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ABSTRACT

Botnet-based hosting or redirection/proxy serviees provide
botmasters with an ideal platform for hosting malicious and
illcgal content while affording them a high level of misdirec-
tion and protection. Because of the unreliable eonncctivity
of the constituent bots (typically compromised home com-
puters), domains built atop botnets require frequent updates
to their DNS records, replacing the IPs of offline bots with
online ones to prevent a disruption in (malicious) service.
Conscquently, their DNS records contain a large number of
constantly-changing (i.c.. “fluxy”) IPs. earning them the de-
scriptive moniker ol fast-flux domains—or, when both the
content and name servers are fluxy. double fast-flux domains.
In this paper, we study the global IP-usage patterns exhib-
ited by diffcrent types of malicious and benign domains, in-
cluding single and double fast-flux domains. We have de-
ploycd a lightweight DNS-probing engine, ealled DIGGER,
on 240 PlanctLab nodes spanning 4 continents. Colleeting
DNS data for over 3.5 months on a plethora of domains,
our global vantage points enabled us to identify distinguish-
ing behavioral features between them based on their DNS-
query results. We have quantified these leatures and demon-
strated their effectivencss for detection by building a proof-
ol-concept. multi-leveled SVM classifier capahle of discrim-
inating between five difterent types of domains with mini-
mal false positives. We have also uncovered new, cautious
[P-management stratcgies currently emploved by criminals
to evade detection. Our results provide insight into the cur-
rent global state of fast-flux botnets, including the increased
presence of double fast-Nux domains and their range in im-
plementation. In addition, we discover potential trends for
botnet-based services, uncovering previously-unseen domains
whosc name servers alone demonstrate fast-flux behavior.

1. INTRODUCTION

A botnct is a vast eolleetion of compromised computers
under the control of a botmaster utilizing a Conimand-and-
Control (C&C) infrastructure. By exploiting Internet Re-
lay Chat (IRC), pcer:to-peer (P2P), and other protocols as
flexible and extensihle means Tor C&C, botnets have gained
a great deal of versatility in providing malicious services
and generating illieit profit. Among the numerous criminal
uscs of botnets, one of the more advantagcous is the botnet-
based hosting serviee, whieh proxics or redirects unsuspect-
ing users to illegal or nefarious content. Since botncts are
essentially an abundant source of disposable IPs, they can

casily he tumed into a large network of redireetion/proxy
servers pointing to malicious content hosted elsewhere—on
anything from a powerful central server to another bot.

Used as a misdirection meehanism for evading detection,
botnet-based hosting services often come in tandem with a
variety of other criminal scams, constituting an essential por-
tion of botnets’ overall operation. For example, spam/phishing
campaigns often utilize botnets for nusdirection. They be-
gin by using some spamming mechanism to send seemingly
interesting phishing emails embedded with innocuously dis-
guised links whose domain names resolve to IP addresses
of eompromised eomputers in a botnet. Once vietims click
the embedded links, they connect to the bots, which then
redircct them to—or serve as proxies for—the host of the
nefarious content. This strategy grants criminals a high level
of anonymity whilc enabling easy and centralized manage-
ment of the malicious eontent. However, becausc botnets arc
composed primarily of compromised honie eomputers with
unreliable connectivity, it is not uncommon for them to un-
predictably go offline (¢.g.. the computer is turned off or the
installed malware is discovered and removed). Botnet-based
hosting scrvices, thercfore, must be protected against the
failurc or disruption of individual bots, ensuring the avail-
ability and stability of the hosted scrvice/content. As a re-
sult, they adopt fast-flux (FF) DNS techniques, which fre-
quently change the domain-name mappings to different bots’
IP addresses. When the victim tries to visit the malicious
domain, thc DNS server responds with a set of up-to-date,
active bot 1Ps. By recruiting a large pool of IPs and sup-
plying a large number of 1Ps per qucry, botmasters can en
surc, with high probability, that the malicious domain rc-
solves to an online bot’s 1P. An additional level of control
and resilience 1s attained by giving the domain’s IP map-
pings a short time-to-live (TTL) value, allowing botmasters
to quickly replace olfline bots. Using this FF teehnique, bot-
masters effectively tumed their botnets into a global Content
Delivery Network (CDN), providing highly available and
rcliable content-hosting services despite frequent node fail-
ures/disconnectivity. This cxtends the lifetime of illegal ac-
tivities the botnets provide, complicating disruption cftorts
hy introducing an additional layer of misdirection.

Previous rescarch focused on the features of FF botnets
and their malicious uses in phishing scams [14] (c.g.. Storin
Worm and Rock Phish). However, little has been reported on
botnets’ 1P-usage behavior from a global perspective. Be-
cause botnets are formed with myriad compromised hosts
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dispersed around the world, accurate characterization of how

botmasters manage this vast number of IPs can only be achieved

by collecting and analyzing data from a global perspeetive.
In this paper, we attempt to achieve this goal and explore the
global usage patterns of botnets™ IP addresses. The contribu-
tion of our work is four-fold. First, we build a global query
engine called DIGGER that monitors—for an extended pe-

riod of time—complete DNS behavior from 240 geographically-

dispersed vantage points spanning four continents, This pro-
vides us with a global view of how different types of do-
mains vary in their 1P-usage patterns. Sccond, we propose
effcetive methods to characterize and quantify the temporal
and spatial IP-usagc patterns of FF botnet domatns, facilitat-
ing the classification and detection of different domain types.
This also allows us to reveal several previously-unknown

features of FF botnets and uncover new, disercet IP-management

strategies currently employed by criminals to evade detec-
tion. Third, we design and implement a proof-of-concept
classilier based on a multi-leveled machine learning algo-
rithm. Utilizing the behavioral features of a domain’s IP
usage. the classifier accurately and automatically identilies
different types of malicious and benign domains. Finally,

we apply the classifier on more than three months® worth of’

globally-collceted data. The results demonstrate the current
trend of FF botnets and the cffectiveness of using the dis-
tinguishing behavioral features we identilied with our global
DNS-monitoring system.

The remainder of this paper is organized as follows. Sce-
tion 2 discusses related work. Section 3 defincs the termi-
nology we use. Section 4 explores the global DNS IP-usage
patterns for different domain types. Scction 5 presents our
prool-ol-concept classifier and its experimental evaluation
results. Section 6 diseusses the limitations of our system and
our future work. and finally, Section 7 concludes the paper.

2. RELATED WORK

Researchers have focused on the operations and threats
of botnets by collecting and analyzing bot-related activitics,
such as IRC traffic [1 7], spam emails [22]. and DNS quecrics
[18]. For example, Rajab ef al. [17] constructed a distributed
mnfrastructure to measure [RC botnet activities and showed
that hotnets contribute the majority of unwanted traffic in
the Internct. Grizzard er al. [6] analyzced the architecture and
communication protocol of a most recent P2P botnet, Pea-
com (a.k.a. Storm Worm) [5], demonstrating that P2P bot-
nets are more rohust to node lailures and difficult to take
down. All these methods fall into the category of passive
analysis. To gain a botnct’s insider vicw, researchers also
took active approaches, infiltrating botnets with actual mal-
ware samples or customized crawlers. For example, Holz
et al. [12] crafted a specific P2P client to join the Storm
Worm's P2P botnet and analyzed its in-depth features. More
recently. Stone-Gross et al. [20] suceessfully took over the
Torpig botnet for 10 days by preemptively registering DNS
domains the hots would he contacting as C&C servers in the

o

necar future, allowing them to reveal detailed operations of
the botnet and accurately estimate the number of compro-
mised hosts.

Because of the signilicant threats botnets have posed to In-
ternet services and applications, researchers have proposed
various botnet detection approaches. Some cxploit the net-
work behavior typical of botnets’ C&C protocols. For exam-
ple, BotHunter {8] attempts to detect bots using 1DS-driven
dialog correlation based on IRC C&C comnmunication and
other common actions taken during the life cycle of a bot.
BotSniffer |9] identifics HTTP- and IRC-based C&C chan-
nels by capturing the coordinated and synchronized commu-
nication patterns in the C&C trallic. To climinate the re-
liance on IRC- or HTTP-bascd C&C protocols, Gu ef al.
proposed BotMiner [7], which ¢lusters similar conununica-
tion and malicious traffic and performs cross-cluster corre
lation to identify bot-infected hosts.

