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LONG-TERM GOALS

1. The inverse scattering transform (IST) can be used for the time series analysis of laboratory and
oceanic wave data. The approach may be viewed as a generalization of linear Fourier analysis.

2. IST is being applied to the study of “rogue, freak or giant™ ocean waves.

3. A third long-term goal is the development of fast algorithms for numerically integrating the
space/time dynamics of both shallow-water and deep-water wave trains.

OBJECTIVES

1. The objective of the present research program is the development of fast numerical
multidimensional Fourier techniques applied to a wide range of wave modeling and data analysis
problems.

2. Important progress made in the past year has been the development of new methods for extending
the nonlinear Fourier approach to arbitrary order. Thus one can now push toward the solution of the
Euler and other higher order equations in a more systematic way that requires very little additional
central processor time.

APPROACH

It is well known that equations such as the KdV, the modified KdV, the Gardner and the Kadomtsev-
Petviashvili equations are all integrable. Hyperfast models for these equations can be developed on a
straightforward basis using methods discussed in the references [Osborne, 2003; Osborne, 2008a,b;
Osborne, 2009]. I show here how these equations allow one to go to higher order in a kind of hierarchy
which provides physically important wave equations containing all of the many nonlinear aspects of
water waves. The impact on cpu requirements for a hyperfast model is however minimal, no matter
how high the order, using the new methods discussed here.

We first consider the Kadomtsev-Petviashvili (KP) equation
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The constant coefficients c,, «, £, ¥ are given after eq. (8) below. Here 7(x, y,t) is the wave
amplitude as a function of the two spatial variables, x, y and time, t. The KP equation (1) is a natural

two-space-dimensional extension of the KdV equation. The periodic KP solutions include directional

spreading in the wave field:
2

n(x,t) = Za—zlne(x,y,t |B,¢) (2)
OX

Here the generalized Fourier series has the form given in (4) below, where the phase has the two
dimensional expression:

X(%,Y,t) = kx + ly — oot + ¢ 3)

The spatial terms include both the x and y coordinates, kx and ly, which allows wave spreading to be
taken into account. The KP equation is the first nonlinear step toward a directional sea state; KP is
however limited to small directional spreading. Improving the directional spreading characteristics of
the KP equation requires the addition of physically important corrections to the equation, as discussed
below.

The generalized Fourier series, 0(x,t |B,d), is given by the expression
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where X, =k, x+1,y—o,t + ¢,. The function 6(x,y,t|B,¢) is also called a Riemann theta function

or multidimensional Fourier series. Here B is the Riemann matrix (the “spectrum” of the solution), the
vectors K, | constitute the usual wave numbers, the vector @ contains the frequencies and the vector ¢

forms the phases. The inverse problem associated with (2), (3) allows one to determine the Riemann
matrix, wave numbers, frequencies and phases appropriate for solving the Cauchy problem for KP:
Given the spatial variation of the solutions at t=0, 7(x,y,0), compute the solution for all time,
n(x,y,t). This is a necessary step for the numerical simulations presented herein. The solitons, Stokes

waves and sine waves lie on the diagonal of the Riemann matrix; the off-diagonal terms contain the
nonlinear interactions.

Why is the above approach useful for hyperfast numerical simulations? Because the Riemann theta
function can be programmed as a fast theta function transform (FTFT), just as the Fourier transform
can be programmed as a fast Fourier transform (FFT). Therefore the numerical integration of KP (1)
can be evaluated at specific time points, necessary only for graphical purposes or for extracting useful
(often statistical) properties of the sea surface. This contrasts to the FFT that must be evaluated at very
small time steps when used for the numerical integration of a nonlinear partial differential equation.
This is one reason why the higher order methods require considerable amounts of computer time.



WORK COMPLETED

The equation of interest herein is the so-called extended KP (ExKP) equation which has the following
form:
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Here «, S, o are arbitrary constants and the field is in 2+1 dimensions: u(Xx,y,t). Note that (5) consists

of the KP equation (1) on the left hand side with a cubic term (or so-called Gardner term) together with
an additional spreading term, both on the right hand side. Thus the ExKP equation is superior to the KP
equation because it extends the wave dynamics to higher waves via the cubic term and simultaneously
improves the description of wave spreading.

Now let us discuss the physics of EXKP. First notice that by setting the constant coefficients c=a =0
we obtain the KdV equation in 1+1 dimensions:

Ut + 68UUy +Uyyy =0
By setting = o =0 we obtain the 1+1 modified KdV equation (mKdV):

3

By setting o =0 we obtain the 1+1 Gardner equation:

3

By setting « =0 we obtain the 2+1 KP Equation:
Ut +B8UUy + Uy + 3028 Uyy = 0

An important result is the following Gardner transformation:

2,,2

1 1
u:ﬂ\/—zavx—Za v —Eaaax Vy ©6)

which maps ExKP (5) to the KP equation (1). For the physical case of g =1 the above equation can
also be referred to as an exact near-identity transformation. From this point of view the inverse is:
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This is obtained by using the leading order result in the higher order terms and then solving for v.
While the latter result (7) is not exact, i.e. it does not exactly transform KP into EXKP, the equation
does carry out this transformation to leading order. The important point to notice is that the Gardner
transformation (6) given above is exact; the fact that it is an inverse transformation (indicated by the



minus signs on the right hand side) suggests that higher order transformations of this type can lead to
even higher-order interesting and physical wave equations, perhaps also leading to physically important
equations at infinite order (e.g. the Euler equations, although this is still an open mathematical
problem). Another important result is that (5) can be derived directly from the Euler equations by the
same procedure that one uses to derive KP, an important physical verification of EXKP.

