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Abstract

A computational framework has been developed to carry out identity management, that is,
the automatic inference of the identities of targets tracked by surveillance systems that cover
wide areas such as a shopping mall or a large harbor. People or vehicles may remain invisible
to the system for long periods of time as they move between sensors. Identity management
attempts to infer from uncertain measurements who or what is where at all times.

The following work was performed in this short-term project:

• Fleshed out and streamlined the mathematical framework for identity management. This
required significant changes at the core of the framework, and several of the ideas built on
top of this had to be adapted or reinvented as well, prompting a systematic reformulation
of the mathematics.

• Studied and tested algorithms from the literature to be used, either directly or in modified
form, in the core inference engine of an identity management system.

• Developed a computationally efficient method for finding high-likelihood identity as-
signments given a graph of association probabilities between sensor observations. This
method efficiently solves the batch version of the main estimation problem underlying
identity management.



Contents
1 Statement of the Problem Studied 1

2 Summary of the Most Important Results 1
2.1 The Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Batch Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 The Additivity Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 The Partition Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A Bayesian Filtering 10

2



Illustration Captions and Appendices

Figure 1: Algorithms that measure the cost of a cut by the sum of its edge weights will not
remove the weak, spurious edges e1, e2 between components A and B of this graph until after
“dangling” connections like e3, e4 are severed. Page 6

Figure 2: Top left: An observation graph. Blue edges correspond to strong associations, red
edges to weak ones. Other panels: Partitions in the complete filtration for the graph at top
left. The ranges of π that result in each partition are shown above each partition. The boxed
partition is the most persistent one. Page 9

Appendix A: Bayesian Filtering Page 10



1 Statement of the Problem Studied
Surveillance systems often cover wide areas such as a shopping mall, a city’s subway system,
a large harbor, or several city blocks around a sensitive installation. People or vehicles (hence-
forth targets) are detected by sensors (typically cameras or camera/LIDAR combinations) in
different locations and at different points in time. Targets may remain invisible for several sec-
onds or minutes as they move through areas with no coverage. Even when they remain in the
field of view of, say, a single camera, targets may be occluded by (or become indistinguishable
from) other targets, or behind objects. Even when a target is distinctly visible, its appearance
may vary as a result of changes in lighting, distance, pose, or sensing parameters.

The fundamental challenge then arises of how to infer an accurate, consistent picture of
the world from intermittent, uncertain observations. This problem has been called identity
management in the literature [4], and has been the main focus of the work performed under
this short-term grant.

2 Summary of the Most Important Results
The mathematical framework sketched out in the grant proposal was fleshed out and stream-
lined, as described in Section 2.1 below. This required significant changes at the core of the
framework, and several of the ideas built on top of this had to be adapted or reinvented as well,
prompting a systematic reformulation of the mathematics. The most promising algorithms
from the literature, discussed in Section 2.2, were then tested empirically with simulated data,
as shown in section 2.3. Dissatisfaction with these results were tied to the so-called addi-
tivity problem, described in Section 2.4. This difficulty prompted the development of a new
formulation of the batch version of the main inference problem for identity management, the
partition filtration associated with a graph of observations. The partition filtration is introduced
in Section 2.5.

2.1 The Mathematical Framework
An important improvement in the mathematical framework sketched in the proposal for this
grant is a shift in the basic representation of observations and states. In the old version, a com-
binatorial structure called a multipartite partition was used to describe deterministic knowl-
edge, or belief, as to which set of observations relate to the same target. Specifically, the set
of all observations can be partitioned into sets, one set per target. This partition was made
multipartite, in the proposal, to capture the notion that for certain pairs of observations it is
possible to know withe certainty that they refer to distinct targets. For instance, a single sensor
is assumed to be able to produce at most one observation of a target at any point in time. So
two observations produced simultaneously by the same sensor are assumed to relate to differ-
ent target. Another example is a pair of observations that, although taken at different points in
time, come from sensors that are so distant that no target could have moved from one sensor to
the other in the given time interval. More generally, the observations made by a set of sensors
in a surveillance network can be split intoK sets such that the sightings within a set are certain
to refer to distinct identities. This split makes the partitions multipartite.
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Initially in this effort, mathematics and simulations were all carried out in this context of
multipartite partions. After some time, however, it became clear that constraining the partitions
to be multipartite led to more difficulties than it addressed. The main reason for this is that,
while the partition aspect of a multipartite partition captures equality – as in “observation a
is equal to observation b” – , its multipartite aspect captures non-equality – “a is not equal to
b.” Since the notion of “not equal” is not transitive, the resulting clash produced increasing
complications both in data structure and inference methods.