Another common mcthod for botnet detection 1s identi-
fying the unique network patterns of scams they perpetrate.
Among the numerous criminal uses of botnets, their use as
hosting or redirection/proxy scrvers for illegal content and
phishing scams provides an ideal platform lor financial gain.
However, because of the unreliable nature of bots, more bot-
masters have adopted fast-ltux DNS techniques to ensure the
availability and stability of their malicious service/content.
FF techniques were first reported and analyzed as part of
the HoncyNet projeet [21]. Holz er al. (11] and Passcrini
et al. [15] both studied the characteristics of FF networks
and developed detection algorithms. They gathered URL
domains from spam cmails and monitored their DNS-query
results for an extended period of time. extracting a sct of
unique features such as number of unique 1Ps, numher of
ASes, lifetime of the domains, TTL values, etc. A lincar de-
cision function [11] and a naive Bayesian classificr [15] were
applicd on these features to identify FF networks. Nazario
and Holz [14] later applied a similar approach to track the
use of FF domains and characterize additional propertics of
FF botnets, including their member size, lifetime. and top-
level domain distribution. Their results demonstrated that
continuous data mining of FF DNS records can yield insights
into the opcrations of FF botnets. More recently, Konte er
al [13] studied the dynamies of the FF network from the
perspeetive of online scam hosting infrastructures tor dif-
ferent spam campaigns, measuring the change rates of DNS
records, distribution of TTL values, and location of 1P ad-
dresses. Their mcasurement results suggested that some per-
sistent features may be useful in the detection of FF hotnets.

Our work is unique and different from this previous work
as follows. First, all of the previous work collected data from
a single vantage point, and hence, may fail to capture uscful
features that can only be discovered from a global perspec-
tive (c.g., different IP-advertiscment strategies used by FF
nctworks, CDN and non-CDN domains). By contrast, we
deployed a large number of sensors around the world, pro-
viding a global perspective of [P-usage patterns for differ-



cnt types of FF botnets (in particular, double FF domains).
Sccond. both approaches in [11] and [15] scparatc FF do-
mains indiscriminately from normal domains without distin-
guishing their types (e.g.. single and double FF nctworks).
In this paper, we provide detailed categorization of FF do-
mains (including two types of single FF networks and a dou-
ble I'F network) and developed a multi-level classifier capa-
ble of discriminating between different types of both FF and
non-fluxy domains. This finer-grained classification allows
us to gain insight into the current statc-of-art and potential
trends of different FF botnets, as well as their range in im-
plementation. Moreover, to ereate an efficient classifier with
minimal false positives/negatives, we carefully selected and
quantified 7 distinguishing features (some were reported pre-
viously {11, 15, 13] but others are new) and apply a subsct
of features at each level ol our classifier. Third, becausc the
purpose of using FF botnets is to reliably distribute mahi-
cious content to users despite bot failures, the DNS behavior
of FF botnets resembles that of traditional CDNs {4] em-
ploying DNS techniques for load-balancing. As a result,
some features used in the previous work (e.g., TTL values,
IP-change rate, number of unique IP addresses and ASes)
appcar similar between FF and CDN domains, potentially
leading to false positives. In this paper, we conduct a com-
parative analysis of different IP-management schemes used
in FF botnets and popular CDNs, This allows us to accu-
rately filter CDN domains beforehand. and thus. minimize
the false positives of the classifier.

3. TERMINOLOGY

This section defines the terminology we have adopted for
succinctness and clarification when discussing the various
domain types and DNS records in this paper. The primary
DNS record compenents we consider are defined in Table 1.

= The address (A} record in 8 DNS query on a comain
Arec
« The IP adaresses of tne domain s content servers. !
L - 4
NS * The tame server {NS) recorc in a DNS gquery on a domain
rec
¢ The domain names {not IP adresses; of the domain's NSes
* The A rec na DNS query on a doma n's name servers
NA rec
* The IP adaresses of sne domain s NSes.
* The result of 3 DNS ouery recuest for an IP s domain rame
Reverse DNS {te, PTR request}
lookup/name * When performing a DNS query on a domain, we also do a
reverse DNS iockup on the domain s A and NA rec (Ps

Table | : DNS record terminology

In Fig. 1, we have plotted the global 1P usage—as scen
from the DNS queries—for some representative domains of
the different domain types. In this figure. the Time axis
represents the time (in seconds) since our distributed DNS
query engince (DIGGER, Scction 4.2) was deployed: Node
Index represents the node (from those dispersed around the
globe) that the [P was observed on, with positive values in-
dicating an A rec IP and negative values an NA ree IP; /P /n-
dex is a unique index incrementally assigned to each newly-

observed 1P. In what follows, we explain the terims we use to
deseribe these various domain types and how they behave.
Their global behavior will be explained further in Section 4.

FF domains are malicious domains utilizing a fast-flux
(FF) DNS-advertisement strategy, typically built atop bot-
nets. Because bots may unexpectedly go offline. FF do-
mains advertisc numerous [Ps in their DNS-query results,
helping ensure some of the IPs belong to a functional bot.
The TTL of the [Ps used by FF domains tend to be relatively
short; this permits the botmasters a finer level of control in
replacing IPs advertised to the DNS servers, increasing the
availability of an onlinc bot and access to the malicious pay-
load. It is this excessive number of constantly-changing 1P
addresses that qualifies a domain’s DNS records and adver-
tiscment strategy as “fluxy ™, and the domain is considered a
FF domain. Domains exhibiting FF behavior in only a sin-
gle record type (i.e., A rec or NA rec, but not both) are con-
sidered FFx1 domains (single fast flux). More specifically.
FFx1 domains that are fluxy in their A recs (i.c.. content
servers) are lermed FFx1_Arec domains, while those thai
are fluxy in their NA recs (i.e.. namc servers) are termed
FFx1_NArec domains; FFxl_NArec domains arc able to
evade current detection strategies that focus on A rees by
migrating their fluxy behavior to their NA recs. where it is
less likely to be noticed. When FF domains are fluxy in hoth
their A and NA rees, they are considered double fast flux. or
FFx2 domains. A FFx2 domain can provide unprecedented
control in the management of the domain and its resources
botnet or otherwise— with the DNS service, affording the
botmaster a high level of misdirection and protection.

CDN domalns are valid, benign domains that uses a CDN,
such as Akamai, to improve the delivery of their content.
CDNs——<consisting of a system of computers neiworked to-
gether for the purposes of improving the performance and
scalability of content distribution—produce DNS-query re-
sults resenibling those of malicious FF domains: numerous,
changing 1Ps per query with short TTL values. This aftin-
ity is a consequence of their similar goal to provide rch-
able content delivery despite node failure, as well as their
shared assumption that any node can temporarily or perma-
nently fail at any time. However, CDN domains demon-
stratc geographic awareness (i.e., IPs geographically close
to a DNS server will be advertised with higher probability at
that server) and load balancing (i.c.. techniques improving
performance and scalability not observed in FF domains).

Non-CDN domains arc valid. benign domains that don 7
use a CDN for delivery of their content. Typically, non-CDN
domains usc a few stable content servers and a modest num-
ber of NScs, with the sumic A and NA rec 1Ps appearing
the query results regardless of the queried DNS scrver’s ge-
ographic location.

