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Abstract: 
 
When a distributed systems protocol is used in a particular context as part of a solution to a larger 
problem, additional information may be generated from the context. Such information may be used for 
optimization of the system, and, in the case of security protocols, may be of use to the adversary for 
attacks. The project conducted a case study of the application of the epistemic model checker MCK to 
automatically detect such optimization opportunities, and to verify that the protocol remains secure in 
the mode of use.  
 
The particular protocol studied was Chaum’s Dining Cryptographers protocol, a security protocol that  
allows a single agent to anonymously transmit a signal. The context of use considered was a more 
general 2-phase protocol for anonymous broadcast by an arbitrary number of agents, also proposed by 
Chaum. The aims of the 2-phase anonymous broadcast protocol were formulated as a 
knowledge-based program, and an iterative process of model checking and manual counter-example 
guided refinement was followed to converge on implementations of this knowledge-based program in 
which local predicates were identified that correspond precisely to the knowledge conditions in the 
knowledge-based program. This analysis demonstrated that the 2-phase protocol contains some quite 
subtle flows of information that can be used to optimize its performance, but no violation of the 
anonymity property was found.  
  
As an additional contribution of the research, a formal abstraction technique was developed, and 
proved correct, for epistemic model checking of protocols that call the Dining Cryptographers 
protocol as a subroutine. Experimental results show that the optimization improves epistemic model 
checking performance by orders of magnitude and enables problems of larger scale to be attacked.  
 
Introduction:   
 
Distributed systems protocols are typically used as building blocks in the development of systems 
whose primary goals are application specific and not known to the protocol designers. Verification of 
protocols, on the other hand, has generally been studied from the point of view of the protocol running 
in isolation. When a protocol is composed with another, or applied in a particular context, additional 
information becomes available both to the trusted agents and their adversaries.  
 
The adversaries may be able to use this additional information in their attacks, breaking the security of 
the protocol. This issue is related to what is known in the literature on information flow security as the 
``refinement paradox": composition and specialization reduces the nondeterminism of a system, and 
security properties such as secrecy and anonymity are not preserved under reduction of 
nondeterminism. On the other hand, the additional information also has a positive side: the trusted 
agents may be able to exploit this additional information to optimize the execution of 
the protocol. The scientific problem that this raises is how such opportunities for attacks and 
optimization may be detected and utilized.  
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The project conducted a case study of the use of epistemic model checking, in particular the model 
checker MCK1, as a tool for the automated support of the analysis of such issues in protocol 
composition.  
 
Model checking, a tool-supported verification methodology, involves the development of a formal 
model of key aspects of a system to be verified, and an automated check that this model satisfies 
specifications written in a formal logic. Model checking is usually conducted for specifications in 
temporal logic, expressing how the system behaves over time. Epistemic model checking extends this 
capability to include specifications that talk about knowledge. It allows properties such as “Whenever 
the acknowledgement is received, the agent knows that the original message was delivered” to be 
expressed. MCK is a model checker developed at UNSW that handles such richer specifications. It is 
unique amongst model checkers of this type in dealing with the “perfect recall” semantics for 
knowledge, which interprets an agent’s knowledge to be everything that it can infer from all its 
observations to the present moment of time. (Other epistemic model checkers generally treat 
knowledge as what can be deduced from just the current observation.) The perfect recall interpretation 
is computationally expensive, but it is the appropriate one for analysis of systems from the point of 
view of maximizing use of potential information flow (either by adversaries or trusted agents).  
 
In the following, we briefly summarise the work performed and results obtained, and refer to the 
papers cited for further details.  
 
Approach:  
 
We studied a 2-phase protocol for anonymous broadcast proposed by Chaum2, that uses as a 
subroutine the simpler Chaum's Dining Cryptographers Protocol (henceforth the ``DC protocol"). The 
DC protocol enables a single agent to anonymously broadcast a signal, assuming that it is common 
knowledge that at most one agent has a signal to send. The 2-phase protocol is intended for an 
arbitrary and possibly unknown number of agents to transmit a message. The 2-phase protocol is 
composed from multiple rounds of the DC protocol, in two phases: in the first phase, several rounds of 
the DC protocol are used to allow the agents wishing to broadcast to anonymously declare that they  
will transmit their information in a given slot. If no contention for a slot is detected in this phase then 
the information is sent in the selected slot by further application of the DC protocol. However,  
there may be contention for a slot that is not detected in the first phase – in this case there is a clash in 
the second phase.  
 
Paper [1] gives a description of the methodology we followed to conduct an epistemic analysis of the 
2-phase protocol. As a first step, we formulated the requirements for the 2-phase protocol as a 
knowledge-based program.  Knowledge-based programs resemble ordinary programs except that 
their conditions may be stated in terms of formulas of the logic of knowledge expressing what an 
agent knows or does not know about its environment.  Such programs cannot be directly executed, 
but can be said to be implemented by a standard program of a similar structure in which the 
knowledge conditions are replaced by concrete predicates of the local state of the agent.  For the 
implementation relationship to hold, the concrete predicates must be equivalent to the knowledge 
condition that they replace.  Our methodology involves the use of epistemic model checking to 
verify this equivalence in order to determine whether a putative implementation is in fact an 
implementation.  When this check fails, the model checker returns a counter example that may be 
inspected in order to understand the reason for the failure.  This information may then be used in 
order to revise the putative implementation. We then iterate this process until we find an actual 
implementation of the knowledge-based program. (The methodology is partially automated: 
verification and counter-example construction is done automatically by the model checker, analysis of 
the counter-example and revision of the putative implementation of the knowledge-based program is 
done by hand.) 
 
In paper [1] we applied this methodology to an instance of the 2-phase protocol in which three agents 
                                            
1 http://www.cse.unsw.edu.au/~mck 
2 D. Chaum. The dining cryptographers problem: Unconditional sender and recipient 
untraceability. Journal of Cryptology, pages 65-75, 1988. 

http://www.cse.unsw.edu.au/%7Emck


contend for three transmission slots.  
 
In [1],  we already obtained some interesting conclusions about the protocol but the experiments 
demonstrated that we were working at the limits of the capability of the model checker, with some 
quite long runtimes.  In the next phase of the study, we therefore developed an abstraction technique 
for the models, with the aim of optimizing model checking performance. Details of the optimization 
are given in paper [2], which develops a formal framework for the model checking optimization, 
states and proves related correctness theorems, and conducts experiments on its effectiveness. The 
analysis of the 2-phase protocol is also carried further in this paper, in particular, through the 
consideration of larger numbers of agents. (The maximum number of agents we considered was 5.)  
 
 
Results and Discussion: 
 
At the most general level, the project was successful in providing a demonstration, by means of the 
case study conducted, of the feasibility and usefulness of the epistemic model checking methodology 
for the analysis of protocols in distributed systems.  Since epistemic model checking is a 
comparatively new technology, and only a few nontrivial case studies of its application have been 
conducted to date, this is a valuable contribution to the literature. 
 
More specifically, as a result of our analysis we have discovered a number of subtle flows of 
information in the 2-phase protocol. (The details are given in section 11 of [2].)  Notably, these 
discoveries were made not through a pencil and paper analysis, but  by studying the counterexamples 
that were automatically generated by the model checker. Furthermore, for all the types of knowledge 
we considered, we were able to completely characterize (in instances of up to 5 agents) the situations 
under which an agent has that knowledge, as well as to automatically verify that characterization.  
 
For example, it turns out that the circumstances under which an agent knows that it has received a bit 
of value 1 from some other agent are significantly more complicated than the condition identified by 
Chaum: viz., that the value 1 appears in the second round in some slot that has been successfully 
booked in the first round,  but in which the agent is not itself transmitting. In fact, the agent also 
knows that another has transmitted the value 1 when it transmits in some slot on which there has been 
a collision that was not detected in the first round, and it observes that the result of its transmission is 
the opposite of what it transmitted.  Our model checking experiments confirm that these two 
situations  completely characterize the situations under which an agent knows that another has 
transmitted the bit 1.   
 
As another example, the characterization of the circumstances under which an agent knows that its 
message has been successfully transmitted turns out to be even more complex: it requires counting the 
number of slots reserved in the first phase of the protocol and observing the outcomes of 
transmissions on slots other than the ones on which the agent is transmitting.  Our model checking 
approach was valuable both in discovering this characterization (see Section 11 of [2] for details) and 
in verifying its correctness.  
 
Characterizations such as these of knowledge conditions relevant to the goals of the protocol help to 
obtain optimized implementations of the protocol. For example, the characterization of the conditions 
under which an agent knows that its message has been successfully transmitted helps to optimize the 
protocol by allowing the agent to stop its transmission attempts at the earliest possible time.  
 
As well as the above use of the methodology for protocol optimization, we also verified using 
epistemic model checking that the anonymity goal of the protocol holds in the variants studied. No 
violations of the anonymity property were found in our experiments.  
 
In addition to these contributions relating to the case study,  we have also made contributions to the 
model checking methodology itself.   In order to obtain reasonable runtimes in our experiments, we 
found it was necessary to develop an abstraction technique that provides a formal justification  for a 
simplification of the models being checked:  the simpler models yield the same model checking 
results, but with significantly faster runtimes.  One of our contributions in this project is a formal 



statement and proof of a theorem stating that the abstraction is correct.   Furthermore, we have 
conducted experiments  that demonstrate the effectiveness of the abstraction technique: we obtained 
runtime improvements as large as two to three orders of magnitude, enabling problems with larger 
numbers of agents to be model checked with reasonable runtimes than was possible without the 
optimization. (The number of agents we considered is still modest, but we note that the instances, 
measured using the number of variables in the symbolic representation scales quadraticly with the 
number of agents, and the model checking problem is NP-complete in the size of the symbolic 
representation.) Section 10 of paper [2] describes these experimental results.  
 
