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Understanding the behavior of soil under blast loading is very important to 

engineers in mining, tunneling, and military construction. Due to the very complex 

structure of a soil mass it is very difficult to describe its constitutive relation, especially 

when it has different water contents and it is under blast loading conditions. New 

protective system designs subjected to blast loading need to be proved its validation prior 

to predict effect of explosive before implementation. Full-scale, buried explosive tests are 

costly. Finite element simulations play a significant role in the design of protective 

systems, for example a bottom platform of lightweight vehicles, against underground 

explosion.  

The Perzyna viscoplastic cap model has been shown to be a valid model for use in 

the simulations of dry soil behavior under both static and dynamic loading.  This model is 

a dramatic improvement over the inviscid cap model for soil behavior under high strain 

rate loading, such as from an explosion.  However, soil should be modeled as a three-



phase porous media to accommodate various degrees of water saturation. This is 

especially true for the soil mass surrounding the source of energy release, as each of the 

three phases responds differently to shock loading.  To improve the model accuracy, a 

revised model comprising a Gruneisen equation of state (EOS) for each of the three 

phases has been developed. These equations of state for solid, water and air have been 

integrated with a viscoplastic cap model to simulate behaviors of soil with different 

degrees of water saturation. 

 These EOS models as well as the viscoplastic cap model are implemented into 

LS-DYNA as user-supplied subroutines for numerical simulation of six explosive tests in 

dry soil as well as in saturated soil. The shock front time of arrival, the air pressure 

directly above the buried explosive, and the ejecta heights predicted by the revised cap 

model agree fairly well with the experimental data. Four elements from finite element 

mash are selected to observe three phases volume fractions change. There is noticeable 

improvement in the prediction of saturated soil behavior than dry soil behavior under 

blast loading. It is concluded that the revised model is adequate for blast loading behavior 

simulations for soil with different degrees of water saturation. 



i 

ACKNOWLEDGEMENTS 

 

I would like to record my heartfelt gratitude to one and all that helped and 

encouraged me during the course of my doctoral program at UNL. 

       First, I would like to thank my advisor, Dr. Christopher Y. Tuan. He initiated my 

doctoral program at UNL in 2006 and he has been very patient with me during my 

working with him. His thoughtful advice has saved me from stepping onto the wrong 

path. His enthusiasm towards every tiny accomplishment has encouraged my completing 

this research work. I am indebted to him for the time he has given in guiding me in the 

research and editing my dissertation.  I feel myself privileged to have known him closely 

and to have worked under him. 

My wife, Jianping Liu, has always been my constant source of inspiration 

throughout my educational career at UNL. Jianping was instrumental in my coming to the 

United States for higher studies.  She is always patient and understanding. Without her 

love, help and support, I could not have completed my doctoral program. I am proud of 

her. 

My parents back home in China have always blessed me in my endeavor. They 

are in my thoughts and prayers. Their unconditional love, blessings and moral support 

provided a lot of comfort at times of frustration and stress during the course of my 

doctoral program. 



ii 
I would like to record my thankfulness to my supervisory committee members, 

Drs. Maher K. Tadros, Andrzej S. Nowak, Ece Erdogmus, John Rohde and Mingsheng 

Liu for their help and guidance during the course of my dissertation.  Dr. Ece Erdogmus 

and Dr. John Rohde provided me valuable input as reading committee members. I thank 

them for their critical comments and review of the dissertation. I thankfully acknowledge 

the help and support that I received from Dr. Mohammed Dahab and Dr. John Rohde 

who offered me teaching assistantship for the Foundation Engineering class. I also thank 

our departmental Secretary, Ms. Arlys Blakey for all her assistance during my doctoral 

program at UNL.  

       I would also like to thank Dr. David Swanson, Mr. Tom Harvill for their kind help 

during finite element simulations using the Research Computing Facilities.  

       And I would also like to thank Mr. Xiaoli Tong, formerly a graduate research 

assistant to Dr. Tuan, who is a great source of help during my Ph.D. program.  

       Finally, I would like to thank Dr. Bryan Cheeseman and Dr. Chian-Fong Yen and 

Dr. Arizon at the U.S. Army Research Laboratory(ARL), Aberdeen Proving Ground, 

Maryland, for providing valuable information about LS-DYNA and related literature to 

me. Their collaborations and feedbacks are invaluable for improving this research. I 

gratefully acknowledge the financial support received from ARL for this research.  

       I would once again acknowledge the help and encouragement offered to me by all 

my teachers, friends, family and well wishers. Thank you so much. Your guidance, 

constructive criticism, help and encouragement really made the difference.  



iii 
TABLE OF CONTENTS  

 

ACKNOWLEDGEMENTS ................................................................................................. i 

LIST OF FIGURES ........................................................................................................... vi 

LIST OF TABLES ............................................................................................................. xi 

CHAPTER ONE     INTRODUCTION .............................................................................. 1 

1.1 BACKGROUND .......................................................................................................... 1 

1.2 OBJECTIVES OF THE RESEARCH .......................................................................... 3 

1.3 CONTENTS .................................................................................................................. 4 

CHAPTER TWO     VISCOPLASTIC CAP MODELS ..................................................... 5 

2.1 INTRODUCTION ........................................................................................................ 5 

2.2 DEVELOPMENT OF SOIL MODELS........................................................................ 7 

    2.2.1 SOIL BEHAVIOR ................................................................................................. 7 

    2.2.2 SOIL MODELS ................................................................................................... 13 

        2.2.2.1 ELASTIC PERFECTLY-PLASTIC SOIL MODELS .................................. 14 

        2.2.2.2 HARDENING-PLASTIC SOIL MODELS .................................................. 16 

        2.2.2.3 THREE-PHASE SOIL MODELS ................................................................ 20 

        2.2.2.4 VISCOPLASTIC SOIL MODELS ............................................................... 22 

        2.2.2.5 SFG UNSATURATED SOIL MODEL........................................................ 24 

        2.2.2.6 BOUNDING SURFACE PLASTICITY UNSATURATED SOIL MODEL27 

2.3 VISCOPLASTIC CAP MODELS .............................................................................. 29 

    2.3.1 THE PERZYNA TYPE VISCOPLASTIC CAP MODEL .................................. 31 

        2.3.1.1 STATIC YIELD FUNCTIONS .................................................................... 32 



iv 
        2.3.1.2 SOLUTION ALGORITHMS ....................................................................... 34 

    2.3.2 THE DUVANT-LIONS TYPE VISCOPLASTIC CAP MODEL....................... 39 

        2.3.2.1 STATIC YIELD FUNCTIONS .................................................................... 40 

        2.3.2.2 SOLUTION ALGORITHMS ....................................................................... 40 

2.4 ILLUSTRATION EXAMPLE .................................................................................... 42 

2.5 MODEL VALIDATOIN AGAINST EXPERIMENTAL DATA .............................. 45 

CHAPTER THREE     EQUATION OF STATES ........................................................... 47 

3.1 INTRODUCTION ...................................................................................................... 47 

3.2 DEVELOPMENT OF SOIL EQUATION OF STATES............................................ 47 

    3.2.1 MIE-GRUNEISON EQUATION OF STATE..................................................... 49 

    3.2.2 TILLOTSON EQUATION OF STATE .............................................................. 51 

    3.2.3 MURRAY’S EQUATION OF STATE FOR UNSATURATED SOILS ............ 54 

3.3 KANDAUR’S CONCEPTUAL MODEL OF EOS .................................................... 58 

3.4 USER DEFINED EQUATION OF STATE ............................................................... 69 

CHAPTER FOUR     NUMERICAL ANALYSIS AND COMPARISON WITH TEST 

DATA ............................................................................................................................... 80 

4.1 INTRODUCTION ...................................................................................................... 80 

4.2 PROPERTIES OF SOIL USED IN EXPLOSIVE TESTS ......................................... 84 

4.3 DESCRIPTION OF EXPLOSION TEST ................................................................... 85 

4.4 FINITE ELEMENT MODEL ..................................................................................... 88 

4.5 SIMULATION FOR SATURATED SOIL ................................................................ 95 

    4.5.1 SIMULATION CASES AT DIFFERENT ELEMENT ....................................... 95 

    4.5.2 COMPARISON OF SIMULATION WITH TEST RESULTS ......................... 102 



v 
4.6 SIMULATION FOR DRY SOIL.............................................................................. 108 

    4.6.1 SIMULATION CASES AT DIFFERENT ELEMENT ..................................... 108 

    4.6.2 COMPARISON OF SIMULATION WITH TEST RESULTS ......................... 113 

4.7 CONCLUSIONS....................................................................................................... 125 

CHAPTER FIVE     CONCLUSIONS AND RECOMMENDATIONS ........................ 126 

5.1 CONCLUSIONS....................................................................................................... 126 

5.2 RECOMMENDATIONS .......................................................................................... 127 

REFERENCE .................................................................................................................. 128 

 
APPENDIX A ................................................................................................................. 141 

APPENDIX B ................................................................................................................. 150 

APPENDIX C ................................................................................................................. 156 

 

 

 

 

 

 

 

 

 

 

 



vi 
LIST OF FIGURES 

 

FIG. 1- 1    Values of   for a silt at different degrees of saturation ..................................... 2 

FIG. 2- 1    A schematic element ........................................................................................ 5 

FIG. 2- 2    Response of soil with respect to shearing ........................................................ 8 

FIG. 2- 3    A Drucker-Prager type of strain-hardening cap model .................................. 16 

FIG. 2- 4    Modified Cam-Clay model ............................................................................ 17 

FIG. 2- 5    Yield surface of generalized cap model ......................................................... 18 

FIG. 2- 6    Stress Space View of Continuous Surface cap model ................................... 19 

FIG. 2- 7    Yield Surface of the Modified Cam-Clay Model in terms of the Effective ... 21 

FIG. 2- 8    Viscoplasticity vs. plasticity........................................................................... 22 

FIG. 2- 9    Initial Yield Surface for a Soil That was Consolidated to 300 kPa at Zero 

Suction and Its Evolution When the Soil is then Loaded at Different Suction Levels

................................................................................................................................... 26 

FIG. 2- 10    Yield Surface of the Modified Unsaturated Soil Model in terms of the 

Effective Mean-Stress and Shear Stress ................................................................... 29 

FIG. 2- 11    Static yield surface for cap model (Tong, 2005) .......................................... 32 

FIG. 2- 12    Treatment of tension cutoff .......................................................................... 39 

FIG. 2- 13    Axial strain history for uniaxial strain test ................................................... 43 

FIG. 2- 14    Axial stresses for different values of τ and η ............................................... 44 

FIG. 3- 1    Regions of Interest in the (p, v) Plane ............................................................ 52 

FIG. 3- 2    Variation of specific volume during ramped consolidation at different suction

................................................................................................................................... 57 



vii 
FIG. 3- 3    q versus cp′    at critical states ......................................................................... 58 

FIG. 3- 4    Relationship between stresses and relative volume deformation for solids ... 60 

FIG. 3- 5    Relationship between stresses and relative volume deformation for liquids, 

gases, etc ................................................................................................................... 61 

FIG. 3- 6    Schematic representation of a block grained medium with elastobrittle 

linkages between the blocks ...................................................................................... 62 

FIG. 3- 7    Schematic diagram of a rheological model of the medium ............................ 63 

FIG. 3- 8    Shock-velocity vs. particle-velocity ............................................................... 70 

FIG. 3- 9    Stress vs. particle-velocity ............................................................................. 71 

FIG. 3- 10    Shock-velocity dependence on particle-velocity for quartz ......................... 73 

FIG. 3- 11    Shock-velocity dependence on particle-velocity for water .......................... 74 

FIG. 3- 12    Shock-velocity dependence on particle-velocity for air ............................... 74 

FIG. 4- 1    Definition of variables in US Army TACOM impulse model ....................... 82 

FIG. 4- 2    Explosive test set-up ...................................................................................... 86 

FIG. 4- 3    Schematic explosive test set-up ..................................................................... 86 

FIG. 4- 4    Explosive test for saturated soil with DOB=3 cm by high speed video ........ 87 

FIG. 4- 5    Explosive test for dry soil with DOB=3 cm by high speed video .................. 87 

FIG. 4- 6    Finite element mesh ....................................................................................... 88 

FIG. 4- 7    Material and EOS model ................................................................................ 89 

FIG. 4- 8    Material and EOS models used for the FE mesh ........................................... 92 

FIG. 4- 9    Energy transmission chart .............................................................................. 92 



viii 

FIG. 4- 10    Flowchart showing the solution algorithm for use in LS-DYNA ................ 94 

FIG. 4- 11    Element #654 ............................................................................................... 96 

FIG. 4- 12    Saturated soil increments of volume fractions in element #654 .................. 96 

FIG. 4- 13    Element #748 ............................................................................................... 98 

FIG. 4- 14    Saturated soil increments of volume fractions in element #748 .................. 98 

FIG. 4- 15    Element #852 ............................................................................................. 100 

FIG. 4- 16    Saturated soil increments of volume fractions in element #852 ................ 100 

FIG. 4- 17    Air element #4498 ...................................................................................... 101 

FIG. 4- 18    Volume fraction of saturated soil in air element #4498 ............................. 102 

FIG. 4- 19    Saturated sand air pressure time-histories, 30 cm standoff distance #1 ..... 103 

FIG. 4- 20    Saturated sand air pressure time-histories, 70 cm standoff distance #1 ..... 103 

FIG. 4- 21    Saturated sand air pressure time-histories, 110 cm standoff distance #1 ... 103 

FIG. 4- 22    Saturated sand air pressure time-histories, 30 cm standoff distance #2 ..... 104 

FIG. 4- 23    Saturated sand air pressure time-histories, 70 cm standoff distance #2 ..... 104 

FIG. 4- 24    Saturated sand air pressure time-histories, 110 cm standoff distance #2 ... 104 

FIG. 4- 25    Saturated sand air pressure time-histories, 30 cm standoff distance #3 ..... 105 

FIG. 4- 26    Saturated sand air pressure time-histories, 70 cm standoff distance #3 ..... 105 

FIG. 4- 27    Saturated sand air pressure time-histories, 110 cm standoff distance #3 ... 105 

FIG. 4- 28    Comparison between numerically predicted and experimental values for 

saturated sand (Shock front pressure in air VS. Transducer distance) ................... 106 

FIG. 4- 29    Comparison of simulation results due to parameters change for saturated soil

................................................................................................................................. 106 



ix 
FIG. 4- 30    Saturated soil volume fractions of three phases before the shack wave 

arrives ...................................................................................................................... 107 

FIG. 4- 31    Saturated soil volume fractions of three phases at 180µsec ....................... 108 

FIG. 4- 32    Dry soil volume fraction in element #654 .................................................. 109 

FIG. 4- 33    Dry soil volume fraction in element #748 .................................................. 111 

FIG. 4- 34    Dry soil volume fraction in element #852 .................................................. 112 

FIG. 4- 35    Volume fraction of dry soil in air element #4498 ...................................... 113 

FIG. 4- 36    Dry sand air pressure time-histories, 30 cm standoff distance #1.............. 114 

FIG. 4- 37    Dry sand air pressure time-histories, 70 cm standoff distance #1.............. 115 

FIG. 4- 38    Dry sand air pressure time-histories, 110 cm standoff distance #1............ 115 

FIG. 4- 39    Dry sand air pressure time-histories, 30 cm standoff distance #2.............. 115 

FIG. 4- 40    Dry sand air pressure time-histories, 70 cm standoff distance #2.............. 116 

FIG. 4- 41    Dry sand air pressure time-histories, 110 cm standoff distance #2............ 116 

FIG. 4- 42    Dry sand air pressure time-histories, 30 cm standoff distance #3.............. 116 

FIG. 4- 43    Dry sand air pressure time-histories, 70 cm standoff distance #3.............. 117 

FIG. 4- 44    Dry sand air pressure time-histories, 110 cm standoff distance #3............ 117 

FIG. 4- 45    Comparison between numerically predicted and experimental values for dry 

sand (Blast wave arrival time VS. Transducer offset angle) .................................. 118 

FIG. 4- 46    Comparison between numerically predicted and experimental values for dry 

sand (Shock front pressure in air VS. Transducer distance) ................................... 119 

FIG. 4- 47    Comparison of simulation results due to parameters change for dry soil .. 119 

FIG. 4- 48    Dry soil volume fractions of three phases before the shack wave arrives . 120 



x 

FIG. 4- 49    Dry soil volume fractions of three phases at 120µsec ................................ 121 

FIG. 4- 50    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 420 µsec ................................................................................................... 122 

FIG. 4- 51    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 830 µsec ................................................................................................... 123 

FIG. 4- 52    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 1040 µsec ................................................................................................. 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
LIST OF TABLES 

 

Table 2- 1    Numerical algorithm for the Perzyna’s viscoplastic model ......................... 37 

Table 2- 2    Numerical algorithm for the Duvant-Lions’s viscoplastic model ................ 42 
 
Table 3- 1    Equation of state parameters for saturated soil ............................................. 67 

Table 3- 2    Plate impact test data .................................................................................... 71 

Table 3- 3    Equation of state parameters for saturated soil ............................................. 75 
 
Table 4- 1    Properties of soil specimens ......................................................................... 84 

Table 4- 2    Viscoplastic cap model parameters for sandy soil ....................................... 90 

Table 4- 3    JWL equation of state parameters for C4 ..................................................... 90 

Table 4- 4    LINEAR-POLYNOMIAL equation of state parameters for air ................... 91 

 

  

 

 

 

 

 

 

 



1 

CHAPTER ONE     INTRODUCTION 

 

1.1 BACKGROUND 

 Many commercial and military endeavors, such as defense, construction, 

earthquake prevention, disaster mitigation, and mining, involve soil dynamics. Soil 

behavior under blast loading have been studied by engineers and researchers (Wang and 

Lu 2003; Tong and Tuan 2007; Grujicic et al. 2008). Soil is an assemblage of individual 

particles, rather than a continuum, that soil may have various degrees of water saturation.  

A rapid release of energy from a buried explosion causes a sudden rise of pressure or a 

shock front propagating through a soil medium, it is very challenging to accurately 

predict soil behavior under blast loading. Therefore, to date common practice in modeling 

soil behavior under blast loading is mainly based on empirical formulae from field tests 

(Wang et al. 2004). Since conditions varied in those test sites, predictions using those 

empirical formulae scatter significantly.  Discrepancy at the same scaled distance could 

be more than two orders of magnitude between dry and saturated soils (Drake and Little 

1983).   

 Soil is composed of solid particles with different sizes and shapes that form a 

skeleton and the voids are filled with water and air. The soil is saturated if all the voids 

are filled with water. Otherwise, the soil is partially saturated.  If all the voids are filled 

with air, the soil is said to be dry. It is a common practice in soil mechanics to assume 

that the solid particles do not deform and the water phase is incompressible. Hence, 

external loading is supported by the skeleton and the water. The “effective stress” is the 
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average stress on a plane through the soil mass, rather than the contact stress between the 

solid particles. The stress on the water and the air is called “pore pressure.” The principle 

of effective stress was first recognized by Terzaghi in the mid-1920s during his research 

in soil consolidation (Budhu 2007). Soils cannot sustain significant tension, and thus the 

effective stress cannot be tensile. Pore water pressures, however, may be positive or 

negative (i.e., suction). For unsaturated soils, the effective stress (Bishop 1959) is 

expressed as  

( )waa uuu −+−=′ χσσ  ..........................................................................................(1.1) 

where σ is the total stress, ua is the pore air pressure, uw is the pore water pressure, and x 

is a factor depending on the degree of saturation. For dry soil, x=0; for saturated soil, x=1 

(Loret and Khalili 2000; Budhu 2007). For instance, values of x for silts are shown in FIG. 

1-1.  

 

FIG. 1- 1    Values of   for a silt at different degrees of saturation 
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 A number of investigators have clearly demonstrated the effective stress 

hypothesis under static and quasi-static loading because the deformation of the soil 

skeleton depends on the effective stress caused by the structural configuration of the solid 

particles, while the moisture and air are assumed to flow through the skeleton driven by 

the pore pressure. The effective stress approach becomes invalid under shock loading. 

This is due to the fact that solid particles will deform under shock loading, while moisture 

and air are trapped in soil pores, providing additional load support. 

        For simulation accuracy in finite element analysis reasonable constitutive models 

for the involved materials are critical. Three materials, explosive, air and soil, are 

essential to define an underground explosion. The constitutive models for explosive and 

air have been reasonably described and are available for explosion simulation (Dobratz 

and Crawford 1985, “LS-DYNA” 2001), but soil models not be adequately have 

implemented into finite element programs for explosion simulations. 

 

1.2 OBJECTIVES OF THE RESEARCH 

 The objective of this research is to develop a soil model developed for finite 

element simulations of explosions in soil with various degrees of saturation. Equation of 

state (EOS) models are developed for the three phases of the soil based on Kandaur’s 

concept (Henrych, 1979). These EOS models are integrated with the viscoplastic cap 

model previously developed by Tong and Tuan (2007), and then incorporated into LS-

DYNA as user-defined subroutines for soil constitutive relationship. This revised cap 

model is then validated by comparing simulation results against experimental data. 
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Explosive tests conducted by Materials Sciences Corporation (2006), in saturated soil as 

well as in dry soil, were used to validate the revised cap model.   

 

1.3 CONTENTS 

       This thesis is organized as follows.  

       Chapter One: The background, objective and contents of this study are described.  

       Chapter Two: The Perzyna type viscoplastic cap model is prepared incorporating 

the viscoplastic cap models into LS-DYNA finite element code as user-defined material 

models. 

       Chapter Three: Two formulations of equation of state based on Kandaur 

conceptual method are described. An equation of state for soil is established and 

incorporated the equation of state into LS-DYNA finite element code as user-defined 

equation of state model. 