The solution to this difficulty turned out to be both simple and effective. Multipartition
is removed, and non-equality is captured by (i) assigning a zero probability to pairs of ob-
servations that are known with certainty to refer to distinct targets, and (ii) clamping these
zero values – that is, forcing them to remain unchanged – during inference. This change in
the representation that lives at the very core of the framework required a systematic modifica-
tion of everything built on top of it, including changing weighted match graphs into weighed
association graphs – the former requiring multipartition, the latter not.

Rather than describing in detail the history of all the changes, their net result, that is, the
new framework, is briefly outlined next. This description follows closely the reasoning in a
new grant proposal submitted to ARO for a full-fledged investigation of identity management.

A key representational decision is to capture the information contained in a set of n mea-
surements through m association values 0 ≤ pij ≤ 1, defined as the probability that mea-
surements i and j were generated by the same target, given the values of the measurements.
This choice contrasts with the more usual approach of summarizing measurements through n
feature vectors, one per measurement, and then defining a metric in their space.

Pairwise associations are preferred over individual feature vectors for two reasons. First,
sensors used in different parts of the space under observation can be of different types (cameras,
LIDARs, proximity sensors, other). The corresponding output values are then heterogeneous,
and no single space is likely to fit both types of outputs naturally. Second, the time elapsed
between the two measurements is an important source of information for computing the asso-
ciation value between them. This computation must consider the distance between the sensors,
estimates of travel speeds, and the presence of possible delays (in an airport, delays could come
from stores, restaurants, security lines, ...) or accelerators (moving walkways, escalators, ...)
between the two measurement stations. These considerations cannot be captured by either
measurement alone, but can be incorporated in the association between sensor measurements
at different stations.

Because of these reasons, associations are more flexible and potentially richer than sepa-
rate measurement features. Of course, associations can be computed from metrics defined in a
feature space whenever the situation warrants – that is, when measurements happen to be ho-
mogeneous. Thus, associations subsume the standard approach, and provide a representational
foundation for a broader set of circumstances.

Both the number n of measurements and the number m of association values are growing
functions of time t. The n(t) measurements can be represented as the set V (t) of nodes in
a growing, weighted association graph G(t) = (V (t), E(t), P (t)). Two measurements are
connected by an edge in E(t) if an association value pij ∈ P (t) is available for them, and pij
is the weight for that edge.1 The graph G(t) is generally not complete, as it does not always

1For convenience, the reflexive property is ignored throughout this proposal. In other words, a measurement is not
associated with – or considered equivalent to – itself.
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make sense to establish associations for two measurements. For instance, two sensors may
be cameras that look at people from different directions (perhaps from the front and from the
back), or across excessively long time intervals, and this may make matching between these
views meaningless.

Bayesian estimation is made possible by the second, key contribution made in our work:
A method for defining a probability distribution over association graphs – and therefore equiv-
alence graphs as well. This is a new definition, significantly different from what was in our
original proposal. Briefly, and following the spirit of the idea that Mallows [6] introduced for
permutations, we define a measure of compatibility between a partition graph Γ = (V,E, P )
and and association graph H = (V, F,Q) on the same set of nodes V . Recall that a partition
graph is equivalent to a partition of its nodes, so thatE is the complete set of edges, P is binary
(that is, pij is either 0 or 1), and specifies a set of disjoint cliques. The compatibility between
Γ and H is defined as follows:

d(Γ, H) =
∑
E∩F
|pij − qij | . (1)

This is not a distance. For instance, if the edge set F in H is empty, then d(Γ, H) = 0
regardless of Γ. More generally, this measure of compatibility does not penalize unspecified
edges in the association graphH . As a consequence, ignorance as to whether two observations
do or do not correspond to the same identity is compatible with any assignment of identities to
observations.

