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A pair of masses or opposite-sign charges re-
leased from rest will move directly toward 
each other under the action of the inverse-

distance-squared force of attraction between them. An 
exact expression for the separation distance as a func-
tion of time can only be found by numerically invert-
ing the solution of a differential equation. A simpler, 
approximate formula can be obtained by combining 
dimensional analysis, Kepler’s third law, and the fa-
miliar quadratic dependence of distance on time for 
a mass falling near Earth’s surface. These exact and 
approximate results are applied to several interesting 
examples: the flight time and maximum altitude at-
tained by an object fired straight upward from Earth’s 
surface; the time required for an asteroid of known 
starting position and speed to cross Earth’s orbit if it is 
bearing toward the Sun; and the collision time of two 
oppositely charged particles starting from rest.

Problem Statement
Suppose that the first particle, whose motion is of 

primary interest, has mass m and charge q, while the 
second particle has mass M and charge –Q. To ensure 
that the electrical force between them is not repulsive, 
assume that Qq  0. (Note, however, that q can be 
positive, negative, or zero. In the last case, the force of 
attraction is solely gravitational.)

We will analyze the problem in the center-of-mass 
frame of reference and assume that the two particles 
constitute a bound, isolated system. In other words, 
the total mechanical energy is negative relative to the 
usual potential reference at infinite separation, and 

the particles always have equal and opposite linear 
momenta. Consequently, there is some maximum 
distance r0  between the two particles at which point 
they are both instantaneously at rest. Define the time 
of that event as t = 0. It corresponds to the initial sepa-
ration between the particles if they start from rest; it 
represents their turning points if the particles start out 
moving away from one another; and it represents a 
point in the extrapolated past if they are initially mov-
ing toward each other.

To summarize, without loss of generality we sup-
pose that two particles 1 and 2 are released from rest 
at time t = 0 when they are a center-to-center distance  
r0 apart. Define the coordinate origin to be at the sta-
tionary center of mass of the system. The two particles 
attract and begin to move toward each other. Their 
radial separation and relative speed at any later time 
t (before they collide with each other at time tc at the 
origin if they are of point size) are r and u, as described 
in Fig. 1.

The attractive force between the two particles is the 
sum of the gravitational and electrostatic forces, with 
magnitude F = g /r2,  where g   kQq + GMm. (Here k 
is the Coulomb constant and G is the universal gravi-
tational constant.) In practice, one of the two forces 
will usually dominate and we can neglect the other, 
but it is just as easy to be general and include both. 
Newton’s second law describing the magnitude of the 
relative acceleration a  a1 + a2  of the particles toward 
each other is1

					                      (1)     
2 ,a
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kinematic result for an object falling in Earth’s surface 
gravity motivates the final expression. Instructors 
need not follow all three steps. For example, one could 
skip directly to the second step to find the exact col-
lision time. Alternatively, one could omit the second 
step and simply state without proof the small numeri-
cal correction to the formula for the collision time 
found in the first step. A third possibility would be 
to skip the third step and restrict consideration to the 
one-dimensional collision of two point particles start-
ing from rest.

Step One—Approximate Solution for 
the Collision Time

Equation (1) implicitly relates the initial separation   
r0 to the collision time tc in terms of the quantity 
g /m  that has SI units of m3/s2. To convert this quan-
tity into one with units of time, we must divide it 
by the cube of r0 and take the reciprocal square root. 
Therefore, we immediately predict that

	              ,                                                               (2)0
3

c
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≈
	  

assuming both particles have negligible size relative 
to their initial separation. (In contrast, an example 
problem is solved later in this article where the second 
particle is taken to be the Earth and its radius is ac-
counted for.) As shown below, this estimate for tc is 
only 10% smaller than the exact answer and so it is 
an effective illustration of the power of dimensional 
reasoning.7 For the case of two uncharged particles 
(so that g  = GMm), when the second particle is much 
more massive than the first (so that m < m ), then Eq. 
(2) becomes
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3

c
r

t
GM

≈
	

Step Two—Numerical Prefactor for 
the Collision Time

The elliptical orbit of a planet (of mass m) about 
a sun (of mass M >> m) with semi-major axis a has a 
period squared of

					                     (4)
2
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according to Kepler’s third law, as can be derived at 
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where the reduced mass of the system is m  
mM /(m + M), which simplifies to m < m for the 
common case of M >> m. The signs of the kinematic 
variables have been chosen so that r, u, and a are all 
positive for 0 < t < tc . Consequently u = –dr/dt  since 
r decreases with t during this time interval, while a = 
du/dt = –d2r/dt2 because u increases.

