further misdirection and protection for the 
botmaster. guarding the NSes against simple countermea- 
surcs at the expense of a more diligent management effort. 
Interestingly, analysis of the identified FFx2 domains re- 
vealed a spectrum in the amount of NA rec fluxincss in- 
corporated by botmasters. Obviously, we observed domains 
thai were incredibly fluxy in both record types, as demon- 
strated by old-and-girl.com (Fig. 3), While it's interesting 
to observe these aggressive FFx2 domains in the wild, it 
was the FFx2 domains at the other end of the spectrum that 
proved more insightful. As an example, recall the more 
modest FFx2 domain chuytyt.cn (Fig. 13). With over 2.500 
unique A rec IPs, ehuytyt.cn is considerably more fluxy in 
its A rec than its NA rec. By using bot IPs from its A rec for 
roughly ] of its NA rec IPs. FFx2 domains like ehuytyt.cn 
benefit from the increased control and stability provided by 
traditional NSes, while simultaneously enhancing the do- 
main's resilience to subversion—for a minimal increase in 
management—through the use of botnets. 

Another interesting discovery is the apparent popularity of 
FFx I -NArec domains, accounting for s=30% of the total FF 
domains observed.  Surprisingly, this is a larger share than 
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Table 5: Relative distributions of the various domain types 

the FFx2 domains. It seems that botmasters have become 
aware of security professionals analyzing domains' A recs 
for FF behavior. Consequently, they have migrated the fluxy 
behavior to the NA rec, where it is less likely to be noticed. 
Fig. 14 is a typical example of the FFxl_NArec domains 
identified by our classifier. It demonstrates a MAL domain 
strategy for its A rec IPs and a FF strategy for its NA rec 
IPs. This results in the domain appearing more benign when 
its A recs are analyzed, while providing the botmaster with 
a fine level of control over the NSes. Should the domain's 
malicious activity be detected and the A rec IPs blocked, 
the botmaster, having retained control over the NSes, can 
replace the IPs with minimal service interruption. The im- 
plication of this discovered behavior is straightforward: both 
record types must be monitored for fluxy behavior in order 
to quickly identify FF domains and their botnets. A real- 
time monitor analyzing only domains' A recs will not iden- 
tify FFx 1.NArec domains as fluxy, and it could take days 
for the A rcc's MAI. domain behavior to be detected. How- 
ever, monitoring NA recs for fluxy behavior could identify 
the FF domain much more rapidly, providing a quicker re- 
sponse time for mitigating countermeasures. 

6.    LIMITATIONS AND FUTURE WORK 
While our multi-leveled classifier has proven effective in 

identifying the different domain types, it is only a proof- 
of-concept detector. It is temporally naive, operating over 
the complete set of data gathered during DIGGER'S ^=3.5- 
month monitoring period. Moreover, our data was gathered 
by 240 nodes dispersed around the globe. While this might 
be acceptable for a classifier, an optimal and practical real- 
time detector should function over a much shorter duration, 
relying on fewer nodes. The problem of determining the op- 
timal monitoring period and the minimal number of nodes is 
part of our future work. Our classifier can also suffer from 
certain anomalous behavior, such as IP parking, which, if 
dominant, can cause the DNS data to appear benign and re- 
sult in misclassification. This problem can be solved with an 
adaptive classifier, utilizing incremental training to improve 
detection in real time. 

Another potential limitation of our work results from bot- 
nets using rapid, automatic generation of domain names, 
such as Torpig [20]. FF domains using this type of botnet 
will automatically change their domain name on a regular 
basis, making it difficult to form a long-term picture of the 
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botnct's activities. DIGGER has no way to predict the future 
domain names these botnets might utilize. Consequently, 
our picture of their DNS activity will be incomplete; we 
will only gather DNS data on such domains until their do- 
main name changes. Since DIGGER continuously updates 
the list of suspicious domains it monitors, we will be able 
to gather further DNS data for these botnets under different 
domain names. Statistical clustering methods based on the 
observed bot IPs could help by associating different FF do- 
mains with the same underlying botnets. However, even this 
solution suffers from inconsistencies introduced by DHCP 
churn, warranting further research into this problem. Inci- 
dentally, rapidly-and-automatically-changing domain names 
are typically used by bots as a mechanism for contacting 
their C&C server; their kaleidoscopic nature makes them ill- 
suited for phishing or malicious-content campaigns, which 
require more persistent domain names. Since the focus of 
this paper is on FF botnets perpetrating such scams, we sel- 
dom encounter the swiftly-changing domains used for C&C. 

7.    CONCLUSION 
In this paper, we examined the global IP-usage patterns 

exhibited by different types of malicious and benign domains, 
including FFxl and FFx2 domains. We have deployed DIG- 
GER, a lightweight DNS-probing engine, on 240 Planet- 
Lab nodes spanning 4 continents. Collecting DNS data for 
over 3.5 months on a plethora of domains, our global van- 
tage point enabled us to identify the various IP-usage pat- 
terns inherent to the operation of the different domain types. 
Conducting a detailed analysis, we were able to determine 
distinguishing behavioral features between the domain types 
based on their DNS-quer> results. We have quantified these 
features and demonstrated their effectiveness for detection 
by building a proof-of-coneept, multi-leveled SVM classi- 
fier capable of discriminating between five domain types: 
CDN, non-CDN, MAL, FFx2, FFxl^Vrec and FFxI.NArec. 
Applying our classifier on a set of 5,169 unknown domains 
produced promising results, correctly categorizing the do- 
mains with only 2 false positives—due to DNS IP parking. 
Our classification results have shown the relative distribu- 
tion of the domain types in our test data and the current state 
of FF domains, including the increased presence and versa- 
tile implementation range of FFx2 domains. We have shown 
that fluxincss is typically more pronounced in A recs. and 
that there is an apparent trend towards using FFx 1 _NArec 
domains, which were previously unseen in the wild. 
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