       Chapter Four: The models’ performance is evaluated using soil viscoplastic cap 

model with equation of state in finite element simulation of a series of mine explosion 

tests. Four elements from finite element mash are selected to observe three phases 

volume fractions change. 

       Chapter Five: Conclusions of the research project are presented as well as 

suggestions and recommendations for future study. 
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CHAPTER TWO     VISCOPLASTIC CAP MODELS 

 

2.1 INTRODUCTION 

Soil has generally a complex structure consisting of mineral particles which form 

a soil skeleton. The interstertices between the solid particles are filled with air and/or 

moisture. In general, components of soil are solid, water and air and called three-phase 

soil. A soil element is illustrated in FIG. 2-1.  

 

 

 

FIG. 2- 1    A schematic element 

 

The soil skeleton can transmit normal stresses and shear stresses through the inter 

particle contacts. This skeleton of grains behaves in a very complex manner that depends       

on a large number of factors, among which void ratio, partial shape, distribution of partial 

               Solid  

               Water 

                  

 

Air 
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size and confining pressure are the most important (Lade 2005). When the pores between 

the solid particles are filled with air, the soil is referred to dry soil. When the pores are 

filled with water containing a small fraction of air the soil is called saturated. The relative 

volume fractions of the three constituent materials in the soil are generally quantified by 

the porosity,α , and the degree of saturation, β , which are respectively defined as: 

V

V p=α  ......................................................................................................................(2.1) 

and  

p

w

V

V
=β  ......................................................................................................................(2.2) 

Where pV  is the volume of void (pores), wV  is the volume of water and V is the total 

volume of the three phase material. 

For many low load rate processes, the overall macroscopic behavior of the soil 

skeleton may be defined within the principles of continuum mechanics, making it 

possible to simplify the modeling and apply the theories and methods of continuum 

mechanics. 

       For rapid loading conditions, soil models incorporate constitutive models of the 

three phases all required to define soil behavior. 
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2.2 DEVELOPMENT OF SOIL MODELS 

2.2.1 SOIL BEHAVIOR 

 In this section, different characteristics of soil behavior are discussed. 

(1) Shear strength and deformation characteristics: The energy applied to a soil 

through external loads may both overcome the frictional resistance between the 

soil particles and also to expand the soil against the confining pressure. The soil 

grains are highly irregular in shape and have to be lifted over one another for 

sliding to occur (Das, 1983). The relationship between the shear strength of a soil 

and its deformation characteristics depends mainly on how the volume changes 

during the shearing process. This behavior is called dilatancy. An increase in 

volume, or expansion, is known as positive dilation; while a decrease in volume, 

or contraction, is known as negative dilation. A typical curve of the soil dilatation 

under shear loading is shown in FIG. 2-2. In the case of sands, the degree of 

interlocking between particles is greater when the soil is densely packed. An 

initial expansion or dilation is necessary in order for the soil particles to more past 

each other. Thus the shear stress will first rise sharply to a peak value at a 

relatively low value of displacement, with a corresponding increase in volume. At 

this new volume the interlocking is reduced and consequently, as the 

displacement is continued, the shear stress falls back and finally levels off at an 

ultimate residual value (Whitlow, 1995). 

(2) Plasticity: An increase in applied stress usually brings about some irrecoverable 

deformation, without any signs of cracking or disruption (unloading, see FIG. 2-2). 
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Most soils only have a very small elastic region and show plasticity from the 

onset of loading. 

(3) Strain-hardening/softening: After an initial extension, the soil behaves as if it 

had acquired better elastic properties and a higher elastic limit, while at the same 

time it had lost a great part of the plastic strain. And yield surface changes with 

plastic strain development during loading (Maugin, 1992). Associated with strain-

softening behavior is the tendency of dense granular and overconsolidated clays 

to dilate when sheared strain-hardening is associated with compaction of such 

materials as loose sand or normally consolidated clays experience strain-

hardening (FIG. 2-2). 

 

FIG. 2- 2    Response of soil with respect to shearing 

(Whitlow 1995) 

unloading 

strain-softening 

strain-hardening 

Irreversible 

S
tr

es
s 

V
ol

um
e 

de
fo

rm
at

io
n

 



9 
(4) High Strain Rate Behaviors: Soil with different varying water contents show 

different behaviors under high strain rate loading.  Test data using a Split 

Hopkinson Pressure Bar (SHPB) (Bragov et al. 2005; Proud et al. 2007) showed 

that the density of soil and the shock velocity are increased with moisture content 

increasing. A schematic SHPB test setup is shown in FIG. 2-3.   

 

 

FIG. 2- 3    Split Hopkinson Pressure Bar test setup 

 

A compressive stress pulse is induced in the incident bar by a striker, and the 

incident strain εΙ , reflected strain ε
R, and transmitted strain ε

T
 in the bars are 

measured. The stress-strain relation of the soil specimen and the strain rate can be 

determined from the elastic modulus of the bars and the recorded strain data.  The 

confined axial stress-strain curves of the soil specimens from SHPB tests at three 

different strain rates are presented in FIG. 2-4.  
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FIG. 2- 4    Split Hopkinson Pressure Bar test data 

 

(5) Tensile strength: In granular media, tensile strength is a result of various 

interparticle physicochemical forces such as a.) van der Waals attraction, b.) 

electrical double layer repulsion or attraction, c.) cementation due to solute 

precipitation, d.) capillary stress due to the negative pore water pressure, and e.) 

capillary stress due to the surface tension of liquid (Lu and Likos, 2006). The 

macroscopic manifestation of these forces is the cohesive behavior shown widely 

in granular media. This strength can play an important role in stress and strain 

behavior. Experimental tensile strength results for the silty sand, fine sand, and 

medium sand are plotted in FIG 2-5, FIG 2-6 and FIG 2-7, respectively, as a 

function of saturation (Lu, Wu and Tan, 2007).  
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FIG. 2- 5    Tensile strength curve — silt sand 

 

 

FIG. 2- 6    Tensile strength curve — fine sand 
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FIG. 2- 7    Tensile strength curve — medium sand 

 

(6) Effects of drainage and volume change: In a saturated soil mass, an increase in 

applied compressive stress of creep loading causes the pore water pressure to 

increase.  If drainage is possible an outflow of water then takes place into 

surrounding regions where the pore water pressure is lower. The rate of outflow 

depends on the permeability of the soil, in gravels and sands it is relatively rapid, 

but in silts and clays it is slow. As the excess pore water pressure is dissipated, the 

applied stress is transferred from pore pressure to effective stress. Undrained 

conditions occur when either drainage is prevented or when the rate of application 

of load is too rapid to allow significant outflow of water. The deformation of an 

undrained soil mass is related to the stiffness of both the pore water and the solids. 

When loading is applied slowly, such that the water drains away without any 
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increase in pore water pressure, the volume will decrease and stress-strain 

behavior must be defined in terms of effective stresses (Whitlow, 1995).  

 It should be mentioned that there are also other characteristics of soil behavior 

such as creep and temperature-dependency. Those aspects are not discussed here because 

they are beyond the scopes in this study.  

 

2.2.2 SOIL MODELS 

       The mechanical behavior of soils may be modeled at many levels. Hooke's law of 

linear, isotropic elasticity may be thought of as the simplest available stress-strain 

relationship, but this is generally too crude to capture the essential features of soil 

behavior (Brinkgreve, 2005). On the other hand, a large number of constitutive models 

have been proposed by several researchers to describe various aspects of soil behavior in 

detail (Lade 2005, Prevost and Popescu 1996, Chen and Baladi 1985). Models that are 

appropriate to be implemented into finite element programs and to predict the soil 

behavior for geotechnical engineering applications are rather limited.  

       This study is focused on a limited number of frequently used soil models that can 

predict the soil behavior previously described. These models include elastic perfectly-

plastic soil models, hardening-plastic soil models, elastic-viscoplastic soil models, three-

phase soil models, viscoplasitc soil models, SFG (presented by Sheng, Fredlund and 

Gens) unsaturated soil model and bounding surface plasticity unsaturated soil models. 
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2.2.2.1 ELASTIC PERFECTLY-PLASTIC SOIL MODELS 

       The classical Mohr-Coulomb model is often used to describe soil behavior. In one 

dimension, the yield “surface” of Mohr-Coulomb mode is defined by a linear line 

between shear stress τ  and normal stress σ  which is written as  

( ) 0tan =−−= φσcτf  ............................................................................................(2.4) 

where the constant c and φ are cohesion and internal friction angle. But in three 

dimensions, the yield surface defined by Eq. 2.5, is much more complicated. 
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where I1 = tr σσσσ    (σσσσ = stress), the first invariant of stress tensor;  

         J2 = 1/2 s : s (s = stress deviator), the second invariant of deviatoric stress tensor;  

        θ   =  the angle of similarity and defined by  Eq. 2.6. 
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where J3 = det |s|, the third invariant of deviatoric stress tensor. The failure surface of 

Mohr-Coulomb model in principal stress space, which is hexagonal, is shown in FIG. 2-8.  

       The Mohr-Coulomb model is certainly still the best known model for an isotropic 

pressure-sensitive soil, since the stress at failure through experimental studies agrees well 

with this model (Goldscheider, 1984). The model, however, is not mathematically 

convenient due to the presence of corners or singularities (see FIG. 2-8). A reasonable 
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smooth generalization of the Mohr-Coulomb model in three dimensional situations may 

be defined by the Drucker-Prager model (1952), which is a simple cone in principal stress 

space as shown in FIG. 2-9.  

 

 

 

 

 

 

 

Both Mohr-Coulomb model and Drucker-Prager model capture soil plasticity 

behavior very well and ensure a unique solution. However, these perfectly-plastic soil 

models have inherent limitations and shortcomings: (1) the amount of dilatancy predicted 

by these models is much greater than observed experimentally; (2) tests indicate a 

considerable hysteresis in a hydrostatic loading-unloading which cannot be predicted 

using the same elastic bulk modulus of loading and unloading and a yield surface which 

does not cross the hydrostatic loading axis (DiMaggio and Sandler, 1971); (3) strain 

softening behavior cannot be reproduced; and (4) strain rate effect is not considered. 

FIG. 2- 9    Drucker-Prager model  

(Brinkgreve 2005) 

 

FIG. 2- 8    Mohr-Coulomb model 

 (Brinkgreve 2005) 
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2.2.2.2 HARDENING-PLASTIC SOIL MODELS 

       Considering strain hardening/softening behavior of soil, it is logical to utilize the 

classical theories of work-hardening plasticity developed for metals. Drucker et al. (1957) 

first suggested that soil might be modeled as an elastic-plastic work-hardening material. 

They proposed that successive yield surfaces might resemble extended Drucker-Prager 

cone with convex end spherical caps as shown in FIG. 2-10 (Chen and Baladi 1985). As 

the soil strain hardens, both the cone and the end cap expand. This concept of cap 

envelope was a major step forward toward a more realistic representation of soil behavior. 

Based on this concept, numerous work-hardening soil models have been developed. 

Generally these models can be classified into two groups: modified Cam-clay model and 

generalized cap model.  

 

FIG. 2- 3    A Drucker-Prager type of strain-hardening cap model 

 (Chen and Baladi 1985) 
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       The modified Cam-clay model was developed at Cambridge University by 

Roscoe et al. (1963). This model is based on critical state theory and originally meant to 

simulate the behavior of near-normally consolidated clays under triaxial compression test 

conditions. The fundamental concept of this model is that there exists a unique failure 

surface that defines failure of a soil irrespective of the history of loading or stress paths 

followed. The yield surface is assumed to be an ellipse and may be expanded with the 

increase of volumetric strain, as shown in FIG. 2-11 in the stress space of I1 ~ √J2.  

 

FIG. 2- 4    Modified Cam-Clay model 

 

       By taking Drucker-Prager yield surface as the critical state, the Cam-clay models 

can not only predict the failure behaviors very well, but also describe the nonlinear and 

stress-path dependent behaviors prior to failure accurately, especially for clay-type soils. 

This model, however, still has some disadvantages (DiMaggio and Sandler, 1971): (1) the 

discontinuous slope at the intersection with the I1 axis predicts behavior that does not 

seem to be supported by experiments; (2) points on the yield surface above the critical 

state line do not satisfy Drucker’s postulate of stability. 

I1 

√√√√J2 

critical state line 
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       The generalized cap model was first proposed by DiMaggio and Sandler (1971) 

based on the concept of Drucker et al (1957). The yield function consists of a perfectly-

plastic (failure) portion fitted to a strain-hardening elliptical cap as shown in FIG. 2-12. 

The movement of the cap surface is controlled by the increase or decrease of the plastic 

volumetric strain, strain-hardening can therefore be reversed. It is this mechanism that 

leads to an effective control of dilatancy, which can be kept quite small as required for 

many soils. Moreover, the functional forms for both the perfectly-plastic and strain-

hardening portions may be quite general and allow for the fitting of a wide range of 

material properties. With the associated flow rule, this model may satisfy all the 

theoretical requirements of stability, uniqueness and continuity. The agreement between 

model behaviors and static experimental results for granular soils are reasonably good. 

As for the disadvantages for this model, one is the corners at the intersection of the yield 

curves which may cause mathematical problems. If the stress status happens to fall in the 

corners, the consistency condition may not be fulfilled.  

 

FIG. 2- 5    Yield surface of generalized cap model 

 (DiMaggio and Sandler 1979) 

1I−

2J
DRUCKER-PRAGER LINE 
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       Numerous formulations have been proposed in the literature to improve the 

capacity of this model. Sandler et al (1976) introduced a more generalized cap model 

with different modulus on loading and unloading. Later Sandler and Rubin (1979) 

devised a cap model algorithm which permitted to obtain flexibility with respect to 

changes in functional forms and parameters. Simo et al (1988) proposed a new algorithm 

in which special attention was paid to the singular corner regions at the intersection of the 

yield surfaces in order to be consistent with the notion of the close-point projection 

method. Various smooth cap models were also proposed to eliminate the numerical 

problem at corners (Rubin 1991, Schwer and Murry 1994). The continuous surface cap 

model developed by Rubin (1991) is shown in FIG. 2-13.  

 

 

FIG. 2- 6    Stress Space View of Continuous Surface cap model 

 (Rubin 1991) 
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2.2.2.3 THREE-PHASE SOIL MODELS 

 In the early 1980s, the development of constitutive equations for saturated soils 

required three main components: the concept of effective stress; elastic-plastic models 

based on effective stress able to describe the behavior of drained soil under complex 

loading paths and finally, the theory of mixtures for a solid skeleton and fluid. Loret and 

Khalili (2000) developed a three-phase model for unsaturated soils which despite the 

similarity of the framework presented. There are numerous differences between the 

saturated and unsaturated soils. For saturated soils, the concept effective stress developed 

by Terzaghi is seldom questioned in its role describing the plastic behavior of saturated 

soils. The situation is far from being identical for unsaturated soils, which are three-phase 

materials. Bishop and Blight (1963) provided experimental evidence supporting the 

validity of Bishop’s stress, they observed that the volumetric characteristics and shear-

strength do not change if the effective stress for the individual components vary in such a 

way as to keep the net stress and suction constant. However, Jennings and Burland (1962) 

questioned the validity of the principle of effective stress in the deformation behavior of 

unsaturated soils arguing that it cannot explain the collapse phenomenon observed during 

wetting.  On the other hand, they agree that the shear-strength depends on an effective 

stress of the form proposed by Bishop. Burland (1965) further resorted to arguments of 

theoretical nature reasoning against adding a macroscopic quantity, the net stress, and a 

microscopic quantity, the suction. Although this was not checked, their arguments have 

been widely accepted and several researchers have concluded that the behavior 

description of unsaturated soils should consider net stress and suction as two independent 
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variables. Effective stress is the key quantity that governs the material behavior, both in 

the elastic and plastic regimes.  

 The yield surface of this model is elliptical in the plane effective mean-stress p

and shear-stress q with the following equations. 

σtrp
3

1
−=  ...............................................................................................................(2.7) 
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The third invariant of the effective stress is not accounted for and the cross-sections along 

deviatoric planes are circular, FIG2-14, 
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,,  ..............................................................................(2.9) 

where M  is the slope of the critical state line; it is assumed to be a material parameter, 

independent in particular of suction. The size of the yield surface can be measured by the 

pre-consolidation stress Pc . 

 

FIG. 2- 7    Yield Surface of the Modified Cam-Clay Model in terms of the Effective                   

          Mean-Stress and Shear Stress (Loret and Khalili 2000) 
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 However, the three-phase soil model has the limitations and shortcomings: (1) 

experimental results are not ready available to justify the use of the complex model; and 

(2) the identification of material coefficients require the use of experiments ,for example, 

the soil-water characteristic curve is incorporated into the model. 

 

2.2.2.4 VISCOPLASTIC SOIL MODELS 

       Viscoplastic models are expansion of plastic models which include rate effects. If 

the yield surfaces in viscoplastic model are taken the same as those in plastic model, a 

simple explanation of the difference between viscoplastic and plastic solution may be 

shown in FIG. 2-15. In the stress space of I1 ~ √J2, the plastic solution ( 1+nσσσσ ) must be lie 

on one of the yield surfaces, this is violated. The viscoplastic solution (1+nσσσσ ) may be 

outside of the yield surface due to the rate effect. From the point view of numerical 

calculation, plasticity may be considered as a special case of viscoplasticity when strain 

rate is low enough to be neglected. Viscoplasicity is an improvement of plasticity in its 

ability to predict the soil behavior over a wide range of loading rate. 

X(k2)

I 1

J2

L(k2)-T

TENSION
CUTOFF

ELASTIC REGION

FAILURE SURFACE

CAP SURFACE

viscoplastic solution

plastic soultion

X(k1)

1+nσσσσ

1+nσσσσ

nσσσσ nσσσσ
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1+nσσσσ
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n 1+σσσσ

trial
n 1+σσσσ

viscoplastic solution

 

FIG. 2- 8    Viscoplasticity vs. plasticity 
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       The most well-known formulation of viscoplasticity is based on Perzyna’s theory 

(1966), wherein viscous behavior is modeled with a time-rate flow rule. The flow rule is 

assumed to be associative such that the viscoplastic potential is identical or at least 

proportional to the yield surface (Katona 1984, Chen and Baladi 1985, Simo et al. 1988). 

Perzyna (1966) pointed out that the models with rate-dependent elastic response (i.e. 

viscoelastic models such as Murayama and Shibata (1964)) are mathematically very 

complicated. In addition, rate-independent elastic response models, because of their 

relative mathematical simplicity and their similarities with the inviscid theory of 

plasticity, may be more appropriate for practical engineering applications (Perzyna 1966, 

Swift 1975). Also, viscous effects appear to be more evident in the plastic range for most 

clay. Models which explicitly incorporate time into the stress-strain relations (Matsui and 

Abe 1985, Sekiguchi 1984) have the drawback of predicting time-dependent 

deformations under zero effective stress condition. Also, it is difficult to determine the 

correct value of the material time parameter if the stress history is not known. Dafalias 

(1982), from microscopic and macroscopic observations of the structure and response of 

clays, has concluded the constitutive relations can best be obtained by considering the 

plastic strains as a combination of rate-dependent and non-rate dependent components 

(elastoplastic viscoplastic models such as those of Kaliakin (1985) and Broja and 

Kavazanjian (1985)). However, there is a difficulty in this formulation. Beyond a cetain 

strain rate, further increases do not affect the stress-strain relationship (Dafalias, 1982). 

Effects of very high strain rates cannot therefore be predicted (Whitman 1957, 

Richardson and Whitman 1963, Adachi, Mimura and Oka 1985). Although the 

viscoplastic model of the Perzyna type has been validated through simple dynamic tests, 
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little research work has attempted to apply this model to simulate the soil behavior under 

an extremely high strain-rate loading such as explosions.  

       Another popular format of viscoplasticity is based on Duvant-Lions’ theory 

(1972), wherein the viscoplastic solution is simply constructed through the relavent 

plastic solution. The biggest advantage of the Duvant-Lions’ model is its ease in 

numerical implementation, only a simple stress update loop is needed to add into existing 

plasticity algorithms. Also deterioration from viscoplastic solution to plastic solution 

under a low strain rate is exactly guaranteed (Simo et al 1987). Compared to the Perzyna 

type, the viscoplastic model of the Duvant-Lions’ type has not been well validated 

experimently. 

 

2.2.2.5 SFG UNSATURATED SOIL MODEL 

       Since the pioneering work of Alonso et al. (1990), a number of elastoplastic 

constitutive models have been developed for modeling the behavior of unsaturated soils 

(Gens 1996; Jommi 2000; and Gens etal. 2006). Early models dealt only with the stress-

suction-strain relationships of unsaturated soils (Kohgo et al. 1993; Wheeler and 

Sivakumar 1995; Bolzon et al. 1996; Cui and Delage 1996; Loret and Khalili 2002). 

These models are based on the same basic assumptions and largely fall in the same 

framework as Alonso et al. (1990), although different constitutive equations and different 

stress variables are used. The model by Alonso et al. (1990), generally referred to as 

Barcelona Basic Model, remains as one of the fundamental models for unsaturated soils. 

More recent models have incorporated suction-saturation relationships with hysteresis 
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(Wheeler 1996; Dangla et al. 1997; Vaunat et al. 2000; Gallipoli et al. 2003; Wheeler et 

al. 2003; Sheng et al. 2004; Santagiuliana and Schrefler 2006; Sun et al. 2007). 

 Usually, unsaturated soil models use a load-collapse yield surface to define the 

variation of the apparent pre-consolidation stress along the soil suction axis. The apparent 

pre-consolidation stress is usually assumed to increase with increasing suction. Under 

such a framework, these models are able to reproduce some basic features of unsaturated 

soil behavior, for example, the volume change upon wetting and the increase of shear 

strength with suction. However, some basic questions, like how yield stress changes with 

soil suction, have not been fully answered. The SFG model presents a volumetric 

behavior model for independent changes of mean net stress and suction. Based on this 

volumetric relationship, the change of the yield stress with suction and the hardening 

laws that govern the evolution of the yield surface are derived. Recent developments have 

included combining both stress-strain and suction-saturation relations of unsaturated soils 

are also incorporated into this model. 