We can now succinctly state the problem: Find the 
distance r between the particles as a function of time 
t. An exact solution for the inverse relationship t(r) 
has been published in several places2–6 and is reviewed 
in the appendix. The purpose of the present paper is 
to develop an approximate formula using ideas that 
would be more appropriate in an introductory course. 
Not only is the resulting expression for t(r) simpler, 
but it is analytically invertible to give r(t), in contrast 
to the exact expression that is not.

Three steps are used to develop the approximate 
formula. First, dimensional analysis quickly gives a 
good estimate for the collision time tc of two point 
particles that begin at rest. Second, Kepler’s third 
law determines the missing numerical prefactor that 
dimensional analysis cannot give. Third, the familiar 

*

Q

r1

Fig. 1.  Particle 1 of mass 
m and charge q, and par-
ticle 2 of mass M and 
charge –Q moving radial-
ly toward each other. The 
position and speed of the 
first particle relative to 
the center of mass (indi-
cated by the asterisk) are 
r1 and u1, while those of 
the second particle are r2 
and  u2. Consequently the 
separation and relative 
speed of the two par-
ticles are r  r1 + r2 and 
u  u1 + u2 .

2a

tc

tc

Fig. 2.  A highly elliptical two-dimensional orbit of a 
planet of mass m shown at the initial instant when it 
is located at aphelion with respect to a sun of mass M.
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an introductory level using conservation laws and 
elementary properties of ellipses.8 Now consider an 
elliptical orbit in the limit that the eccentricity e ➝1. 
Then the sun (located at one of the elliptical foci) 
moves to an end of the highly elongated orbit, as illus-
trated in a letter to the editor9 by a sequence of orbits 
for which e is increased from 0 to 1. To make contact 
with the present paper, let us suppose that the planet 
starts at aphelion, where its radial velocity is zero. In 
that case, as Fig. 2 makes clear, the planet and sun are 
initially separated by the major axis so that r0 = 2a. To 
complete one orbit, the planet first has to move to the 
sun’s position, which by definition takes the collision 
time tc, and then return to aphelion in the same time. 
Thus, the orbital period is t = 2tc. Substituting this 
result and  a = r0 /2 into Eq. (4) gives

	  
						       (5)0

3
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Consequently the required numerical prefactor in 
front of Eq. (3) is 2–3/2 p < 1.11. Likewise correct-
ing the more general expression in Eq. (2) leads to 
the exact result for two point particles,

	 0
3

c .
2 2

r
t

µπ
g

=
				  

(6)

Noting that the relative separation between the two 
particles decreases by r0 in a time of tc, it proves conve-
nient in the subsequent analysis to recast the position 
and time variables in dimensionless form. Define the 
normalized radial separation as

               					      (7)
r

R
r0

≡
	  	

and the normalized time as
	  
               .                           			    (8)

c

t
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Note that R = 1 at the initial point T = 0, and that 
point particles would reach the origin R = 0 at T = 1.

Step Three—Approximate 
Relationship Between the Separation 
and Time

Suppose that a particle of mass m is dropped near 
Earth’s surface (so that r0 is approximately equal to 
Earth’s radius rE) and falls a small distance Dr << r0 to 

a new radial position r = r0 – Dr in a time t. Elemen-
tary kinematics tells us that

						       (9),r gt21
D =

2 	
where g = GM/r2

E = 9.8 N/kg is Earth’s surface 
gravitational field strength (with M the mass of the 
Earth). Use Eqs. (7) and (8) to re-express the fall dis-
tance and time in normalized form as
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from Eq. (5). Using these variables, Eq. (9) can be re-
written as

	
					                  (12)

2
21 4where 1.62.X T n
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 = ≡ ≈   	

Multiplying this equation for X by n and adding and 
subtracting unity gives

1 – (1 – nX) = T 2.			                 (13)

We want to extend this result to hold for values of 
X that approach 1. The expression in parentheses 
looks like the first two terms in the binomial expan-
sion of (1 – X)n = R n, using Eq. (10) to relate X to 
R. Making this identification in Eq. (13) leads to the 
following hypothesized expressions relating the nor-
malized separation and time,
 

	
					                  (14)  ( )
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Note that these expressions fit the two endpoints R = 1 
at T = 0, and R = 0 at T = 1.

