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Final Report

Hyper-uniform site-controlled quantum dot arrays prepared by soft nano-imprint
lithography technology

By

Prof. K. Y. Norman Cheng
University of Illinois at Urbana-Champaign

The main focus of this research is to develop a manufacturable soft nano-imprint lithography
method to fabricate site-controlled quantum dots (SCQDs) with high dot density, uniform size
distribution, and excellent optical quality such that quantum dot (QD)-based photonic devices
with performance approaching theoretical predictions can be realized. The detailed tasks and re-
sults are listed below.

1. 200 nm pitch soft lithography technology development:
* Replicate 200 nm pitch/I00 nm hole patterns onto GaAs substrate
» Optimize pattern transfer for fidelity and uniformity of feature dimensions

Over the past two decades, there has been great interest in integrating self-assembled quan-
tum dots (SAQDSs) into electronic and optoelectronic devices, utilizing three-dimensional quan-
tum confinement effect to improve device performance as well as create devices with added func-
tionalities. However, SAQD growth via the Stranski-Krastanov (SK) growth mode does not pro-
vide much control over QD size, spatial position, and uniformity. Consequently, improving ho-
mogeneity and spatial distribution of QDs become the next important issues in QD research,
which lead to the concept of site-controlled quantum dots (SCQDs). Since the late 1990s, SCQDs
have been realized through the growth on patterned substrates prepared by electron beam lithog-
raphy (EBL) and focused ion beam (FIB). Although improved QDs size distribution and nar-
rowed photoluminescence (PL) linewidth at very low temperatures have been accomplished, de-
vices with improved optical performance have not been demonstrated. Furthermore, due to the
serial nature of EBL and FIB lithography, the cost would be extensive if large amount of devices
need to be fabricated. As a result, it is necessary to develop alternative approaches for the fabrica-
tion of high optical quality SCQDs cost efficiently. Using self-organized pores in nano-channel
alumina to define nucleation sites of the SCQDs, room temperature PL has been demonstrated.
However, challenges remain in improving the ordering of the nanopores on the profiled GaAs
substrates and the percentage of QDs that stack inside the nanopores.

In this program, we developed a pathway to overcome problems mentioned above by utilizing
soft photocurable nanoimprint lithography (soft NIL) to create patterns of uniform nanoscale sites
for QDs growth. NIL is promising for high-throughput and low-cost nanostructure fabrication
through parallel patterning. Most importantly, the soft NIL pattern transfer process used in this
study is achieved by deforming the photoresist (PR) through physical contacting, no high-energy
beam is involved, and thus, avoiding potential damage to the substrate.

The (100) semi-insulating GaAs substrate is coated with 50 nm silicon dioxide followed by a
UV-curable PR of 120 nm thick. Next, the soft NIL technique is used to replicate the designed
pattern in the silicon dioxide and PR layers. The pattern used in this study is a large area (several



cm”2 square) array of 100 nm x 100 nm square nanopores on a 200 nm pitch, yielding an array
density of 2.5E9 cm”-2. The residual PR within each nanopore and underlying silicon dioxide are
removed by reactive ion etching (RIE) using oxygen and Freon gases, respectively, at 150 W ra-
dio frequency (RF) power. Then the pattern is transferred to GaAs substrate by wet etching. The
wet etching step is especially important for removing residual ion-related damages within
nanopores. A solution of ammonium, hydrogen peroxide, and deionized water mixture is used for
wet etching. Finally, silicon dioxide with residual PR is stripped by hydrofluoric acid under ultra-
sonic agitation. In order to achieve high QD quality, a set sequence of cleaning steps is carried
out on all patterned samples before molecular beam epitaxy (MBE) growth. To begin with, sam-
ples are treated by oxygen plasma, followed by ultrasonic cleaning in acetone, methanol, and iso-
propanol. Then, a sequence of hydrochloric acid and sulfuric acid etching is applied, intended to
remove surface oxides and passivate the surface, respectively. Finally, surface treatment proce-
dure ends with a thorough deionized water rinse and nitrogen blow dry. Afterward, samples are
loaded in a MBE system for QD growth. Atomic hydrogen-assisted desorption of surface oxides
is used inside the growth chamber prior to MBE growth. Thermally cracked atomic hydrogen is
applied for an hour with the samples held at 480 °C. After desorption, all samples are covered
with a 30-monolayer (ML) GaAs buffer layer grown at 500 °C, followed by 3 ML of InAs with a
growth rate of 0.014 MLs deposited at the same temperature. After the deposition of InAs QD
layer, a 120 s growth interruption under a constant arsenic flux is inserted to enhance the forma-
tion of QDs. Finally, the sample is cooled to room temperature for surface morphology charac-
terization and PL measurements. The nanopore array patterns are transferred using wet etching in
parallel fashion from the silicon master into GaAs with high fidelity. In addition, very low defect
density such as missing nanopores is observed over a large area scanned. Atomic force micro-
scope (AFM) surface image determines the etching depth of nanopores is 15 nm while maintain-
ing the original square shape with smooth edges.