Conclusions for future research: 
 
In addition to the work described above, our original research plan proposed, in the best case, work on 
a number of variants of the 2-phase protocol, including study of faulty or malicious agents in this 
context, as well as related protocols proposed by Andreas Pfitzman. We conducted some preliminary 
work in this direction that we were not able to complete, as one project risk envisaged, the potentially 
limited mathematical experience of the student working on the project, did in practice turn out to 
significantly impact the rate of progress on the most demanding part of the project, the correctness 
proof for the abstraction result.   
 
Another of the obstacles encountered in this work was the long runtimes for model checking on larger 
scale instances of such protocol variants. Even when applying our abstraction, model checking is only 
possible for instances with a modest number of agents. Furthermore, the particular abstraction we 
developed in this project does not apply to attacks at the level of the original Dining Cryptographers 
protocol, e.g., in which agents falsely make broadcasts that are not compliant with the protocol, in an 
attempt to gain advantage.   
 
However, we believe that further (and more general) optimizations can be developed for the epistemic 
model checking problems of the kind we have studied. A number of studies of epistemic model 
checking of protocols with respect to the perfect recall semantics have applied model checkers for the 
observational rather than perfect recall semantics of knowledge. For this, models have been 
constructed, by hand, in such a way that a single observation contains the same information as the 
agent’s history of observations in a perfect recall model. When this is possible, the experimental 
results show that problems of large scale (e.g. with as many as 50 agents) can be model checked for 
epistemic properties in reasonable time, since model checking with respect to the observational 
semantics is significantly more efficient than with respect to the perfect recall semantics. On the other 
hand, the way that this optimization has been obtained in the past is entirely ad-hoc, performed by 
hand, and it has not been justified in a formal way. There is therefore a significant risk that the 
observational models constructed miss flows of information that are available in the perfect recall 
model.  
 
It would be desirable to have a more systematic understanding of optimizations of this kind for 
problems of the type we have studied. In temporal logic model checking, an apparently related 
optimization has been used, the technique of program slicing, which is used to reduce a 
model/program to the fragment that is actually relevant for the specific formula to be model checked. 
This can be formally justified, can be automated, and results in significant optimizations of model 
checking performance. To date, no similar techniques have been studied for epistemic model checking. 
We believe the development of slicing-like techniques for epistemic model checking would have the 
potential to result in significant improvements in both the performance and trustworthiness of 
epistemic model checking analyses of the kind we studied in this project. We hope to pursue this idea 
in future work.  
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Abstraction for Epistemic Model Checking of
Dining Cryptographers-based Protocols ?

Omar I. Al-Bataineh and Ron van der Meyden

School of Computer Science and Engineering,
University of New South Wales

Abstract. The paper describes an abstraction for protocols that are
based on multiple rounds of Chaum’s Dining Cryptographers protocol.
It is proved that the abstraction preserves a rich class of specifications
in the logic of knowledge, including specifications describing what an
agent knows about other agents’ knowledge. This result can be used to
optimize model checking of Dining Cryptographers-based protocols, and
applied within a methodology for knowledge-based program implementa-
tion and verification. Some case studies of such an application are given,
for a protocol that uses the Dining Cryptographers protocol as a prim-
itive in an anonymous broadcast system. Performance results are given
for model checking knowledge-based specifications in the concrete and
abstract models of this protocol, and some new conclusions about the
protocol are derived.

1 Introduction

Relations of abstraction (and their converse, refinement) are valuable tools for
program verification. In this approach, we relate a (structurally complex) con-
crete program to a (simpler) abstract program by means of a relation that is
known to preserve the properties that we wish to verify in the concrete program.
When such a relation can be shown to hold, we are able to verify these proper-
ties in the concrete program by showing that they hold in the abstract program,
which is generally easier in view of the lesser structural complexity of the abstract
program. In particular, model checkers can be expected to run more efficiently
on the abstract program than on the concrete program, and abstraction is often
used to bring the verification problem within the bounds of feasibility for model
checking. Conversely, starting with the abstract program, and having verified
that this satisfies the desired properties, we may derive the concrete program

? This material is based on research sponsored by the Air Force Research Laboratory,
under agreement number FA2386-09-1-4156. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. Version of October 12, 2010.



and conclude that this also satisfies these properties. This perspective is the
basis for “correctness-by-construction” or top-down refinement approaches to
program verification.

Our contribution in this paper is to establish the correctness of an abstraction
relation for abstract programs based on use a trusted third party for anonymous
broadcast, which is implemented in the related concrete programs by means
of the Dining Cryptographers protocol proposed by Chaum [4]. That Chaum’s
protocol implements anonymous broadcast is, of course, well-known, but we show
that this statement holds in a more general sense than is usually considered in
the literature, where the focus is generally on the very particular property of
anonymity. Specifically, we consider a broad class of properties formulated in
the logic of knowledge, including properties in which agent knowledge is nested,
such as “Alice knows that Bob knows that p”. We show that the abstraction
relation between programs based on the trusted third party and programs based
on the Dining Cryptographers protocol preserves all properties from this class.

As an application of this result, we consider a protocol from Chaum’s paper
[4] that uses multiple rounds of the Dining Cryptographers protocol to build
a more general anonymous broadcast system. We have previously studied this
protocol from the perspective of a model checking based methodology for the
implementation of knowledge-based programs [2], by treating the specification
of the protocol as a knowledge-based program containing nested knowledge for-
mulas.

Knowledge-based programs [9] are an abstract, program-like form of speci-
fication, that describe how an agent’s actions are related to conditions stated
in terms of the agent’s knowledge. The advantage of this level of abstraction
is that it provides a highly intuitive description of the intentions of the pro-
grammer, that has been argued to be easier to verify than the complex imple-
mentations one typically finds for highly optimized distributed programs [14, 9].
Knowledge-based programs cannot be directly implemented, however, so they
must be implemented by concrete programs in which the knowledge conditions
are replaced by concrete predicates of the agent’s local state. The implementa-
tion relation between a knowledge-based program and a putative implementation
holds when these concrete predicates are equivalent to the knowledge formulas
that they replace (interpreted with respect to the system generated by running
the putative implementation). Our partially-automated methodology for the im-
plementation of knowledge-based programs uses a model checker for the logic of
knowledge to check whether this equivalence holds, and if it does not, uses the
counter-examples generated by the model checker to generate a revised putative
implementation. (This process is iterated until an implementation is found.)

In our previous work on the application of this methodology, we consid-
ered model checking problems generated in this way from a knowledge-based
program based on multiple rounds of the Dining Cryptographers protocol. Our
experience was that the model checking problems we considered were close to
the bounds of feasibility for our model checker even for instances with small
numbers of agents, and we were prevented from considering instances of scale



as a result. In the present paper, we apply our abstraction result in order to
optimize the model checking problem, by performing model checking on the ab-
stracted (trusted third party) version of the programs we consider rather than
the concrete (Dining Cryptographers based) versions. We give performance re-
sults showing the difference, which indicate that the abstraction is effective in
reducing the model checking runtime by several orders of magnitude, enabling
systems involving larger numbers of rounds of the Dining Cryptographers pro-
tocol and larger numbers of agents to be model checked. We use the efficiency
gains to extend our previous analysis of the knowledge based program to larger
numbers of agents, leading to an improved understanding of its implementations.

The structure of the paper is as follows. We begin in Section 2 by introducing
the logic of knowledge, which provides the specification language for the prop-
erties that are preserved by our abstraction technique, and give its semantics in
terms of a class of Kripke structures. We define a notion of bisimulation on these
Kripke structures that provides the semantic basis for our program abstraction
technique. In Section 3, we introduce a simple programming language used to
represent our concrete and abstract programs. In Section 4, we introduce the Din-
ing Cryptographers protocol and, in Section 5, its abstraction using a trusted
third party. In Section 6 we state and prove correct the abstraction relation.
The remainder of the paper deals with our application of this result. We recall
the two-phase protocol in Section 7. In Section 8 we describe knowledge-based
programs and an approach to the use of model checking to identify their imple-
mentations. In Section 9 we recall our formulation of the two-phase protocol as
a knowledge-based program and describe the associated verification conditions.
Section 10 discusses the comparative performance of model checking in the con-
crete and abstract models when using the model checker MCK. We highlight
some of the interesting conclusions we are able to make about implementations
of the knowledge-based program for the round-based protocol in Section 11. We
discuss related work in Section 12. Finally, in Section 13, we draw some conclu-
sions and discuss future directions.

2 Epistemic Logic and Bisimulations

Epistemic logics are a class of modal logics that include operators whose mean-
ing concerns the information available to agents in a distributed or multi-agent
system. In epistemic model checking, one is generally concerned with the combi-
nation of such operators with temporal operators, and a semantics using a class
of structures known in the literature as interpreted systems [9] that combines
temporal and epistemic expressiveness. We focus here on a simpler framework
that omits temporal operators, since we are mostly interested, in our applica-
tion, on what knowledge agents have after some program has run, and this also
simplifies the statement and proof of our results.



Suppose that we are interested in systems comprised of agents from a set Agt
whose states are described using a set Var of boolean variables.1 The syntax of
the logic of knowledge L(Var ,Agt) is given by the following grammar:

φ ::= > | v | ¬φ | φ ∧ φ | Kiφ

where v ∈ Var is a variable and i ∈ Agt is an agent. (We freely use standard
boolean operators that can be defined using the two given.) Intuitively, the
meaning of Kiφ is that agent i knows that φ is true.

The semantics for the language is given in terms of Kripke structures of the
form M = (Agt ,W, {∼i}i∈Agt ,Var , π), where

1. Agt is the set of agents,
2. W is a set of worlds, or situations,
3. for each i ∈ Agt , ∼i is an equivalence relation on W ,
4. Var is a set of variables,
5. π : W ×Var → {0, 1} is a valuation.