Equation (14) is plotted in red in Fig. 3. For com-
parison, the exact result from Eq. (30) in the appendix 
is graphed in blue. The two curves overlap almost per-
fectly across their whole range! The agreement can be 
slightly improved by rounding off n to the value 1.6, 
which is more convenient to work with than the exact 
irrational value; in that case, the mean discrepancy10 

between the exact and approximate values of T(R) is 
about a quarter of a percent. 



since T = t/tc, where c E /t r gp= according to Eq. 
(5). For comparison, Eq. (14) predicts a time of
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using the rounded-off value of n. The numerical val-
ues of Eqs. (16) and (17) disagree by less than 1 s.

2. 	 A new asteroid is discovered that is heading 
straight for the Sun. It is initially observed at a 
distance from the Sun of 3 AU with a speed of half 
of the speed uesc  it would need to escape from the 
Sun at that point in its orbit. How much time will 
elapse until the asteroid crosses Earth’s orbit?

Let ri = 4.5 3 1011 m and rf  = 1.5 3 1011 m be the 
initial and final radial positions of the asteroid, respec-
tively, and let r0 denote the maximum distance from 
the Sun that the asteroid would attain if it were travel-
ing directly away from the Sun with an initial speed of  
uesc /2. Also let Ri  ri/r0 and Rf  rf /r0 . The initial 
speed of the asteroid (of mass m) is obtained from en-
ergy conservation as

					                   
(18)
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where M is the mass of the Sun. Next we use Eq. 
(25) with g /m = GM to find the reciprocal of the 
asteroid’s radial turning point,
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with the help of Eq. (18). Consequently, Ri = 3/4 
and Rf = 1/4. Thus Eq. (30) gives
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using Eqs. (5) and (8). In comparison, Eq. (14) 
implies that
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Three Example Problems
1.   Suppose a particle is launched upward from the 

surface of the Earth with a speed uorbit equal to that 
of a low-Earth-orbit satellite. What is the maxi-
mum height that it reaches above Earth’s surface 
and how long does it take to get there?11

The speed of orbit of a satellite of mass m just above 
the surface of the Earth (ignoring its atmosphere and 
topography) is obtained from Newton’s second law as

	

					                   (15)

2
orbit

2
EE

orbit E 7.9 km/s ,

GMm
m
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u

= fi
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where M and rE are Earth’s mass and radius, respective-
ly. Since the velocity on the way up is equal and op-
posite to the subsequent velocity back down from the 
peak height, we can substitute  r = rE, u = uorbit, and 
g /m = GM = gr2

E  into Eq. (25) to obtain the maxi-
mum radial position r0 = 2rE, i.e., the particle attains a 
maximum height of one Earth radius (6370 km) above 
the surface. It then falls back to the ground, at which 
point R = rE /r0 = 1/2. Substituting this value into Eq. 
(30), one then finds that the fall (or equivalently the 
rise) time is

					                   (16)E 1 34.5 min
2

r
t

g
p = + =   	  	

Fig. 3.  Approximate (red) and exact (blue) plots of the 
separation of the two particles as a function of time in 
dimensionless form.
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and the quantity in square brackets is nearly equal 
to 1/3, in agreement with the result of Eq. (20). If 
such an asteroid really were discovered tomorrow, we 
would therefore have about half a year to prepare if 
the Moon or Earth were to be impacted.

3. 	 An electron and a positron start out at rest a dis-
tance r0 = 10 nm apart. How much time will it take 
for them to annihilate each other?

The two particles have equal and opposite charges 
of magnitude q = Q = e, where e = 1.6 3 10–19 C. 
Furthermore they have equal masses m = M = 9.11 
3 10–31 kg so that the reduced mass is m = m/2 . The 
electrostatic force completely overwhelms the gravita-
tional force between them and thus g = ke2. Equation 
(6) now becomes

	
					                  (22)   0
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They disappear in less than a blink of an eye!