 The SFG model is expressed in the plane mean net stress pand suction s with 

aupp −=  .................................................................................................................(2.10) 

wa uus −=  .................................................................................................................(2.11) 

where au  is the pore air pressure and wu  is pore water pressure. 

            A yield surface can be expressed as,  
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where sas  is the saturation suction and 0ynp   is the new yield stress at zero suction. If 0ynp  

is known, Eq. (2-10) can be used to find the new yield surface, ynp . Alternatively, if the 

new yield stress at a given suction is known, Eq. (2-10) can be used to find 0ynp  . 

            The new yield surfaceynp  for 0ynp  =500 kPa is shown in FIG. 2-16. The yield 

stress along the new yield surface does not monotonically decrease with increasing 

suction. 

 

FIG. 2- 9    Initial Yield Surface for a Soil That was Consolidated to 300 kPa at Zero 

Suction and Its Evolution When the Soil is then Loaded at Different Suction Levels 

(Sheng, D., Fredlund, D.G. and Gens, A. 2008) 
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 However, the SFG soil model has limitation and shortcomings: (1) there are not 

enough experimental data at present to define precisely the suction-dependence of 

material parameters and (2) the yield surface function is different with different suction 

level. 

 

2.2.2.6 BOUNDING SURFACE PLASTICITY UNSATURATED SOIL MODEL 

       Bounding surface plasticity was first developed for metals by Dafalias and Popov 

(1976), and later applied to clays by Dafalias and Herrmann (1982), to pavement base 

materials by McVay and Taesiri (1985), and to sands by Hashigushi and Ueno (1977), 

Aboim and Roth (1982) and Bardet (1985). By broadening the scope of conventional 

plasticity theory, bounding surface plasticity provides a flexible theoretical framework to 

model the cyclic behavior of engineering materials.  

 The bounding surface plasticity soil model represents the macroscopic behavior of 

soil in terms of strain and effective stress and is useful by the solution of boundary value 

problems with finite element or finite difference methods. The advantages of bounding 

surface plasticity theory over conventional plasticity have investigated for cyclic as well 

as monotonic loadings. The existence and direction of the irreversible strain increment, 

which requires non-associative the flow rule to be realistically simulated at the failure 

state, can be defined by only one surface in bounding surface plasticity. 

 Russell and Khalili (2005) developed an unsaturated soil model using bounding 

surface plasticity. However, this model took particle crushing into account, making it 

complex and difficult to apply for ordinary cases in soil mechanics. Wong, Morvan and 
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Branque (2009) developed a new bounding surface plasticity model for unsaturated soils 

with a small number of parameters based on Bardet’s model (Bardet, 1985). In this model, 

the bounding surface itself evolves through a hardening mechanism that depends on the 

accumulated plastic strains. 

 The bounding surface of this model is elliptical in the plane effective mean-stress 

'pand shear-stress q with 

( )3213

1
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The bounding surface can be defined as (2-12), FIG. 2-17, 
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Mπ is the slope of the saturated soil critical state line (CSL). The size of the yield surface 

can be measured by the hardening variable Aπ. Mπ and Aπ are assumed to be a material 

parameter, independent in particular of suction s. ρ is a material parameter. 
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FIG. 2- 10    Yield Surface of the Modified Unsaturated Soil Model in terms of the 

Effective Mean-Stress and Shear Stress 

(Wong, Morvan and Branque 2009) 

 

 The bounding surface plasticity soil model has the limitations and shortcomings: 

(1) there are not enough experimental data at present to precisely define the suction-

dependence of material parameters and (2) the water retention curve in general does not 

define an objective relation between degree of saturation and suction.  

 

2.3 VISCOPLASTIC CAP MODELS 

Viscoplasticity is defined as a rate-dependent (as opposed to inviscid means rate 

independent) plasticity model and may be applied to the soil constitutive laws to account 

for the strain rate effect.  A variety of viscoplastic formulations for soils have been 

proposed in the literature. The formulation of viscoplasticity based on Perzyna’s theory 

(1966) is the most well-known formulation, where viscous behavior is modeled with a 

time-rate flow rule.  The flow rule is assumed to be associative such that the viscoplastic 
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potential is identical or at least proportional to the yield surface (Katona 1984, Chen and 

Baladi 1985, Simo et al. 1988). After transition into rate-independent plasticity, this 

identity becomes essential although it has no great significance in viscoplasticity.  The 

viscoplastic formulation has the following advantages: (1) the generality of the viscous 

flow rule offers the capability of simulating time-dependent material behavior over a 

wide range of loading; and (2) the extension of an inviscid cap model for viscoplasticity 

is relatively straightforward (Tong, 2005).  

Another viscoplastic formulation of the Duvant-Lions type has been advocated by 

Simo et al (1988), Simo and Govindjee (1991) and Simo and Hughes (1998). The viscous 

behavior is constructed directly based on the difference between solutions for inviscid 

and the viscoplastic foumulations. The main advantage is its ease in numerical 

implementation, only a stress update needs to be added in an inviscid formulation in 

order to obtain the corresponding viscoplastic solution. 

The viscoplastic cap model is an effective material model to simulate soil 

behavior under high strain rate loading. Tong (2005) applied viscoplastic cap model in 

LS-DYNA to simulate a series of explosions in soil. Comparisons with experimental 

results, the simulations of soil ejecta, crater and explosive clouds from landmine-

explosion tests were reasonably good.  

       In this chapter, two type of viscoplastic cap models are proposed based on 

Perzyna’s theory and Duvant-Lions’ theory. The plastic yield functions are patterned on 

the generalized two-invariant cap model. Numerical algorithm is presented. The 
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performance of viscoplastic cap model is examined using a hypothetical uniaxial strain 

test and compared against experimental data under rapid loading.   

       In the viscoplasticity model, the total strain rate vectorεεεε& is decomposed into an 

elastic component eεεεε&  and a viscoplastic component vpεεεε&  

vpe εεεεεεεεεεεε &&& +=  ...............................................................................................................(2.20) 

The elastic component is expressed as 

eCεεεεσσσσ &&=  ....................................................................................................................(2.21) 

whereσσσσ& = the stress rate vector and C = an elastic constitutive matrix. 

            For the viscoplastic component, it is different with the different type. 

 

2.3.1 THE PERZYNA TYPE VISCOPLASTIC CAP MODEL 

           The viscoplastic strain rate vector is assumed to be delayed with time and is 

expressed as follows when assuming associated flow rule: 

σσσσ
εεεε
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∂

><=
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where η = a material constant called fluidity parameter;  

         The notion < > refers to the ramp function defined by 
2

xx
x

+
>=< ;  

          f  = plastic yield function;  

         φ (f) = dimensionless viscous flow function and commonly expressed in the form of  
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where N = an exponent; and f0 = a normalizing constant with the same units as f.  

 

2.3.1.1 STATIC YIELD FUNCTIONS 

           The plastic yield function f  is patterned in the inviscid cap model (DiMaggio and 

Sandler 1971, Sandler and Rubin 1979, Simo et al 1986) which is formulated in terms of 

the first stress invariant I1 and the second deviator stress invariant J2 as shown in FIG. 2-

18 (Tong, 2005). The static yield surface is divided into three regions:  

      (a) when I1 ≥ L, the cap surface region  012 =−= ),( kIFJf c  

      (b) when L > I1 > -T , the failure surface region 012 =−= )(IFJf e  

      (c) when I1 ≤ -T , the tension cutoff region 01 =−−= )( TIf  
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FIG. 2- 11    Static yield surface for cap model (Tong, 2005) 
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 (a) Cap surface portion: the cap surface is a hardening surface in the shape of an ellipse 

quadrant in the stress space of I1 and J2. It is generally defined by 
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where I1 = tr σσσσ =  =  =  = σ11 + σ22 + σ33; J2 = 1/2 s : s =1/2 )( 2
33

2
22

2
11 sss ++  (s = stress deviator);  

          Fc(I1,k) = the loading function for cap envelope;  

          R = a material parameter;  

          k is a hardening parameter related to the actual viscoplastic volumetric change      

          )tr( 332211
vpvpvpvpvp

vε εεεε ++== : 

 ( )( )[ ]{ }0exp1))(( XkXDWkXε vp
v −−−=  ..............................................................(2.25) 

where X(k) defines the intersection of the cap with the I1 – axis and hence is given by 

( ) ( )kFRkkX e⋅+=  ........................................................................................................(2.26) 

where Fe(k) =the loading function. 

           L(k) is the value of I1 at the location of the start of cap and is defined by 

( )




≤
=

0  if      0

0>  if      

k

kk
kL  .....................................................................................................(2.27) 

           The cap surface may be expressed alternatively (Katona 1984) as 

R

XL
J

R

LI
kJIf

)()(
),,( 22

2
1

21

−
−+

−
=  .................................................................(2.28) 

(b) Failure surface portion: the failure surface is a non-hardening, modified Drucker-

Prager form with a yield function defined as 
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( ) ( )( ) 0exp)(, 1121221 =+−−−=−= IθIβγαJIFJJIf e  ..............................(2.29) 

in which α, β, γ and θ   are material parameters.  

(c) Tension cutoff portion:  the tension cutoff surface is defined by 

)()( 11 TIIf −−=  ......................................................................................................(2.30) 

where –T = tension cutoff value.  

 

2.3.1.2 SOLUTION ALGORITHMS 

            The strain rate Eq. (2.20) and (2.21) are integrated over a time step, ∆t, from t to 

t+∆t, to yield the incremental strains and stresses: 

vpe εεεεεεεεεεεε ∆+∆=∆  ........................................................................................................(2.31) 

( )vpe εεεεεεεεεεεεσσσσ ∆−∆=∆=∆ CC  .....................................................................................(2.32) 

where εεεε∆  = the total incremental strain vector; 

          eεεεε∆ = the elastic viscoplastic incremental strain vector; 

          vpεεεε∆ = the viscoplastic incremental strain vector;  

          σσσσ∆  = the incremental stress vector.  

           Based on the Euler method, the viscoplastic incremental strain vector vpεεεε∆  can be 

approximated as 

( )[ ]∆tχχ vp
tt

vp
t ∆++−=∆ εεεεεεεεεεεε &&1  ................................................................................(2.33) 

in which χ is an adjustable integration parameter, 0 ≤ χ ≤ 1.  The integration scheme is 

explicit if χ = 0 and fully implicit if χ = 1. This solution algorithm is conditionally stable 
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when χ ≤ 0.5 and unconditionally stable when χ > 0.5. The fully implicit integration 

scheme, χ = 1, is used here in the numerical algorithm just for simplification. 

           In the full implicit integration scheme, the viscoplastic flow (Eq. 2.33) is only 

determined by the gradient of the yield surface at time t+∆t. Thus, vpεεεε∆ may be rewritten 

as 

( )
σσσσ

εεεεεεεε
∂
∂

∆><=∆∆=∆
f

tfηtvpvp φ&  ........................................................................(2.34) 

If a plastic multiplier ∆λ is introduced such that 

tfη ∆><=∆ )(φλ  ...................................................................................................(2.35) 

then Eq. (2.34) may be rewritten as  

σσσσ
εεεε

∂
∂

λ∆=∆
fvp ............................................................................................................(2.36) 

This viscoplastic problem can be solved under the condition that the residual ρ, defined 

in Eq. (2.37), is reduced to zero during a local iteration.  

0)( →−
∆

∆
= f

tη

λ
ρ φ ................................................................................................(2.37) 

Substituting Eq. (2.36) into Eq. (2.32) yields 

)(:C
σσσσ

εεεεσσσσ
∂
∂

λ∆−∆=∆
f

 ............................................................................................(2.38) 

           To compute ∆λ, a local Newton-Raphson iteration process is applied. Note that the 

yield function takes the general form ),( kff σ= . Differentiating Eq. (2.38) during 

iteration i gives 
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)(:
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∂∂
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∂
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εεεεσσσσ C  .........................................(2.39) 

where δσσσσ, δεεεε and δλ are the iterative improvements of ∆σσσσ, ∆εεεε and ∆λ, respectively, 

within the local iteration process.  

           Eq. (2.39) may be expressed alternatively as 
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εεεεσσσσ H  .................................................................(2.40) 

with a pseudo-elastic stiffness matrix H 
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By differentiation of Eq. (2.38), the Newton-Raphson process at iteration i is expressed as 
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Substitution of Eq. (2.40) into Eq. (2.42) yields 
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with 
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Η  ..........................................................(2.44) 

           If a local iteration is applied, the iterative strain increment δεεεε will turn to a fixed 

total strain increment ∆εεεε during a global iteration. The iterative algorithm for the 
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viscoplastic cap model of the Perzyna type, where the subscript n and n+1 denotes the 

solutions at time t and t+∆t respectively, is outlined in Table 2-1. 

Table 2- 1    Numerical algorithm for the Perzyna’s viscoplastic model 

DATA INPUT  :   εεεεσσσσ ∆,, nn k  

Trial stresses         :   εεεεσσσσσσσσ ∆+=+ Cn
trial
n 1

 , kn 

If ( )    ,0,1 <+ n
trial
n kf σσσσ elastic     trail

nn 11 ++ = σσσσσσσσ ,  kn+1 =  kn    RETURN  

If ( )    ,0,1 <+ n
trial
n kf σσσσ viscoplastic  

    (a) define the initial iteration value 

         

( )
t

k

f

nn

nn

∆
∆

−=







∂
∂

∆−∆+==∆

+

+

η
λ

φρ

λλ

)0(
)0(
1

)0(

)0()0(
1

)0(

,

          ,  0

σσσσ

σσσσ
εεεεσσσσσσσσ C

 

   (b) do local iteration i 
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           go back and continue until |ρ
(i+1)| < δ             

        RETURN 

OUTPUT :   111 ,, +++ nnn εεεεσσσσ k  

 

           For the tension cutoff region, a different algorithm is needed since the yield 

surface for tension cutoff is independent of J
2
.  This condition is uncommon for ordinary 



38 
soil tests but must be accommodated for explosions in soil.  Since very little test data is 

available, the following assumptions are made: (1) the viscous flow parameter under 

tension, η
T
, may be the same as or different from that under compression; (2) the 

viscoplastic solution tt ∆+σσσσ  is presumed to be between the elastic trial stress trial
tt ∆+σσσσ  and the 

inviscid solution tt ∆+σσσσ , and the simplest scheme is to assume that tt ∆+σσσσ  is on the straight 

line from trial
tt ∆+σσσσ  to tt ∆+σσσσ , as shown in FIG. 2-19.  The treatment for tension cutoff is thus 

proposed as follows: 

      (1) if )(,2,1 TFJandΤI e
trial

tt
trial

tt −<−≤ ∆+∆+       , then 

                    trial
tttt

tηtrial
tt

tη

tt JJTeIeI TT
∆+∆+

∆−
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∆−
∆+ =−−+= ,2,2,1,1 );)(1(  

      (2) if )(,, TFJandΤI e
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tt
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tt −≥−≤ ∆+∆+ 21       , then 
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           It can be shown from these conditions that the solution is plastic when ∆tηT  → ∞ 

and elastic when ∆tηT  → 0. 
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FIG. 2- 12    Treatment of tension cutoff 

 

2.3.2 THE DUVANT-LIONS TYPE VISCOPLASTIC CAP MODEL 

           The viscoplastic strain rate vector and hardening parameter are respectively 

defined as: 

[ ]σσσσσσσσεεεε −= −11
C

τ
vp&  .....................................................................................................(2.45) 

[ ]kkk −=
τ
1&  ...............................................................................................................(2.46) 

where τ = a material constant called the relaxation time; the pair (,σσσσ k ) = the stress and 

hardening parameter of the inviscid material (a bar is used to denote the variable of the 

inviscid plastic model) which can be viewed as a projection of the current stress on the 

current yield surface; k and k& = hardening parameter and its differential with respect to 

time.   

            It can be seen from Eq. (2.45) that the viscoplastic strain rate is simply defined by 

the difference between the true stresses and the stresses obtained by the inviscid model 

which is quite different from that of the Perzyna type (Eq. 2.22). 
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2.3.2.1 STATIC YIELD FUNCTIONS 

           The Duvant-Lions type cap model plastic yield surface function f  is the same with 

the Perzyna’s type. 

 

2.3.2.2 SOLUTION ALGORITHMS 

 The strain rate Eq. (2.20) and (2.21) are integrated over a time step, ∆t, from t to 

t+∆t, to yield the incremental strains and stresses: 

vpe εεεεεεεεεεεε ∆+∆=∆  ........................................................................................................(2.47) 

( )vpe εεεεεεεεεεεεσσσσ ∆−∆=∆=∆ CC  .....................................................................................(2.48) 

where εεεε∆  = the total incremental strain vector; 

          eεεεε∆ = the elastic viscoplastic incremental strain vector; 

          vpεεεε∆ = the viscoplastic incremental strain vector;  

          σσσσ∆  = the incremental stress vector.  

           Based on the Euler method, the viscoplastic incremental strain vector vpεεεε∆  can be 

approximated as 

( )[ ]∆tχχ vp
tt

vp
t ∆++−=∆ εεεεεεεεεεεε &&1  ................................................................................(2.49) 

in which χ is an adjustable integration parameter, 0 ≤ χ ≤ 1.  The integration scheme is 

explicit if χ = 0 and fully implicit if χ = 1. This solution algorithm is conditionally stable 

when χ ≤ 0.5 and unconditionally stable when χ > 0.5. The fully implicit integration 

scheme, χ = 1, is used here in the numerical algorithm just for simplification. 
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 Integrating Eq. (2.45) over a time step ∆t gives 

[ ]11 ++ −
∆

=∆ nn
vp t

σσσσσσσσεεεε 1-C
τ

 ..........................................................................................(2.50) 

Substitution of Eq. (2.50) into Eq. (2.48) yields 

[ ]111 +++ −
∆

∆=−=∆ nnnn

t
σσσσσσσσεεεεσσσσσσσσσσσσ

τ
-:C  ....................................................................(2.51) 

By solving ∆σσσσn+1 from Eq. (2.51), one obtains 
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where, )( εεεεσσσσ ∆+ Cn  may be treated as an elastic trial stresses.  

            Similarly, we obtain the hardening parameter may be expressed as 

τ
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1

nn
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            The numerical algorithm for the Duvant-Lions viscoplastic model is presented in 

Table 2-2. It is apparent that the Duvant-Lions’ model is very easy implement, since the 

viscoplastic solution is simply an update of the inviscid solution. The ease of numerical 

implementation of the Duvant-Lions model is apparent compared with the Perzyna model, 

which requires many matrix operations.  
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Table 2- 2    Numerical algorithm for the Duvant-Lions’s viscoplastic model 

DATA INPUT  :   εεεεσσσσ ∆,, nn k  

Trial stresses         :   εεεεσσσσσσσσ ∆+=+ Cn
trial
n 1

 , kn 

If ( )    ,0,1 <+ n
trial
n kf σσσσ elastic     trail

nn 11 ++ = σσσσσσσσ ,  kn+1 =  kn    RETURN  

If ( )    ,0,1 <+ n
trial
n kf σσσσ viscoplastic  

    (a) calculate the inviscid solution: ( 11, ++ nn kσσσσ ) 

    (b) update to viscoplastic stress and hardening parameter:  
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τ
t

t
nn

n ∆
+

∆
+∆+

=
+

+

1

1

1

σσσσεεεεσσσσ
σσσσ

:C
;     

τ

τ
t

k
t

k
k

∆
+

∆
+

=
+

+

1

1

1

nn

n  

       RETURN 

OUTPUT :   111 ,, +++ nnn εεεεσσσσ k  

 

 

2.4 ILLUSTRATION EXAMPLE 

       The simulated uniaxial strain test, presented by Kantona (1984), was used to 

prove the adequacy of this viscoplastic cap model under different loading/unloading 

strain rates.  

       A hypothetical uniaxial strain loading history: the axial strain of the soil under 

compression is increased at a constant rate (11ε& =0.03%/s) for 1 second, held constant (11ε&

=0.0) for 4 seconds, unloaded at a constant rate (11ε& =-0.015%/s) for 0.5 second, and held 

constant afterwards is shown in FIG. 2-20.  

       The material parameters used for cap model are those for McCormick Ranch sand 

given by Sandler and Rubin (1979): K = 66.7 ksi; G = 40 ksi; α = 0.25 ksi; β = 0.67 ksi-1; 

γ = 0.18 ksi; θ = 0.0; W = 0.066; D = 0.67 ksi-1; R = 2.5; X0 = 0.189 ksi; and T = 0.0 ksi.  
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       For the Perzyna model, the two parameters, N and f0, were assumed to be 1.0 and 

0.25ksi based on experience data, respectively. Three values of the fluidity parameter 

(η = 0.0035, 0.015 and 0.032) were examined similarly. According to Eq. (2.22), when η 

decreases, the viscoplastic strain decreases, and the stress is close to elastic, which 

implies the axial stress will increase. The stress response becomes purely elastic as η → 0, 

and purely plastic as η → ∞.  