Intuitively, W is the set of situations that the agents consider that they could be
in, and w ∼i w′ if, when the actual situation is w, agent i considers it possible
that they are in situation w′. The value π(w, v) is the truth value of variable
v in situation w. Such a Kripke structure M is fit for the language L(Var ′,Agt′)

if Agt ′ ⊆ Agt and Var ′ ⊆ Var . The semantics of the language is given by the
relation M,w |= φ, where M is a Kripke structure fit for L(Var ,Agt), w is a world
of M , and φ is a formula, meaning intuitively that the formula φ holds at the
world w. The definition is given inductively by

1. M,w |= v if π(w, v) = 1, for v ∈ Var .
2. M,w |= ¬φ if not M,w |= φ,
3. M,w |= φ1 ∧ φ2 if M,w |= φ1 and M,w |= φ2,
4. M,w |= Kiφ if M,w′ |= φ for all w′ ∈W with w ∼i w′, for i ∈ Agt .

Intuitively, the final clause says that agent i knows φ if it does not consider it
possible that not φ. We write M |= φ, and say that φ is valid in M , if M,w |= φ
for all w ∈W . The Kripke structure model checking problem is to compute, given
M and φ, whether M |= φ. We will use this formulation of the model checking
problem as the basis for another notion of model checking, to be introduced
below, that concerns a way of generating M from a program.

One of the difficulties to be faced in model checking, the state space explosion
problem, is the potentially large size of the set of worlds W of the structures M
of interest. Abstractions are useful techniques for mitigating state space explo-
sion problem. They are often applied as a preliminary step to model checking.
Systems often encode details that are irrelevant to the properties that we aim to
verify. Abstraction techniques enable us to eliminate such unnecessary, redun-
dant details. However, abstractions must be sound, in the sense that properties
that hold in the abstract model must also hold in the concrete model.
1 We use the term “variable” rather than “proposition” in this paper, since our atomic

propositions arise as boolean variables in a program.



For Kripke structures, bisimulations may provide an effective way to simplify
redundant structure while preserving properties of interest. We formulate here a
version that is suited to our application, in which we allow both the set of agents
and the set of propositions to vary in the structures we consider.

Suppose we are given a set of variables Var , a set of agents Agt , and two
Kripke structures

M = (AgtM ,WM , {∼Mi }i∈AgtM ,VarM , πM )

and

N = (AgtN ,WN , {∼Ni }i∈AgtN ,VarN , πN )

such that Agt ⊆ AgtM ∩AgtN and Var ⊆ VarM ∩VarN . (Note that these condi-
tions imply that both M and N are fit for L(Var ,Agt).) A (Var ,Agt)-bisimulation
< between M and N is defined to be a binary relation < ⊆ WM ×WN such
that:

1. Atoms: πM (w, v) = πN (w′, v) whenever w<w′ and v ∈ Var ;
2. Forth: if i ∈ Agt , and w1, w2 are two worlds in M and u1 is a world in N

such that w1 ∼Mi w2 and w1<u1, then there is a world u2 ∈ WN such that
u1 ∼Ni u2 and w2<u2; and

3. Back: if i ∈ Agt and u1, u2 are two worlds in N and w1 is a world in M such
that u1 ∼Ni u2 and u1<w1, then there is a w2 ∈ WM such that w1 ∼Mi w2

and u2<w2.

If there exists an (Var ,Agt)-bisimulation < between M and N such that w<u,
then we write (M,w) ≈(Var ,Agt) (N, u). If there exists an (Var ,Agt)-bisimulation
< between M and N such that for every u ∈ WM there exists w ∈ WN such
that u<w and, conversely, for every w ∈ WN there exists u ∈ WM such that
u<w, then we write M ≈(Var ,Agt) N . The following result shows that (Var ,Agt)-
bisimulation preserves properties in the language L(Var ,Agt).

Lemma 1. If M and N are Kripke structures and u and w are worlds of M
and N such that (M,u) ≈(Var ,Agt) (N,w), then for all ϕ ∈ L(Var ,Agt) we have
M,u |= ϕ if and only if N,w |= ϕ. If M ≈(Var ,Agt) N then for all ϕ ∈ L(Var ,Agt)

we have M |= ϕ if and only if N |= ϕ.

We omit the proof since it is a minor variant of well-known results in the
literature. In our applications of this result, we will consider a complex, con-
crete structure M and a simper, more abstract structure N , and show that
M ≈(Var ,Agt) N . This enables us to verify M |= ϕ using the model checking
problem N |= ϕ, which is likely to be computationally easier in view of the
smaller size of N . However, we need to also develop an abstraction technique for
the programs that generate these Kripke structures. We develop this technique
in the following sections.



3 A Programming Language and its Semantics

We use a small multi-agent programming language equipped with a notion of
observability. All variables are Boolean, and expressions are formed from vari-
ables using the usual Boolean operators. The language has the following atomic
actions, in which i and j are agents, x is a variable name and e is an expression:

1. i : x := e — agent i evaluates e and assigns the result to x,
2. i : rand(x) — agent i assigns a random value to x,
3. i : e → j.x — agent i evaluates e and transmits the result across a private

channel to agent j, who assigns it to its variable x,
4. i : broadcast(x) – agent i broadcasts the value of the variable x to all other

agents.

Note that we write i.x for agent i’s variable x (the variables i.x and j.x are
considered distinct when i 6= j) but may omit the agent name when this is
clear from the context. In particular, in an atomic action i : a, any variable x
not explicitly associated with an agent refers to i.x. For example, we may write
i : x := y⊗ z rather than i : i.x := i.y⊗ i.z. Similarly, when e is an expression in
which agent indices are omitted, and i is an agent, the expression i.e refers to the
result of replacing each occurrence of a variable name x in e that is not already
associated to an agent index with i.x. Thus i.(y ⊗ j.z) represents i.y ⊗ j.z.

Each atomic action reads and writes certain variables. Specifically, the action
i : x := e reads the (agent i) variables in e and writes i.x, the action i : rand(x)
reads nothing and writes i.x, the action i : e→ j.x reads the (agent i) variables
in e and writes j.x, and the action i : broadcast(x) reads x and writes nothing. A
joint action is a set of atomic actions in which no variable is written more than
once. Intuitively, a joint action is executed by first evaluating all the expressions
and then performing a simultaneous assignment to the variables.

A program is given by a sequence of joint actions A1; . . . ;An. A program for
agent i is a program in which each atomic action j : a in any step has j = i. We
permit parallelism within an agent, in the sense that we do not require that a
joint action contains at most one atomic action for each agent. If we are given
for each agent i a program Pi = Ai1; . . . ;Ain, all of the same length n, then we
may form the joint program ||iPi = (∪iAi1); . . . ; (∪iAin).

Some well-formedness conditions are required on agent programs. An ob-
servability mapping is a function ov mapping each agent to a set of variables,
intuitively, the set of variables that it may observe. A program runs in the con-
text of an observability mapping, and modifies that mapping. We say that a
joint action A is enabled at an observability map ov if

1. no variable written to by A is in ov(i) for any agent i (that is, all variables
written to are new variables), and

2. for each atomic action i : x := e and i : e → j.x in A, the expression i.e
contains only variables in ov(i), and

3. for each action i.broadcast(x) we have i.x ∈ ov(i).



These constraints may be understood as access control constraints stating that
agent i may read only the variables in ov(i) and may write only new variables.

Executing the action A transforms the observability map ov to the observ-
ability map ov [A] such that ov [A](i) is the result of adding to ov(i)

1. all variables i.x such that an action of the form i : x := e or i : rand(x) or
j : e→ i.x occurs in A, and

2. all variables j.x such that j : broadcast(x) occurs in A.

These definitions are generalised to programs: the program P = A1; . . . ;An is
enabled at the observability map ov if for each i = 1 . . . n, the action Ai is enabled
at ov [A1] . . . [Ai−1], and we define ov [P ] to be ov [A1] . . . [An].

Example 1. Consider a two-agent system with agents i, j. The action {i : x :=
j.y} is not enabled at the observability map ov given by {j 7→ {j.y}}. However,
the program {j : broadcast(y)}; {i : x := j.y} is enabled at ov , since the action
{j : broadcast(y)} is enabled at ov , and transforms ov to ov [{j : broadcast(y)}] =
{j 7→ {j.y}, i 7→ {j.y}}, at which the action {i : x := j.y} is enabled.

We say that an observability map is consistent with a Kripke structure M =
(Agt ,W, {∼i}i∈Agt ,Var , π) when for all agents i, if v is a variable in ov(i) then
v ∈ V ar, and for all worlds w,w′ ∈ W such that w ∼i w′ we have π(w, v) =
π(w′, v). Intuitively, ov is consistent with M if all variables declared to be local
to agent i by ov are in fact defined and semantically local to agent i in M .

The program P is enabled at a Kripke structure M if there exists an observ-
ability map ov such that

1. ov is consistent with M ,
2. P is enabled at ov , and
3. all variables x written by P are not defined in M (i.e., x 6∈ V ar).

In particular, note that if a single joint action A is enabled at M , then for all
variables x read by A, and all worlds w, the value π(w, x) is defined. Conse-
quently, we may also evaluate at w any expression e required to be computed
by A. We write π(w, e) for the result.

We can now give a semantics of programs, in which a program applied to
a Kripke structure representing the initial states of information of the agents,
transforms the structure into another Kripke structure representing the states
of information of the agents after running the program. The definition is given
inductively, on an action-by-action basis. Let M = (Agt ,W, {∼i}i∈Agt ,Var , π)
be a Kripke structure and A a joint action. We define a Kripke structure M [A] =
(Agt ′,W ′, {∼′i}i∈Agt′ ,Var ′, π′) as follows. Let V be the set of variables i.x such
that A includes the atomic action i : rand(x). Intuitively, such actions increase
the amount of non-determinism in the system, whereas all other actions have
deterministic effects. We define Agt ′ = Agt and take W ′ to be the set of states
of the form (w, κ) where w ∈W and κ : V → {0, 1} is an assignment of boolean
values to the variables in V . We may write w + κ for the pair (w, κ). In case
V is the empty set, κ is always the null function, so we may write just w for



(w, κ). The set Var ′ of variables defined in M [A] is obtained by adding to Var
all variables written to by A. The assignment π′ is obtained by extending π to
these new variables by defining π′ as follows on worlds w + κ:

1. if v ∈ V ar then π′(w + κ, v) = π(w, v) ,
2. if i : x := e occurs in A then π′(w + κ, i.x) = π(w, i.e) ,
3. if i : rand(x) occurs in A then π′(w + κ, i.x) = κ(i.x), and
4. if j : e→ i.x occurs in A then π′(w + κ, i.x) = π(w, j.e).