MAL domains are domains that aren’t fluxy cnough to
be considered FF domains, nor benign enough to be con-
sidered non-CDN domains. While not necessarily malicious
domains, their DNS behavior demonstrates potentially sus-
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Figure 1: Global IP-usage (in DNS query results) for some examples of the domain types

picious behavior often attributed with malicious domains.
They tend to recruit more 1Ps than a non-CDN, but not ncarly
as many as a FF domain. For example, during a monitoring
period of a few months, a FF domain is likely to advertisc
thousands of different 1Ps with DNS; cven a fairly slow FF
domain will advertisc in the hundreds. A MAL domain, on
the other hand, will advertisc perhaps a total of 20-30 1Ps—
roughly onc or two IPs every few days. This is different from
a non-CDN. While a non-CDN may have 20-30 IPs, they arc
all seen essentially at once and are stable for the duration of
the monitored period. MAL domains will tend to slowly
add more IPs because they will slowly lose some as their
malicious activities are detected and their IPs are bloeked.
The IPs used by MAL domains may consist of bots or valid
servers being used for malieious means. Additionally, be-
nign websites hosted on home computers with dynamic IP
addresses could be considered MAL. domains by our defini-
tion. However, we consider this acceptable since most valid
websites arc not hosted on home computers, causing those
that arc to be inherently suspect.

4. GLOBAL IP-USAGE PATTERNS

4.1 Overview

In this section, wc explore the DNS [P-usage patterns of
the previously-described domiain types, identifying interest-
ing and differentiating features among them. We accom-
plish this by analyzing numerous domains’ DNS-query re-
sults from vantage points dispersed around the world. This
provides us with a unique, global perspective of how the dif-
ferent types of domains advertise their IP addresses to DNS
servers. First, we will describe how we set up a globally-
distributed DNS monitoring system and then discuss the var-
ious features we have identified that could be useful in the
elassification of the different domain types.

4.2 System Architecture

We created a distributcd DNS-query engine called DIG-
GER, deployed on 240 geographically disparate nodes in the
Planetl.ab testbed [16). The nodes wcre chosen based on the
location of thc DNS servers they queried, such that DIGGER
would issue quenies to DNS servers in different geographic
locations around the world. Fig. 2 shows the distribution of
DIGGER nodes. which is reflective of the overali distribu-
tion of available PlanetLab nodes.

On each node, for malicious and benign domains, DIG-
GER pcrforms DNS-query digs on their A ree, NS rec, NA

5. America

Figure 2: Global distribution of DIGGER nodes by continent

rec and the reverse DNS lookup for the A and NA rec IPs
Bascd on a domain’s most recently returned DNS-query re-
sults, DIGGER classifics the domain as either active or of-
fline. DIGGER continues to dig active domains periodically
based on their observed TTL, ensuring fresh DNS-query re-
sults. Domains determined to be offline are intermittently
dug, so that DIGGER can discover if they come back onlinc.
Every 24 hours, DIGGER compresses the raw DNS-query
data and uploads the resuits to our analysis server. This way
we aggregate the global DNS-query results for over 106,000
different domains from 240 nodes around the globe. The sct
of domains monitored by DIGGER is compiled from mul-
tiple sources, including online repositories of phishing [3]
and malware [1] websites. 1n addition, we extract domains
from URL links embedded in spam emails found in our per-
sonal mail boxes, a spam rclay trap, and reeent additions
to online repositorics [10] during DIGGER’s active period.
While DIGGER is active, we continue to gather additionally
suspicious domains, adding them to DIGGER’s monitoring
set. DIGGER has been deployed and gathering global DNS-
usage patterns for a little over 3.5 months. Based on the
analysis ot'this data, we have identified several differentiat-
ing featurcs between malicious FF botnet and valid domains,
as descnibed in the following subscctions.

4.3 Overlap between IPs of A and NA Records

While analyzing our data, it quickly became apparent that
FF domains tend to cxhibit some IP overlap. We werc secing
IPs advertised for a domain’s A rec reappearing in the same
domain’s NA rec. We discovered that the malicious domains
wcre not only reusing their available 1P pool for both A and
NA rccs, but were also returning IPs from the same 1P pool
rcgardless of which NS was queried, resulting in different
NSes with identical 1Ps.

Table 2 shows the total number of A rec, NA rec, and
overlap IPs (i.c., IPs appearing in both the A and NA rec) for
some representative domains from cach domain type. This
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Figure 3: Global IP usage for example FFx2 domain

overlap phenomenon was much more prevalent in FFx2 do-
mains than cither type of FFx1; we never observed it in valid
domains. The FFx1 domains almost entirely use valid IPs
for one record type and the IPs of compromised computers
for the other. While the representative MAL domains have a
small number of total unique IPs (like a non-CDN domain),
their IP overlap is exceptionally high, with almost all of their
A ree IPs also used for their NA recs, thus setting them
apart from valid domains. The IP overlap we empirically
observed demonstrates that valid domains use separate ma-
chincs for their content and name servers-—most likely for
redundaney and fault-tolerance purposes, preventing a single
point of failure. FF and MAL domains, on the other hand,
attempt to make the most of their limited resources, reusing
IPs for both the A and NA records. Clearly, the amount of
observed [P overlap can prove a uscful feature for differenti-
ating between valid and malicious domains, especially FFx2
and MAL domains.

4.4 1P Recruiting

Due to their different resources and management tech-
niques, onc would cxpect FF, CDN, and non-CDN domains
to demonstrate distinct strategies when advertising IPs to
DNS servers. To confirm/refute this expectation. we have
analyzed the advertisement strategies for the various domain

CDN: www manbc.msn.com (A rec) CON: www.msnbc.msn.com (NA rec}
1200 8000,
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] g glPlngde% §
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Figure 4: Global IP usage for example CDN domain
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Figure 5: Global IP usage for example non-CDN domain

types. For a given domain, we assumed a global vantage
point across all DIGGER nodes and assigned a unique IP in-
dex (in ascending order) to each newly-seen IP in the DNS
query results. This [P index is plotted against time for exam-
ple FFx2, CDN, non-CDN, and MAL domains in Figs. 3-6,
with the y-axis representing the unique I[P index and the x

axis representing the time in seconds since DIGGER was
deployed. The example domains were added to DIGGER
about | month after its deployment, resulting in the plots’
initial lack of data. The points in the graphs represent when
an IP was retumned in a DNS query on a global scale (i.c..
across all nodes monitored by DIGGER). Thus, the slope
of each curve demonstrates the rate, or speed, with which a
domain seems to globally “recruit” more unique [Ps.

It should be noted that, by definition, FFx1_Arce and FFx1_NArec

domains are essentiglly specific subscts of FFx2 domains.
They behave like a FF domain in one record type and like a
non-CDN in the other. Thus, their plots are not included as
they are mostly redundant.
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Figure 6: Global IP usage for example MAL domain

Recruitment Speed: refers to the specd (or rate) at which
one observes new, unique IPs for a given domain when mon-
itoring that domain’s DNS queries over time.

Fig. 3 shows how a FFx2 domain slowly and ncarly con
tinuously accrucs unique IPs over its entire online lifetime,
with short, intermittent periods of stability. These results
indicated that FF domains—consisting primanly of compro-
mised home/oflice computers that may go offlinc arbitrarily
must continue to recruit new IPs to help ensure reliable de-
livery of their nefarious content. In addition, the bots used
by FF domains often obtain dynamie [P addresses from their
Internet Service Provider (ISP) via DHCP (Dynamic Host
Configuration Protocol). Consequently, a bot may be as-
signed different IPs over time, causing our DIGGER nodes
to observe the apparent recruitment of new IPs; this cffeet is
called DHCP churn, and it is not present for valid domains




using stable servers with static IPs.