       For the Duvant-Lions model, three values of the relaxation time (τ = 1.0, 0.25, 

0.125) were examined to illustrate its effects on the stress response. As shown in FIG. 2-

21, the stress response increases as the relaxation time τ increases. According to Eq. (2.45) 

and (2.50), whenτ increases, the viscoplastic strain decreases, and the axial stress is close 

to elastic, which implies the stress response will increase. Although it is not plotted in 

FIG. 2-21, the stress responses will become purely elastic as τ → ∞, and purely plastic as 

τ → 0.  
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FIG. 2- 13    Axial strain history for uniaxial strain test 
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FIG. 2- 14    Axial stresses for different values of τ and η 

     

 By comparing the stresses resulting from the two models in FIG. 2-21, it can be 

seen that each pair of the relaxation time and fluidity parameter yields nearly the same 

stresses. For instance, the axial stress history with τ = 1.00 from using the Duvant-Lions 

model was very close to that with η = 0.0035 from using the Perzyna model. Likewise, 

stresses obtained from using the Duvant-Lions model with τ = 0.25 and 0.125 are nearly 

the same as those obtained from using the Perzyna model with η = 0.015 and 0.032, 

respectively. The ratio of the three relaxation times is 8:2:1, while that of the fluidity 

parameters is approximately 1:2:9. Therefore, a certain relationship between τ and η may 

exist and the viscoplasticities of these two types may be equivalent for this example. 
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2.5 MODEL VALIDATOIN AGAINST EXPERIMENTAL DATA 

       Jackson et al. (1980) conducted a series of static and dynamic tests on a clayey 

sand.  These tests provided data for validation of the viscoplastic cap model and the 

associated solution algorithms.  

       The first step was to calibrate the material parameters for yield functions and the 

elastic moduli using the static test data. The static test data consisted of the stress and 

strain results from a uniaxial strain test and two triaxial compression tests conducted at 

confining pressure of 2.07 MPa and 4.14 MPa, respectively.  The material parameters 

obtained to fit the test data were: K = 2500 MPa; G = 1500 MPa; α = 3.654 MPa; β = 

0.003 MPa-1; γ = 3.500 MPa; θ = 0.263; W = 0.109; D = 0.05 MPa-1; R = 1.5; X0 = 0.3 

MPa; and T = 0.0 MPa. The agreement was considered to be good both qualitatively and 

quantitatively. 

       The second step was to simulate the dynamic stress-strain relationship. The test 

data were obtained from dynamic uniaxial strain tests, each of which was conducted at 

varying strain rate. The strain-histories were obtained by choosing strain and time values 

from plots of vertical stress versus time, and vertical stress versus vertical strain 

(Schreyer and Bean 1985). The maximum strain rate in the dynamic test was 

approximately 200/s. 

       The additional viscous parameters for the Perzyna’s model were: η = 0.002msec-1; 

N = 1.5; f0 = 1.0 MPa.  
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 From the simulation results it is apparent that: (1) formulations are capable of 

predicting the dynamic soil response well; (2) the soil responses are close. For the 

Perzyna type, a normal constant strain rate of 0.0008/s for static tests was used. It is 

apparent that the soil behavior under high strain rate are very different from those 

obtained in static test. The confined modulus and the strength are largely increased under 

high strain rate loading. The viscoplastic cap models capture the strain-rate effects very 

well. 

 However, there are some slight differences between predictions of the two models. 

For instance, the initial soil stiffnesses under high strain rate loading, the slopes of the 

responses are predicted better by the Perzyna’s model than those by the Duvant-Lions’ 

model. From Eq. (2.22) and (2.45), the Perzyna’s viscoplastic formulation appears to be 

more flexible for data fitting than the Duvant –Lions’ formulation due to more viscous 

parameters involved (Tong, X., and Tuan, C.Y. 2007). Therefore, the Perzyna’s 

viscoplastic cap model will be implemented into LS-DYNA finite element code to 

represent the soil model to analyze the strain-rate effect due to explosion. 
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CHAPTER THREE     EQUATION OF STATES 

 

3.1 INTRODUCTION 

An ideal liquid or gas is a continuous medium with neither shear or frictional 

forces acting between its particles. Hence the stress at a given point does not depend on 

the orientation of the small surface upon which it acts. In actual liquids and gases, 

frictional forces do act between their particles.  Solid bodies differ from liquids and gases 

in that they transfer shear forces. When the pressure exceeds a certain magnitude, the 

bonds between the particles are broken so the material is compressed and the solid begins 

to behave like a fluid. This phase change depends only upon the magnitude of the 

pressure and the temperature (Grujicic et al. 2008).  The state of a medium is generally 

defined by a combination of pressureP , densityρ , volume V , temperature T , entropy S, 

and internal energy E. All these quantities are related by thermodynamic relations, and 

only two of these quantities are independent. The general form of P = P ( ρ , E) is used 

herein to define the state of each of the three phases of the soil. 

 

3.2 DEVELOPMENT OF SOIL EQUATION OF STATES 

Any equation that relates the pressure, temperature, and specific volume of a 

substance is called an equation of state. There are several equations of state, some simple 

and others very complex.  Originally, equation of states were mainly used in physics and 

thermodynamics, an equation of state is a relation between state variables. More 

specifically, an equation of state is a thermodynamic equation describing the state of 
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matter under a given set of physical conditions. It is a constitutive equation which 

provides a mathematical relationship between two or more state functions associated with 

the matter, such as its temperature, pressure, volume, or internal energy. Gradually, 

equations of state are found that are useful in describing the properties of fluids, mixtures 

of fluids, solids, and even the interior of stars. 

During the modeling of blast loading on a target or other calculations that bring 

materials together at high velocities, computer simulations of materials being shocked to 

high pressure and then releasing to low pressure are performed. Depending on the 

circumstances, the release to low pressure is often accompanied by release to a very low 

density. Numerical problems leading to very large sound speeds or to negative lagrangian 

volumes have been encountered during numerical simulation. These problems can be 

traced to the behavior of the equation of state in the limit as the density becomes much 

less than the normal or reference density.  

Since all three phases of soil, solids, water and air, have significant volume 

change that lead to change pressure and density under blast loading, equations of state are 

considered. In this thesis, which is focused on a limited number of equation of states that 

can be used for solid soil finite elements. These equations of states include Mie-

Gruneison equation of state, Tillotson equation of state and Kandaur conceptual equation of 

state.  
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3.2.1 MIE-GRUNEISON EQUATION OF STATE 

The Mie-Gruneisen equation of state is a relation between the pressure and the 

volume of a solid at a given temperature. It is often used to determine the pressure in a 

shock-compressed solid. 

If the pressure, in terms of energy e and volume v  is expressed as, 

  
 ),( vefP=  ................................................................................................................(3.1) 

then a change in pressuredPcan be written as, 
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Integration of this equation allows the pressure to be expressed in terms of the volume v  

and energy e  relative to the pressure at a reference volume 0v and reference energy 0e . 
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 .................................................................................(3.3)  

The integration can be performed along any path desired and it is convenient to 

integrate first at constant energy from 0v
 
to v , and then at constant volume from 0e  to e , 

giving, 
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The Gruneisen Gamma is defined as, 
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ve

P
v 








∂
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and if it is assumed that Γ  is a function of volume (or density), only then can the second 

integral  above be evaluated, 

   
( ) ( )0ee
v

v
de

e

P

v

−
Γ

=







∂
∂

∫  .......................................................................................(3.6)  

The first integral is a function only of volume and the reference energy 0e .  If the 

reference state is denoted by re , then since,  
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The equation becomes, 
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This equation is generally known as the Mie-Gruneisen form of equation of state. In LS-

DYNA, it can be expressed as, 
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 ....................................(3.9)  

Where C is the intercept of the Shock velocity-Particle velocity curve; 1S , 2S  and 3S  are 

the coefficients of the slope of the Shock velocity-Particle velocity curve; 0γ is the 

Gruneisen gamma; α is the first order volume correction to 0γ ; and 10 −=
v

v
µ . 
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3.2.2 TILLOTSON EQUATION OF STATE 

This form of equation of state (Tillotson 1962) was derived to provide a 

description of the material behavior of solid elements over the very wide range of 

pressure and density encountered in hypervelocity phenomena.  

Not only must such an equation of state describe normal density material and its 

condition after shock, but also its expansion and change of phase in cases where the 

shock energy has been sufficient to melt or vaporize the material. The pressure range can 

be so large that the “low pressure” regime of this form of equation of state is defined as 

from 0 to 10 Mbar and “high pressure” from 10 to about 1000 Mbar. Thus any pressure 

and results from normal laboratory experiments cover only the “low pressure” region. For 

the derivation of an equation of state for the “high pressure” region, analytic forms 

provide best fit interpolations between Thomas-Fermi-Dirac data at high pressures (above 

50 Mbar) and experimental data at low pressures. The formulation is claimed to be 

accurate to within 5% of the Hugoniot pressure and to within 10% of the isentrope 

pressures. It is therefore a very useful form of equation of state for hypervelocity impact 

problems. 

The total range of the pressure-volume plane is divided into four regions as shown 

in the FIG. 3-1. 
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FIG. 3- 1    Regions of Interest in the (p, v) Plane 

 

The region to the left of the Hugoniot can only be reached by adiabatic (non-

shock) compression and is not relevant to impact problems. It is therefore excluded from 

the formulation. Region I represents the compressed phase of the material and extends 

vertically to shock pressures of about 1000 Mbar. Region II describes material which has 

been shocked to energy less than the sublimation energy and will therefore, on adiabatic 

release, returns to zero pressure as a solid. There is no provision in this equation of state 

to describe the material at pressures less than zero. Region IV is the expansion phase of 

material which has been shocked to energy sufficiently large to ensure that it will expand 

as a gas. For large specific volumes, the formulation for Region IV extrapolates to an 

ideal gas limit. It is desirable or even necessary, to ensure that the formulations in each 

region provide continuous values of the pressure and its first derivatives at the boundaries 

between contiguous regions. Region III lies between Regions II and IV.  In this region 

the pressure is calculated as a mean between that calculated for Regions II and IV.  
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Let: 

    
0ρ

ρ
η =  ...................................................................................................................(3.10)  

1−= ηµ  ................................................................................................................(3.11)  

2
0

0 1
η

ω
e

e
+=  .........................................................................................................(3.12)  

where ρ is the density, 0ρ  is the reference density, e  is the energy and 0e  is the 

reference energy. 

For Region I ( )0≥µ  the pressure 1P  is given by a Mie-Gruneisen equation of 

state but since the formulation is to be valid for a very large range of pressure, the 

Gruneisen Gamma is a function of both v  and e, not just a function of v  alone. The 

constants fit the low pressure shock data but they are adjusted to fit the asymptotic 

Thomas-Fermi behavior for the variation of pressure at maximum compressions (like a 

monatomic gas). The formulation for Region II is as for Region I with a slight 

modification to one term to avoid difficulties as m goes increasingly negative. In Region 

IV the formulation is chosen to give the correct behavior both at high pressure/normal 

density and for very large expansion (where it must converge to an ideal gas behavior). 

With these constraints the different formulations are given. For region I( )0≥µ  , the 

pressure 1P  is given by, 

2
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0
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


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For region II( )see≤< ,0µ  , the pressure 2P  is given by, 

µηρ
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+= 0
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 For region III( )',0 ss eee <<<µ  , the pressure 3P  is given by, 
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  For region IV( )',0 see≥<µ  , the pressure 3P  is given by, 
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 where 
η
1

1−=x .  In the Tillotson equation of state, a , b , A, B , 0e , se , and '
se are 

constants. 

The Mie-Gruneisen equation of state and Tillotson equation of state can be used 

for soil behavior simulation model and ensure a unique solution. However, the limitation 

is soil with Mie-Gruneisen equation of state or Tillotson equation of state is defined as a 

unit material and leads to a simplified bulk modulus and mechanical pressure in the 

calculation process. 

 

3.2.3 MURRAY’S EQUATION OF STATE FOR UNSATURATED SOILS 

The prediction of soil behavior is intrinsically linked to the need to determine the 

controlling stresses in the soil. For saturated soils, Terzaghi (1936) proposed an equation 
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for effective stress which controls the shear resistance and volume changes. The effective 

stress can be written as 

 wupp −=′  ...............................................................................................................(3.17) 

where p′ is Terzaghi’s mean effective stress, p  is the mean total stress and wu is the 

pore-water pressure. 

            The concept of the stress state variable ( )wup−  controlling the behavior of 

saturated soils has proven very useful and has been shown to be valid in practice. For 

unsaturated soils, however, the search for a reliable stress state variable equation, 

independent of soil properties, has proven unsuccessful. As described by Fredlund and 

Rahardjo (1993), a number of such equations have been proposed. The original 

suggestion of Bishop (1959) can be written as  

( ) ( )waaB uuupp −+−=′ χ ........................................................................................(3.18) 

where Bp′ is Bishop’s mean effective stress, au  is the pore-air pressure and χ is an 

empirical parameter. 

            A major obstacle to the use of Eq. (3.18) lies with the parameterχ . This is usually 

ascribed the range of values 10 ≤≤ χ  and has been shown to be dependent on the stress 

path and the process to which the soil is subjected (Jennings and Burland 1962; Blight 

1965; Morgenstern 1979).  

            Although it is desirable that the concept of effective stress for saturated soils 

extended to unsaturated soils and that soil properties such as the volumes of the various 
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phase (solid particles, water and air) are not included in any formulation of controlling 

stresses, experiments have demonstrated the inadequacy of any such relationship. For this 

reason, researchers have turned to examining the use of the independent stress state 

variables ( )aup− , ( )wup−  and ( )wa uu − to describe the mechanical behavior of soils. 

Fredlund and Morgenstern (1977) concluded from theoretical considerations that any two 

of these three stress state variables can be used to describe the behavior of an unsaturated 

soil. However, there are inconsistencies in experimental results not readily answered by 

constitutive modeling using these parameters (Wheeler and Sivakumar 1995). A logical 

interpretation of experimental data is essential to an appreciation of soil behavior, and a 

clear pricture does not always emerge using independent stress state parameters, as these 

interact in response to external stimuli. In this respect, it appears that the volumes of the 

phases play an important role in controlling the stresses in unsaturated soils, and this is 

demonstrated in the analysis and the comparisons with both consolidation data and 

critical state data which follow. 

            Murray (2002) examined the significance of the relative volumes of the phases, 

and the interactions between the phases, on the stress regime under equilibrium 

conditions. First, a description of the significance of enthalpy in soils relating pressures, 

volumes, and internal energy sources is presented, followed by an examination of 

Terzaghi’s effective stress equation in terms of the enthalpy of a saturated system. This 

approach is then extended to unsaturated soils to develop an equation of state that 

includes the average volumetric “coupling” stress cp′
 
. This links the stress state variables 

and the volumes of the phases. 



57 

            The general equation of state for unsaturated soil can be expressed: 

( )( ) cswaawaswww pnaunuuunnbnup ′+++−++=  ................................................(3.19)  

( ) ( )swac nnsupp ++−=′  .........................................................................................(3.20)  

where an ( )VVn aa =  , wn ( )VVn ww =  and sn  ( )VVn ss =  are the  volume fraction of 

air, water and solid phase respectively, a
 
is a dimensionless parameter with a minimum 

value of 1, b is a dimensionless number influenced by the structure and size of the 

saturated packets and s is the suction. ( )sw nn +  represents the total volume of the 

saturated packets per unit volume of soil. Using Eq. (3.19) it is possible to highlight the 

significance of the stress state variables ( )aup− , ( )wup− , and ( )wa uu −  for 

unsaturated soils and their implicit relationship with the volumes of the phases. 

            FIG. 3-2 and FIG. 3-3 have been prepared based on the experimental data 

reported by Wheeler and Sivakumar (1995) and Toll (1990). 

 

FIG. 3- 2    Variation of specific volume during ramped consolidation at different suction 

(Murray, 2002) 
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FIG. 3- 3    q versus cp′    at critical states 

(Murray, 2002) 

 

 However, the Murray’s equation of state has the limitations and shortcomings: (1) 

there are no enough experimental data at present to define precisely the suction-

dependence of material parameters and (2) the average volumetric coupling stress cp′
 

represents the microscopic forces between particles. Under high strain rate loading, like 

blasting loading, the average volumetric coupling stress doesn’t play an important role. 

 

3.3 KANDAUR’S CONCEPTUAL MODEL OF EOS 

Soils are composed of particles of various materials- called phases. The majority 

of the solid mineral particles consists of silicon which can, therefore, be taken as 

representative, the other water and air.  



59 

Let sA , wA and aA denote the relative volume of the solid particles, water and air, 

respectively, i.e. the volume of the corresponding phase in a unit volume of soil; then 

1=++ aws AAA    .....................................................................................................(3.21) 

The quantities sρ , wρ  and aρ  are the material densities of each phase and0ρ  is the 

initial density of the soil as a whole. We then have 

aawwss AAA ρρρρ ++=0    ......................................................................................(3.22) 

In soils, two deformation mechanisms exist: 

a) at low pressures, the soil skeleton deformation is determined by the elastic 

deformations of bonds on the contact surfaces of grains and, at high pressures, it 

is determined by a failure in bond and displacements of the grains (plastic 

deformation); 

b) the deformation of all the soil phases, determined by their volume compression. 

When the soil is being compressed, both mechanisms are always acting 

simultaneously. At certain phases of the loading process, however, one of the 

mechanisms predominates to such a degree that the other may be neglected. 

            A dry soil contains air and a small amount of water, whose compressibility 

considerably exceeds that of the skeleton; therefore, with static and dynamic loading, the 

first mechanism becomes influencial while the other is negligible; with increasing 

pressure, the gain bonds are deformed and displaced and the soil is compacted so that the 

second mechanism becomes more and more effective until it reaches a definite 

overbalance, while the first becomes negligible. The dependence of pressure on the 
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relative volume deformation is, for this case, plotted in FIG. 3-4 (Henrych 1979). The 

second mechanism predominates for Bσσ ≥ . 

 

FIG. 3- 4    Relationship between stresses and relative volume deformation for solids 

 

            In a saturated soil the salts on the grain contacts are dissolved and the bonds 

weakened. Under a rapid dynamic loading, the water and air have a higher resistance than 

the contact bonds of the skeleton grain. The deformation and resistance of the soil are 

determined by the dominating second mechanism, particularly by the water and air 

deformation; the solid phase becomes effective only at high pressures (hundreds and 

thousands of kp/cm2). The relationship between( )Θσ and volume deformation under this 

situation is shown in FIG. 3-5. However under a slow static loading of the saturated soil, 

the water and air are pressed out of the void and the compressibility is mainly given by 

the solid skeleton compressibility. 

Relative volume deformation Θ 

S
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FIG. 3- 5    Relationship between stresses and relative volume deformation for liquids, 

gases, etc  

(Henrych, 1979) 
 

  The diagram of a block grain medium, according to I.I. Kandaur (Henrych, 1979), 

is illustrated in FIG. 3-6. The cavities between blocks are filled with water and air. 

Between the corners are elastobrittle bonds. With loading, the medium deformations 

consist of the deformations of the elastobrittle bonds, which are disturbed with a 

simultaneous mutual displacement of the static blocks (first mechanism) and the void 

filled with water and air (second mechanism). The forces of the elastobrittle bonds and 

the forces of friction between the solid particles act within the scope of the first 

mechanism. The forces depend on the volume change of the individual phases then act 

within the range of the second mechanism. With fast dynamic deformation the water and 

air are cannot escape from the cavities through the spaces between the blocks; with a 

slow static deformation the water and air are forced through the spaces between the 

Relative volume deformation Θ 
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σ 

Θ∞ 
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blocks into less loaded surroundings and the dominant resistance is offered by the bonds 

between blocks and by the blocks themselves.  

 

FIG. 3- 6    Schematic representation of a block grained medium with elastobrittle 

linkages between the blocks  

(Henrych, 1979) 

 

 The medium shown in FIG. 3-6 corresponds to the rheological model illustrated 

in FIG. 3-7, which covers both mechanisms and applies to a dynamic loading (water and 

air are not forced out of the voids). This model is used to derive the equation of state for 

the adiabatic process. With small pressure and dry soils the first deformation mechanism 

is a decisive factor as it corresponds to the elements D, E, i.e. to the grain friction 

proportional to normal pressure, and to the resistance of the crystal bonds, which is 

represented by a series of filaments stretched and broken as the deformation develops. 
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FIG. 3- 7    Schematic diagram of a rheological model of the medium 

(Henrych, 1979) 

 

 With water-bearing soils and for higher pressures with dry soils, the second 

deformation mechanism represented by the elements A, B, C predominates. Obviously, 

cba PPPP ++=    .......................................................................................................(3.23) 

ps VVV +=    ..............................................................................................................(3.24) 

awp VVV +=    ............................................................................................................(3.25) 

0VAV ss =    .................................................................................................................(3.26) 

0VAV ww =    ................................................................................................................(3.27) 

0VAV aa =   .................................................................................................................(3.28) 

where aP  , bP and cP  are the  forces in branches a, b and c, respectively; V  is the soil 

volume, 0V  is the soil initial volume and pV  is the void volume. 

 From equations (3.23) to (3.28), we obtain 
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ps dVdVdV +=    .......................................................................................................(3.29) 
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            Then dependence of the loading on deformation in phases 1 and 2 is given by the 

Hooke law, so that 
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where *
sk , 

*
wk  are the coefficients of volume deformation of the mineral skeleton 

particles and of water, respectively. 