Finally, the indistinguishability relations ∼′i are defined using the observability
map ov [A]: we define w + κ ∼′i w′ + κ′ when w ∼i w and for all variables
x in ov [A](i) \ ov(i), we have π′(w + κ, x) = π′(w′ + κ′, x). Intuitively, this
reflects that the agent recalls any information it had in the structure M , and
adds to this information that it is able to observe in the new state. Note that
in fact w + κ ∼′i w′ + κ′ implies π′(w + κ, x) = π′(w′ + κ′, x) for all variables
x ∈ ov [A](i), since we have assumed that for x ∈ ov(i) we have that w ∼i w
implies π(w, x) = π(w′, x). Moreover, since the set ov [A](i)\ov(i) is just the set
of variables written to by A that are made observable to i, this observation also
yields that the definition of M [A] is independent of the choice of observation
map ov consistent with M .

4 Chaum’s Dining Cryptographers Protocol

Chaum’s Dining Cryptographers protocol is an example of an anonymous broad-
cast protocol: it allows an agent to send a message without revealing its identity.
Chaum introduces the protocol with the following story:

Three cryptographers are sitting down to dinner at their favourite restau-
rant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryp-
tographers might be paying for the dinner, or it might have been NSA
(U.S National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if NSA
is paying. They resolve their uncertainty fairly by carrying out the fol-
lowing protocol:
Each cryptographer flips an unbiased coin behind his menu, between him
and the cryptographer on his right, so that only the two of them can see
the outcome. Each cryptographer then states aloud whether the two
coins he can see–the one he flipped and the one his left-hand neighbor
flipped–fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that
the dinner was paid for only once). Yet if a cryptographer is paying, nei-
ther of the other two learns anything from the utterances about which
cryptographer it is.



Chaum shows that this protocol solves the problem, and notes that it can
be considered as a mechanism enabling a signal to be anonymously transmitted,
under the assumption that at most one of the agents wishes to transmit. He goes
on to generalize the idea to n-agent settings where, in place of the ring of coins,
we have a graph representing the key-sharing arrangement.

The more general protocol can be represented in our programming language
as follows. We assume that there is a set Agt of agents, who share secrets based
on a (directed) key sharing graph G = (Agt , E) in which the vertices are the
agents in Agt and the edges E ⊆ Agt×Agt describe the keysharing arrrangement
amongst the agents. We model keysharing by assuming that for each edge e =
(i, j), agent i generates the key corresponding to the edge, and communicates
the key to j across a secure channel. For each edge e = (i, j) we write e1 for
the source agent i and e2 for the destination agent j. For each agent i we define
in(i) = {e ∈ E | e2 = i} and out(i) = {e ∈ E | e1 = i}. Accordingly, we use
two variables for each edge e = (i, j): the variable i.ke stores i’s copy of the key
corresponding to the edge, and the variable j.ke stores j’s copy. We write keys(i)
for in(i) ∪ out(i), i.e., the set of edges incident on i. The protocol DCi(m) of
an agent i ∈ Agt (in which the message represented by the expression i.m is
transmitted anonymously by agent i) consists of the following five steps:

DCi(m) = {i : rand(ke) | e ∈ out(i)};
{i : ke → e2.ke | e ∈ out(i)}
{i : b := m⊗⊗e∈keys(i) ke};
{i : broadcast(b)};
{i : rr := ⊗j∈Agt j.b}

Figure 1: The protocol DC

We write DC(m) for the joint program ||i∈AgtDCi(m).

Intuitively, the protocol DC operates by first generating keys and setting up
the key sharing graph, and then having each of the agents make a public an-
nouncement encrypted using all the keys available to them. The directionality of
an edge in the key sharing graph indicates who generates the key corresponding
to the edge, viz, the source agent of the edge. The first step of the protocol cor-
responds to each agent generating the key values for which they are responsible.
In the second step, these keys are shared with the other agent on the edge by
transmission across a secure channel. Each agent now has the value of each of
the key edges on which it is incident, and computes the xor of its message with
all these key values in the 3rd step, and broadcasts the result in the 4th step.
In the final step of the protocol, each agent computes the xor of the messages
broadcast as the result of the protocol.



5 An Abstraction of the Dining Cryptographers Protocol

We are interested in protocols in which the DC protocol is used as a basic
building block, and in model checking the agent’s knowledge in the resulting
protocols. In order to optimize this model checking problem, we now introduce a
protocol that we will show to be an abstraction of the DC protocol that preserves
epistemic properties.

The abstracted version of the protocol omits the use of keys, but adds to the
set of agents a trusted third party T who computes the result of the protocol
on behalf of the agents, and then broadcasts it. Here, we take Agta = Agt ∪
{T}. The protocol DCai (m) for agent i is given in four steps, see Figure 2. We

DCa
i (m) = {i : m→ T.xi};

{};
{};
{i : rr := y}

(for i ∈ Agt) DCa
T (m) = {};

{T : y := ⊗i∈Agt xi};
{T : broadcast(y)};
{}

Figure 2: The abstract protocol DCa

write DCa(m) for the joint program ||i∈AgtaDCai (m). Intuitively, in the abstract
protocol, the agents transmit their bits across a secure channel to the trusted
third party, who computes the exclusive-or and broadcasts it.

Note that since the protocol DCa makes no use of randomization, the set
of worlds of the structure M [DCa(m)] is identical to the set of worlds of the
structureM ; only the set of defined variables and the indistinguishability relation
change. We can characterize the indistinguishability relations of M [DCa(m)] as
follows, where we introduce the abbreviation ⊗m for ⊗i∈Agt i.m.

Lemma 2. If M is a Kripke structure at which DCa(m) is enabled, and u, v

are worlds of M [DCa(m)] then u ∼M [DCa(m)]
i v iff u ∼Mi v and πM (u,⊗m) =

πM (v,⊗m).

The programDC(m) makes use of randomization, so the structureM [DC(m)]
has more worlds than the structure M . More specifically, it can be seen that the
worlds of M [DC(m)] have the form ((w, κ1), κ2), where κ1 assigns boolean val-
ues to the variables i.ke for e ∈ E and i = e1, and κ2 assigns boolean values
to the variables i.ke for e ∈ E and i = e2. Note that by the second step of the
protocol, we always have κ1(e1.ke) = κ2(e2.ke) for all e ∈ E. We may therefore
abbreviate such a world to w + κ, where κ : E → {0, 1}, and we have

1. πM [DC(m)](w + κ, e1.ke) = κ(e),
2. πM [DC(m)](w + κ, e2.ke) = κ(e),
3. πM [DC(m)](w + κ, i.b) = π(w, i.m)⊗⊗e∈keys(i) κ(e), and
4. πM [DC(m)](w + κ, i.rr) = ⊗j∈Agt π

M [DC(m)](w + κ, j.b).



Note that the final equation may be simplified as follows:

πM [DC(m)](w + κ, i.rr) = ⊗j∈Agt π
M [DC(m)](w + κ, j.b)

= ⊗j∈Agt (πM [DC(m)](w + κ, j.m)⊗⊗e∈keys(j) κ(e))
= (⊗j∈Agt π

M (w, j.m))
= πM (w,⊗m)

where the third step follows using the fact each term κ(e) occurs twice, once for
e ∈ keys(e1) and once for e ∈ keys(e2). Based on this representation, we can
characterize the indistinguishability relations of M [DC(m)] as follows:

Lemma 3. If M is a Kripke structure at which DC(m) is enabled, and u + κ

and v + λ are worlds of M [DC(m)] then u+ κ ∼M [DC(m)]
i v + λ iff

1. u ∼Mi v and
2. κ(e) = λ(e) for all e ∈ keys(i) and
3. πM (u, j.m)⊗⊗e∈keys(j)κ(e) = πM (v, j.m)⊗⊗e∈keys(j)λ(e) for all j ∈ Agt.

6 Proof of Abstraction

The following is implicit2 in the proof of a key result concerning the DC protocol
that is proved in Chaum [4] (Section 1.4).

Lemma 4. For all i ∈ Agt and for all functions κ : E → {0, 1} and µ : Agt →
{0, 1} and µ′ : Agt → {0, 1} such that ⊗i∈Agt µ(i) = ⊗i∈Agt µ

′(i), there exists a
function λ : E → {0, 1} such that κ � keys(i) = λ � keys(i) and for all j ∈ Agt,
we have µ(j)⊗⊗e∈keys(j) κ(e) = µ′(j)⊗⊗e∈keys(j) λ(e)

Note that the variables introduced by DC(m) are the variables i.ke, i.b and
i.rr for i ∈ Agt and e ∈ E. The variables introduced by DCa(m) are T.xi, T.y
and i.rr for i ∈ Agt . Hence the set of variables introduced by both protocols
is the set {i.rr | i ∈ Agt}. The following result states that these variables are
introduced by these protocols in such a way as to extend a bisimulation between
given concrete and abstract structures to the new variables.

Theorem 1. Suppose that M ≈V,Agt M
a for a set of variables V containing all

variables in the expressions i.m for i ∈ Agt, and let DC(m) be enabled at M and
DCa(m) be enabled at Ma. Then M [DC(m)] ≈V ∪{i.rr | i∈Agt},Agt M

a[DCa(m)].

Proof. Let M = 〈W,Agt , {∼i}i∈Agt , P rop, π〉 and let

Ma = 〈W a,Agta, {∼ai }i∈Agta , P ropa, πa〉 .

We write
M [DC(m)] = 〈W ′,Agt , {∼′i}i∈Agt , P rop

′, π′〉
2 Chaum’s result is stated probabilistically, but the proof is largely non-probabilistic

and establishes this result.



and
Ma[DCa(m)] = 〈W a′

,Agta, {∼a
′

i }i∈Agta , P ropa
′
, πa

′
〉 .