Ignorance, on the other hand, is the basis for the following definition of dispersion, a
measure of the uncertainty implied by an association graph H = (V, F,Q):

σ =
∑
F

min(qij , 1− qij) +
1

2

[(
|V |
2

)
− |F |

]
. (2)

The first term in this measure penalizes uncertain associations, that is values of qij that are dif-
ferent from either 0 or 1. The second term penalizes missing associations, since the expression
in square brackets is the number of edges that are in F and not in the complete graph on V .
Each such missing association receives a penalty of 1/2. The maximum penalty for uncertain
associations is also 1/2, so that the maximum possible dispersion for an association graph with
|V | nodes is

1

2

(
|V |
2

)
,

and is incurred by the empty association graph.
Then, given a distinguished set of C equivalence graphs Γ1, . . . ,ΓC and C dispersion

parameters σ1, . . . , σC , we define the following parametric probability measure on the set A
of association graphs:

p(G) = e−ψ(σ,γ)
C∑
c=1

e−
d(G,Γc)
σc where ψ(σ,γ) = log

∑
G′∈A

C∑
c=1

e−
d(G′,Γc)

σc (3)

is the cumulant function and

σ = (σ1, . . . , σC)T and γ = (Γ1, . . . ,ΓC)T .
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This probability measure on the set of association graphs provides a conceptual founda-
tion for learning and inference in the context of identity management, based on the general
principles of Sequential Importance Sampling for Bayesian filtering [1].

Specifically, given a sequence y(t0),y(t1), . . . of measurements over time, in the form of
association values pij , the current belief about the true state x(t) – a particular equivalence
graph – is captured by a probability distribution of the form (3) over the space of equivalence
graphs. A measurement model, that is, a conditional probability distribution p(y(t) | x(t)),
captures what is known about sensing: If the current state x(t) is known, the current measure-
ment y(t) is assumed to be independent of past and future states, and the measurement model
is a unimodal version (C = 1) of a distribution of the form (3) on association graphs, with
an equivalence graph forming the reference graph x̂(t) = Γ1. Finally, the state variables are
assumed to form a Markov sequence, so that their interdependence is entirely captured by the
transition model p(x(t+ ∆t) | x(t)), again of the form (3), but on equivalence graphs only.

Given these models and an initial estimate p(x(0) | y(0)), Bayesian filtering then estimates
for any desired time t the posterior probability distribution p(X(t) | Y(t)), where

X(t) = {x(τ) | 0 ≤ τ ≤ t} and Y(t) = {y(τ) | 0 ≤ τ ≤ t}

are the accumulated histories of states and measurements. This posterior distribution can be
used, when desired, to obtain MAP point estimates of the identities associated with the obser-
vations:

X̂(t) = arg max
X(t)

p(X(t) | Y(t)) .

Bayesian filtering was outlined in the proposal for this grant, and is essentially unaffected by
the changes of formulation described so far. Because of this, this method is summarized in
Appendix A for completeness.

2.2 Batch Solution
The crucial computation in the proposed estimation procedure is initialization – or batch solu-
tion – that is, the computation of the posterior probability p(X(0) | Y(0)) = p(x(0) | y(0)).
Here, y(0) is a set of association values pij between observations, and x(0) is a partition of
the set of observations into distinct identities.

This computation can be viewed as a batch (that is, non-recursive) version of stochastic
estimation, in which the probability distribution over possible identities is estimated from a
fixed set of observations (association values). If the number of observations is relatively small,
and all data is available ahead of time, initialization solves the whole data association problem.
For data sets that grow indefinitely over time, propagation and update are necessary in addition,
as outlined in Appendix A.

The posterior p(x(0) | y(0)) can be computed by first determining high-likelihood esti-
mates x̂(0) of x(0) from y(0). We can then use a Mallows-like expression of the form (3)
with the estimates playing the role of the Γc equivalence graphs.