 In element C holds the equation of state of a polytropic gas, which can be written 

in the form 

( ) k
aab VaPP −=− 0    ...................................................................................................(3.35) 

where 0P  is the atmospheric pressure, aa  is a constant and k is the coefficient of 

adiabaticity. Then, 
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( ) k
aa

b

a Vka
P

V +−−−=
∂
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            In the element a, the relationship between loading and deformation is determined 

by the dry friction produced by a force P’ between the blocks, proportional to 

deformation: 

PfPa ′=   ...................................................................................................................(3.37) 

PP VKP ∆=′    .............................................................................................................(3.38) 

( ) 0VAAVV awPP +−=∆    ..........................................................................................(3.39) 

where f  is the coefficient of friction of the mineral particles and PK is the coefficient of 

proportionality. From equations (3.37) to (3.39), follows the coefficients, 

Pa VP ∆= ϕ   ................................................................................................................(3.40) 

fK P=ϕ    ..................................................................................................................(3.41) 

which are constant for a given soil and moisture, so that,   

ϕ=
∂

∂

P

a

V

p
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            The force in each filament of the element E obeys the Hooke law until the 

filament breaks. But the strength of the individual filaments is different and, therefore, 

the force cP  in the arm c is expressed as,  

Pc VEP ∆=    ...............................................................................................................(3.43) 

where E  is a variable deformation modulus, which may be written,  

( )EEE ∆−= 10    ........................................................................................................(3.44) 
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where 0E   is a constant. With regard to the statistical law of disturbance, 

 ∫ −=∆ dxeE x   ...........................................................................................................(3.45) 

PVBx ∆−=   ...............................................................................................................(3.46) 

We obtain  

pVB
Pc eVEP ∆∆= 0   ......................................................................................................(3.47) 

so that, 
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            Substituting the equation (3.48) into equation (3.32), the equation can be obtained, 
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For the initial condition (3.50), it is possible to obtain the solution of equation (3.49) in 

the form (3.51). Because of the their inordinate complexity, neither equation (3.49) nor 

its solution have as yet been used for dynamic problems, even if it determines the 

behavior of soil with sufficient accuracy. 

( ) 00 PVP =    ................................................................................................................(3.50) 

( ) PVP =   ..................................................................................................................(3.51) 

            For the solution of soil dynamics problems the equation of state, derived by G.M. 

Lyakhov (Henrych, 1979), is more suitable. This equation is based on the second 

mechanism of soil deformation, i.e. the volume compression of all phases; in deriving it 

Lyakhov started from the equations of state of the individual phases. 
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            For air, the equation of state can be expressed in the form, 
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where 0P   is the atmospheric pressure, it can be expressed, 

a

aa

k

c
P

2
00

0

ρ
=    .............................................................................................................(3.53) 

0aρ   is the density of air at atmospheric pressure, 0ac  is the velocity of sound, is the 

density of air at pressure and ak is the exponents of the specific entropy of the air. 

            For water, the equation of state can be expressed in the form, 
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            For solid, the equation of state can be expressed in the form, 
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These parameters of equations of state are summarized in Table 3-1. 

Table 3- 1    Equation of state parameters for saturated soil 

 ρ0 (kg/m3) c0 (km/s) k 

Air 1.2(ρa0) 0.34 (ca0) 1.4 (ka) 

Water 1000(ρw0) 1.50 (cw0) 7 (kw) 

Solid 2650(ρs0) 4.50 (cs0) 3 (ks) 
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            For solid, water and air, the relative volume byaA  , wA , sA , the density by  0aρ   , 

0wρ , 0sρ , and the velocity of sound by 0ac , 0wc , 0sc , respectively, at an initial 

(atmospheric) pressure p=p0. Because of the different compressibilities of the 

components, their relative content at pressure p will be different from that at pressure 

p=p0. If, at pressure p, the content of the components is denoted by*
aA  , *

wA , *
sA , the 

specific volume by aV  , wV , sV  and the soil density by ρ , it follows from equation (3.52) 

that, 
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It can be rewritten as,  
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            Similarly, for water 
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            For solid particles 
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            Because the density increments have, due to compressibility, the density of a 

three-phase medium at pressure p will be, 
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1***

0 )( −++= aws AAAρρ . ...........................................................................................(3.60) 

            Thus, water-bearing and dry soils may, within a certain pressure range, be 

considered as three-phase media. The smaller the value of aA  and the greater the value of 

wA  in the soil voids, the lower the pressure minP  corresponding to the lower limit of 

applicability of this model. For water-bearing soils 0min PP =  when 0=aA and 

500min =P  to 800 kp when =aA  0.04 to 0.05. For dry soils with =aA  0.3 to 0.4, the 

value of minP  increases up to several hundred to several thousands of atmospheres. The 

upper limit is bounded by the validity limits of the equations of state of the individual 

components. 

 

3.4 USER DEFINED EQUATION OF STATE 

            To improve simulation results, an equation of state was defined for LS-DYNA 

dynamic simulation software. 

 The conservations of mass, momentum and energy in a soil medium from the 

initial state (denoted by the subscript 0) to the state under shock loading (denoted by 

subscript H) are expressed by (3.61), (3.62) and (3.63), respectively: 

( )PSS uUU −= ρρ0  .................................................................................................(3.61) 

PSH uUP 0ρ=  ..........................................................................................................(3.62) 

( )H
H

H VV
P

EE −=− 00 2
 ...........................................................................................(3.63) 

where SU  is the shock velocity, and Pu  is the particle velocity.   
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 A series of plate impact experiments were performed on a soil at various levels of 

water saturation by Chapman et al. (2006). The Hugoniot was determined using a 

reverberation technique. The Hugoniot is presented in terms of the measured shock 

velocity and particle velocity in FIG. 3-8, and in terms of stress and particle velocity in 

FIG. 3-9.  The densities, degrees of saturation and shock wave velocities in the soil 

specimens are summarized in Table 3-2.  

 

 

FIG. 3- 8    Shock-velocity vs. particle-velocity 

 (Chapman et al. 2006) 
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FIG. 3- 9    Stress vs. particle-velocity 

 (Chapman et al. 2006) 

 

Table 3- 2    Plate impact test data 

Moisture, % 0 10 20 22 

Saturation, % 0 32 64 70 

Density, kg m-3 1430 1530 1810 1840 

Shock velocity, km/s 1.44 1.45 1.90 2.68 

 

            Hugoniot curves are often expressed as a relation between shock velocity and 

particle velocity by least-square curve fitting the shock loading data (Zukas 1990).  For 

many materials, the Hugoniot can be expressed as a linear relation between shock 

velocity SU  and particle velocity Pu :   
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PS usCU += 0    ........................................................................................................(3.64) 

where 0C  is the sound speed at ambient pressure and temperature, and s is the slope of 

the linear relation, both obtained experimentally. 

Dividing both sides of (3.64) by SU  yields 

S

P

S U

u
s

U

C
+= 01  ...........................................................................................................(3.65) 

From (3.61), the volumetric strain can be expressed as 

∆=
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Substituting (3.66) into (3.65) yields 
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From (3.66), 
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Substitute (3.66) into (3.69), 
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Substituting (3.67), (3.68) into (3.62) yields 
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Substituting (3.70) into (3.71) yields 
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            Plate impact experiments have been conducted by many researchers to provide 

Hugoniot data for various materials.  Jones and Gupta (2000) conducted shock wave 

experiments to determine the refractive index and shock velocity of quartz.              

Braithwaite et al. (2006) obtained the shock Hugoniot properties of quartz feldspathic 

gneiss by plate impact experiments.  The relationship between shock velocity SU  and 

particle velocity Pu of solid can be obtained from FIG. 3-10.  

 

FIG. 3- 10    Shock-velocity dependence on particle-velocity for quartz 

 

PS uU 41.1319.6 +=  ..................................................................................................(3.73) 

            Nagayama et al. (2002) obtained a linear relation between the shock velocity and 

particle velocity of water from high velocity impact tests, as presented in FIG. 3-11. 
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FIG. 3- 11    Shock-velocity dependence on particle-velocity for water 

 

PS uU 0.2460.1 +=  ....................................................................................................(3.74) 

            Kim et al. (1991) investigated the Hugoniot data of dry air and derived an 

expression for adiabatic exponent for shock compressed dry air in FIG. 3-12.  

 

FIG. 3- 12    Shock-velocity dependence on particle-velocity for air 
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PS uU 06.1241.0 +=  ..................................................................................................(3.75) 

            These Hugoniot data for quartz sand, water and air are used in the equations of 

state and are summarized in Table 3-3. 

Table 3- 3    Equation of state parameters for soil 

 A ρ (kg/m3) Co (km/s) s k γ0 

Solid 0.7(As) 2650(ρs) 6.319 1.41 3 (ks) 1.0 

Water 0.2(Aw) 1000(ρw) 1.460 2.00 7 (kw) 0.6 

Air 0.1(Aa) 1.2(ρa) 0.241 1.06 1.4 (ka) 0.0 

Dry soil 1.0 1430 0.530 1.64 --- 0.11 

Saturated soil 1.0 1840 0.320 4.92 --- 0.11 
 

               An equation of state for states more general than the uniaxial strain condition in 

the plate impact experiments can be expressed as (Zukas 1990): 

E
V

V
EVP

)(
)(

γ
ργ ==  ..............................................................................................(3.76) 

where )(Vγ is the Gruneisen parameter, and E  is internal energy per unit mass. If shock 

pressure HP  and internal energy HE  are associated with a specific volume V  from a 

Hugoniot curve, the shock pressure is expressed as 

HHH E
V

V
EVP

)(
)(

γ
ργ == ........................................................................................(3.77) 

If the Hugoniot is the reference state, the equation of state can be expressed as 

)(
)(

HH EE
V

V
PP −=−

γ
 ...........................................................................................(3.78) 

Substituting (3.63) into (3.78) yields the equation: 
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Let 
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Substituting (3.69) into (3.80) yields 
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The internal energy per unit initial volume is: 

0V

E
E =ν .....................................................................................................................(3.83) 

Substituting (3.72), (3.82) and (3.83) into (3.79) yields 
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where the initial internal energy 0E  in (3.79) corresponds to the mechanical work done 

by the hydrostatic pressure in soil due to gravity.  Using the parameters given in Table 3-

3, Equation (3.84) can be used to calculate the pressures in the three phases of the soil.  

            For solid, the equation of state can be expressed as, 

( )( ) ( )
( )

( ) ν

µ

µµ
EP 0.1
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5.01319.62650
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+
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=  .................................................................(3.85) 
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            For water, the equation of state can be expressed as, 
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            For air, the equation of state can be expressed as, 
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The bulk modulus of the soil can be calculated as, 
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               As the compressibility of one phase of soil is different from another under the 

pressure, the volume of a particular soil phase cannot be explicitly determined. For a 

multi-phase soil medium under pressure, either a volume fraction or a weight fraction 

with respect to the original soil volume may be used to determine the content of each 

phase. If the initial volume fractions of the air, water and solid phases of soil are 

respectively aA , wA , and sA , and *
aA , *

wA , and *
sA  under the pressure, and aρ , wρ , and 

sρ  are the initial densities of the corresponding phases, the following equations can be 

obtained (Qian and Wang 1993): 
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1=++ swa AAA    ......................................................................................................(3.89) 

aawwsso AAA ρρρρ ++=    ......................................................................................(3.90) 
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where 0ρ  is the initial density of the soil, 0P are the initial pressures, sk , wk , and ak are 

the respective exponents of the specific entropy of the solid, water and air phases, wC  

and sC  are the sound speeds in water and solid, and aP , wP  and sP  are calculated using 

(3.84).  The soil density under pressure ρ can be expressed as 

1***
0 )( −++= aws AAAρρ . ...........................................................................................(3.94) 

If the initial weight fractions of the air, water and solid phases of soil are respectivelyaR , 

wR , and sR , it can be shown that  

1
0

0

0

==
++

=++
ρ
ρ

ρ
ρρρ sswwaa

swa

AAA
RRR   .......................................................(3.95) 

The specific energy E and the specific volume V of the soil under pressure can be 

expressed in terms of the weight fractions of the three constituent phases as follows 

(Lovetskii et al. 1979): 

sswwaa ERERERE ++=  .......................................................................................(3.96) 
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sswwaa VRVRVRV ++=  .........................................................................................(3.97) 

The values of the EOS parameters for saturated soil are given in Table 3-3.  These values 

are also valid for the dry soil, for example 68.0=sA , 0=wA , and 32.0=aA . 
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CHAPTER FOUR     NUMERICAL ANALYSIS AND COMPARISON WITH 

TEST DATA 

 

4.1 INTRODUCTION 

 Since shock wave propagation in soils including interaction between fluid (air) 

and solid (soil or structures), numerical simulation of explosion in soils is complex. 

Differences in characteristics were observed from detonation in two differing soil types: 

dry sand and saturated sand (Chapman et al. 2006, Gupta 1999). How to deal with soil 

properties in the simulation of explosion is important to obtain reasonably good 

simulation results. Therefore, there are two most important factors need to be considered 

for getting a good simulation. Two parameters are key in dealing with soil properties in 

explosion simulation and equation of state used.  

 Since the air and water are trapped within soil voids and deformed with the soil 

skeleton under blast loading, relative movement between the skeleton and the water and 

air can be neglected. Therefore, a stress tensor may be decomposed into a deviatoric 

stress component and a hydrostatic pressure: 

ijijij Pδσσ −= '  ..........................................................................................................(4.1) 

where ijσ  is the total stress, P is hydrostatic pressure, positive in compression, andijδ is 

Kronecker delta.  Deviatoric stress can be derived from soil material model and 

hydrostatic pressure can be determined from an equation of state. 
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 Two methods are currently used to consider the soil properties in explosion 

simulation, the empirical method and the soil-model method.  

 In the empirical method, an equivalent input load is directly applied on concerned 

structures while the interaction between soil and explosive/structures is neglected. For 

example, when analyzing a plate subjected to the explosion detonated from a shallow-

buried landmine, an empirical relationship of a specific impulse (Westine et al 1985) may 

be directly applied on the plate; this is known as US Army TACOM impulse model. The 

main advantage of this method is its ease in application. Validation of this method on 

some simple geometrical structures was done with carefully calibrated parameters in the 

impulse model (Williams et al 2002).  

For the sake of simplification, the conventional way is to apply an equivalent 

input loads based on empirical functions which includes soil properties without equation 

of state. For  example, *LOAD-BLAST boundary condition was implemented into LS-

DYNA finite element code based on CONWEP air-blast functions (Randers-Pehrson and 

Bannister 1997) to simulate surface detonations. This input load cannot consider the 

effects on different soil types. A more accurate empirical relationship, called US Army 

TACOM impulse model, was developed by Westine et al. (1985) at Southwest Research 

Institute to predict the impulse applied by a buried mine to a plate at a given offset from 

the mine. The relationship is expressed as 

( )θβρ ,,,,,,, minmin esoilen msDdrfi = .........................................................................(4.2) 

where the soil density, ρsoil, is considered. Other variables are defined in FIG. 4-1.  
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FIG. 4- 1    Definition of variables in US Army TACOM impulse model 

 (Westine et al. 1985)  

       If the model parameters are carefully calibrated (Williams et al 2002), this 

empirical model can predict the effect mine blast on simple geometries reasonable well.  

 This method is obviously not capable of capturing the complex transient 

interactions between the soil and detonation products, which may substantially affect the 

estimated blast loads and the resultant structure. Soil and debris could not be 

implemented directly into the soil finite element model. 

 In order to compensate this limitation, in the soil-model method proposed herein 

the constitutive models are invoked to simulate the soil behavior in explosion (Gupta 

1999, Wang 2001).  

       The soil and foam material model was applied by Wang (2001) in LS-DYNA 

(*MAT5) to simulate a series of explosions in air and soil. The simulation results were 
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compared reasonably well with experimental results. The soil and foam model may be 

considered as a special kind of cap model, but the cap is a plane cap in principal stress 

space (Krieg 1972). Although this model is highly efficient, it has the following 

disadvantages: lack of associative flow plasticity, instability in unconfined states, and no 

consideration of strain rate effect.  

To date the equations of state that can be used in numerical simulation of 

explosion in soils limited. Sedgwick (1974) applied for Tillotson equation of state in the 

two-dimensional HELP computer code to solve the interaction between buried explosive 

charges. Dynamic material properties experiments were performed to provide the 

necessary soil equation of state parameters which are required as input to the numerical 

model. The equation of state for the solid component and the substance in the pores (gas 

or liquid) were taken in the Mie-gruneisen form by Lovetskill, Maslennikov and Fetisov 

(1979). The gaseous component was assumed to be an ideal gas and the temperature of 

all the components was assumed to be identical. A particular form of the Mie-gruneisen 

equation of state was applied by Grujicic et al (2008) to calculate pressure dependence on 

mass density and internal-energy density. Qian (1993) and Wang (2004) both applied 

Kandaur conceptual equation of state based on the three-phase soil structure in the soil 

model for blast loading.  

       In this chapter, viscoplastic cap soil model and equation of state model are 

integrated into LS-DYNA finite element code (PC version) as user-defined material and 

EOS model respectively. A series of landmine explosion tests in dry sand and saturated 

sand conducted by Materials Sciences Corporation (2007) are simulated using the user-
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defined soil model and EOS model. The simulation results are evaluated through 

comparison against experimental data.  

 

4.2 PROPERTIES OF SOIL USED IN EXPLOSIVE TESTS 

             The soil subjected to the plate impact tests by Chapman et al. (2006) was quartz 

sand provided by the Concrete Structure Section (CSS), Department of Civil and 

Environmental Engineering, Imperial College, UK.  The sand had average particle size of 

230 µm and dry soil density of 1520 ± 50 kg m-3.  Since the density of quartz is 2650 kg 

m-3, the porosity of the sand was about 43%.  If all the voids were filled with water, the 

theoretical maximum water content and density would be 22% and 1950 kg m-3, 

respectively.  

            A sandy soil was provided by the Army Research Laboratory (ARL), Aberdeen, 

MD, for the explosive tests conducted by Materials Sciences Corporation (2006). Table 

4-1 provides a comparison of the soil properties.  Since the properties of the ARL soil are 

very comparable to those of the CSS quartz sand, the EOS models based on the CSS 

quartz sand test data were used in the numerical simulations of the explosive tests. 

Table 4- 1    Properties of soil specimens 

Soil 
Provided 

by 

Density 
(kg m-3) 

Volume ratio 
of water 

Porosity 

Dry Sand 
CSS 1520 0% 43% 

ARL 1871 0% 31.23% 

Saturated 
Sand 

CSS 1950 22% 43% 

ARL 2072 20.12% 31.23% 
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4.3 DESCRIPTION OF EXPLOSION TEST 

            To verify the validity of the revised soil model under blast loading, the EOS 

models along with the viscoplastic cap model are incorporated into the software LS-

DYNA (LSTC 2003) as user-defined subroutines for numerical simulations. 

            Explosive tests at a 3-cm depth of burial (DOB) for dry (3 tests) and saturated (3 

tests) sandy soil were conducted by the Materials Sciences Corporation (2006). Tests data 

were provided by ARL.  As shown in FIG. 4-2, a 70-cm high cylindrical tank, made of a 

1.2-cm thick steel pipe with a 60-cm inner diameter, was filled with the test soil.  A 100-

gram C4 explosive charge with 6.4-cm diameter and 2-cm thickness was placed at a 3-cm 

depth in the soil at the center of the tank. Nine “pencil” pressure transducers were placed 

above the soil mass to measure air pressure from the explosive gas bubble expansion. 

Transducers #1 through #5 were placed at the same standoff distance of 30 cm and 

pointing toward the center of C4 at 0, ±22.5, and ±45
o
 angles, #6 through #8 were placed 

at 70 cm and at 0 and ±30
o
 angles, and #9 at 113 cm and at 0

o
 angle.  Transducers #1, #6 

and #9, respectively located at 30 cm, 70 cm and 110 cm directly above the soil, are 

selected for comparisons between the numerical results and measured air pressure due to 

buried explosions. The scheme of the explosive tests set-up is shown in FIG. 4-3. FIG. 4-

4 and FIG. 4-5 are explosive tests photos taken by high speed video for saturated soil and 

dry soil, respectively. 
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FIG. 4- 2    Explosive test set-up 

 

 

FIG. 4- 3    Schematic explosive test set-up 

     Transducer      Soil sample 

     C4 
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FIG. 4- 4    Explosive test for saturated soil with DOB=3 cm by high speed video 

 

 

 

 

 
FIG. 4- 5    Explosive test for dry soil with DOB=3 cm by high speed video 

40µsec 

420µsec 

417µsec 

836µsec 1044µsec 

833µsec 

614µsec 

212µsec 4µsec 

1042µsec 1202µsec 1455µsec 



88 

4.4 FINITE ELEMENT MODEL 

Taking advantage of symmetry, only a quarter of the test setup was modeled. The 

finite element model is shown in FIG. 4-6 containing a 110-cm air volume above and a 

70-cm soil volume below the soil surface, meshed with 6,400 8-node solid ALE elements.  

Fine mesh was generated for the explosive and for the air and soil volumes surrounding 

the C4 where high strain gradients are anticipated.  The fine mesh of soil elements 

extended 3 cm above and below, and 4.8 cm outward in the radial direction beyond the 

circumference of the C4 explosive.  The fine mesh of air elements extended 8 cm above 

the soil surface and 8 cm in the radial direction.  Coarser mesh was used in the region 

further away from the explosive to reduce computation time. The materials used in finite 

element model and their equation of states are shown in FIG. 4-7. 

  

FIG. 4- 6    Finite element mesh 

AIR  

SOIL 

AIR 

SOIL 

EXPLOSIVE 
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FIG. 4- 7    Material and EOS model 

 

       The steel tank was treated as a fixed boundary of the soil. All the exterior 

boundary of the air was also fixed. The height of the air in the finite element model was 

set 110cm, which was sufficient for investigating pressure vs. time history at the 

positions of the transducers. The nodes on the interfaces between the air, soil and 

explosive were merged, which was the most reliable and economic way to simulate 

contact. 

       To avoid large distortions in the elements by the explosion, automatic rezoning 

was achieved by using the Arbitrary Lagrangian-Eulerian (ALE) technique (“LS-DYNA” 

1998).  Set as multiple materials, explosive, soil and air were allowed within the same 

mesh so that the explosive product (i.e., the fire ball) would be able to expand into initial 

soil and air meshes and the soil could be ejected into the air mesh.  

           There are a total of 12 material parameters in the viscoplastic cap model: η, N, f
0
 

in the viscous flow rule; W, D, R, X0 in the cap surface; α, β, γ, θ in the failure surface; 
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and T in the tension cutoff surface.  In addition, the bulk modulus K and the shear 

modulus G are needed for the elastic soil response.  These parameters are determined 

from various static soil tests.  Values of the model parameters for a sandy soil are given 

in Table 4-2.  