As noted above, we have W a′
= W a and

W ′ = {w + κ | w ∈W, κ : E → {0, 1}} .

Let R ⊆W ×W a be the bisimulation relation witnessing M ≈V,Agt M
a. We

define the relation < ⊆ (W ′ ×W a′
) as follows: w + κ<w′ if wRw′. We claim

that this relation witnesses M [DC(m)] ≈V ∪{i.rr | i∈Agt},Agt M
a[DCa(m)].

Atoms: We need to check that for all v ∈ V ∪ {i.rr | i ∈ Agt}, if w + κ<w′
then π′(w + κ, v) = πa

′
(w′, v). For propositions v ∈ V , this is immediate from

the facts that w + κ<w′ implies wRw′, that R is a (V,Agt)-bisimulation, and
that π′(w + κ, v) = π(w, v) and πa

′
(w′, v) = πa(w′, v). For the variables i.rr,

we argue as follows. Note that since the variables in i.m are included in V , it
follows that π′(w + κ, i.m) = πa

′
(w′, i.m), and hence that π′(w + κ,⊗m) =

πa
′
(w′,⊗m). As noted above, we have π′(w + κ, i.rr) = π′(w + κ,⊗m). By the

program for DCa(m), we also have πa
′
(w′, i.rr) = πa

′
(w′,⊗m). Combining these

equations yields π′(w + κ, i.rr) = πa
′
(w′, i.rr). Thus, we have that < preserves

all propositions in V ∪ {i.rr | i ∈ Agt}.
Forth: Let i ∈ Agt , u+κ, v+λ ∈W ′, and let ua

′ ∈W a′
such that u+κ ∼′i v+λ

and u+κ<ua′
. We need to show that there exists va

′ ∈W a′
such that v+λ< va′

and ua
′ ∼a′

i va
′
. We argue as follows. From u + κ < ua

′
it follows that uRua

′
.

Also, from u + κ ∼′i v + λ it follows by Lemma 3 that u ∼i v. Since R is a
bisimulation, we obtain that there exists a world va ∈ W a such that ua

′ ∼ai va
and vRva. Since W a′

= W a we may define va
′

to be va. It is immediate from
the definition of < and the fact that vRva

′
that v + λ<va′

. To show ua
′ ∼a′

i va
′

we use the characterization of ∼a′

i of Lemma 2. We already have that ua
′ ∼i va

′

by construction, so it remains to show πa(ua
′
,⊗m) = πa(va

′
,⊗m).

From the fact that vRva
′
, and that all variables in i.m are in V , we have

that π(v,⊗m) = πa(va
′
,⊗m). Similarly, from uRua

′
, we have that π(u,⊗m) =

πa(ua
′
,⊗m). Further, since u+κ ∼′i v+λ, it follows by Lemma 3 that π(u,⊗m) =

π(v,⊗m). Combining these equations yields πa(ua
′ ⊗m) = πa(va

′
,⊗m), giving

the remainder of what we require for the conclusion that ua
′ ∼a′

i va
′
.

Back: Let i ∈ Agt , u+ κ ∈ W ′, and let ua
′
, va

′ ∈ W a′
such that u+ κ<ua′

and ua
′ ∼a′

i va
′
. We need to show that there exists v + λ ∈ W ′ such that

u + κ ∼′i v + λ and v + λ< va′
. We identify the world v ∈ W as follows. From

u + κ<ua′
we have that uRua

′
and from ua

′ ∼a′

i va
′

we have (by Lemma 3)
that ua

′ ∼ai va
′
. Since R is a bisimulation, there exists a value v ∈W such that

u ∼i v and vRva
′
.

From ua
′ ∼a′

i va
′

and Lemma 2, we obtain that πa
′
(ua

′
,⊗m) = πa

′
(va

′
,⊗m),

hence also πa(ua
′
,⊗m) = πa(va

′
,⊗m). From the fact that R is a bisimulation

preserving the propositions V , we get from uRua
′

and vRva
′

that π(u,⊗m) =
πa(ua

′
,⊗m) and π(v,⊗m) = πa(va

′
,⊗m). Combining these equations yields

π(u,⊗m) = π(v,⊗m).



Note that vRva
′

implies that v+ λ< va′
for all λ : E → {0, 1}, giving half of

what we require. It therefore remains to find a value of λ such that u+κ ∼′i v+λ.
Since we already have u ∼i v, this requires, by Lemma 3, that we find λ such that
κ(e) = λ(e) for all e ∈ keys(i) and πM (u, j.m)⊗⊗e∈keys(j)κ(e) = πM (v, j.m)⊗
⊗e∈keys(j)λ(e) for all j ∈ Agt . Since π(u,⊗m) = π(v,⊗m), the existence of
such a function λ is guaranteed by Lemma 4, on taking µ(i) = π(u, i.m) and
µ′(i) = π(v, i.m). ut

This result gives us that, modulo bisimulation, the programs DC(m) and
DCa(m) have the same effect on the agent’s mutual states of knowledge. We
have a similar result if we consider the effect of joint actions A:

Lemma 5. Let M and M ′ be Kripke structures such that M ≈V,Agt M
′, and

let A be a joint action, writing variables VA, such that A is enabled at both M
and M ′. Then M [A] ≈V ∪VA,Agt M

′[A],

Proof. Suppose R is a bisimulation witnessing M ≈V,Agt M
′, and we represent

the worlds of M [A] as w+κ where w is a world of M and κ : VA → {0, 1}, where
πM [A](w+ κ, v) = κ(v) for v ∈ VA. (This requires some constraints on the set of
w+ κ, to handle the case of variables v ∈ VA that are not written by i : rand(v)
statements.) The worlds of M ′[A] may be similarly represented as w + κ where
w is a world of M ′.

Then it is easily shown that the relation r′ defined by u+ κR′ v + λ if uRv
and κ = λ is a bisimulation. ut

Combining Theorem 1 and Lemma 5, we obtain the following by a straight-
forward induction. (Note that we use fresh variables ke, b, rr, xi and y in each of
the instances of DCi and DCai .)

Theorem 2. Let M and Ma be Kripke structures with M ≈V,Agt M
a, and let

P = Q1;DC(m1);Q2;DC(m2); . . . DC(mk);Qk+1 and

P a = Q1;DCa(m1);Q2;DCa(m2); . . . DCa(mk);Qk+1

where the Qi are programs involving agents Agt. Let V ′ be the set of all variables
written by the programs Qi, as well as the variables i.rr introduced by the DC
instances. Assume that the Qj and mj read only variables from V ∪ V ′. Then if
P is enabled at M , and P a writes no variable in Ma, then P a is enabled at Ma

and M [P ] ≈V ∪V ′,Agt M
a[P a].

This result states that if we have a complex protocol P , constructed by using
multiple instances of the DC protocol interleaved with other actions, then we
abstract P by abstracting each of the instances of DC to DCa, while preserving
the truth values of all epistemic formulas. This enables optimization of model
checking epistemic formulas in M [P ] by applying model checking to M [P a] in-
stead. (Note that always M ≈M .)



7 The Two-phase Anonymous Broadcast Protocol

As noted above, the basic version of the Dining Cryptographers protocol enables
a signal to be anonymously transmitted under the assumption that at most
one agent wishes to transmit. One of Chaum’s considerations is the use of the
protocol for more general anonymous broadcast applications, and he writes:

The cryptographers become intrigued with the ability to make messages
public untraceably. They devise a way to do this at the table for a state-
ment of arbitrary length: the basic protocol is repeated over and over;
when one cryptographer wishes to make a message public, he merely
begins inverting his statements in those rounds corresponding to 1’s in a
binary coded version of his message. If he notices that his message would
collide with some other message, he may for example wait for a num-
ber of rounds chosen at random from some suitable distribution before
trying to transmit again.

As a particular realization of this idea, he discusses grouping communication
into blocks and the use of the following two-phase broadcast protocol using slot-
reservation:

In a network with many messages per block, a first block may be used
by various anonymous senders to request a “slot reservation” in a second
block. A simple scheme would be for each anonymous sender to invert
one randomly selected bit in the first block for each slot they wish to
reserve in the second block. After the result of the first block becomes
known, the participant who caused the ith bit in the first block sends in
the ith slot of the second block.

This idea has been implemented as part of the Herbivore system[11].
Chaum’s discussion leaves open a number of questions concerning the pro-

tocol. For example, what exact test is applied to determine whether there is a
collision? Which agents are able to detect a collision? Are there situations where
some agent expects to receive a message, but a collision occurs that it does not
detect (although some other agent may do so?) Under what exact circumstances
does an agent know that some agent has sent a message? When can a sender be
assured that all others have received the message?

In previous work, we have studied such questions in a 3-agent version of the
protocol [2]. Our approach was to model the protocol as a knowledge-based pro-
gram and to use epistemic model checking as a tool to help us identity precisely
the conditions under which an agent obtains some types of knowledge of interest.
The approach helped us to identify some unexpected situations in which relevant
knowledge is obtained. We recap the definition of knowledge-based programs and
our formulation of the 2-phase protocol as a knowledge-based program in the
following sections, after which we study this knowledge-based program further
using the abstraction developed above.



8 Implementation of Knowledge-based Programs

Knowledge-based programs [9] are like standard programs, except that expres-
sions may refer to an agent’s knowledge. That is, in a knowledge-based program
for agent i, we may find statements of the form “v := φ”, where φ is a formula of
the logic of knowledge, i.e., a boolean combination of atomic formulas concerning
the agent’s observable variables and formulas of the form Kiψ.

Unlike standard programs, knowledge-based programs cannot in general be
directly executed, since the satisfaction of the knowledge subformulas depends
on the set of all runs of the program, which in turn depends on the satisfaction
of these knowledge subformulas. This apparent circularity is handled by treat-
ing a knowledge-based program as a specification, and defining when a concrete
standard program satisfies this specification. We give a formulation of the se-
mantics of knowledge-based programs tailored to the programming language of
the present paper.