The computation of likely graph partitions x̂(0) from a graph y(0) of association values
has been viewed in the literature in different but related ways:

• A partition of the node set V (t) can be represented by an equivalence graph made of
disjoint cliques: Two nodes are equivalent if and only if they are in the same clique.

4



Identity management can then be cast as the problem of finding the equivalence graph
closest to G(t), in a metric to be specified. Formally, equivalence graphs are special
cases of association graphs, namely, those made of disjoint cliques and with binary edge
weights.

• The same partition of V (t) can be viewed as a clustering of V (t) in a metric specified
partially by the association weights in P (t). Inference management then optimizes a
ratio between intra-cluster and inter-cluster spread, suitably defined.

• If the number k of sets in the clustering or partition of V (t) were known, the necessary
computation could be restated as a graph-cut problem: Find a minimum-weight subset
of E(t) whose removal separates the graph into k connected components. Inference
management can then be phrased as a joint estimation of k and the corresponding optimal
k-cut.

These approaches differ by what is being optimized: a distance between graphs; a spread
ratio; or the cost of a cut. They correspond to different approaches and algorithms in the
literature. However, all these algorithms are designed to work with – or imply – additive
measures for graph cuts, in that they use the sum of association values along edges to determine
whether a set of edges should be removed.

To experiment with these approaches, we developed a software infrastructure with the
elements described in the next Section. Section 2.4 then describes a key problem common
to approaches that estimate x̂(0) by additive measures of graph cuts, and Section 2.5 shows
our solution to this problem.

2.3 Experimental Setup
The main question addressed by our experiments is the extent to which the initial state estimate
p(X(0) | Y(0)) – henceforth abbreviated to p(X | Y) – reflects ground truth, as determined
by simulation, with varying amounts of uncertainty in the input association graph.

Answering this question required the programming of the following modules:

• A simulation module that creates a partition graph Γ and perturbs it in a controlled way to
produce an association graph G. Perturbations include modification of the binary values
on the edges of Γ into association values in the interval [0, 1] for the edges of G. They
also include removal of a specified number of edges from G, to simulate unspecified
edges.

• The SV module itself, which takes an association graph G and an integer k as inputs
and produces a set of edges of minimum weight whose removal leaves k connected
components.

• A clustering module that takes an association graph G, fixed integers C and N with
N >> C, and a real number r with 0 ≤ r ≤ 1. This module generatesN random values
of k by a Dirichlet process. For each value of k, the clustering module draws a fraction r
of edges from G, and runs a graph partition estimation algorithm on the resulting graph
and with parameter k. This produces a sequence Γ1, . . . ,ΓN of association graphs which
are then clustered with theC-means algorithm. The output from this modules is the set of
resulting cluster centers Γ1, . . . ,ΓC , together with the dispersion parameters σ1, . . . , σC
computed through equation (2).

5
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Figure 1: Algorithms that measure the cost of a cut by the sum of its edge weights will not remove the weak, spurious
edges e1, e2 between components A and B of this graph until after “dangling” connections like e3, e4 are severed.

• An evaluation module that determines the likelihood of association graph G by comput-
ing expression (3).

• A display module that shows statistics of the results as a function of the structure of G
and the extent of its perturbations. Likelihood is expected to be a decreasing function of
the number of removed edges and the extent of perturbation of the remaining association
values.

2.4 The Additivity Problem
After implementing several of them in Matlab, and testing them in simulation, we realized that
this additivity leads to brittleness in the presence of spurious association values pij . Figure 1
illustrates this problem. In this Figure, two strong connected components A, B of a graph are
tied to each other by two edges e1, e2 with relatively low association values. Any algorithm
that is based on additive cut measures will end up preserving this weak connection at least until
after “dangling” edges such as e3, e4 are severed.

The algorithm by Saran and Vazirani [8] to find a k-cut of graph that is a factor 2− 2/k of
minimal may serve as an illustration. This method requires specifying the number k of identi-
ties (eventual graph components), which is generally unknown. To address this difficulty, we
embedded the k-cut computation within an estimator that models k as a Dirichlet process [7]:
We draw from this process to hypothesize k, and we solve the corresponding k-cut problem,
as illustrated in Section 2.3.