Appendix:   Exact Relationship 
Between the Separation and Time

Substituting a = –d 2r/dt2 into Eq. (1) results in a 
second-order differential equation for r(t) that can be 
solved in two steps. First we find the relative speed u 
of the particles as a function of their separation r ; then 
we integrate that to determine the time T required for 
the particles to approach each other to within some 
distance R in dimensionless form.

I. Relative Speed as a Function of the   
   Separation

In the center-of-mass reference frame, the two 
particles have equal and opposite linear momenta of 
magnitude1 mu1 = Mu2 = mu  p, so that their total 
kinetic energy is

	  
					                  (23) 

2 2 2 2
21 1 1 .

2 2 2 2
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The potential energy corresponding to the force of in-
teraction in Eq. (1) is –g/r . Conservation of mechani-
cal energy for the system of two particles between the 
initial and an arbitrary final state therefore becomes
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which can be rearranged as
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The square root is always real because r  r0. Note 
that the speed becomes infinite as r ➝ 0, but in the 
real world that would be prevented by the finite sizes 
of the two particles.

II. Relationship Between the Separation and   
    Time

Substituting u = –dr/dt  into Eq. (25), the variables 
r and t can be separated and rewritten in dimensionless 
form using Eqs. (6) through (8) to get

	                                           .
                                      .                                              

(26)
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dT
R

p
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The lower limits correspond to the initial condition 
R = 1 at T = 0. The time integral on the left-hand 
side is equal to T. One can solve the radial inte-
gral by making a change of variable. By trial and 
error, one is led to the trigonometric substitution 
R = cos2 q, whose virtue is that it lends itself to the 
Pythagorean identity

sec2 q – 1 = tan2 q.		      	                (27)

Substituting this identity and the differential dR = 
–2 cos q sin qdq into Eq. (26) leads to

	
					                   (28)( )2

0 0

2cos 1 cos 2 ,
2

T d d
q q

p
q q q q= = +∫ ∫

	
using the cosine double-angle formula and noting 
that q = 0 when R = 1. Integrating gives

	
					                    (29)

2

sin 2 cos sin
2 2
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T
p q
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= + −  	
with the help of the sine double-angle formula and 
another Pythagorean identity. Returning to the origi-
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8. 	 E. D. Noll, “Kepler’s third law for elliptical orbits,” 
Phys. Teach. 34, 42–43 (Jan. 1996). A paper of the 
same title with essentially the same derivation has been 
published by R. Weinstock in Am. J. Phys. 30, 813–814 
(Nov. 1962).

9. 	 A. J. Mallinckrodt, “Falling into the sun,” Phys. Teach. 
36, 324 (Sept. 1998).

10. 	 Let the fractional discrepancy between the exact and ap-
proximate values of T be f (R)  (Texact – Tapprox)/
Texact. Then I define the mean discrepancy to be the 
square root of the integral of  f 2 from R = 0 to R = 1, in 
accordance with the usual statistical idea of variance.

11. 	 Problem adapted from B. Korsunsky, “Physics Chal-
lenge for Teachers and Students: The drill team rocks!” 
Phys. Teach. 45, 568 (Dec. 2007).

PACS codes: 01.55.+b, 45.00.00
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nal variable R gives the final result
	
					                   (30)1cos (1 ).

2
T R R R

p −= + −
	

This equation correctly predicts that T = 0 at the ini-
tial point R = 1, and that T = 1 at R = 0. We cannot 
analytically invert it to find R(T), but by computing 
a table of values (as plotted in Fig. 3) we can find 
any desired result numerically, which points out the 
advantage of working with a “universal” (i.e., dimen-
sionally normalized) form of the equation.

One can show that Eq. (30) becomes Eq. (12) to 
lowest order in X if Eq. (10) holds. This result follows 
by proving that each of the two terms on the right-
hand side of Eq. (30) is approximately equal to X if  
R = 1 – X, where X << 1. For the first term, one dem-
onstrates the inverse result 1 X−  < cos X by 
Taylor expanding both sides up to linear powers in X.
 
	 Note added in proof:  S.K. Foong [“From Moon-fall to 

motions under inverse square laws,” Eur. J. Phys. 29, 
987–1003 (Sep. 2008)] has obtained other approximate 
expressions for R(T ).
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