Suppose that we have a concrete program P of the same syntactic structure
as the knowledge-based program P, in which each knowledge-based expression φ
is replaced by a concrete predicate pφ of the local variables of the agent. Starting
at an initial Kripke Structure M0, the concrete program P generates a set of runs
that form the worlds of a Kripke Structure M0[P ]. We now say that P is an im-
plementation of the knowledge-based program P from M0 if for each joint action
A in the program P , corresponding to a joint action A in the knowledge-based
program, if we write P = P0;A;P1, where P0 and P1 are programs, then for each
knowledge condition φ occurring in A, we have M0[P0] |= pφ ⇔ φ. That is, the
concrete condition is equivalent to the knowledge condition in the implementa-
tion at each point in the program where it is used. (In a more general formulation,
where knowledge conditions may contain temporal operators, knowledge-based
programs may have no implementations, a behaviourally unique implementa-
tion, or many implementations, but for the restricted language we consider it
can be shown that there is a unique implementation.)

We now describe a partially automated process, using epistemic model check-
ing, that can be followed to find implementations of knowledge-based programs
P. The user begins by introducing a local boolean variable vφ for each knowl-
edge formula φ = Kiψ in the knowledge-based program, and replacing φ by vφ.
Treating vφ as a “history variable”, the user may also add to the program state-
ments of the form vφ := e, relying on their intuitions concerning situations under
which the epistemic formula φ will be true. This produces a standard program
P that is a candidate to be an implementation of the knowledge-based program
P. (It has, at least, the correct syntactic structure.) To verify the correctness of
P as an implementation of P, the user must now check that the variables vφ are
being maintained so as to be equivalent to the knowledge formulas that they are
intended to express. This can be done using epistemic model checking, where
we verify formulas of the form vφ ⇔ Kiψ at points in the program where the
condition φ is used.

In general, the user’s guess concerning the concrete condition that is equiv-
alent to the knowledge formula may be incorrect, and the model checker will



report the error. In this case, the model checker can be used to generate an
error trace, a partial run leading to a situation that falsifies the formula being
checked. The next step of our process requires the user to analyse this error
trace (by inspection and human reasoning) in order to understand the source of
the error in their guess for the concrete condition representing the knowledge
formula. As a result of this analysis, a correction of the assignment(s) to the
variable vφ is made by the user (this step may require some ingenuity on the
part of the user.) The model checker is then invoked again to check the new
guess. This process is iterated until a guess is produced for which all the for-
mulas of interest are found to be true, at which point an implementation of the
knowledge-based program has been found. We refer the reader to our previous
work [2] for further discussion and examples of the application of this iterative
process. (We deemphasize the process in the present paper, and focus on the
results.)

9 The Two-phase Broadcast Protocol as a
Knowledge-based Program

We now give a formulation of Chaum’s two-phase protocol (see Section 7) as
a knowledge-based program, and discuss the associated verification conditions.
(The knowledge-based program is similar to that given in our earlier work, but
includes some improvements.)

We assume that there are n agents, and Agt = {1..n}. Figure 3 represents
the 2-phase protocol by giving a knowledge-based program for agent i. The
local variable slot-request, assumed to be defined in the structure from which
the program is run, records the slot number (in the range 1..n) that this agent
will attempt to reserve. If slot-request=0, then the agent will not attempt to
reserve any slot. The variable message, also assumed to be defined, records the
single bit message that the agent wishes to anonymously broadcast (if any). The
program introduces the variables rcvd0 and rcvd1, as well as a variable dlvrd.
(Additional new variables, are implicit in the instances of DCi.)

The term conflict(s) in the knowledge-based program represents that there
is a conflict on slot s. This is a global condition that is defined as

conflict(s) =
∨
i6=j

(i.slot-request = s = j.slot-request) .

i.e., there exist two distinct agents i and j both requesting slot s.
The term sender(i, x) represents that an agent is sending message x. Thus,

the variable rcvd0 is assigned to be true if the agent learns that someone is
trying to send the bit 0, and similarly for rcvd1[s]. However, there are some
subtleties in the implementation that lead us to consider two distinct versions
of the program. In one version, called strong reception, we use the definition

sender(i, x) =
∨
j 6=i

(j.message = x ∧ j.slot-request 6= 0) .



Pi = {
local variables:

slot-request: [0..n],
message: Bool,
rcvd0, rcvd1, dlvrd: Bool;

//reservation phase
for (s = 1; s ≤ n; s++)
{

DCi(slot-request=s);
}
//transmission phase
for (s = 1; s ≤ n; s++)
{

DCi(if (slot-request = s ∧ ¬Ki(conflict(s))
then message

else false) );
}
rcvd0:= Ki(sender(i, 0));
rcvd1 := Ki(sender(i, 1));
dlvrd:=

V
x∈Bool((message = x ∧ slot-request 6= 0)⇒

Ki(
V

j 6=i Kjsender(j, x)))

}
Figure 3: The knowledge-based program CDC

That is, we take an agent to have received the bit 0 if it knows that some other
agent is sending the message x. In the other, that we refer to as weak reception,
we define

sender(i, x) =
∨
j

(j.message = x ∧ j.slot-request 6= 0) .

That is, we take an agent to have received the bit 0 if it knows that some agent
is sending the message x, possibly itself. Since an agent always knows its own
message x, it trivially knows sender(i, x) if it is trying to send a message (i.e.,
i.slot-request 6= 0), so this may seem very weak. However, since other agents
may consider it possible that the agent is not seeking to send a message, we
see that it becomes of greater interest in the context of an agent’s knowledge of
delivery of its message, represented by the assignment for the variable dlvrd.

We note that this representation of the 2-phase protocol as a knowledge-
based program is speculative: an agent transmits in a slot so long as it does not
know that there is a conflict. This allows that a collision will occur during the
transmission phase.

Since an agent may attempt to reserve a slot, and then back off, or may send
in a reserved slot without success because of a collision during the transmission
phase, the protocol does not guarantee that the message will be delivered. In
this case, the agent is required to retry the transmission in the next run of
the protocol. So that it can determine whether a retry is necessary, the final



assignment to the variable dlvrd captures whether the agent knows that its
(anonymous) transmission has been successful. this assignment captures that
the transmission is successful if the agent knows that the other agents know
that some agent is sending its message. We similarly refer to weak delivery and
strong delivery depending on which version of the predicate sender(i, x) is used.3

We remark that the knowledge-based program is interpreted with respect to
the assumption of perfect recall, and implementations may make use of of history
variables to capture observations that the agent makes during the running of the
protocol. Thus, by placing the reception and delivery assignments at the end of
the program (rather than just after each DC instance), we ensure that the agents
are able to behave optimally by making use of all information they gather during
the running of the program. As we discuss below, this allows us to capture some
subtle sources of information.

In Figure 4, we give the generic structure of a possible implementation of the
knowledge-based program, as we seek using our partially-automated process. The
variable kc[s] is used to represent the epistemic condition concerning conflict in
the knowledge-based program (i.e., ¬Ki(conflict(s))). Thus, in verifying that
we have an implementation, the key condition to be checked is whether kc[s]⇔
¬Ki(conflict(s)) just after this variable is assigned. The main difficulty in
finding an implementation is to find the appropriate concrete assignment (to
take the place of the “???”) for this variable that will make this condition valid.
Similarly we seek assignments to the variables rcvd0[s], recvd1[s] that give
these the intended meaning.

We note that each of the instances of the protocol DCi introduces additional
variables, which may be used in the concrete predicates we substitute for the
“???”. In particular, they introduce round result variables, which we denote by
rr[t] for t ∈ {1..2n}. Here rr[t] represents the round result variable from the
t-th instance of DCi in the implementation. The implementations also introduce
key variables ke and b, which need to be separated in the different instances: we
may similarly use ke[t] and b[t] to denote the t-th instance of such a variable.

We now discuss the formulas that are used to verify the implementation.
As discussed above, these conditions need to be verified at specific stages of
the program, viz., the step before the occurrence of the knowledge formula of
interest.

The first formula of interest concerns the correctness of the guess for the
knowledge condition ¬Ki(conflict(s)) (in case of the speculative implementa-
tion, or Ki(¬conflict(s)) (in the case of the conservative implementation). In
the implementation, this condition is represented by the variable kc[s].

Specification 1: kc[s] correctly represents knowledge of the existence of a
conflict in slot s = 1..3.

i.kc[s]⇔ ¬Ki(conflict(s)) (1)
3 We remark that in case of weak delivery, replacing the expressionV

j 6=i Kjsender(j, x) by
V

j Kjsender(j, x) in the assignment to dlvrd would
have no effect, since in the weak case it always holds that (i.message =
x ∧ i.slot-request 6= 0)⇒ Ki(sender(i, x)).



Pi = {
local variables:

slot-request: [0..n],
message: Bool,
rcvd0, rcvd1, dlvrd: Bool,
kc[n]: Bool;

//reservation phase
for (s = 1; s ≤ 3; s++)
{

DCi(slot-request== s);
}
//transmission phase
for (s = 1; s ≤ n; s++)
{
kc[s] :=???;
DCi(if (slot-request== s ∧ kc[s])

then message

else false);
}
rcvd0 := ???;
rcvd1 := ???;
dlvrd:= ???
}

Figure 4: A generic implementation of CDC

Next, the protocol has some positive goals, viz., to allow agents to broadcast
some information, and to do so anonymously. Successful reception of a bit is
intended to be represented by the variables rcvd0 and rcvd1. To ensure that
the assignments to these variables correctly implement their intended meaning
in the knowledge-based program, we use specifications of the following form.

Specification 2: reception variables correctly represent transmissions by others

i.rcvd0⇔ Ki(sender(i, 0) (2a)

and
i.rcvd1⇔ Ki(sender(i, 1)) (2b)

Similarly, we need to verify correct implementation of the agent’s knowledge
about whether its transmission is successful.

Specification 3: delivery variables correctly represent knowledge about delivery

i.dlvrd⇔
∧
x∈Bool(i.message = x ∧ i.slot-request 6= 0

⇒ Ki(
∧
j 6=iKjsender(j, x)))

There are strong and weak versions of Specifications 2 and 3, depending on
the choice for sender(i, x).