Mecanwhile, when viewed globally, we have discovered
that CDN domains (Fig. 4) achieve a much faster recruit-
ment speed, indicating that they advertisc IPs from a large
pool of stablc TP addresses, which they rotate quickly and
cfficiently for performance purposes. such as load balanc-
ing. Our data also reveals that CDNs advertisc their IPs in
a geographically-conscious manner. For a given CDN do-
main, a DNS query in Asia will often result in a different
set of 1Ps than would the same query originating in Europe.
This is because the CDN would nostly advertise (fromits to-
tal pool of IPs) IPs located in Asia to Asian DNS servers and
IPs located in Europe to European DNS scrvers. As a result,
DIGGER’s global perspective obscrves most of the CDN's
IPs in a short period of time. In contrast, FF domains appear
to be at the whim of the currently available and onlinc bots,
preventing the Ievel of control necessary for geographic IP
management. Consequently, they tend to advertisc the same
pool of IPs irrcspective of the DNS servers’ geographic lo-
cation. Thus, while they may change their advertised IPs as
quickly as a CDN, they do so on a global scale (i.c., ncarly
the same IPs are scen regardlcss of query location), whercas
a CDN is more localized (i.e., IPs returned are dependent
on the queried DNS server’s location). Hence, for FF do-
mains, DIGGER’s global perspective doesn’t allow it to ob-
serve many more IPs than at any given local vantage point,
resulting in the comparatively slower IP recruitment rate.

From our analysis, we have found that non-CDN domains
(Fig. S) hardly recruit any additional IPs over time. Rather,
their IP pools consists of a small number of stable content
scrvers that are almost simultancously advertised to DNS
servers around the world.

Looking at Fig. 6, we can scc that tsqfsnyvjukutuxefen
demonstrates the slow and somewhat steady recruitment of
IPs common to MAL domains. This behavior is likely the re-
sult of thec MAL domains’ malicious activitics being detected
and their IPs blocked, requiring them to register fresh IPs
with DNS in order to maintain content availability. Closer
examination reveals that, unlike FF domains which recruit
hundreds to thousands of Ps, MAL domains recruit only
tens ot IPs over more than 3.5 months. This is a drastic
difference, and it should prove beneficial in distinguishing
MAL. domains from non-CDN and FF domains.

Recruitment Period: rcpresents the amount of time dur-
ing which new IPs are scen for a given domain when mon-
itoring that domain’s DNS querics over time. Our data in-
dicates that non-CDN domains (Fig. 5) use a small pool of
very stable TPs with almost no recruitment period; all the IPs
used arc advertised initially and uscd throughout the lifetime
of the domain. On the other hand, we have found that CDN
domains utilize much larger [P pools, from which [Ps are
advertised based on geographic location and load balancing.
When viewed from a global perspective, the fast recruitment
speed of CDN domains causes DIGGER to quickly observe
most of their available 1Ps, resulting in a short recruitment

period at the onsct of monitoring followed by a longer, stable
period consisting mainly of previously-scen IPs. As demon-
strated in Fig. 4, we can sce that the CDN's recruitment pe-
riod is smaller than its total onlinc period; after its initial
recruitment period, the CDN domain stabilizes and adver-
tises a much smaller set of IPs before a quick advertisement
spike followed by another stable period. We have also dis-
covered, as shown in Fig. 3. that the fluxy records for I'F
domains recruit new IPs for ncarly the entire duration of the
domains’ online period, with only short, intermittent periods
of stability. That is, ncarly the entire time we observe a FF
domain to be online, its fluxy records are recruiting new 1Ps.
This constant IP recruitment is a result of DHCP churn and
the unrcliable nature of the compromised computers serving
as bots. The varying recruitment periods we have discovered
for the different domain types should provide a useful metric
for distinguishing between them.

4.5 Continental Distribution of IPs

Next, we examine how the various domain types differ
in their IP distribution (i.¢., where the IPs returmed in DNS
querics arc geographically located). We examine the geo
graphic location of IPs based on continent rather than coun-
try, because the close proximity of European countries made
a country-based resolution too finely-grained. When view-
ing the TP distribution based on continent, however, distin-
guishing trends between the domain types became more ap-
parent. In analyzing a domain’s IP distribution we asked the
following questions:

Q1: What percentage of 1Ps returned in DNS quenes are
located in a different continent than the queried DNS server?
We restate this, for succinctness, as the percentage of 1Py

from the wrong continent.

Q2: From the perspective of each continent containing
queried DNS servers, what percentage of IPs returned are
located 1n cach continent? Likewise, for succinctness, we
restate this as the continental 1P distribution.

The answer to Q1 can be scen in Fig. 7 for some represen-
tative domains. For each domain. we plotted the percentage
of A and NA rec IPs from the wrong continent. From Fig. 7,
it is evident that the CDN domain has a considerahly smaller
proportion of IPs from the wrong continent than the other
domain types. For both the CDN’s A and NA rec IPs, the
percentage from the wrong continent is less than half that of
the next lowest domain.

Insight into continental IP distribution (Q2) can be found
in Fig. 8 for some samplc domains. For brevity, we have not
plotted any FFx1 domains, since their results are a subsct
of the FFx2 domain type; likewise, we have omitted plots
for a MAL domain (since their distribution is functionally
similar to non-CDN domains) and for the NA recs™ distri-
bution (since the results arc similar to those for the A recs).
In Fig. 8, the bars represcnt the continental |P distribution
from dilferent perspeetives. In each domain's plot, the first
bar represents the continental IP distribution from a global




perspective, while the other bars are from the perspective of
the differcnt continents where we deployed DIGGER nodes.
For cxample. the bar labeled “Asia” under old-and-girl.com
(Fig. 8) indieatcs the percentage of A rec IPs located in each
continent base on querics to Asian DNS servers.

It is interesting to notc in Fig. § that the continental IP
distribution for both FFx2 and non-CDN domains is fairly
consistent across the differcnt continents, hardly deviating
from the global distribution. For CDN domains, on the other
hand, the distribution varics greatly. These results elearly
reveal the location-aware DNS advertisement employed by
CDNs. Their DNS query results often contain a majority
of IPs located near the DNS server and the issued query,
providing fast, rcliable services and quicker content delivery
1o cnd users by reducing the data’s travel distance. Consc-
quently, CDNs demonstrate a smaller percentage of IPs from
the wrong continent and a larger variance in continental 1P
distribution than other domain types.

From our data, we found that MAL and non-CDN do-
mains operate in a similar manner. With a smaller set of
stable servers (both eontent and name) than CDN and FF
domains, they don’t requirec complicated load balancing or
location-aware DNS advertisement. Instcad, we discovered
that they adopt a form of naive DNS advertisement and in-
discriminately advertisc their small pool of server IPs around
the world ncarly simultancously (Fig. 5). This causes the
continental 1P distribution at cach continent to be the same
as the global distribution. Consequently, the percentage of
IPs from the wrong continent will reflect the global distri-
bution of our DIGGER nodes, depending on the location of
the non-CDN domain’s servers. Fig. 8 shows that for the
non-CDN domain hostingprod.com, all of the A rec IPs are
in N. America. Becausc about 46% of our nodes arc lo-
cated in N. America (Fig. 2). we find that 33.77% of host-
ingprod.com’s IPs arc from the wrong continent (Fig. 7), ap-
proximatcly (duc to rounding) the same percentage as nodes
not in N. America.

Our analysis suggests that FF domains adopt an advertisc-
ment strategy dictated by the unstable nature of their con-
stituent bots, which we term necessitv-based DNS advertise-
ment. Sinee bots can go offline at any time, FFI' domains
must rely on whichever bots are currently available, regard-
less of geographic location. While FF domains don’t eoncur-
rently advertise their entire 1P pool globally (as non-CDNs
do), they eventually advertise most of their IPs globally. FF
domains appcar to advertise available IPs to DNS scrvers
around the globe as nceessity dictates, with little or no re-
gard to locatton, resulting in a large pereentage ot [Ps from
the wrong continent and a fairly consistent contincntal IP
distribution across continents.

Our findings indicate that the perecntage of 1Ps from the
wrong contincnt and the variance of the eontinental 1P dis-
tribution eould serve as features for distinguishing CDN do-
mains from the other domain types. This can greatly sim-
plify the detcetion of FF domains by helping identify them
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Figure 7: Percentage of IPs from the wrong continent

from CDNs, which arc often very similar in other respects.