In our experiments, this algorithm needed large values of k in order to sever weak con-
nections with a few edges (as exemplified by edges e1, e2 in Figure 1) if there exist several,
somewhat stronger connections with individual, otherwise isolated nodes (as exemplified by
edges e3, e4 in the Figure). At these high values of k, the likelihood that also unwanted cuts
are made becomes large, and estimated partitions become meaningless. We call this issue the
additivity problem.
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2.5 The Partition Filtration
To address the additivity problem, we developed a method that is based on the concept of a
partition filtration. This concept leads to straightforward estimates of high-likelihood cuts.

A partition Γ2 is said to be a refinement of partition Γ1 of the same set of nodes,

Γ1 ≺ Γ2 ,

if every set of Γ2 is contained in (or possibly coincident with) a set of Γ1.
Given an association graph G with vertex set V and association values (edge weights) pij

between nodes i and j, form the complete graph G by replacing missing edges with zero-
weight edges. Then, if π is a real number between 0 and 1, form the partition Γ(G, π) as the
set of connected components of the binary graph with vertex set V and with an edge between
nodes i and j if and only if

pij ≥ π .

In other words, keep the edges ofG that have weight at least π, and compute the corresponding
connected components.

Then, the parametric family of graphs Γ(G, π) is a filtration, in the sense that

0 ≤ π1 ≤ π2 ≤ 1⇒ Γ(G, π1) ≺ Γ(G, π2) .

In this filtration, Γ(G, 0) is the complete graph on V and Γ(G, 1) is the trivial graph where
every node in V is a separate component (empty graph).

Then, we fix a real parameter ε between 0 and 1/2, and define the ε-set of reference par-
titions Γ1, . . . ,ΓC in equation (3) to be the set of all partitions in the family Γ(G, π) such
that

1

2
− ε ≤ π ≤ 1

2
+ ε .

With this definition, the computation of equation (3), the crucial component of the identity
management problem, has become very efficient.

The parameter ε determines how far one is willing to go from the standard partition
Γ(G, 1/2), which essentially takes the association probabilities pij at their face values. Note
that missing associations are treated as evidence of no association in this context, that is, they
are made equivalent to pij = 0. This reflects the conservative stance whereby identities are
equated only in the presence of positive evidence.

The first panel in Figure 2 shows a random association graph. Blue edges have weights
significantly higher than 1/2, and red edges have weights significantly lower than 1/2. Thus,
edges in this graph simulate observations that have good confidence, that is, whose association
values are far from 1/2. The remaining panels in the figure show all the partitions in the
complete filtration, obtained when ε = 1/2. Each class in a partition is shown by its clique,
and the range of π values for which each partition is valid is shown at the top of each graph. In
terms of a partition distance [5], which measures how many nodes have to be moved between
two partitions to make them equal, the partitions in the filtration are very different from each
other. In terms of the compatibility function defined in equation 1, on the other hand, the
partitions for small values of ε are very compatible with each other, because they differ by a
small number of edges. Thus, filtration partitions and compatibility work well together in the
definition (3) for the probability distribution over association graphs. First, graphs that differ
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by a small number of edges are mutually compatible. Second, the partitions in a filtration for
a given association graph provide a set of reference graphs that account well for uncertainty
in the association values. Third, the extent of the range of π for a partition can be used as a
measure of the persistence of that partition to changes in the threshold π. For instance, the
partition with highest persistence in Figure 2 is the left graph in the third row (boxed), with a
value of persistence equal to 0.87− 0.27 = 0.6.

In other words, the partition filtration is an efficient solution to the batch version of identity
management, and can therefore be used for initialization in the online version.
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Figure 2: Top left: An observation graph. Blue edges correspond to strong associations, red edges
to weak ones. Other panels: Partitions in the complete filtration for the graph at top left. The
ranges of π that result in each partition are shown above each partition. The boxed partition is the
most persistent one.
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A Bayesian Filtering
Simple manipulation [3] shows that the following recursive formula holds for the posterior
probability distribution p(X(t) | Y(t)):

p(X(t+∆t) | Y(t+∆t)) = p(X(t) | Y(t))
p(y(t+ ∆t) | x(t+ ∆t)) p(x(t+ ∆t) | x(t))

p(y(t+ ∆t) | Y(t))
.