Finally, the aim of the protocol is to ensure that when information is trans-
mitted, this is done anonymously. An agent may know that one of the other two



agents has a particular message value, but it may not know what that value is for
a specific agent. We may write the fact that agent i knows the value of a boolean
variable x by the notation K̂i(x), defined by K̂i(x) = Ki(x) ∨ Ki(¬x) . Using
this, we might first attempt to specify anonymity as

∧
j 6=i(¬K̂i(j.message)),

i.e., agent i knows no other’s message. Unfortunately, the protocol cannot be
expected to satisfy this: suppose that all agents manage to broadcast their mes-
sage and all messages have the same value x: then each knows that the other’s
value is x. We therefore write the following weaker specification of anonymity:

Specification 4: The protocol preserves anonymity∨
x=0,1

Ki(
∧
j 6=i

(j.message = x)) ∨
∧
j 6=i

(¬K̂i(j.message)) .

This is checked at the very end of the protocol.

10 Model Checking Performance

To verify the specifications for the knowledge-based program in a putative im-
plementation, we have applied the epistemic model checker MCK [10]. We refer
the reader to our previous work [2] for a description of some of the particulari-
ties of how this is done. Since the details are straightforward, we focus here on
how the abstraction developed in this paper impacts the performance of model
checking.

We would like to verify whether a putative implementation P implements
the knowledge-based program P from an initial structure M0. This requires that
we model check the formulas from the previous section. Since these formulas
concern only the initial variables of the agents, and variables introduced outside
the scope of the DCi calls, it follows from Theorem 2 that we may verify instead
whether these formulas hold at appropriate times during the running of the
abstract program P a that we obtain by replacing each instance of DCi in P by
DCai .

We have performed some experiments in which we use MCK for this model
checking problem. MCK is a symbolic model checker, and model checking a for-
mula involves first building a symbolic (Binary Decision Diagram [15]) represen-
tation of the model itself, and then using this representation in the construction
of a symbolic representation of the situations where the particular formula of
interest is false. All specifications are checked using the perfect recall interpre-
tation of knowledge and the model checking algorithm for this semantics which
is described in [22] (which is flagged by spec spr xn in MCK). To estimate
individual formula timings, we deduct model construction times (estimated by
the time to model check the specification True), from the actual time for model
checking each specification (which includes model construction and formula ver-
ification time.) All experiments are conducted on a PC with Intel(R) Xeon(R) 4
× 3 GHZ, and 16 GB memory, using MCK 0.1.1. Where the execution crashed
due to a memory error, we report “x” in the tables.



Our methodology for identifying an implementation of the knowledge-based
program requires that we perform model checking on number of different approx-
imations to the final implementation, and, when a specification fails, using the
counter-example found to revise the approximation. Table 1 gives the runtimes
for the initial program, in which we guess the predicate False for the imple-
mentation of all knowledge formulas in the knowledge-based program. For each
specification x we give runtimes for model checking the specification in the con-
crete program and the abstract program (indicated by xa). We count the cost
of verifying all instances of the specification required to check the correctness of
the implementation at different times where the knowledge condition occurs in
the program. (With n agents, we need to check Specification 1 at n locations in
the implementation, but specifications 2-4 just once.) As we improve the approx-
imation, the program becomes more complex, and the model checking runtimes
increase. In Table 2 we give the runtimes for the final approximation, in which we
have identified a program that is verified as implementing the knowledge-based
program.

Specification

n Model Modela 1 1a 2 2a 3 3a 4 4a

3 0.4 0.24 43 5 5880 41 6100 4 6300 5
4 29.15 4.2 x 34 x 68 x 69 x 70
5 x 63 x 4800 x 5400 x 5500 x 5544

Table 1. Model Checking Runtimes (seconds)– initial approximation

Specification

n Model Modela 1 1a 2 2a 3 3a 4 4a

3 0.45 0.4 50 16 7200 127 7350 34 7400 18
4 135 6 x 167 x 378 x 251 x 252
5 x 74 x 1096 x 1957 x 1979 x 1998

Table 2. Model Checking Runtimes (seconds) – final implementation

For a more detailed indication of the impact of the abstraction, Table 3 com-
pares the runtimes for model checking the anonymity specification (Specification
4) in the concrete and abstract programs for the final implementation after a
given number of rounds of the Dining Cryptographers Protocol. Note that the
maximum number of rounds of Dining Cryptographers in the 2-phase protocol
is twice the number of agents.

In all these experiments, the runtimes obtained indicate that the abstraction
results in a significant decrease of runtimes, (in some cases of several orders



Agents version
Rounds

1 2 3 4 5 6 7 8 9 10

3 concrete 0.6 0.9 2.2 18 335 7350 - - - -
3 abstract 0.5 0.6 0.7 1.6 3.1 17.8 - - - -

4 concrete 340 575 587 1478 2661 x x x - -
4 abstract 9 11 11.2 11.7 32 85 86 249 - -

5 concrete x x x x x x x x x x
5 abstract 91 110 133 134 183 311 752 722 950 1990

Table 3. Model Checking Runtimes (seconds) for Specification 4

of magnitude) and helps to bring problems of larger scale (in particular, with
larger numbers of agents and greater numbers of rounds of the basic Dining
Cryptographers protocol) within the bounds of feasibility of model checking.

11 Implementations of the knowledge-based program

Using the optimization obtained from the abstraction, we have been able to
extend our previous analysis of the knowledge-based program in the 3-agent case
to the cases of 4 and 5 agents, gaining more insight into the n-agent case for
general n. We now describe the implementations we found for the program, which
demonstrate that the protocol contains some further subtle flows of information
beyond those we found in the 3 agent case.

One point worth noting is that, in addition to providing an optimization of
epistemic model checking, our abstraction result also provides information that
is useful in the search for an implementation of the knowledge-based program.
Observe that the variables ke do not occur in the abstract version of the pro-
tocol, nor in the formulas we need to check to verify an implementation. Thus,
in guessing a concrete predicate to be substituted for one of the knowledge con-
ditions, we can confine our attention to predicates that do not contain the ke
variables. Indeed, since i.b is computed from information already at agent i’s
disposal, we need only consider predicates based on agent i’s initial information
and the round result variables rr[k].

The first knowledge condition we need to implement, for Specification 1,
is ¬Kiconflict(s). Plainly, one situation where an agent knows that there is
a conflict is when it attempts to reserve a slot and the round result for the
reservation is not 1. (So an even number of agents attempted to reserve the
slot.) Thus, one potential implementation for ¬Kiconflict(s) is the assignment
kc[s] := ¬(slot-request = s ∧ rr[s] = 0). Model checking Specification 1 for
this predicate at the point of the s-th transmission confirms in all of the cases
n = 3, 4, 5 that this captures the knowledge condition ¬Kiconflict(s) exactly
at this point: there are no other ways that the agent can know of a conflict on a
slot before transmitting on it, besides seeing a reservation clash. (In particular,
previous transmissions do not contain any relevant information.)



It is interesting to consider not just the knowledge condition ¬Kiconflict(s)
that occurs in the program, but also the stronger condition Ki¬conflict(s) (the
formula Ki¬p ⇒ ¬Kip is a validity of the logic of knowledge). For example, if
an agent who is broadcasting on a slot knows that all other agents know the
slot is conflict free, then it knows that its message will be delivered. Thus, we
have also added a local variable conflict-free(s) to the implementation, for
s = 1 . . . n, and and sought assignments to this variable that satisfy the formula
i.conflict-free(s) ⇔ Ki¬conflict(s). This turns out to be quite a subtle
matter.

To express this condition, it is useful to introduce a formula C0 = x where
x ∈ {0, . . . , n} to express that the number of 0’s obtained as round results in the
reservation phase is x. We may then note the following situations in the protocol
in which Ki¬conflict(s) holds.

– If C0 = 0 or C0 = 1, then the agent knows there is no conflict on any slot.
Note that in this case there are at least n− 1 agents who are requesting the
at least n− 1 distinct slots with reservation round result 1, leaving at most
one further agent. If this agent had requested any of the slots with round
result 1, this would have caused a 2-way reservation clash, contradicting the
observed round result of 1. Hence this agent did not request any slot, and
all slots are conflict-free.

– If C0 ≥ 2, then in general, an agent cannot determine whether or not there is
a conflict on any of the reserved slots, since there may be a 3-way clash on one
of these slots. However, in the particular case where C0 = 2 and the agent
itself does not request any slot (slot-request =0) then n − 2 agents are
accounted for by the n− 2 slots on which we see a reservation round result
of 1, and the remaining one agent cannot be assigned to ay slot without
changing the round result, and hence the count. Hence this agent cannot be
requesting a slot, and the agent knows that all slots are conflict-free.

– Note that if C0 = 2 or C0 = 3, and the agent requests a slot but detects a
collision at slot reservation time, then there must have been at least 2 agents
requesting this slot, leaving at most n − 2 agents for the n − 1 other slots,
where we see either n − 3 or n − 4 slots with reservation result of 1. This
means at least n−1 or n−2 agents are accounted for in total, so the number
of agents remaining to contribute to a further collision on the remaining n−1
other slots is at most 1. This agent can not be assigned to any slot without
changing the round result for that slot, so it must not be requesting a slot.
Thus, all the other n− 1 slots are collision free.

– The above cases use information from the reservation phase. Agents may
also be able to deduce that slots are conflict-free as a result of information
they obtain during the transmission phase. If C0 = 2 or C0 = 3, the agent
requests a slot and obtains a reservation round result of 1 for this slot, but
then detects a collision at transmission time, then there must have been at
least a 3-way collision on that agent’s slot, and by a similar argument to the
previous case, we deduce that all the other slots are collision free.