Table 4- 2    Viscoplastic cap model parameters for sandy soil 

Sand K (MPa) G (MPa) Α (MPa) Β (MPa-1) Γ (MPa) θ R 

Dry 106.4  63.85  0.0642  0.34283  0.00589  0.18257 5.00 

Saturated 1000  20.00  0.0625  0.36430  0.00320  0.24900 5.32 

Sand W D (MPa-1) X0(MPa) T (MPa) Η (µsec-1) f0 (MPa) N 

Dry 0.2142 0.00952  0.01  0.0069  2×10-4  1.0×105   1.0 

Saturated 0.2250 0.00884  0.01  0.0072  1×10-4  1.2×105   1.0 

 

The explosion product of C4 is modeled with the JWL equation of state (Dobratz 

and Crawford 1985).  It can be written in the form 

         V
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11 ............................................(4.3) 

where A, B, R1, R2 and ω are constants determined from the experiments, V is the relative 

volume, E is the internal energy.  The EOS parameters for C4 are listed in Table 4-3.   

Table 4- 3    JWL equation of state parameters for C4 

A (MPa) B (MPa) R1 R2 ω E0 (MPa) V0 

609970 12950 4.5 1.4 0.25 9000 1 
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The air above the soil is modeled with the LINEAR-POLYNOMIAL equation of 

state (“LS-DYNA” 1998).  It can be written in the form 

         
( )ECCCCCCCP 2

654
3

3
2

210 µµµµµ ++++++= . .....................................(4.4) 

where C0, C1, C2, C3, C5 and C6 are polynomial equation coefficient. 1
0

−=
ρ
ρ

µ , and 
0ρ

ρ

is the ratio of current density to reference density. E is the internal energy, V is the 

relative volume.  The EOS parameters for air are listed in Table 4-4.   

Table 4- 4    LINEAR-POLYNOMIAL equation of state parameters for air 

C0  C1 C2 C3 C4 C5 C6 E0 (MPa) V0 

-1.0e-6 0.0 0.0 0.0 0.4 0.4 0.0 0.25 1 

 

 As illustrated in FIG. 4-8, at detonation (time t = 0), energy prescribed by Eq. (4.3) 

is released from the center of the C4 elements. This pressure is transferred to the soil 

elements surrounding the C4, which are within the fine mesh of the model. The EOS 

models developed are used to account for thermodynamic equilibrium for the air, water 

and solid phases of these soil elements. The shock front pressure decays exponentially 

with distance from the point of detonation, and pressure level is much lower when the 

shock front reaches the fine mesh boundary.  Thus, EOS models are not used for soil 

elements in the coarse mesh. This process is illustrated in FIG. 4-9, simply. 



FIG. 4- 8    

 

 

 

    Material and EOS models used for the FE mesh

FIG. 4- 9    Energy transmission chart 
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Material and EOS models used for the FE mesh 
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 The flowchart in FIG. 4-10 illustrates the implementation of the algorithm using 

an incremental time-step approach. The model is subjected to gravity load to provide the 

initial pressure and energy of the soil. The change in volume over a time step is 

calculated for each soil element after detonating the C4. The changes in volume of the 

three phases are calculated by Eq. (3.91), (3.92) and (3.93). During each time step, the 

internal energy consisting of the deviatoric strain energy and the mechanical work done 

by the hydrostatic pressure is updated. The new work done by the pressure on the change 

in volume from each phase is added to the internal energy of the soil element by Eq. 

(3.96). The soil bulk modulus is updated using Eq. (3.88) for subsequent soil stress and 

strain calculations in the viscoplastic cap model. The instructions for the implementation 

of a user-defined EOS are given in the Appendix B of the LS-DYNA user’s manual 

(LSTC 2003).  
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FIG. 4- 10    Flowchart showing the solution algorithm for use in LS-DYNA 
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4.5 SIMULATION FOR SATURATED SOIL 

4.5.1 SIMULATION CASES AT DIFFERENT ELEMENT 

Case 1 (under the C4): 

           A soil element (#654), shown in FIG. 4-11, whose center is located at 3 cm to the 

right and 2.75 cm down from the center of C4, is selected from a saturated soil test to 

illustrate the numerical procedure.  Before the shock wave arrives at t =20µsec, its soil 

density is 2055 kg/m3, bulk modulus is 1000MPa, and the volume fractions of solid, 

water and air are respectively 70%, 20% and 10%.  When the shock arrives at time step t 

=20+5=25µsec, hydrostatic pressures in the solid, water and air phases are calculated to 

be 5.02MPa, 0.0874MPa and 0.000215MPa, respectively, by Eq. (3.85), (3.86) and (3.87). 

The volume fractions in soil are updated using Eq. (3.91), (3.92) and (3.93), to be 70.15%, 

20.10% and 9.1%. Using Eq. (3.88) and (3.94) to update the soil bulk modulus and 

density are 1142.12MPa and 2063 kg m-3. The soil volume increment can be obtained 

from LS-DYNA, total volume increment is -1.7076 E-05 (µ=7.601E-05), solid volume 

increment ∆Vs is -8.201E-06 (µ=4.743E-05), water volume increment ∆Vw is -1.353E-06 

(µ=4.10E-05) and air volume increment ∆Va is -7.522E-6 (µ=3.0852E-03). The soil 

pressure is 2.43MPa. It can be passed to deviatoric stress to calculate total stress by Eq. 

(4.1). The soil internal energy is 0.0000417MPa by Eq. (3.96).  By now, all parameters of 

viscoplastic cap model and EOS are known. The next time step can be run.  At t= 40µsec, 

soil bulk modulus arrives peak value 2000MPa. The volume fractions in soil are 72.92%, 

20.51% and 8.75%, respectively. The increments of volume fractions in soil are 2.92%, 
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0.51% and -1.25%, respectively. The procedure of volume fractions change is shown in 

FIG. 4-12. 

 

FIG. 4- 11    Element #654 

 

 

FIG. 4- 12    Saturated soil increments of volume fractions in element #654 

 

Case 2 (flush with the C4): 

           A soil element (#748), shown in FIG. 4-13, whose center is located at 3 cm to the 

right from the center of C4 and flush with the center of C4, is selected from a saturated 



97 
soil test to illustrate the numerical procedure.  Before the shock wave arrives at t =20µsec, 

its soil density is 2055 kg/m3, bulk modulus is 1000MPa, and the volume fractions of 

solid, water and air are respectively 70%, 20% and 10%.  When the shock arrives at time 

step t =20+5=25µsec, hydrostatic pressures in the solid, water and air phases are 

calculated to be 3.48MPa, 0.0615MPa and 0.0002MPa, respectively, by Eq. (3.85), (3.86) 

and (3.87). The volume fractions in soil are updated using Eq. (3.91), (3.92) and (3.93), 

to be 70.13%, 20.10% and 9.08%. Using Eq. (3.88) and (3.94) to update the soil bulk 

modulus and density are 1133.23MPa and 2060 kg m-3. The soil volume increment can be 

obtained from LS-DYNA, total volume increment is -1.662 E-05 (µ=7.711E-05), solid 

volume increment ∆Vs is -8.175E-06 (µ=4.743E-05), water volume increment ∆Vw is -

1.212E-06 (µ=4.10E-05) and air volume increment ∆Va is -7.233E-6 (µ=3.0852E-03). 

The soil pressure is 2.15MPa. It can be passed to deviatoric stress to calculate total stress 

by Eq. (4.1). The soil internal energy is 0.0000417MPa by Eq. (3.96).  By now, all 

parameters of viscoplastic cap model and EOS are known. The next time step can be run.  

At t= 40µsec, soil bulk modulus arrives peak value 2000MPa. The volume fractions in 

soil are 72.31%, 20.51% and 8.84%, respectively. The increments of volume fractions in 

soil are 2.31%, 0.51% and -1.26%, respectively. The procedure of volume fractions 

change is shown in FIG. 4-14. 
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FIG. 4- 13    Element #748 

 

 

FIG. 4- 14    Saturated soil increments of volume fractions in element #748 

 

Case 3 (above the C4): 

           A soil element (#852), shown in FIG. 4-15, whose center is located at 3 cm to the 

right and 2.75 cm above from the center of C4, is selected from a saturated soil test to 

illustrate the numerical procedure.  Before the shock wave arrives at t =20µsec, its soil 

density is 2055 kg/m3, bulk modulus is 1000MPa, and the volume fractions of solid, 

water and air are respectively 70%, 20% and 10%.   
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 There is a little difference between the elements above C4 and the elements under 

the C4. The equation to calculate hydrostatic pressure can be expressed as: 

vECp 0
2

0 γµρ += .....................................................................................................(4.5) 

            For solid, this equation can be expressed as: 

( )( ) ( ) vEp 0.1319.62650 2 += µ  ..................................................................................(4.6) 

            For water, this equation can be expressed as: 

( )( ) ( ) vEp 6.0460.11000 2 += µ  ...................................................................................(4.7) 

            For air, this equation can be expressed as: 

( )( ) µ2241.02.1=p  .....................................................................................................(4.8) 

 When the shock arrives at time step t =20+5=25µsec, hydrostatic pressures in the 

solid, water and air phases are calculated to be -4.21MPa, -2.011MPa and -0.832MPa, 

respectively, by Eq. (4.6), (4.7) and (4.8). The volume fractions in soil are updated using 

Eq. (3.91), (3.92) and (3.93), to be 68.99%, 19.44% and 6.99%. Using Eq. (3.88) and 

(3.94) to update the soil bulk modulus and density are 923.23MPa and 2032 kg m-3. The 

soil volume increment can be obtained from LS-DYNA, total volume increment is 4.233 

E-05 (µ=-9.348E-05), solid volume increment ∆Vs is 0.875E-05 (µ=-3.691E-05), water 

volume increment ∆Vw is 1.226E-05 (µ=-5.421E-05) and air volume increment ∆Va is 

2.122E-05 (µ=-7.188E-03). The soil pressure is -5.786MPa. It can be passed to deviatoric 

stress to calculate total stress by Eq. (4.1). The soil internal energy is 0.0000417MPa by 
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Eq. (3.96).  By now, all parameters of viscoplastic cap model and EOS are known. The 

next time step can be run.  At t= 35µsec, since shock wave arrives, soil above C4 is 

blown by the force of the explosion. The volume fractions in soil are 0.0%, 0.0% and 

0.0%, respectively. The increments of volume fractions in soil are -70.0%, -20.0% and –

10.0%, respectively. The procedure of volume fractions change is shown in FIG. 4-16. 

 

FIG. 4- 15    Element #852 

 

 

FIG. 4- 16    Saturated soil increments of volume fractions in element #852 
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Case 4 (Air element above the C4): 

           An air element (#4498), shown in FIG. 4-17, whose center is located at 30 cm 

above from the center of C4, is selected from a saturated soil test to illustrate the 

numerical procedure.  Initially, this element is defined by material model of air. Since the 

ALE (Arbitrary Lagrangian-Eulerian) calculation is selected by this study, the primary 

advantage of ALE is the number and types of materials present in an element can change 

dynamically when elements with more than one material. Under blasting loading, a part 

of volume of the element 4498 is occupied by soil debris following an explosion, shown 

in FIG. 4-18. The soil volume fraction arrive peak value 17.1% at 300µsec. 

 

FIG. 4- 17    Air element #4498 
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FIG. 4- 18    Volume fraction of saturated soil in air element #4498 

 

4.5.2 COMPARISON OF SIMULATION WITH TEST RESULTS 

 From FIG. 4-19 to FIG. 4-27 present the air pressure time-histories at three tests 

respectively, which were recorded by the pencil gages (see Fig. 8) after a C4 charge was 

detonated in saturated sand at a DOB = 3 cm (Materials Sciences Corporation 2006).  A 

comparison between the predicted shock front air pressure and the experimental data 

obtained at distances of 30 cm, 70 cm, and 110 cm directly above the soil is shown in 

FIG. 4-28.  The difference between the numerical results and the average test data at 30, 

70 and 110-cm standoff distances are 4.5%, 12.5% and 7.2%, respectively. 

 Density and bulk modulus are the most sensitive parameters in simulation model. 

A comparison among simulation results with the density decreased to 90% of initial 

density and with the bulk modulus decreased to 90% of initial bulk modulus and density 

and bulk modulus keep the initial value is shown in FIG. 4-29.  
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FIG. 4- 19    Saturated sand air pressure time-histories, 30 cm standoff distance #1 

 

FIG. 4- 20    Saturated sand air pressure time-histories, 70 cm standoff distance #1 

 

 

FIG. 4- 21    Saturated sand air pressure time-histories, 110 cm standoff distance #1 
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FIG. 4- 22    Saturated sand air pressure time-histories, 30 cm standoff distance #2 

 

FIG. 4- 23    Saturated sand air pressure time-histories, 70 cm standoff distance #2 

 

 

FIG. 4- 24    Saturated sand air pressure time-histories, 110 cm standoff distance #2 
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FIG. 4- 25    Saturated sand air pressure time-histories, 30 cm standoff distance #3 

 

FIG. 4- 26    Saturated sand air pressure time-histories, 70 cm standoff distance #3 

 

 

FIG. 4- 27    Saturated sand air pressure time-histories, 110 cm standoff distance #3 
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FIG. 4- 28    Comparison between numerically predicted and experimental values for 

saturated sand (Shock front pressure in air VS. Transducer distance) 

 

FIG. 4- 29    Comparison of simulation results due to parameters change for saturated soil 
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 The saturated soil volume fractions of three phases in a part of finite element 

mash before the shack wave arriving is shown in FIG. 4-30. The saturated soil volume 

fractions of three phases in a part of finite element mash at the 180µsec is shown in And 

FIG. 4-31. 

 

                 

FIG. 4- 30    Saturated soil volume fractions of three phases before the shack wave 
arrives 

 

 

 

               Solid  

               Water 

                Air 

                C4 



108 

                 

FIG. 4- 31    Saturated soil volume fractions of three phases at 180µsec 

 

4.6 SIMULATION FOR DRY SOIL 

4.6.1 SIMULATION CASES AT DIFFERENT ELEMENT 

Case 1 (under the C4): 

           A soil element (#654), shown in FIG. 4-11, whose center is located at 3 cm to the 

right and 2.75 cm down from the center of C4, is selected from a dry soil test to illustrate 

the numerical procedure.  Before the shock wave arrives at t =20µsec, its soil density is 

1802 kg/m3, bulk modulus is 106.4MPa, and the volume fractions of solid, water and air 

are respectively 68%, 0.0% and 32%.  When the shock arrives at time step t 

               Solid  

               Water 

                Air 

                C4 
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=20+5=25µsec, hydrostatic pressures in the solid, water and air phases are calculated to 

be 2.13MPa, 0.0MPa and 0.000215MPa, respectively, by Eq. (3.85), (3.86) and (3.87). 

The volume fractions in soil are updated using Eq. (3.91), (3.92) and (3.93), to be 70.04%, 

0.0% and 29.97%. Using Eq. (3.88) and (3.94) to update the soil bulk modulus and 

density are 117.16MPa and 1811 kg m-3. The soil volume increment can be obtained from 

LS-DYNA, total volume increment is -2.387E-05 (µ=4.481E-06), solid volume 

increment ∆Vs is -7.879E-06 (µ=4.743E-05), water volume increment ∆Vw is 0.0 and air 

volume increment ∆Va is -1.599E-05 (µ=6.163E-03). The soil pressure is 1.62MPa. It can 

be passed to deviatoric stress to calculate total stress by Eq. (4.1). The soil internal energy 

is 0.0000175MPa by Eq. (3.96).  By now, all parameters of viscoplastic cap model and 

EOS are known. The next time step can be run.  At t= 40µsec, soil bulk modulus arrives 

peak value 513MPa. The volume fractions in soil are 82.68%, 0.0% and 17.4%, 

respectively. The increments of volume fractions in soil are 14.68%, 0.0% and –14.6%, 

respectively. The procedure of volume fractions change is shown in FIG. 4-32. 

 

FIG. 4- 32    Dry soil volume fraction in element #654 
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Case 2 (flush with the C4): 

           A soil element (#748), shown in FIG. 4-13, whose center is located at 3 cm to the 

right from the center of C4 and flush with the center of C4, is selected from a dry soil test 

to illustrate the numerical procedure.  Before the shock wave arrives at t =20µsec, its soil 

density is 1802 kg/m3, bulk modulus is 106.4MPa, and the volume fractions of solid, 

water and air are respectively 68%, 0.0% and 32%.  When the shock arrives at time step t 

=20+5=25µsec, hydrostatic pressures in the solid, water and air phases are calculated to 

be 3.72MPa, 0.0MPa and 0.000201MPa, respectively, by Eq. (3.85), (3.86) and (3.87). 

The volume fractions in soil are updated using Eq. (3.91), (3.92) and (3.93), to be 70.02%, 

0.0% and 30.0%. Using Eq. (3.88) and (3.94) to update the soil bulk modulus and density 

are 112.34MPa and 1808 kg m-3. The soil volume increment can be obtained from LS-

DYNA, total volume increment is -1.933 E-05 (µ=6.412E-05), solid volume increment 

∆Vs is -8.119E-06 (µ=4.919E-05), water volume increment ∆Vw is 0.0 and air volume 

increment ∆Va is -1.1131E-05 (µ=7.075E-03). The soil pressure is 1.33MPa. It can be 

passed to deviatoric stress to calculate total stress by Eq. (4.1). The soil internal energy is 

0.0000175MPa by Eq. (3.96).  By now, all parameters of viscoplastic cap model and EOS 

are known. The next time step can be run.  At t= 40µsec, soil bulk modulus arrives peak 

value 513MPa. The volume fractions in soil are 81.33%, 0.0% and 18.4%, respectively. 

The increments of volume fractions in soil are 13.33%, 0.0% and –13.6%, respectively. 

The procedure of volume fractions change is shown in FIG. 4-33. 
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FIG. 4- 33    Dry soil volume fraction in element #748 

 

Case 3 (above the C4): 

           A soil element (#852), shown in FIG. 4-15, whose center is located at 3 cm to the 

right and 2.75 cm above from the center of C4, is selected from a dry soil test to illustrate 

the numerical procedure.  Before the shock wave arrives at t =20µsec, its soil density is 

1802 kg/m3, bulk modulus is 106.4MPa, and the volume fractions of solid, water and air 

are respectively 68%, 0.0% and 32%.  When the shock arrives at time step t 

=20+5=25µsec, hydrostatic pressures in the solid, water and air phases are calculated to 

be -3.62MPa, 0.0MPa and 0.0313MPa, respectively, by Eq. (4.6), (4.7) and (4.8). The 

volume fractions in soil are updated using Eq. (3.91), (3.92) and (3.93), to be 65.03%, 0.0% 

and 30.10%. Using Eq. (3.88) and (3.94) to update the soil bulk modulus and density are 

103.02MPa and 1800 kg m-3. The soil volume increment can be obtained from LS-

DYNA, total volume increment is 5.119 E-05 (µ=-7.762E-05), solid volume increment 

∆Vs is 1.496E-05 (µ=-4.743E-05), water volume increment ∆Vw is 0.0 and air volume 
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increment ∆Va is 3.623E-05 (µ=-4.0852E-03). The soil pressure is -0.94MPa. It can be 

passed to deviatoric stress to calculate total stress by Eq. (4.1). The soil internal energy is 

0.0000175MPa by Eq. (3.96).  By now, all parameters of viscoplastic cap model and EOS 

are known. The next time step can be run.  At t= 35µsec, since shock wave arrives, soil 

above C4 is blown by the force of the explosion. The volume fractions in soil are 0.0%, 

0.0% and 0.0%, respectively. The increments of volume fractions in soil are -68.0%, 0.0% 

and –32.0%, respectively. The procedure of volume fractions change is shown in FIG. 4-

34. 

 

FIG. 4- 34    Dry soil volume fraction in element #852 

 

Case 4 (Air element above the C4): 

           An air element (#4498), shown in FIG. 4-17, whose center is located at 30 cm 

above from the center of C4, is selected from a dry soil test to illustrate the numerical 

procedure.  Under blasting loading, a part of volume of the element 4498 is occupied by 

so
il 
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soil debris following an explosion, shown in FIG. 4-35. The soil volume fraction arrive 

peak value 2.17% at 250µsec. 

 

 

FIG. 4- 35    Volume fraction of dry soil in air element #4498 

 

4.6.2 COMPARISON OF SIMULATION WITH TEST RESULTS 

  From FIG. 4-36 to FIG. 4-44 present the air pressure time-histories, which were 

recorded by the pencil gages (see Fig. 8) after a C4 charge was detonated in dry sand at a 

DOB = 3 cm (Materials Sciences Corporation 2006).  

 The predicted shock front arrival times in the air directly above the explosion are 

compared against those read from the data traces recorded by transducers #1, #6 and #9 

in FIG. 4-45.  The difference between the predicted shock front arrival time and the 

average test data at 0, 22.5 and 45
o
 offset angles are 1.8%, 4.4%, and 9.7%, respectively.  

Time (µsec E+03) 



114 
 A comparison between the predicted shock front air pressure and the experimental 

data obtained at distances of 30 cm, 70 cm, and 110 cm directly above the soil is shown 

in FIG. 4-46.  The difference between the numerical results and the average test data at 

30, 70 and 110-cm standoff distances are 2.2%, 20% and 64%, respectively. A 

comparison among simulation results when the density is decreased to 90% of initial 

density, when the bulk modulus is decreased to 90% of initial bulk modulus and density 

and bulk modulus keep the initial value is shown in FIG. 4-47.  

 The dry soil volume fractions of three phases in a part of finite element mash 

before the shack wave arriving is shown in FIG. 4-48. The dry soil volume fractions of 

three phases in a part of finite element mash at the 120µsec are shown in FIG. 4-49. 