2. MBE regrowth of SCQDs:
» Determine growth window where SCQD growth occurs
* Optimize for luminous intensity, uniform QD size.

After soft NIL pattern transfer and ex situ cleaning steps, the GaAs sample is loaded into the
MBE system for QD growth. As the dimension of patterns shrinks down to nanoscale, extra care
must be paid during the in situ surface clean process to retain pattern integrity. It has been shown
that the conventional thermal desorption used to eliminate surface contaminants can severely dis-
tort the nanoscale patterns even if the duration of high temperature treatment is short. Therefore,
a low temperature atomic hydrogen-assisted cleaning process is adopted in this study. For
nanopatterned sample surface after atomic hydrogen-assisted cleaning, AFM scans indicates the
depth profiles are almost unchanged from the wet etching prepared sample. This fact confirms the
ability of preserving nanoscale patterns by the low temperature hydrogen-assisted desorption ap-
proach. The edges of nanopores become slightly blunt after atomic hydrogen-assisted cleaning,
but it does not have a noticeable influence on SCQDs formation. After in situ oxide desorption, a
30 ML GaAs buffer layer followed by 3 ML of InAs is deposited. No QDs are formed on the flat
surface between nanopores, suggesting the growth parameters for SCQDs formation are appro-
priate. Furthermore, one single dot inside each nanopore is demonstrated on the wet-etched sam-
ple, and the average diameter and height is 63 and 9 nm, respectively. Next the PL spectra from
wet-etched SCQD sample as well as an unpattemed SAQD reference sample are compared. The



SAQD reference sample is prepared by mounting a piece of unpatterned epi-ready GaAs onto the
MBE sample holder alongside the wet-etched SCQD sample. The two samples undergo oxide
desorption and MBE growth together, resulting in SAQDs on the unpatterned piece of GaAs and
SCQDs on the patterned piece. The PL peak position of the SCQD sample is 0.932 eV, compared
to 0.792 eV for the SAQD case. The shorter peak wavelength for SCQDs originates from the fact
that SCQDs has a wider base and a shorter height than SAQDs. The average height of SCQDs is
6 nm, compared with that of 8 nm in SAQDs. Moreover, the full-width-at-half-maximum of the
PL peak of the SCQD sample is 102 meV, which is 11 % narrower than that of SAQD sample
and attributed to the more uniform QDs on patterned substrates. The integrated PL intensity from
the SCQD sample is as strong as that of the reference SAQD sample by taking the dot density
into consideration where the dot density on SCQD sample (25 /um”2) is about half of that on
SAQD samples. The ratio of integrated PL intensity between 300 and 77 K remains the same on
both SCQD and SAQD samples. This confirms that the optical quality of regrown SCQDs layer
on processed samples is comparable to that of SAQDs grown on unprocessed epi-ready sub-
strates.

In conclusion, InAs site-controlled QDs have been demonstrated on (100) GaAs substrate
patterned by soft photocurable NIL and regrown by MBE. By judicious use of wet etching and
atomic hydrogen-assisted desorption instead of more conventional techniques, optically active,
uniform QD arrays are achieved with a single QD at each designed nucleation site. Room tem-
perature PL of SCQDs from wet-etched sample shows an integrated intensity comparable to that
of SAQDs, indicating a defect-free etched interface and a high quality QD growth. A narrower
PL linewidth from the SCQD sample is also an indication of a more uniform QDs distribution on
soft NIL patterned substrates. These features suggest that using soft NIL technique to transfer
nanoscale patterns is an excellent approach of achieving highly uniform QDs with precise posi-
tioning and good optical quality at a low cost and high throughput for future device applications.