(4)
On the right-hand side, p(X(t) | Y(t)) is the old posterior, for which an initial value is known
(p(X(0) | Y(0))), while p(y(t + ∆t) | x(t + ∆t)) is the measurement model and p(x(t +
∆t) | x(t)) is the transition model.

The remaining normalization term, p(y(t+ ∆t) | Y(t)), is in general difficult to compute
analytically. This suggests [3] using a sampling approach, because Monte Carlo sampling
does not require knowing the normalization factor. Instead of computing the right-hand side of
equation (4), one can thus sample from it, thereby representing the distribution on the left-hand
side though a collection of samples. This approach in turn requires the ability to draw samples
from the old posterior p(X(t) | Y(t)), and to evaluate both transition model and measurement
model p(y(t) | x(t)) pointwise.

Sampling from the old posterior p(X(t) | Y(t)) directly is also difficult. Recursive impor-
tance sampling [1] circumvents this difficulty by sampling instead from a simpler distribution
π(X(t) | Y(t)), called the importance function, whose support includes that of the old poste-
rior, and which is designed to have the following form to enable recursive computation:

π(X(t) | Y(t)) = π(x(0) | y(0))
∏
tk≤t

π(x(tk) | x(t0), . . . ,x(tk−1),Y(tk)) . (5)

It can then be shown [1] that the following Sequential Importance Sampling (SIS) frame-
work yields posterior weighted samples x(i)k with weights w(i)

k at time tk for k = 0, 1, . . .:

• For i = 1, . . . , N , sample x
(i)
k ∼ π(x | x(i)

0 , . . . ,x
(i)
k−1,Y(tk)).

• For i = 1, . . . , N , evaluate the unnormalized importance weights:

u
(i)
k = u

(i)
k−1

p(y(tk) | x
(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
0 , . . . ,x

(i)
k−1,Y(tk))

• For i = 1, . . . , N , normalize the importance weights:

w
(i)
k =

u
(i)
k∑N

j=1 u
(j)
k

.

Because of the mixture form (3) of the conditional probability density p(x | y), initial-
ization amounts to estimating the number C of mixture components, the C reference equiva-
lence graphs in the vector γ = (Γ1, . . . ,ΓC)T , and the C dispersion parameters in the vector
σ = (σ1, . . . , σC)T .

Sequential importance sampling requires defining an importance function of the form (5)
from which is it easy to sample. While the requirements on this function are very mild as far
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as statistical convergence is concerned, efficiency demands that the function approximates the
true posterior well. In the context of identity management, this means that the term

π(x(tk) | x(t0), . . . ,x(tk−1),Y(tk))

that appears in equation (5) be a plausible probabilistic description of what new edges appear in
the equivalence graph that describes estimated identities as new observations become available.

We propose to characterize this distribution by a random walk in the space of equivalence
graphs. A walk must move from graph to graph, and steps are easily generated: the start
equivalence graph is merely a partition of its nodes, and a new partition can be generated by
moving random nodes between random classes of the partition.

In order to condition the resulting walk on the observations y(t), we use the Metropolis
idea [2]: evaluate the likelihood ratio r = p(ω′)/p(ω), where ω is the old partition and ω′ is
the new one. If r is greater than one, accept the new step. Otherwise, accept it with probability
r, and reject it with probability 1− r.

So far, it has been assumed that the set Y(t) of measurements grows over time, and the
state X(t) grows with it. An efficient recursive procedure, on the other hand, relies on X(t)
being bounded in size. This is achieved by forgetting old observations. “Old” here can be
measured in a principled fashion by referring to two related probability distributions. The
first is the probability pj|i that a target observed at sensor i subsequently appears at sensor j
first. The second is the conditional probability πij(t) that such a target arrives at j after a time
interval t. Then, given a small probability ε, the observation xi(ti) is removed if

max
pj|i>ε

∫
τ≥t

πij(τ)

pj|i
dτ < ε .

In words, an observation is forgotten when it is so old that the probability that its target has not
yet reappeared elsewhere is negligible.
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