4.6 Number of Unique IP Addresses per Node

Another intercsting featurc is the number of unique 1Ps
seen across the DIGGER nodes over time. Fig. 9 shows the
CDFs for the numbers of unique A and NA rec [Ps observed
by our 240 DIGGER nodcs during the =3.5 month monitor-
ing period. Again, MAL domains have been omitted in the
plots due to their similarity to non-CDN domains. Our em-
pirical data revcals that non-CDN and FFx1_NArcc domains
(whose A recs behave like a non-CDN) use a small set of
stable content scrvers. For example, in Fig. 9-(a), neither of
them contains more than 18 unique A rec IPs per node. CDN
domains are found to exhibit a large number of unique A rec
IPs on some nodes, though the number of nodes is consid-
crably fewer than obscrved for FF domains. For example,
for the CDN in Fig. 9-(a), ~84% of the DIGGER nodes ob-
served less than 22 unique A ree 1Ps and no node ohserved
more than 200. On the other hand, for the FFx1_Arec and
FFx2 domains, we observed a greater number of unique A
rece IPs on a larger percentage of nodes. For the FFx1 _Arec
domain in Fig. 9-(a), ~45% of the nodes dctected over 100
unique A rec IPs, more than 35% detected over 200, and a
few observed over 700. The numbers obscrved for the FFx2
domain are even higher, with over 80% of the nodes observ-
ing more than 100, ~43% more than 500, and several with
more than 2,500. Clearly, the FFx1 _Arec and FFx2 domains
possess a much higher average number of unique A rec 1Ps
per node—a direct consequence of the bots® unrcliable con-
ncctivity and, to a lesser extent, DIHCP churn.

While the number of unique A rec IPs per node appears
a promising distinguishing feature, our data implies that this
is not the case for the average numbher of unique NA rec IPs.
For example, from Fig. 9-(b) it is apparent that CDN and
FFx2 domains possess many more unique NA ree 1Ps per
nodc than the other domain types. Although the CDN do-
main appears to utilize more unique NA rec IPs per node on
average, thc FFx2 domain demonstrates a greater number of
unique 1Ps at a single node: 999 IPs to the CDN domain’s
727. It secms that, over time, CDNs can advertise numerous
NScs with DNS, resulting in an exeessive number of unique
NA rec IPs per node. This behavior might arisc from the
CDN trying to ensure the availability of its NSes. afford-
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Figure 9: CDF: # of unigue A and NA rec IPs per node

ing it better control when performing load balaneing. In any
case, we found the behavior of the FF and CDN domains to
be too similar, eausing the number of unique NA rec IPs to
be an indistinctive feature.

4.7 Total Number of Unique IPs

Based on our data, we learned that non-CDN and MAL
domains advertise only a few stable content and name servers
with DNS. In the case of non-CDN domains, nearly ali the
A and NA ree IPs arc advertised ubiquitously around the
globe. For MAL domains, a smaller number of 1Ps are used
at any given time; however, over time, as the MAL domain
becomes detected and its [Ps blocked, the number of unique
IPs will slowly increase. In either ease, the total number of
unique A and NA ree [Ps for MAL and non-CDN domains is
meager when compared to CDN and FF domains (Table 2),
making it a useful distinguishing feature.

4.8 Reverse DNS Lookup and TTL

Because an IP's reverse DNS name is sct by its ISP and
not the owner of the domain, it cannot be faked by a bot-
master.  This makes it a fairly useful metnic for identify-
ing bots, which would contain reverse DNS names typical
to home computers (i.c., containing words like comeast, dy-
namig, dial-up, ete.). Unfortunately, the reverse DNS lookup
1s highly unreliable, often not returning a result. Addition-
ally, we don’t have a complete list of suspictous words, and
oceasionally, the presence of such words may not be indica-
tive of a bot. Therefore, we have decided not to incorporate
the reverse DNS name for automatic domain elassification.
hoping to gain better insight into more reliable features. In-

stead. when present. we use it to help reinforee or confirm
our manual identification of the dilterent domain types.

The A and NA rees’ TTL values also appear highly usc-
ful for differentiating between the domain types. However,
unlike many of the other features we have previously ex-
plored, the TTL value is not an uncontrollable consequence
of FF domains:; it is st by the owner of the domain, afford-
ing botmasters a convenient mechanism for circumventing
TTL-dcpendent detection metries. In addition, it has been
shown in [13] that the TTL distribution of FF domains and
many popular websites (especially CDN domains) are simi-
lar. Consequently, we have decided not to use the TTL as a
classification feature. It should be noted that other features,
like the recruitment speed and period, cannot be as casily
manipulated by the botmaster, since the unstable bot IPs ne-
cessitate constant recruitment.

4.9 Other Features

For the various domain types, we also examined the aver-
age number of nodes per [P and the average [P online time.
While these results proved interesting and potentially uscful
as distinguishing features, we found them less effective than
the other features when designing our classifier (Section §).
Therefore, due to space eonstraints, we have omitted our re-
sults concerning these features and refer the interested reader
to our technical report for their discussion.

5. DETECTION METHODOLOGY

5.1 Overview

Our observations in Scetion 4 indicate that the different
domain types could be identitied based on behavioral fea-
tures of their global DNS activity. To demonstrate this, we
built a prool-of-concept classifier. utilizing a multi-leveled
linear SVM (Support Veetor Machine). The rest of this sec-
tion describes its design and implementation, including how
we quantified the behavioral features, chose which features
to apply at cach stage (or level), determined the order of the
stages. and finally. how the SVMs were trained.

5.2 Classification Features

Table 3 shows the features we considered using in the
classifier and how they are likely to group the domain types.



Each feature has been given a number to simplify its repre-
sentation throughout the paper. With the exception of fea-
ture F2, cach featurc can be applied to a domain’s A or NA
rec, and while not displayed in Tablc 3, the features can also
be applicd to the combined 1P pool of the A and NA recs,
represented as (A + NA). Lastly, the column labeled “Do-
main Type Classification Groups™ in Tahle 3 shows how cach
feature—when applied to the A or NA rcc—will likely group
the different domain types, represented by squarce brackets.
Table 3 does not express hard-and-fast rules for how features
classify the domain types. Rather, it shows likely groupings:
domain types tending to produce similar results with respect
to a given feature and record type. Thus, Table 3 is a help-
ful visual tool for determining the application of features at
different SVM levels.

DNS Domain Type
Classification Feature
Record Classification Groups
5 » [CON.. nor-CON., MAL  FFxi_NArec.)
o [FFx2,, FFx]_Arec |
£1. Avg 2 ot unique IPs per Node - - =
aa ® {CON,, FFx2,} = [FFx1_NArec.|
¢ [non-CON,, MAL,, FFx1_Arec
s {CON,, non-CON |
F2. A & NA rec gvertlap A& NA i
¢ [MAL,, FFx2,, FFx1_Arec., FFxl_NArec.|
A
F3. % IPs fram wrong continent HrSE {con
l -CON,, MAL, FF
FA. Continental IP distribution's A £ [0oriCEly 52y
_average cosine similarity NA FFx1_Arec,, FFx1_NArec.]
P ¢ [CDN,j ¢|non-CDN,, FFxl_NArec. |
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o ® [CON,; o [non CDN_, F~x1_Arec )
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o [MAL ] = [FFx2, FFx]_Arec
F6. IP recru.ting perios =1 7
A »[CON.! o [non-CON,, FFx]_Arec.]
o [MAL.} = [FFx2,, FFx]1 Narec,
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F7. Total unique [P
R ¢ [CON,, #Fx2, FFx]1_NArec,}
* [non-CON,, MAL,, FFx:_Arec,)
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Tre number by each domain type represents the lesel it is ciossificd by our SYM.
When sefecting fearures for SVM- x. domains with g number < x can be igno-ed,
since they hove olready been classified and removed from the unkncwn set

Table 3: Features 1o classify domain types into diff groups
3.2.1 Feature Quantification

All of the features, except }F2, were quantified using the
IPs of the three different record types—A, NA and (A + NA)
recs—to producc 3 distinct values. Which of these values
is used at each stage of the classifier is discussed in Sec-
tion 3.3.2. Each feature is calculated for cach domain moni-
tored by DIGGER over the total =23.5 month duration.