A table of several nonlinear wave equations is given below. | show both the lower and higher order
equations, togther with the appropriate Gardner transformations. For convenience | show the Hirota
transformation which carries each of the wave equations to its associated bilinear form, important for
numerical modeling applications. The red boxes emphasize the EXKP equation and its associated
Gardner transformation.

Lower Order Hirota Gardner Transf. | Higher Order Equation Hirota
Equation Transf. Transf.
KdV Equation: 1+1 Modified KdV:
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KdV Equation: 1+1 Gardner Equation:
u= Ut + 68Uly + Uyyy =

U + B/8UU,y + Uyyy = 0| U =204 In0 . L9 s 2
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2+1 KP Equation: 2+1 EXKP
Ut + 68UUy + Uyyy + U=20yIn6 L i Ut + 68Ul + Uyyy + 3026;1uyy
30'26;1uyy =0 1 - —gozzuzuX - SacruXa;luy =0

We see that the sequence of equations from KdV, mKdV, KP, 1+1 Gardner to 2+1 ExKP forms a kind
of natural hierarchy of equations marching to higher order. One leaps from KdV to 1+1 Gardner to
ExKP, or from KP to EXKP. One is reminded of the use of near-identity transformations as introduced
by Kodama to study higher order, asymptotically integrable equations. In the present case the Gardner
transformations are however exact.

RESULTS
For physical and engineering purposes the EXKP equation can be written in the following dimensional

form:
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Where

As usual g is the acceleration of gravity, h is the depth and c, is the linear phase speed. Thus we have

the KP equation with the addition of a cubic on the right hand side, together with an additional,
nonlinear spreading term. EXKP substantially improves the KP equation because we now can have

higher waves due to the cubic term, alnznx, and we improve the spreading characteristics with the
nonlinear, non-local term ylnxaglny. Both of these are important for modeling purposes.

The EXKP equation is not only a substantial improvement for nonlinear surface wave dynamics, but it
also provides very important contributions necessary for internal wave dynamics. It contains not only
KdV type solitons, but soliton-hole pairs as in the modified KdV equation, the “fat” solitons of the
Gardner equation, all together with directional spreading out to second order. Some of these are shown
in Figs. 1 and 2. In Fig. 3 | show an example of a hole solution which forms due to the cubic Gardner
term in (8).

In Fig. 4 1 show the wave field for a sample preliminary run at a single instant of time for a simulation
of the EXKP equation. | now discuss the numerical model. The basic procedure is shown in the flow
chart of Fig. 5. One first chooses the desired directional spectrum (Pierson-Moskowitz or JONSWAP
with an appropriate directional spreading function) using the linear Fourier transform. Then the
Riemann spectrum (Riemann matrix, frequencies, phases) are computed on this basis. This process
requires considerable space to explain and will be omitted from this short report for lack of space. The
important ingredient is that we need to compute two sets of phases for the Riemann spectrum, a
departure from the model for the KP equation. Two Riemann theta function spectra are then computed
as a function of two-dimensional wave number and time: F,,(t) = F(ky.1,.t), Gun(t) = Gk, 14,1) .
The space-time evolution of the theta functions is then computed by converting the spectra to space and
time by a 2D FFT algorithm: F(x,y,t), G(x,y,t). Then the surface wave field is computed by the
Hirota transformation:

u:gaxln[g)
A F

And so we have the solution of the EXKP equation, which is about three orders of magnitude faster
than the more traditional split-step algorithm!
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Figure 1. (a) Example of a single pulse soliton solution of the Kortweg-deVries equation. (b) Examples
of single pulse solitons, both positive and negative (a hole), from the
modified Kortweg-deVries equation.



Figure 2. Example of a single “fat” pulse soliton from the Gardner equation. This solution is more
appropriate for describing certain kinds of highly nonlinear internal waves.

Figure 3. Evolution of a hole state from the Gardner equation. The hole is seen as a channel
beginning near space coordinate 96 and time 80.



Figure 4. Example of a wave simulation with the ExKP equation.



Solving Nonlinear PDEs With
The Multi-dimensional Fourier
Transform
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Figure 5. Schematic
of a higher order
algorithm for the
hyperfast numerical
integration of the
ExXKP equation.
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TRANSITIONS

Transitions expected are related to the use of the codes as guidance to ships and unmanned, unteathered
vehicles as the kind of environment in which one resides and for the real time sampling of the
environment, including the acoustic environment.

RELATED PROJECTS

An intimate relationship between our results and other projects exists because the sea surface provides
a major forcing input to many kinds of offshore activities, including the dynamics of floating and
drilling vessels, barges, risers and tethered vehicles. The present work leads to a nonlinear
representation of the sea surface forcing and vessel response for shallow water waves.
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