These conditions may be captured by the assignment

i.conflict-free(s) := C0 = 0 ∨ C0 = 1 ∨ (C0 = 2 ∧ i.slot-request = 0)∨
((C0 = 2 ∨ C0 = 3) ∧

∨n
t=1(s 6= t ∧ i.slot-request = t ∧ rr[t] = 0))∨

((C0 = 2 ∨ C0 = 3) ∧
∨n
t=1(s 6= t ∧ i.slot-request = t ∧ rr[t] = 1

∧rr[n+ t] 6= i.message))

The above formula states several concrete conditions under which the agent
knows there is no conflict on a particular slot s. We have verified by model
checking that for n = 3, 4, and 5 that, at the end of the protocol, for all slots
s we have i.conflict-free(s)⇔ Ki¬conflict(s), and conjecture that it holds
for all n.

We remark that in the case of C0 = 0 or C0 = 1, this information is available
to all agents, and it is common knowledge4 that all slots are conflict free. In
the other cases, collision freedom on a slot may be known to some agents but
not to others. For example, consider the situation with n = 4 and where the
slot-request and message values and round results are given as in Figure 5(a).
Here agent 2 sees a reservation collision and two 1’s elsewhere, so knows that
slots 1 and 4 are collision free. However, agent 1 does not know this, since the
scenario of Figure 5(b) is consistent from its viewpoint, and here there is a
collision on slot 4.

(a)

i: 1 2 3 4

i.slot-request 4 3 1 3
i.message 1 0 1 0

rr[i] 1 0 0 1
rr[4 + i] 1 0 0 1

(b)

i: 1 2 3 4

i.slot-request 4 1 1 1
i.message 1 1 1 1

rr[i] 1 0 0 1
rr[4 + i] 1 0 0 1

Figure 5: Collision Freedom is not Common Knowledge

As mentioned above, we consider in this paper a speculative version of the
knowledge-based program, in which an agent transmits its message in its re-
quested slot s in the transmission phase if ¬Kiconflict(s). One could also
study a conservative version, where an agent only transmits if Ki¬conflict(s).
The analysis above shows that this would lead to a much more complicated
implementation5, where, moreover, the agent would transmit only in the low
probability case when almost all other agents also have a message to send, and
they happen to pick distinct slots!

Returning to the implementation of the speculative version, we need to find
the appropriate assignments to the variables rcvd0, rcvd1 and dlvrd, for which
4 A fact is common knowledge [13] if all agents know it, all agents know that all other

agents know it, and so on for all levels of iteration of knowledge.
5 For a number of reasons, including the fact that we need an implementation of the

knowledge condition at all transmission steps, rather than just at the end of the
protocol, the above condition is not yet adequate for such an implementation.



we have strong and weak versions.

Strong Version: In this case, reception of a bit x means that the agent knows
that some other agent is sending that bit x. An obvious situation where this is
the case is where the agent is not itself sending in the slot, the reservation round
result is 1, and the bit x is observed as the round result in the corresponding
transmission slot. Note that there may still be a collision on that slot, but since
the number of agents in the collision is then odd, at least one must be sending
x. As we noted in our previous work [2], there is another, less obvious, situation
when an agent can know that another agent is sending a bit x in a slot, viz.,
when the agent is itself transmitting bit y in that slot and observes that the
round result for the transmission is the compliment of y. Since the number of
other agents in the conflict must be even, there must be both another agent
sending 0 and another agent sending 1 in the slot. We have verified by model
checking in the case of 3-5 agents that with the assignment

i.rcvdx :=
∨n
s=1((i.slot-request 6= s ∧ rr[s] = 1 ∧ rr[n+ s] = x) ∨

(i.slot-request = s ∧ rr[s] = 1 ∧ rr[n+ s] 6= i.message))

Specification 2 is satisfied in the strong version.
For the delivery condition, we have verified that the assignment

dlvrd := (slot-request 6= 0 ∧ (C0 = 0 ∨ C0 = 1))∨
(slot-request 6= 0 ∧ message = 1 ∧∨

s6=t, s,t=1..n(rr[s] = rr[t] = 1 ∧ rr[n+ s] = rr[n+ t] = 1))∨
(slot-request 6= 0 ∧ message = 0 ∧∨

s6=t, s,t=1..n(rr[s] = rr[t] = 1 ∧ rr[n+ s] = rr[n+ t] = 0))

works for Specification 3 in the strong version for the cases n=3-5. The intuitions
for this formula are as follows. In the case C0 = 0 ∨ C0 = 1, as discussed above,
it is common knowledge that all slots are conflict-free, so all transmissions are
guaranteed to be delivered. As just noted, an agent who is not sending on a slot
receives the value transmitted on that slot. However, an agent sending on a slot,
and not noticing a clash on the transmission, considers it possible that there are
other agents transmitting the very same value on that slot, and these will not
know that there is another agent transmitting on the slot. However, if there are
at least two distinct reserved slots where that value is transmitted, then each
receives the value from some slot other than the one on which it transmits. This
is expressed in the remainder of the formula.

Weak Version: In the weak interpretation, we require only that a receiver
learn that someone, possibly themselves is sending a message. The problem of
undetected collsions in the transmission phase does not arise here, and the im-
plementation is more straightforward. We have verified in the 3-5 agent settings
that the following assignments work:

rcvdx := (slot-request 6= 0 ∧ message = x) ∨
n∨
s=1

(rr[s] = 1 ∧ rr[n+ s] = x)



dlvrd := slot-request 6= 0 ∧
n∨
s=1

(rr[s] = 1 ∧ rr[n+ s] = message)

Intuitively, in this case, an agent’s own message counts as a delivery, and mes-
sages observed on reserved slots can be taken at face value.

Finally, the anonymity property, Specification 4, has been verified to hold in
all the implementations obtained from the assignments discussed above, when
n = 3− 5.

12 Related Work

Abstractions of the kind we have studied, relating a protocol involving a trusted
third party to a protocol that omits the trusted third party, are often used in
theoretical studies to specify the objectives of a multi-party protocol. One ex-
ample where this is done in a formal methods setting is work by Backes et al [1],
who study the abstraction of pi- calculus programs based on multi-party compu-
tations. Where we consider a model checking approach to verification, with an
expressive epistemic specification language, they use a type-checking approach.
Their notion of abstraction is richer than the bisimulation-based approach we
have taken, in that they also deal with probabilistic and computational concerns.
However, as we have noted, we are interested in the preservation of a set of epis-
temic properties (nested knowledge formulas) that is richer in some dimensions
than is usually considered in this literature. Our abstraction result could be
easily strengthened to incorporate probability, as was done for a secure channel
abstraction by van der Meyden and Wilke [23]. However computational com-
plexity issues mesh less well with epistemic logic, and developing a satisfactory
solution to this remains an open problem.

Epistemic model checking is less developed than model checking for tempo-
ral logic, and many possible optimization techniques remain to be explored for
this field. Other approaches using abstraction in the context of epistemic model
checking include [6, 5]. These works are orthogonal to ours in that where we are
concerned with an abstraction of a particular primitive (the Dining Cryptogra-
phers protocol), that works for all formulas, they are concerned with symmetry
reductions or deal with a more general class of programs than we have consid-
ered, but need to restrict the class of formulas preserved by the abstraction.

Other model checkers for the logic of knowledge are under development but
MCK remains unique in supporting the perfect recall semantics for knowledge
using symbolic techniques. DEMO [24] implicitly deals with perfect recall, but
is based on a somewhat different logic (epistemic update logic), and uses explicit
state model checking techniques, so it is not clear if it could be used for the type
of analysis and scale of programs we have considered in this paper. MCMAS
[17], MCTK [21] and VERICS [7] are based on the observational semantics for
knowledge (which is also supported in MCK).

It is possible in some cases to represent the perfect recall semantics using
the observational semantics (essentially by encoding all history variables into



the state) and this approach is used in [18] to analyse the same 2- phase pro-
tocol as we considered in this paper. However, this modelling is ad-hoc and the
transformation from perfect recall to observational semantics is handled man-
ually, making it susceptible to missing timing channels if not done correctly.
(Moreover, we did briefly experiment with such a modeling for the large pro-
grams studied in this paper, but found that the perfect recall model checking
algorithms outperform the observational semantics model checking algorithm on
these programs.) The work of [18] does not view the protocol as a knowledge-
based program, as we have done, nor do they consider abstraction.

Knowledge-based programs have been applied successfully in a number of
applications such as distributed systems, AI, and game theory. They have been
used in papers such as [8, 12, 14, 3, 19] in order to help in the design of new
protocols or to clarify the understanding of existing protocols. Examples of the
development of standard programs from knowledge-based programs can be found
in [20, 8, 16]. The approach described in these papers is different from the one
we discussed here in that it is done by pencil and paper analysis and proof.
Examples of the use of epistemic model checkers to identify implementations
of knowledge-based programs remain limited. One is the work of Baukus and
van der Meyden [3] who use MCK to analyze several protocols for the cache
coherence problem using knowledge-based framework.

The 2-phase protocol has been implemented in the Herbivore system [11],
which elaborates it with protocols allowing agents to enter and exit the system,
as well as grouping agents in anonymity cliques for purposes of effciency. Variants
of the protocol have also been considered by Pfitzman and Waidner [25]. These
would make interesting case studies for future applications of our approach.

13 Conclusion

We have established the soundness of an abstraction for of protocols based on
the Dining Cryptographers, and applied this result to optimize epistemic model
checking of protocols that use Dining Cryptographers as a primitive. Our exper-
imental results clearly demonstrate that the abstraction yields efficiency gains
for epistemic model checking in interesting examples. In particular, we have used
these gains to extend an analysis of a knowledge-based program for the 2-phase
protocol, and derived some interesting conclusions about the subtle information
flows in the protocol. Several research directions suggest themselves as a result
of this work. One is to complete the analysis of the knowledge-based program
for all numbers of agents. We conjecture that our present implementation can
be shown to work for all numbers of agents, and it would be interesting to
have a proof of this claim: this would have to be done manually rather than by
model checking, unless an induction result can be found for the model checking
approach. Another direction is to consider richer extensions of the 2-phase pro-
tocol, addressing issues such as messages longer than a single bit, agent entry
and exit protocols, as well as adversarial concerns such as collusion, cheating
and disruption of the protocol. We hope to address these in future work.
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