F1. Let £ = numher of unique IPs on nodc /, and let
N = number of nodes (of the 240 total) where the numbcr of
unigue IPs > 1. Then, FI is computed as:

_NA
N
F2: rcpresents the percentage of unique IPs that overlap

&l n

betwecen the A and NA recs. Thus, if all the IPs from onc
record type arc also uscd for the other record type, there will
be a 100% IP overlap. For a given domain across all nodes,
let P4 be the sct of unique A ree IPs and Py, be the set of
unique NA rcc IPs. Then, F2 is calculated as:
’— [P Pl @)
min{|Py|.|Py4l} B

F3: Using an online database [2] and whois lookup, we
were able to determine the country of origin for most IPs
obscrved by DIGGER and the continent the 1P was located
on: N. America, S. America, Europe, Asia, Africa, Occania,
Antarctica, and-—very rarely-——unknown. Let W) = number
of unique IPs on node 7 that arc located in a different (ie.,
wrong) continent than node i. Let P and N be defined as for
F1. Then, F3 is computed as:

3
F3=Z%%§ 3)
i1 4

F4: Let the continents N. Ameriea, S. America, Europe,
Asia, Africa, Occania, Antarctic and “unknown™ be repre-
sented by the numbers 1-8, respectively. Then, 1 = num-
ber of nodcs on continent 4, for | <& <4 (continents with
DIGGER nodes). For node j on continent &, let &/ be a vec-
tor representing the number of unique IPs seen from each
continent. Thus, @, is the number of unique IPs from con-
tincnt & that were seen on nodc j. Then, for each continent
k with DIGGER nodes, where 1 < k < 4, we calculate A*
as shown in Eq. (4). We calculate the cosine similarity—
shown in Eq. (5} —between every possible pair of veclors
A, for | < k <4, and then take the average, producing the
IP continental distribution’s average cosine similarity (F4).
The closer this value 1s to 1, the more similar the continenial
IP distributions appear on cach continent, and the less likcly
the domain is a CDN domain.
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F5/F6: First, we calculatc a domain’s online tinmie, de
noted as 7,. Analyzing all available DNS query data from
all nodcs, we consider an online point to be a point 1n tune
where we have observed IP addresses in DNS qucries on the
domain. If the difference in time between two consecutive
online points is less than a threshold of several hours. it's
addcd to 7,. Next, we calculate the domain’s recruit time,
dcnoted as 7,. We consider a recruit point to be a point in
time where we have observed a new 1P address (i.e., one that
hasn’t occurred earlicr in timc). 1If the difference in time be-
tween two consecutive recruit points 1s less than the thresh-
old, it’s added to 7,. Let P = the total number of unique
IPs ohserved glohally for a domain. Then, the IP recruiting
speed (FS) and period (F6) are calculated as:

LA F6 =

T (7

i




In thosc instances where all of a domain’s 11°s are observed
instantancously, resulting in a 7, = 0, we set F5 1o I. This
value corresponds to a ratc of onc new IP every second. and
it was great enough in magnitude from all other obscrved
values to serve as a rough approximation lor inlinity.

F7: We look at every DNS query gathercd by all the DIG-
GER nodcs, counting thc number of unique 1Ps (F7). It rep-
resents the total unique 1Ps used globally by a domain.

5.3 SVM Classifier

5.3.1 Rule-based Filter

Before testing our SVM classifiers, we applied a simple,
rule-based filter to remove any domains that werc highly un-
likely to be CDN. FI' or MAL domains. The filter removed
a domain from the test sct only if all of the following four
rules apply: (1) none of its 1Ps (in both A and NA rces) have
a max TTL < | day. (2) its A and NA recs contain < 10
IPs over the entire monitoring period, (3) none of its IPs had
reverse DNS lookups containing a suspicious word (e.g., dy-
namic, dialup, etc.) and (4) none of its IPs had reverse DNS
lookups indicating it was a known CDN domain (i.c., con-
taining words like akamai).

Both CDN and FF domains would be impractical if none
of the IPs had TTL values < | day. Similarly, CDN and FF
domains should acerue morc than 10 IPs after 223.5 months
of monitoring, as should any MAL domains using stable
servers and acting sufficiently suspicious (i.c.. their IPs are
hecoming blocked). Therefore, domains satisfying the first
two conditions ar¢ extremely unlikcly to be CDN, FF or
MAL domains. As an additional measure, the filter also
ensures that none of their reverse DNS lookups return any
suspicious words or indicate that they belong to a CDN. No-
tice that any domains which were dead (i.e., no 1Ps) for the
cntire monitoring period will satisfy all 4 conditions and be
removed from the test set. When applied. the filter removed
100.889 unsuspicious or dead domains from our initial set of
106,311 domains, reducing it to 5,422. Finally, we rcmoved
253 domains with insufficicnt DNS query data (250 domains
were momentarily observed by single nodcs and 3 domains
were monitored by less than 25% of our DIGGER nodcs),
bringing the test set to 5,169 domains.

3.3.2 Mulii-level SVM

Fig. 10 shows the design of our multi-leveled SVM clas-
sifier and the results of our training and test sets. Each level
of the SVM classifics a domain type from the test set, pro-
gressively reducing the number of unknown domains and
thus simplilying subsequent classification. Each oval in the
figurc represents a classificd domain type. while each rect-
angle represents the remaining unknown. The values for
“Train” show how many examples of a given domain typc
(or group of domain types) were used when training that
level of the classifier. The values lor “Test™ indicate the
number ol domains that werce classified (or remained to be
classified) when we applicd each ticr of the classifier to our

test sct. We manually identilied about 10 representative do-
mains of each type to be used in training, as show in Fig. 10,
More diltieult to detect by hand, we were only able to man-
ually identify one FFx1_NArec domain.

Table 4 shows the bias and feature weights for each level
ol our classificr. Those leatures not used at a particular level
are shaded black. For each SVM, the Result is caleulated as
the bias term plus the product of each featurc and its weight
The “Result > 07 column indicatcs how a domain with a pos-
itive Result will be classified. The exception is FI'x1 NArce
domains, which are classified when SVM-5's Resudt is nega-
tive. Additionally. the magnitude of Resudt signifies the con-
fidence in classilication choice.

As cach domain type is classified. it’s removed from the
set of unknown domains before applying the next SVM level
Duc to thc similaritics somc domain types share between
certain featurcs, the order we apply the classiliers and which
fcatures we usc at cach level beccomes important. The proper
order can explott the strong differentiating features between
certain domain types. We will now explain the features used
at each level of our SVM classificr and justily the order of
classification.

SVM-1: From Tablc 3, we sec that F3 and F4 are strong
indicators of CDN domains duc to their DNS strategy: nonc
of the other domain types display this location-aware behav-
ior. Thercfore, we can remove CDN domains from the un-
known set first with high aecuracy. Since CDN domains can
behave similarly to FF domains in other respects, removing
them first will improve successive classilication. Tor these
rcasons, SVM-1 was traincd on 10 CDN domains and 40
other domains (i.c., non-CDN, MAL, and FF), using F3 and
F4 on the domains’ A and NA rccs. As we can sce from
Tablc 4, a large percentage of IPs from the wrong continent
(F3) or similar IP distributions on cach continent (F4) will
gencrate a negative Result. We ran SVM-1 on our test set
ol 5,169 domains. It identificd a total of 17 CDN domains,
which we manually verified then removed from the test sct.