The soil ejecta heights between high speed video and numerical simulation at time 

= 420, 830 and 1040 µs since detonation for tests in dry sand and in saturated sand are 

compared in FIG. 4-50, 4-51 and 4-52, respectively. The maximum difference between 

the predicted and measured ejecta heights is 24% for explosive tests in dry sand and 9.6% 

in saturated sand. 

 

FIG. 4- 36    Dry sand air pressure time-histories, 30 cm standoff distance #1 
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FIG. 4- 37    Dry sand air pressure time-histories, 70 cm standoff distance #1 

 

 

FIG. 4- 38    Dry sand air pressure time-histories, 110 cm standoff distance #1 

 

 

FIG. 4- 39    Dry sand air pressure time-histories, 30 cm standoff distance #2 
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FIG. 4- 40    Dry sand air pressure time-histories, 70 cm standoff distance #2 

 

 

FIG. 4- 41    Dry sand air pressure time-histories, 110 cm standoff distance #2 

 

 

FIG. 4- 42    Dry sand air pressure time-histories, 30 cm standoff distance #3 
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FIG. 4- 43    Dry sand air pressure time-histories, 70 cm standoff distance #3 

 

FIG. 4- 44    Dry sand air pressure time-histories, 110 cm standoff distance #3 
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FIG. 4- 45    Comparison between numerically predicted and experimental values for dry 

sand (Blast wave arrival time VS. Transducer offset angle) 
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FIG. 4- 46    Comparison between numerically predicted and experimental values for dry 

sand (Shock front pressure in air VS. Transducer distance) 

 

FIG. 4- 47    Comparison of simulation results due to parameters change for dry soil 



120 
 

                

FIG. 4- 48    Dry soil volume fractions of three phases before the shack wave arrives 
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FIG. 4- 49    Dry soil volume fractions of three phases at 120µsec 
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FIG. 4- 50    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 420 µsec 
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FIG. 4- 51    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 830 µsec 
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FIG. 4- 52    Comparison of soil ejecta heights: High speed video vs. Simulation               

at time = 1040 µsec 
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4.7 CONCLUSIONS 

      By means of comparison against experimental data, predictions of the viscoplastic 

cap model demonstrate better agreement than those of the inviscid cap model, more 

accurate 7% than inviscid cap model, since the viscoplastic model can capture the high 

strain-rate (with durations in milliseconds) effects on explosion simulation. The high 

strain effects are manifested by an apparent increase of shock wave propagation speed, 

peak overpressure and impulse. Although the effects on certain variables are not apparent, 

such as the air blast shock wave propagation and the explosion characteristics, the high 

strain rate effects are generally significant (Jackson et al, 1980) and cannot be neglected 

in explosion simulation.  

       A fine mesh (about 0.14cm3 per element) needs to be used in order to improve the 

simulation accuracy. Besides, the high strain-rate effects need to be studied through 

explosion tests in clayey soils in order to draw a general conclusion. 
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CHAPTER FIVE     CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 CONCLUSIONS 

       This thesis investigates and proposes soil models, implements the models in LS-

DYNA finite element code, and evaluates the performance of viscoplastic cap material 

model with equation of states through comparison against available explosion test data. 

The soil behavior under blast loading, the phenomena due to explosion, are particularly 

studied. 

       Two viscoplastic cap models are based on Perzyna’s theory and Duvant-Lions’ 

theory studied. By comparing with the solutions to a hypothetical loading test, the two 

viscoplastic models produce virtually identical responses when the viscous parameters 

are judiciously selected for each model. However, differences between the Perzyna’s and 

the Duvant-Lions’ model were observed when simulating the experiment tests conducted 

under rapid loading. The prediction of the Perzyna’s model appears to agree better (about 

4%) with experimental data than that of the Duvant-Lions’ model, and the Perzyna’s 

model is more flexible for data fitting, more accurate about 6.6% than Duvant-Lions’ 

model. Therefore, the Perzyna’s viscoplastic cap model is implemented into LS-DYNA 

to represent the soil model with consideration of strain-rate effect. 

       To improve the accuracy of simulation results, three phases equation of states are 

developed based on Mie-Gruneison equation of state.  For soil mass surrounding the 

source of energy release, equation of state models for the three phases of soil are 

developed as each of the three phases responds differently to shock loading. Finally, 
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these three phase equation of states have been integrated with the viscoplastic cap model 

and incorporated into the LS-DYNA software as user-supplied subroutines for numerical 

simulations of explosive tests in dry soil as well as in wet soil. 

 By means of comparison against experimental data, the predicted time of arrival 

and the overpressure in air directly above buried explosions agree well with the 

experimental data. There was noticeable improvement using the revised cap model with 

EOS for the prediction of wet soil behavior under blast loading than dry soil. It is 

concluded that the revised cap model with EOS is adequate for blast loading behavior 

simulations for soil with different degrees of water contents. 

 

5.2 RECOMMENDATIONS 

       Refinements of viscoplastic cap models would include a more realistic treatment 

for tension cutoff for the Perzyna type and a more elaborate formulation for the Duvant-

Lions type. The former is very important to the simulation of underground explosion. The 

latter is to improve the flexibility of the Duvant-Lions’ model. 

       A series of explosion tests needs to be conducted in clayey soil with different 

degrees of water contents. As evidenced by the previous experimental studies, the clayey 

soils are more sensitive to the loading rate than the sandy soil. If these tests are being 

conducted, the comprehensive static tests for the same soil should also be conducted to 

calibrate soil model parameters and EOS parameters. More simulations can be run with 

equation of state for soils with various degrees of saturation. This step is essential for 

ensuring the accuracy of the numerical simulations. 
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APPENDIX A 

SUBROUTINE OF USER DEFINED MATERIAL MODEL 

 

subroutine umat48(cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,temper,failel,crv) 
c     Perzyna's Viscoplastic Cap Model for Soil :  
c     cm(1) = young's modulus 
c     cm(2) = possion's ratio 
c     cm(3) = buckling modulus 
c     cm(4) = shear modulus 
c     cm(5) = alfa   in Faliure Surface 
c     cm(6) = beta   ... 
c     cm(7) = gama   ... 
c     cm(8) = theta  ... 
c     cm(9) = r      cap surface axis ratio 
c     cm(10)= d      hardening law exponent 
c     cm(11)= w      hardeng law coefficient (limit plastic strain) 
c     cm(12)= x0     initial hardening pressure 
c     cm(13)= tcut   tension cut off (tcut<=0) 
c     cm(14)= conv   convegent factor (default value = 0.001) 
c     cm(15)= itmat  maximum iteration number (default value = 1000) 
c     hsv(1)=total z-component strain 
c     hsv(2)=hardening parameter, kn 
c     hsv(3)=volumetric plastic strain, evpn 
c     hsv(4)=first stress invariant, J1 
c     hsv(5)=second deviatoric stress invariant, SJ2 
c     hsv(6)=response mode number, mode 
 
      include 'iounits.inc' 
      character*(*) etype 
      dimension cm(*),eps(*),sig(*),hsv(*),crv(101,2,*) 
      dimension cmat(6,6),dmat(6,6),hr(6,6),hh(6,6),dfds(6),ddfdds(6,6) 
      dimension ddfdsl(6),dfaids(6),ab(6),sig1(6),se(6) 
      real*4 kn,kn1,ln,ln1,kn10,k0 
      logical faille 
 
c    Input the user defined material parameters 
      bulk=cm(1) 
      gshr=cm(2) 
      alfa=cm(3) 
      beta=cm(4) 
      gama=cm(5) 
      theta=cm(6) 
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      r=cm(7) 
      d=cm(8) 
      w=cm(9) 
      x0=cm(10) 
      tcut=cm(11) 
      conv=cm(12) 
      itmax=cm(13) 
      yita=cm(14) 
      fai0=cm(15) 
      expon=cm(16) 
c    Calculate the initial hardening parameter k0 or input kn 
      if (hsv(2).eq.0) then 
    if (x0.ge.10000.0) then 
       kn=x0 
    else 
                  call capi(x0,r,alfa,beta,gama,theta,k0,ieer) 
       if (ieer.eq.10) then 
          k0=x0 
       endif 
       kn=k0 
    endif 
      else 
    kn=hsv(2) 
      endif 
 
c    Form the elastic material matrix [cmat] and its reverse matrix [dmat] 
      cmatii=bulk+4.0/3.0*gshr 
      cmatij=bulk-2.0/3.0*gshr 
      cmatjj=gshr 
      do 140 i=1,6 
      do 140 j=1,6 
140cmat(i,j)=0.0 
      do 160 i=1,6 
    if (i.le.3) then 
       cmat(i,i)=cmatii 
       do 150 j=1,3 
          if (i.ne.j) cmat(i,j)=cmatij 
 150       continue 
    else 
       cmat(i,i)=cmatjj 
    endif 
 160  continue 
      call mrevs(6,cmat,dmat) 
 
c    Calculate the elastic trial strss {sig1} = {sig0} + [cmat]:{eps}  



143 
 do 180 i=1,6 
    aa=0.0 
    do 170 j=1,6 
       aa=aa+cmat(i,j)*eps(j) 
 170     continue 
    sig1(i)=-(sig(i)+aa) 
 180  continue 
 
c   Given other initial values  
      if (kn.ge.10000.0) then 
    xn=x0 
 else 
         xn=kn+r*(alfa-gama*exp(-beta*kn)+theta*kn) 
 endif 
 evpn0=w*(1-exp(-d*(xn-x0))) 
 dlamd=0.0 
 dk=0.0 
 kn1=kn 
c   Deal with tension cutoff   
      sj1e=sig1(1)+sig1(2)+sig1(3) 
      if (sj1e.gt.(-tcut)) goto 450 
      sj1n1=-tcut 
      ppe=sj1e/3.0 
 ppt=sj1n1/3.0 
 dse=0.0 
      do 190 i=1,6 
    if (i.le.3) then 
            se(i)=sig1(i)-ppe 
       fmu=1.0 
    else 
       se(i)=sig1(i) 
       fmu=2.0 
    endif 
    dse=dse+fmu*se(i)*se(i) 
 190  continue 
      sj2e=sqrt(0.5*dse) 
 sj2n1=sj2e 
 sj2t=alfa-gama*exp(-beta*(-tcut))+theta*(-tcut) 
 if (sj2e.gt.sj2t) sj2n1=sj2t 
      ratio=0.0 
 if (sj2e.ne.0.0) ratio=sj2n1/sj2e 
 do 200 i=1,6 
    if (i.le.3) then 
       sig1(i)=se(i)*ratio+ppt 
    else 



144 
       sig1(i)=se(i)*ratio 
    endif 
 200  continue 
      goto 800 
  
c    Check other status of the elastic trial stress  
 450  continue 
 call differ(sig1,kn1,fai,dfds,ddfdds,ddfdsl,dfaids,dfaidl,hsk 
     $ ,mode,alfa,beta,gama,theta,r,d,w,x0,tcut,yita,fai0,expon) 
 if (mode.eq.0) goto 800 
 residi=fai-dlamd/yita/dt1 
 
c *** local iteration to fulfill: residi = fai - dlamd/yita/dt => convergence   
 itt=0 
 500  itt=itt+1 
c    2.1: [hh] = | [cmat] + dlamd*[ddfdds] |-1 
      do 510 i=1,6 
 do 510 j=1,6 
 510  hr(i,j)=dmat(i,j)+dlamd*ddfdds(i,j) 
      call mrevs(6,hr,hh) 
c    2.2: divd = {dfaids}:[hh]:{dlamd*{ddfdsl}+{dfds}} + 1/yita/tt - dfaidl 
      divd=0.0 
 do 520 i=1,6 
 ab(i)=0.0 
 do 520 j=1,6 
 ab(i)=ab(i)+hh(i,j)*(dlamd*ddfdsl(j)+dfds(j)) 
 520  continue 
      do 530 i=1,6 
 divd=divd+ab(i)*dfaids(i) 
 530  continue 
      divd=divd+1.0/yita/dt1-dfaidl 
c    2.3: dlamd = dlamd + residi/divd ;   
      dlamd=dlamd+residi/divd 
c    2.4: {sig1} = {sig} + [cmat]*{{eps}-dlamd*{dfds}} 
      devpn=0.0 
      do 550 i=1,6 
    ac=0.0 
    do 540 j=1,6 
    ac=ac+cmat(i,j)*(-eps(j)-dlamd*dfds(j)) 
 540     continue 
         sig1(i)=-sig(i)+ac 
    if (i.le.3) devpn=devpn+dlamd*dfds(i) 
 550  continue 
       
 if (kn.ge.10000.0) then 
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    kn1=kn 
 else 
    evpn1=evpn0+devpn 
    if (evpn1.ge.w) evpn1=0.9*w 
         xn1=-1.0/d*log(1.0-evpn1/w)+x0 
         kn10=kn1 
    itk=0 
 570     continue 
         itk=itk+1 
         ff=kn10+r*(alfa-gama*exp(-beta*kn10)+theta*kn10)-xn1 
    if (abs(ff).lt.abs(conv*kn10)) goto 580 
    dfekn=gama*beta*exp(-beta*kn10)+theta 
    kn1=kn10-ff/(1.0+r*dfekn) 
    kn10=kn1 
    if (itk.ge.itmax) then 
c       write(6,*)'not convergence for kn1-kn-ff',kn1,kn,ff 
       goto 580 
         endif 
    goto 570 
 580     continue 
      endif 
c 2.5: residi(new) = fai - dlamd/yita/dt 
      call differ(sig1,kn1,fai,dfds,ddfdds,ddfdsl,dfaids,dfaidl,hsk 
     $ ,mode,alfa,beta,gama,theta,r,d,w,x0,tcut,yita,fai0,expon) 
 residi=fai-dlamd/yita/dt1 
c 2.6: check if the convergence condition is satisfied 
 if (abs(residi).lt.abs(conv)) goto 800 
 if (itt.ge.itmax) then 
    write(6,*) 'NOT CONVERGE',itt,residi 
 else 
    goto 500 
 endif 
c *** local iteration end   
 800  continue 
c Output the variables 
      do 820 i=1,6 
 820 sig(i)=-sig1(i) 
 
 hsv(1)=hsv(1)+eps(3) 
 hsv(2)=kn1 
c write(6,*)'output',mode,kn1,kn 
 xn1=kn1+r*(alfa-gama*exp(-beta*kn1)+theta*kn1) 
 hsv(3)=hsv(3)+w*(1.0-exp(-d*(xn1-x0))) 
 pn1=(sig(1)+sig(2)+sig(3))/3.0 
 hsv(4)=pn1*3.0 
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 dsig11=sig(1)-pn1 
 dsig22=sig(2)-pn1 
 dsig33=sig(3)-pn1 
 dsa=dsig11*dsig11+dsig22*dsig22+dsig33*dsig33 
 dse=sig(4)**2+sig(5)**2+sig(6)**2 
 
 hsv(5)=sqrt(0.5*dsa+dse) 
 hsv(6)=float(mode) 
 return 
 end 
 
c determine the initial hardening parameter k0 according to x0 
c 
      subroutine capi_dup(x0,r,alfa,beta,gama,theta,k0,ieer) 
 real*4 kn,k0 
 ieer=0 
 cretia=1e-5*(alfa-gama) 
 itc=0 
            k0=0.0 
 40 f0=alfa-gama*exp(-beta*k0)+theta*k0 
            dfek0=gama*beta*exp(-beta*k0)+theta 
            f=k0+r*f0-x0 
 if (abs(f).lt.cretia) goto 60 
 kn=k0-f/(1.0+r*dfek0) 
 k0=kn 
 itc=itc+1 
 
 if (itc.gt.60) goto 50 
            goto 40 
 50       ieer=10 
 60       return 
            end   
 
c 
c calcuate the reverse matrix 
c 
      subroutine mrevs(ns,cmat,dmat) 
 dimension cmat(ns,ns),dmat(ns,ns) 
 do 100 i=1,ns 
 do 100 j=1,ns 
100      dmat(i,j)=cmat(i,j) 
            do 200 n=1,ns 
    diag=dmat(n,n) 
    do 130 j=1,ns 
130      dmat(n,j)=-dmat(n,j)/diag 
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            do 150 i=1,ns 
       if (n.eq.i) goto 150 
       do 140 j=1,ns 
          if (n.eq.j) goto 140 
          dmat(i,j)=dmat(i,j)+dmat(i,n)*dmat(n,j) 
140    continue 
150      dmat(i,n)=dmat(i,n)/diag 
            dmat(n,n)=1.0/diag 
200      continue 
            return 
            end 
 
c   calcuate the flow vector of failure surface 
 
       subroutine differ(ssn1,kn1,fai,dfds,ddfdds,ddfdsl,dfaids,dfaidl, 
     $ hsk,mode,alfa,beta,gama,theta,r,d,w,x0,tcut,yita,fai0,expon) 
 real*4 kn1,ln1 
 dimension ssn1(6),dfds(6),ddfdds(6,6),ddfdsl(6),dfaids(6) 
 dimension dj1ds(6),dj2ds(6),se(6),amat(6,6) 
c   Get the basic flow vector : dj1ds = {dj1/ds}; dj2ds = {dj2/ds} 
 sj1=ssn1(1)+ssn1(2)+ssn1(3) 
 pp0=sj1/3.0 
 toth=2.0/3.0 
 aa=0.0 
 do 120 i=1,6 
    if (i.le.3) then 
       dj1ds(i)=1.0 
    else 
               dj1ds(i)=0.0 
    endif 
    se(i)=ssn1(i)-dj1ds(i)*pp0 
    if (i.le.3) then 
       dj2ds(i)=se(i) 
    else 
       dj2ds(i)=2.0*se(i) 
    endif 
    aa=aa+se(i)*dj2ds(i) 
    do 100 j=1,6 
       amat(i,j)=0.0 
       if (i.eq.j) then 
          if (i.le.3) amat(i,j)=toth 
          if (i.gt.3) amat(i,j)=2.0 
       else 
          if (i.le.3.and.j.le.3) amat(i,j)=-0.5*toth 
       endif    
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 100     continue 
 120  continue 
      sj2=sqrt(0.5*aa) 
c    Check the stress status: Mode = 0 -> elastic ; -1 -> tension;  
c                                 1 -> failure ;  2 -> cap 
      mode=0 
 fval=0.0 
 dfj1=0.0 
 dfj2=0.0 
 ddfj1=0.0 
 ddfj2=0.0 
 ddfj12=0.0 
 ddfj1k=0.0 
 ddfj2k=0.0 
 dkdl=0.0 
 dfdk=0.0 
 ln1=max(kn1,0.0) 
c if (sj1.le.-tcut) then 
c    write(6,*)'differ-1',sj1,-tcut,ln1 
c             fval=sj2-(-tcut) 
c    dfj1=1.0 
c    if (fval.gt.0.0) mode=-1 
c else if (sj1.gt.-tcut.and.sj1.le.ln1) then 
 if (sj1.le.ln1) then 
    fval=sj2-(alfa-gama*exp(-beta*sj1)+theta*sj1) 
    dfj1=-gama*beta*exp(-beta*sj1)-theta 
    dfj2=0.5/sj2 
    ddfj1=gama*beta*beta*exp(-beta*sj1) 
    ddfj2=-0.25/sj2/sj2/sj2 
    if (fval.gt.0.0) mode=1 
 else 
    xn1=kn1+r*(alfa-gama*exp(-beta*kn1)+theta*kn1) 
    a1=(sj1-ln1)/r 
    a1r=a1/r 
    a2=(xn1-ln1)/r 
    aa=sqrt(a1*a1+sj2*sj2) 
    a3=1.0/aa/aa/aa 
    fval=aa-a2 
    dfj1=a1/aa/r 
    dfj2=0.5/aa 
               ddfj1=-a1r*a1r*a3+1.0/aa/r/r 
    ddfj2=-0.25*a3 
    ddfj12=-0.5*a1r*a3 
    dldk=0.0 
    if (kn1.gt.0) dldk=1.0 
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    ddfj1k=-ddfj1*dldk 
    ddfj2k=-ddfj12*dldk 
    dfedl=gama*beta*exp(-beta*kn1)+theta 
    dkdl=3.0*dfj1/(w*d*exp(-d*(xn1-x0)))/(1.0+r*dfedl) 
    dfdk=-dfj1*dldk-dfedl*dldk 
    if (fval.gt.0.0) mode=2 
 endif 
 if (fval.le.0.0) goto 800 
c 
c    MODE != 0 --> viscoplasticity 
c     dfai=dfai/df ;  dfaidl=dfai/dlamd ; dfds=df/ds ; ddfdds=ddf/dds  
c 
 fai=(fval/fai0)**expon 
 dfai=expon*(fval/fai0)**(expon-1.0)/fai0 
 hsk=dkdl 
 dfaidl=dfai*dfdk*dkdl 
 do 140 i=1,6 
    dfds(i)=dfj1*dj1ds(i)+dfj2*dj2ds(i) 
    ddfdsl(i)=(ddfj1k*dj1ds(i)+ddfj2k*dj2ds(i))*dkdl 
    dfaids(i)=dfai*dfds(i) 
 140     continue 
            do 160 i=1,6 
 do 160 j=1,6 
            ddfdds(i,j)=ddfj1*dj1ds(i)*dj1ds(j)+ddfj12*(dj1ds(i)*dj2ds(j)+ 
     $     dj1ds(j)*dj2ds(i))+ddfj2*dj2ds(i)*dj2ds(j)+dfj2*amat(i,j)  
 160     continue      
800 return 
 End 
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APPENDIX B 