SVM-2: Whilc non-CDN domains advertise all their 1Ps
nearly instantancously, both MAL and FF domains will nced
to rccruit 1Ps over time.  Additionally. MAL and FF do
mains may possess IP overlap; this should never be the casc
for valid non-CDN domains. Thus, for SVM-2, we usc FS,
F6, and F2 on the comhined (A + NA) recs, accouniing for
I'Fx1 domains demonstrating fluxy behavior inonly a single
record type. We trained SVM-2 on 11 represcntative non-
CDN domains and 29 of the FF and MAL domains. When
applicd to the remaining 5,152 unknown domains, it classi-
fied 279 as non-CDN. We manually analyzed the 69 border
cases with Results closcst to 0 and found them to be satis-
factorily classificd: these results will be discussed further in
Scction 5.4.1. From Tahle 4, we can sec that F6 1s the dom-
inating lcature. 11 the domain demonstrates any signilicant
rceruitment period, it is unlikely to be a non-CDN domain.
Had CDN domains not been previously classilied and re-
moved, this feature would have been less uscful.
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Tablc 4: Linear SVM equations

SVM-3: After removing the non-CDN domains identi-
fied by SVM-2. the test set was entirely composed of mali-
cious domains (i.c., FF and MAL). Due to the many similar-
itics between FFx1 and FFx2 domains, it’s logical to classify
MAL domains next. F7 is the most obvious distinguishing
feature between MAL and FF domains, but we suspected
that F5 and F6 might also prove useful, since FF domaing
should recruit more IPs over a greater percentage of their
online time. SVM-3 applics FS, F6 and F7 to the domains’
(A + NA) recs, accounting for FFxl domains. We traincd
SVM-3 on a representative set of 10 MAL domains and 19
FF domains. When applicd to the test set of 4,873 malicious
domains, it identified 4.694 MAL domains and 179 FF do-
mains. Looking at SVM-3 in Table 4, we sce that the domi-
nant distinguishing feature is F7: the number of unique IPs.
Because of their faster 1P recruitment rate, FF domains will
quickly outpace MAL domains, resulting in a much larger
number of unigue IPs.

SVM-4: Afier three stages of the classifier, only FF do-
mains remaincd in the test sct. By definition, the only thing
distinguishing FF domains is which record type demonstrates
luxiness. A combination of the two FFI'x] domain types,
I'Fx2 domains are the next candidate for classification. From
Table 3, it appears that applying Fl, F2, F5, F6 and F7
to the individual A and NA recs should discern FFx2 from
FFx1 domains. For Fl, FS, F6 and F7, all the FF domains
will demonstrate fluxy behavior, but the FFx2 domain will
demonstrate twice as much as either type of FFx1 domain.
Additionally, the IP overlap (F2) expericnced by FFx2 do-
mains should be considerably larger. We trained SVM-4 ona
representative set of Tl FFx2 domains and 8 FFx1 domains,
While FS appears less significant, F2, F6. and F7 contribute
nearly equally in classification, and F1 is a strong indica-
tor of FFx2 domains. These results and their implications
arc covered in Section 5.4.3. Applying SVM-4 1o the 179
remaining FF¥ domains identified 38 F¥x2 and 141 FFx1 do-
mains, which we manually verified.

SVM-5: The final level of the classifier is responsible
for discriminating between FFx1_Arcc and FFx1_NArec do

mains. With the exception of F2, SVM-5 makes use of the
samc features and rccord types as SVM-4 for similar rea-
sons. F2 is ignored at this stage since the FFx1 domains
should experience comparable, modest-to-no [P overlap. Hf
a FFx1 domain demonstrates too much H> overlap. the fluxy
behavior becomes visible in both record types, and the do-
main can be considered FFx2. The usefulness of the other
features is straightforward: for FFx1_Arcc domains, the fea

tures will appear more fluxy in the A recs. and the oppo-
site holds for FFx1_NArec domains. When applying SVM-5
to the 141 FFx1 domains, we were surprised to find 53 of
them were actually classified as FFx1_NArec domains. We
examined the results by hand and discovered they were in-
deed correctly identified as FFx1_.NArec domains. We will
examine these results and possible explanations in in Sec-
tion 5.4.4. Table 4 shows that F5 and Fé6 became negligible
for SVM-5. F1 holds some influence in classification, but
the dominating feature is clearly F7, since the fluxy record
type naturally accrues more [Ps with time.

5.4 Results

5.4.1 False Positives

From our classifier's results at each stage. only SVM-2
was found to experience any falsc positives: two FFx1_Arec
domains were incorreetly identified as non-CDN due to DNS
domain 1P parking. When we initially analyzed DIGGER's
data, we discovered a couple of nodes that reliably partook
in IP parking using the same set of IPs. Their parking bchav-
ior is easily observed in Fig. 11 as two long, constant lines
with positive Node Index values, indicating parking in the
A rec. Appearing as consistent, stable 1P addresses, these
parked IPs cause a domain to seem more benign than it actu-
ally is, and if their influence dominates, our classifier could
consider the domain to be non-CDN. We removed the in
fluence of IP parking due to these two nodes by ignoring
the associated parking data when present. However, in real
ity, these were not the only nodes performing 1P parking:
though they werce the most consistent. Since we didn't filter
this behavior for all nodes, it atfected classification, account-
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Figure 12: Cautious MAL domain

ing for SVM-2's two fatsc positives. For example, consider
the similar domains in Fig. t1. In both cases, the two known
nodes were ignored, causing the domamn in Fig. 11-(a) to
be classified correetly. However. though initially the do-
main in Fig. 11-(b) appears fluxy, the parking behavior of
a large majority of nodes dominates over its lifetime, caus-
ing it to be classified as non-CDN. While considered a false
positive, this labeling is rather subjective; for the majonty of
the domain's lifetime it does resemble a non-CDN duc to tP
parking. Since our classifier is temporally naive. using all
available data over the =3.5 month monitoring period, this
misclassification is entirety reasonable.

5.4.2 Cautious MAL domains

Whilc manually validating SVM-3s results, we discov-
ered 4 borderline MAL domains exhibiting atypical IP be-
havior, one of which is shown in Fig. 12. Reeruiting less than
50 A ree IPs over 2.5 months (the domain was parked after-
wards). it 1s not fluxy enough to be considered a I'Fx| _Arec
domain. However, its uncannily regular tP recruitment dis-
tinguishes 1t from other MAL domains. Further analysis
revealed that the domains advertise only a single A rec 1P
per query. with amax T'TL of one minute. Despite this fine
level of control, the domains only replace the {P about once a
day, adhering to a meticulously precise schedule. Addition-
ally, we can see trom Fig. 12, that once changed, the A rec
IPs arc not reused. Since these malicious domains are not
fluxy enough to be considered FF, they are correctly clas-
sificd as MAL domains, but their behavior implies a man-
agemient strategy different from most MAL domains. They
appear to be a type of cautious MAL domain, regularly and
preemptively replacing their A rec 1Ps before they ean be de-
tected and blocked—although the short TTL permits rapid
response when required.  With only 4 instances observed,
this behavior is currently very rare. Nevertheless, the strat-
egy is interesting and may gain popularity among malicious
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domain owners trying to evade current detection technolo-
gies, warranting future research into the detection and sub-
version of these domains.

5.4.3 FF domains

Another interesting aspect of our classifier is how it dis-
tinguishes between the various FF domains. Recall from Ta-
ble 4 that F1 is the dominant feature for SVM-4, with the NA
rec being 4x as influential as the A ree. From Table 2 and
Fig. 3, we see that the FF domains reeruit more IPs for their
A recs than their NA recs, making the A rees appear more
fluxy. Therelore. for SVM-4, behavior that isn’t considered
fluxy enough for the A ree could be sutficient when present
in the NA ree. The consequence of this asymmetric weight-
ing of fluxiness can be witnessed for the domains in Fig. |3
(classified as FFx2) and Fig. 14 (classificd as Ft'x] NAree).
Both domains demonstrate definite Aluxy behavior in one of
their record types: Fig. 13 is clearly fluxy in the A rec, while
Fig. 14 is clearly fluxy in the NA ree. With only about 20 A
rec [Ps, the reeruitment behavior in Fig. 14 resembles that of
a MAL domain, with an IP overlap of less than 4%. Thus,
the classitier has performed correctly: a domain with FF be-
havior in its NA rec and MAL behavior in its A rec should be
considered a FFx1_NArec domain. However, it isn’t imme-
diately obvious why Fig. I3 is considered fluxy in its NA rec,
which appears relatively stabtc. Further analysis revealed
that the domain has an IP overlap of =26%, corresponding
with the =20-30 NA rec IPs demonstrating fluxy behavior.
Since the fluxy A ree contributes over § of the NA ree [Ps,
the less stringent fluxiness demands for the NA rec are met,
and the domain is correctly classified as FFx2.

5.4.4 Domain Type Distribution

Table 5 shows the number and distribution for cach do-
main type identified by our classifier. Of the 106,311 do-
mains we monitored. our rule-based filter (Section 5.3.1)



identified 101,142 domains as benign or lacking in suflicient
data-—corresponding to 95.14% of our monitored domains.
This is reasonable, considering the domains monitored were
extracted from online malware and phishing repositories or
from spam emails. Most malicious domains are only active
for a short period of time before they are discovered and
blocked. DIGGER would have collected little-to-no valid
data for these dead domains. and they would have been fil-
tered out. Also, not all hyperlinks in spam belong to mali-
cious or phishing websites: some contain legitimate hinks.

After filtering, MAL and FF domains account for 94.27%
of the remaining 5,169 test domains. Since the domain list
is generated from suspicious sources, it's unlikely that any
would utilize the extensive CDN infrastructure typically em-
ployed by popular and reputable domains. Of the 4,873 ne-
farious domains, ~96% were MAL domains and 179 were
FF domains. This plethora of MAL domains results from
their case of management as the traditional and most popu-
lar mechanism employed by malicious websites.

The additional level of misdirection and the nearly lim-
itless supply of IPs provided by botnets make FF domains
appealing, despite their more diligent maintenance require-
ments. Thus far, it has been primarily FFx1_Arcc domains
observed in the wild, and their popularity is supported with
our findings: =49% of the FF domains are FFxI_Arce. Un-
fortunately for botmasters, sccurity professionals have be-
come aware of the FFx1_Arcc botnet techmque, devising
clever detection strategics. While botnets provide a steady
source of fresh A rec IPs, the NSes can still be blocked,
crippling the botmaster’s control until new NSes can be ac-
quired. In an apparent attempt by botmasters to overcome
this limitation, we witnessed a considerable presence of FFx2
domuins, composing ~21% of the FF domains. FFx2 do-
mains provide further misdirection and proteetion for the
botmaster, guarding the NSes against simple countermea-
sures al the expense of a more diligent managemeni effort.
Interestingly. analysis of the identified FFx2 domains re-
vealed a speetrum in the amount of NA ree fluxiness in-
corporaled by botmasiers. Obviously, we obscrved domains
that were incredibly fluxy in both record types, as demon-
strated by old-and-girl. com (Fig. 3). While it's interesting
to observe these aggressive FFx2 domains in the wild, it
was the FFx2 domains at the other end of the spectrum that
proved more insightful. As an example, recall the more
modest FFx2 domain chuvtyr.cn (Fig. 13). With over 2,500
unique A ree IPs, ehuytyr.en is considerably more fluxy in
its A rec than its NA rec. By using bot IPs from its A rec for
roughly ; of its NA rec 1Ps, FFx2 domains like ehuytvt.cn
benefit from the increased control and stability provided by
traditional NSes, while simultancously enhancing the do-
main’s resilience to subversion—for a minimal incrcase in
management—through the use of botnets.

Another interesting discovery is the apparent popularity of
FFx1_NArce domains, accounting for ==30% of the total FF
domains ohserved. Surpnisingly, this is a larger share than
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the FFx2 domains. It seems that botmasters have become
aware of sccurity professionals analyzing domains’ A recs
for FF behavior. Consequently, they have migrated the fluxy
behavior to the NA rec, where it is less likely to be noticed.
Fig. 14 is a typical example of the FFx1 NArce domains
identified by our classifier. 1t demonstrates a MAL domain
strategy for its A ree IPs and a FF strategy for its NA rec
IPs. This results in the domain appearing more bemgn when
its A rees are analyzed, while providing the botmaster with
a fine level of control over the NSes. Should the domain’s
malicious activity be detected and the A ree IPs blocked,
the botmaster, having rctained control over the NSes, can
replace the IPs with minimal service interruption. The im-
plication of this discovered behavior is straightforward: bath
rceord types must be monitored for fluxy behavior in order
to quickly identify FF domains and their botnets. A real-
time monitor analyzing only domains® A rees will not iden-
tify FFx1 NArec domains as fluxy. and it could take days
for the A ree's MAL. domain behavior to be detected. How-
ever, monitoring NA recs for fluxy behavior could identify
the FF domain much more rapidly, providing a quicker re-
sponsc time for mitigating countermeasures.

6. LIMITATIONS AND FUTURE WORK

While our multi-leveled classifier has proven eftective in
identifying the different domain types, it is only a proof-
of-concept detector. It is temporally naive, aperating over
the complete set of data gathered duning DIGGER’s ~3.5-
month monitoring period. Moreover, our data was gathered
by 240 nodes dispersed around the globe. While this might
be acceptable for a classifier, an optimal and practical real-
lime detector should function over a much shorter duration,
relying on fewer nodes. The problem of determining the op-
timal momtoring period and the minimal number of nodcs 1s
part of our future work. Our classifier can also suffer from
certain anomalous behavior, such as [P parking, which, if
dominant, can causc the DNS data to appear benign and re-
sult in misclassification. This problem can be solved with an
adaptive classifier. utilizing incremental training to improve
detection in real time.

Anather potential limitation of our work results from bot-
nets using rapid, automatic gencration of domain names,
such as Torptg [20]. FF domains using this type of botnet
will automatically change their domain name on a regular
hasis, making it difhicult to form a long-term picturc ot the



botnet’s activities. DIGGER has no way to predict the future
domain names these botnets might utilize. Conscquently,
our picture of thcir DNS activity will be incomplete; we
will only gather DNS data on such domains until their do-
main name changes. Since DIGGER continuously updates
the list of suspicious domains it monitors, we will be able
to gather further DNS data for these botncts under diffcrent
domain names. Statistical clustering mcthods hascd on the
obscrved bot IPs could help by associating differcnt FF do-
mains with thc same underlying botnets. However, cven this
solution suffers from inconsistencies introduced by DHCP
chum, warranting further research into this problem. Inci-
dentally, rapidly-and-automatically-changing domain names
arce typically used by hots as a mechanism for contacting
their C&C scrver; their kaleidoscopic nature makes them 1ll-
suited for phishing or malicious-content campaigns, which
rcquire morc persistent domain names. Since the focus of
this paper ts on FF botnets perpetrating such scams, we sel-
dom encounter the swiftly-changing domains used for C&C.

7. CONCLUSION

In this paper, we cxamined the global IP-usagc pattemns
cxhibited hy different types of malicious and benign domains,
including FFx1 and FFx2 domains. We have deployed DIG-
GER, a lightweight DNS-probing cnginc, on 240 Planct-
Lab nodes spanning 4 contincnts. Collccting DNS data for
over 3.5 months on a plethora of domains, our global van-
tage point cnahled us to identify the various IP-usage pat-
terns inherent to the operation of the different domain typcs.
Conducting a detailed analysis, we were able to determine
distinguishing behavioral featurcs betwecen the domain types
based on their DNS-query results. We have quantilied these
features and demonstrated their effectivencss for detection
hy building a proof-of-concept, multi-levelcd SVM classi-
ficr capahle of discriminating between five domain types:
CDN, non-CDN, MAL, FFx2, FFx1_Arcc and FFx1_NArec
Applying our classifier on a set of 5,169 unknown domains
produced promising results, correctly categorizing the do-
mains with only 2 false positives—due to DNS 1P parking.
Our classification results have shown the relative distribu-
tion of the domain typcs in our test data and the current state
of FF domains, including the increascd presence and versa-
tilc implementation range of FFx2 domains. We have shown
that fluxiness is typically more pronounced in A recs. and
that there is an apparent trend towards using FFx1_NArcc
domains, which were previously unseen in the wild.
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