SUBROUTINE OF USER DEFINED EOS MODEL 

 

      subroutine ueos23s(iflag,cb,pnew,hist,rho0,eosp,specen, 
     & df,dvol,v0,pc,dt,tt,crv,first) 
 
c***  variables 
c          iflag ----- =0 calculate bulk modulus 
c                          =1 update pressure and energy 
c          cb -------- bulk modulus  
c          pnew ------ new pressure 
c          hist ------ history variables 
c          rho0 ------ reference density 
c          eosp ------ EOS constants 
c          specen ---- energy/reference volume 
c          df -------- volume ratio, v/v0 = rho0/rho 
c          dvol ------ change in volume over time step 
c          v0 -------- reference volume 
c          pc -------- pressure cut-off 
c          dt -------- time step size 
c          tt -------- current time 
c          crv ------- curve array 
c          first ----- logical .true. for tt,crv,first time step 
c                      (for initialization of the history variables) 
c 
      include 'nlqparm' 
      logical first 
      dimension hist(*),eosp(*),crv(101,2,*) 
      real*4 As,Aw,Aa,dvols,dvolw,dvola 
 
c     solid,water,air--precent 
       As0 =eosp(1)     
       Aw0 =eosp(2)     
       Aa0 =eosp(3)     
  
c     solid,water,air--density      
       rs =eosp(4)      
       rw =eosp(5)      
       ra =eosp(6)      
 
c     solid,water,air--ks,kw,ka  
       sk =eosp(7)      
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      wk =eosp(8)        
       ak =eosp(9)      
 
c     input parameters--mixed soil 
      c  =eosp(10) 
      s1 =eosp(11) 
      s2 =eosp(12) 
      s3 =eosp(13) 
      g0 =eosp(14) 
      sa =eosp(15) 
      s11=s1-1. 
      s22=2.*s2 
      s33=3.*s3 
      s32=2.*s3 
      sad2=.5*sa 
      g0d2=1.-.5*g0 
      roc2=rho0*c**2 
 
c     input parameters--solid  
      cs  =eosp(16) 
      ss1 =eosp(17) 
      ss2 =eosp(18) 
      ss3 =eosp(19) 
      gs0 =eosp(20) 
      ssa =eosp(21) 
      ss11=ss1-1. 
      ss22=2.*ss2 
      ss33=3.*ss3 
      ss32=2.*ss3 
      sads2=.5*ssa 
      g0ds2=1.-.5*gs0 
      rocs2=rs*cs**2 
 
c     input parameters--water 
      cw  =eosp(22) 
      sw1 =eosp(23) 
      sw2 =eosp(24) 
      sw3 =eosp(25) 
      gw0 =eosp(26) 
      swa =eosp(27) 
      sw11=sw1-1. 
      sw22=2.*sw2 
      sw33=3.*sw3 
      sw32=2.*sw3 
      sadw2=.5*swa 
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      g0dw2=1.-.5*gw0 
      rocw2=rw*cw**2 
 
c     input parameters--air 
      ca  =eosp(28) 
      sa1 =eosp(29) 
      sa2 =eosp(30) 
      sa3 =eosp(31) 
      ga0 =eosp(32) 
      saa =eosp(33) 
      sa11=sa1-1. 
      sa22=2.*sa2 
      sa33=3.*sa3 
      sa32=2.*sa3 
      sada2=.5*saa 
      g0da2=1.-.5*ga0 
      roca2=ra*ca**2 
 
      p0  =eosp(34) 
 
 if (hist(1).eq.0) then 
    hist(1)=As0 
               hist(2)=Aw0 
         hist(3)=Aa0 
    hist(4)=0.0 
    hist(5)=0.0 
    hist(6)=0.0 
    As=hist(1) 
    Aw=hist(2) 
    Aa=hist(3) 
    dvols=hist(4) 
    dvolw=hist(5) 
    dvola=hist(6) 
 else 
    As=hist(1) 
    Aw=hist(2) 
    Aa=hist(3) 
    dvols=hist(4) 
    dvolw=hist(5) 
    dvola=hist(6) 
 endif 
 
 RRs=As*rs/rho0 
 RRw=Aw*rw/rho0 
 RRa=Aa*ra/rho0 
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 specens=specen*RRs 
 specenw=specen*RRw 
 specena=specen*RRa 
 
 Vsold=(df*v0-2.0*dvol)*As 
 Vwold=(df*v0-2.0*dvol)*Aw 
 Vaold=(df*v0-2.0*dvol)*Aa 
 
c***  calculate the bulk modulus for the EOS contribution to the sound speed 
        if (iflag.eq.0) then 
c      from solid 
        xmu=1.0/df-1. 
        dfmu=df*xmu 
        facp=.5*(1.+sign(1.,xmu)) 
        facn=1.-facp 
        xnum=1.+xmu*(+g0d2-sad2*xmu) 
        xdem=1.-xmu*(s11+dfmu*(s2+s3*dfmu)) 
        tmp=facp/(xdem*xdem) 
        a=roc2*xmu*(facn+tmp*xnum) 
        b=g0+sa*xmu 
        pnum=roc2*(facn+facp*(xnum+xmu*(g0d2-sa*xmu))) 
        pden=2.*xdem*(-s11 +dfmu*(-s22+dfmu*(s2-s33+s32*dfmu))) 
        cb=pnum*(facn+tmp)-tmp*a*pden+sa*specen+ 
     &        b*df**2*max(pc,(a+b*specen)) 
 
        if (cb.lt.0.02) then 
            cb=cb 
        else 
            cb=0.02 
        endif 
 
c***  update the pressure and internal energy 
        else 
    
c     from solid 
        dfs=df*(As/As0) 
        xmus=1.0/dfs-1. 
        dfmus=dfs*xmus 
        facps=.5*(1.+sign(1.,xmus)) 
        facns=1.-facps 
        xnums=1.+xmus*(+g0ds2-sads2*xmus) 
        xdems=1.-xmus*(ss11+dfmus*(ss2+ss3*dfmus)) 
        tmps=facps/(xdems*xdems) 
        a=rocs2*xmus*(facns+tmps*xnums) 
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        b=gs0+ssa*xmus 
        dvov0s=.5*(dvols)/(As0*v0) 
        denoms=1.+b*dvov0s                                      
        pnews=(a+specens*b)/max(1.e-6,denoms)           
        pnews=max(pnews,pc) 
 
        specens=specens-pnews*dvov0s 
 
 
c     from water 
        dfw=df*(Aw/Aw0) 
        xmuw=1.0/dfw-1. 
        dfmuw=dfw*xmuw 
        facpw=.5*(1.+sign(1.,xmuw)) 
        facnw=1.-facpw 
        xnumw=1.+xmuw*(+g0dw2-sadw2*xmuw) 
        xdemw=1.-xmuw*(sw11+dfmuw*(sw2+sw3*dfmuw)) 
        tmpw=facpw/(xdemw*xdemw) 
        a=rocw2*xmuw*(facnw+tmpw*xnumw) 
        b=gw0+swa*xmuw 
        dvov0w=.5*(dvolw)/(Aw0*v0) 
        denomw=1.+b*dvov0w                                      
        pneww=(a+specenw*b)/max(1.e-6,denomw)                    
        pneww=max(pneww,pc) 
 
        specenw=specenw-pneww*dvov0w 
 
c     from air 
        dfa=df*(Aa/Aa0) 
        xmua=1.0/dfa-1. 
        dfmua=dfa*xmua 
        facpa=.5*(1.+sign(1.,xmua)) 
        facna=1.-facpa 
        xnuma=1.+xmua*(+g0da2-sada2*xmua) 
        xdema=1.-xmua*(sa11+dfmua*(sa2+sa3*dfmua)) 
        tmpa=facpa/(xdema*xdema) 
        a=roca2*xmua*(facna+tmpa*xnuma) 
        b=ga0+saa*xmua 
        dvov0a=.5*(dvola)/(Aa0*v0) 
        denoma=1.+b*dvov0a                                      
        pnewa=(a+specena*b)/max(1.e-6,denoma)                    
        pnewa=max(pnewa,pc) 
 
        specena=specena-pnewa*dvov0a 
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        if (pnews/=0.0.AND.pneww/=0.0.AND.pnewa/=0.0.AND.dvol/=0.0) then           
            pnew=(pnews*dvols+pneww*dvolw+pnewa*dvola)/dvol 
        else 
  pnew=pnews+pneww+pnewa 
        endif 
 
   specen=specens+specenw+specena 
 
   As=As*(sk*(pnews-p0)/(rs*cs**2)+1)**(-(sk)**(-1)) 
   Aw=Aw*(wk*(pneww-p0)/(rw*cw**2)+1)**(-(wk)**(-1)) 
              Aa=Aa*(pnewa/p0)**(-(ak)**(-1)) 
 
              hist(1)=As    
   hist(2)=Aw      
   hist(3)=Aa  
 
   dvols=df*v0*As-Vsold 
   dvolw=df*v0*Aw-Vwold 
   dvola=df*v0*Aa-Vaold 
 
              hist(4)=dvols 
   hist(5)=dvolw 
   hist(6)=dvola 
 
  
      endif 
      return 
      end 
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APPENDIX C 

LS-DYNA INPUT DECK 

 

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$  LS-DYNA(971) DECK WRITTEN BY : eta/FEMB-PC version 28.0 
$  ENGINEER :  
$  PROJECT :  
$  UNITS : MM, TON, SEC,  N 
$  TIME : 03:01:01 PM 
$  DATE : FRIDAY, Aug 20, 2010 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*KEYWORD 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*TITLE 
dob32.dyn (explosive) 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+---- 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                 CONTROL CARD                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*CONTROL_ACCURACY 
$      OSU       INN    PIDOSU 
         1         3           
*CONTROL_ALE 
$      DCT      NADV      METH      AFAC      BFAC      CFAC      DFAC      EFAC 
         2         1         2      -1.0       0.0       0.0       0.0       0.0 
$    START       END     AAFAC     VFACT      PRIT       EBC      PREF   NSIDEBC 
       0.0       0.0       0.0       0.0       0.0         0       0.0           
*CONTROL_ENERGY 
$     HGEN      RWEN    SLNTEN     RYLEN 
         2         2         1         1 
*CONTROL_HOURGLASS 
$      IHQ        QH 
         4       0.1 
*CONTROL_CONTACT 
$   SLSFAC    RWPNAL    ISLCHK    SHLTHK    PENOPT    THKCHG     ORIEN    ENMASS    
         1       0.0         1         0         1         0         1         0 
$   USRSTR    USRFRC     NSBCS    INTERM     XPENE     SSTHK      ECDT   TIEDPRJ 
         0         0        10         0       4.0         0         0         0 
*CONTROL_OUTPUT 
$    NPOPT    NEECHO    NREFUP    IACCOP     OPIFS    IPNINT    IKEDIT    IFLUSH 
         0         0         0         0       0.0                               
$    IPRTF 
         0 
*CONTROL_TIMESTEP 
$   DTINIT    TSSFAC      ISDO    TSLIMT     DT2MS      LCTM     ERODE     MS1ST 
   1.0e-04       0.2         0       0.0       0.0         0         1         0 
$   DT2MSF 
       0.0 
*CONTROL_TERMINATION 
$   ENDTIM    ENDCYC     DTMIN    ENDENG    ENDMAS 

1000.0         0       1.0       0.0       0.0 
 
 

$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
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$                                                                              $ 
$                         DATABASE CONTROL FOR BINARY                          $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*DATABASE_BINARY_D3PLOT 
$  DT/CYCL      LCDT      BEAM     NPLTC 
       5.0                               
*DATABASE_BINARY_D3THDT 
$  DT/CYCL      LCDT 
       5.0     
 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                              DATABASE EXTENT CARDS                           $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*DATABASE_EXTENT_BINARY 
$^ 
$    NEIPH     NEIPS    MAXINT    STRFLG    SIGFLG    EPSFLG    RLTFLG    ENGFLG 
        15                             1         
$   CMPFLG    IEVERP    BEAMIP     DCOMP      SHGE     STSSZ    N3THDT   IALEMAT 
                   0                              
$  NINTSLD  
$         1 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                  PART CARDS                                  $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*PART 
$HEADING 
SOIL 
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         1         1        12         6                                          
*PART 
$HEADING 
C4 
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         2         2         2         2                                         
*PART 
$HEADING 
AIR 
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         3         3         3         1                 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                SECTION CARDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*SECTION_SOLID_ALE 
$    SECID    ELFORM       AET 
         1        11           
$     AFAC      BFAC      CFAC      DFAC     START       END     AAFAC 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0 
*SECTION_SOLID_ALE 
$    SECID    ELFORM       AET 
         2        11           
$     AFAC      BFAC      CFAC      DFAC     START       END     AAFAC 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0 
*SECTION_SOLID_ALE 
$    SECID    ELFORM       AET 
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         3        11           
$     AFAC      BFAC      CFAC      DFAC     START       END     AAFAC 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                MATERIAL CARDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*MAT_SOIL_AND_FOAM 
$^M-1 
$      MID        RO         G      BULK        A0        A1        A2        PC 
         1       1.8 0.0006385      0.303.4000E-137.0330E-07      0.30-6.900E-08 
$      VCR       REF 
       0.0       0.0 
$     EPS1      EPS2      EPS3      EPS4      EPS5      EPS6      EPS7      EPS8 
       0.0    -0.104    -0.161    -0.192    -0.224    -0.246    -0.271    -0.283 
$     EPS9     EPS10 
     -0.29     -0.40 
$       P1        P2        P3        P4        P5        P6        P7        P8 
       0.0   0.00020   0.00040   0.00060    0.0012    0.0020    0.0040    0.0060 
$       P9       P10 
    0.0080     0.041 
*MAT_USER_DEFINED_MATERIAL_MODELS 
$      MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 
        11  1.800000        46        16        10         0         3         4 
$    IVECT     IFAIL    ITHERM    IHYPER      IEOS 
         0         0         0         0         0 
$        E        MU      BULK         G      ALFA      BETA      GAMA     THETA 
       0.0       0.0  0.0010646.3850e-046.4200e-05 3428.30005.8900e-06  0.182500 
$        R         D         W        X0      TCUT      CONV     ITMAX      
  5.000000 952.00000  0.214200       0.06.9000e-08  0.001000 60.000000   0.00e+0 
*MAT_USER_DEFINED_MATERIAL_MODELS 
$      MID        RO        MT       LMC       NHV    IORTHO     IBULK        IG 
        12   2.05500        48        16         9         0         1         2 
$    IVECT     IFAIL    ITHERM    IHYPER      IEOS 
         0         0         0         0         1 
$     BULK         G      ALFA      BETA      GAMA     THETA         R         D 
  0.0100002.0000e-046.2500e-07 3643.00003.2000e-08  0.249000  5.320000   0.00884 
$        W        X0      TCUT      CONV     ITMAX      YITA      FAI0     EXPON    
  0.225000  0.001e-31.2000e-08  0.001000 60.000000  0.200e-1       1.2       1.0 
*MAT_HIGH_EXPLOSIVE_BURN 
$^M-2 
$      MID        RO         D       PCJ      BETA         K         G      SIGY 
         2     1.601    0.8193      0.28       0.0       0.0       0.0       0.0 
*INITIAL_DETONATION 
$      PID        X          Y         Z        LT 
         2      0.0        0.0      -4.0 
*MAT_NULL 
$^M-3 
$      MID        RO        PC        MU     TEROD     CEROD        YM        PR 
         3   0.00129       0.0       0.0       0.0       0.0       0.0       0.0 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                  EOS CARDS                                   $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*EOS_JWL 
$^EQUATION_2 
$    EOSID         A         B        R1        R2     OMEGA        E0        V0 
         2    6.0997    0.1295       4.5       1.4      0.25     0.090       1.0 
*EOS_LINEAR_POLYNOMIAL 
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$^EQUATION_1 
$    EOSID        C0        C1        C2        C3        C4        C5        C6 
         1-0.0000010       0.0       0.0       0.0      0.40      0.40       0.0 
$       E0        V0 
 0.0000025       1.0 
*EOS_GRUNEISEN 
$^EQUATION_4 
$    EOSID         C        S1        S2        S3     GAMAO         A        E0 
         4     0.032      4.92       0.0       0.0      1.11       0.0       0.0 
$       V0     
       1.0 
*EOS_USER_DEFINED 
$^EQUATION_5 
$    EOSID      EOST       LMC       NHV     IVECT        EO        VO      BULK 
         5        21         6         6         0       0.0       1.0  0.002064  
$        C        S1        S2        S3     GAMAO         A       
     0.032      4.92       0.0       0.0      0.11       0.0     
*EOS_USER_DEFINED 
$^EQUATION_6 
$    EOSID      EOST       LMC       NHV     IVECT        EO        VO      BULK 
         6        23        34         6         0       0.0       1.0       0.0   
$      As0       Aw0       Aa0        Rs        Rw        Ra        ks        kw 
       0.7       0.2       0.1      2.65       1.0    0.0012       3.0       7.0 
$       ka         C        S1        S2        S3     GAMAO         A       C-s 
       1.4     0.032      4.92       0.0       0.0      0.11       0.0    0.6319 
$     S1-s      S2-s      S3-s   GAMAO-s       A-s       C-w      S1-w      S2-w 
      1.41       0.0       0.0       1.0       0.0     0.146       2.0       0.0 
$     S3-w   GAMAO-w       A-w       C-a      S1-a      S2-a      S3-a   GAMAO-a 
       0.0       0.6       0.0   0.02406    1.0602       0.0       0.0       0.4 
$      A-a        P0        
       0.0   1.0e-07        
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                              SEGMENT SET CARDS                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*SET_SEGMENT 
$^SEGMENT_SET 1 
$      SID       DA1       DA2       DA3       DA4 
         1       0.0       0.0       0.0       0.0 
$       N1        N2        N3        N4        A1        A2        A3        A4 
      3278      3292      7092      7086       0.0       0.0       0.0       0.0 
      6870      6876      6900      6894       0.0       0.0       0.0       0.0 
      . 
      . 
      .     
      7816      7817      7799      7798       0.0       0.0       0.0       0.0 
      7817      7818      7800      7799       0.0       0.0       0.0       0.0 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                NODE SET CARDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*SET_NODE_LIST 
$^ 
$      SID       DA1       DA2       DA3       DA4 
         1       0.0       0.0       0.0       0.0 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
       121       122       123       124       129       130       135       136 
       141       142       145       148       153       154       157       160 
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      . 
      . 
      .   
      1665      1667      1675      1677      1679      1681      1683      1685 
      7651      7667      7668      7672      7689      7691      7693      7722 
      7724      7726      7728      7730      7746      7747      7751      7768 
      7770      7772      7801      7803      7805      7807      7809           
*SET_NODE_LIST 
$^SPC CARD AT NODE SET 2 
$      SID       DA1       DA2       DA3       DA4 
         2       0.0       0.0       0.0       0.0 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
        13        14        15        16        23        24        31        32 
        39        40        44        48        55        56        60        64 
        . 
        . 
        . 
        71        72        76        80        87        88        92        96 
      7758      7760      7777      7779      7781      7783      7785           
*SET_NODE_LIST 
$^SPC CARD AT NODE SET 3 
$      SID       DA1       DA2       DA3       DA4 
         3       0.0       0.0       0.0       0.0 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
       213       214       223       232       241       250       259      3854 
      3863      3872       472       473       482       491       500       509 
       518      1261      1277      1293      1309      1325      1341      1740 
      1756      1772      1788      1804      1820      3561      3577      4049 
      4058      4067      4076      4085      4094      4383      4392      4401 
      4410      4419      4428      4437      4446      4455      4464      5143 
      5159      5175      5191      5207      5223      5624      5640      5656 
      5672      5688      5704      7360      7376      7392      7597      7676 
      7755                                                                       
*SET_NODE_LIST 
$^SPC CARD AT NODE SET 4 
$      SID       DA1       DA2       DA3       DA4 
         4       0.0       0.0       0.0       0.0 
$     NID1      NID2      NID3      NID4      NID5      NID6      NID7      NID8 
      2195      2920      2921      2945      2969      2993      3017      3041 
      3065      3089      3113      3137      3161      3185      3209      3233 
      . 
      . 
      . 
      3580      3579      3585      3583      3581      3578                     
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                        BOUNDARY NON REFLECTING CARDS                         $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*BOUNDARY_NON_REFLECTING 
$^NON-REFLECTING CARD 1 
$     SSID        AD        AS 
         1       0.0       0.0 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                              BOUNDARY SPC CARDS                              $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*BOUNDARY_SPC_SET_ID 
$       ID 
         1 
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$     NSID       CID      DOFX      DOFY      DOFZ     DOFRX     DOFRY     DOFRZ 
         1         0         0         1         0         1         0         1 
         2 
         2         0         1         0         0         0         1         1 
         3 
         3         0         1         1         0         1         1         1 
         4 
         4         0         1         1         1         1         1         1 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                  ALE CARDS                                   $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*ALE_MULTI-MATERIAL_GROUP 
$^ALE_1 
$     PSID    IDTYPE 
         1         1 
*ALE_MULTI-MATERIAL_GROUP 
$^ALE_2 
$     PSID    IDTYPE 
         2         1 
*ALE_MULTI-MATERIAL_GROUP 
$^ALE_3 
$     PSID    IDTYPE 
         3         1 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                               NODE INFORMATION                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*NODE 
$    NID               X               Y               Z      TC      RC 
       1        2.262741        2.262741             0.0     0.0     0.0 
       2        2.041828        2.041828             0.0     0.0     0.0 
       3        1.422222        2.380852             0.0     0.0     0.0 
       . 
       . 
    7818        51.96153            30.0           110.0     0.0     0.0 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                             ELEMENTS INFORMATION                             $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                              $ 
$                                SOLID ELEMENTS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*ELEMENT_SOLID 
$    EID     PID    NID1    NID2    NID3    NID4    NID5    NID6    NID7    NID8 
       1       1       1       2       3       4       5       6       7       8 
       2       1       4       3       9      10       8       7      11      12 
       . 
       . 
       .  
    6398       3    7737    7738    7720    7719    7816    7817    7799    7798 
    6399       3    7738    7739    7721    7720    7817    7818    7800    7799 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
*END

 


