

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2010 2. REPORT TYPE

3. DATES COVERED
 00-07-2010 to 00-00-2010

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 23,
Number 4, July/August 2010

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering July/August 2010

4

8

14

23

28

3
13
16
22
25
31

DeparDepar tmentstments

From the Sponsor

Call For Articles

SSTC 2010 Wrap-Up

Web Sites

Coming Events

BackTalk

Why Can’t We Manage Large Projects?
Humphrey tries to answer one of software management’s biggest
questions, showing how one naval organization with large system
projects, over a 15-year period, used the TSP to help them with
planning and tracking, meeting schedules, and understanding
knowledge work.
by Watts S. Humphrey

An Interview with Watts S. Humphrey
Who else can boast more than a half-century in the software industry?
Humphrey sits down with CrossTalk to reflect on some of his most
illuminating experiences in the software industry and discusses the past,
present, and future of his innovations—including the TSP.

Updating the TSP Quality Plan Using Monte Carlo Simulation
Quality planning is an important part of the TSP, and the author shows
how the 309th Software Maintenance Group at Hill AFB applied Monte
Carlo simulation to planning, adding to the understanding of variability,
defects, and the overall process.
by David R. Webb

Extending the TSP to Systems Engineering: Early Results
from Team Process Integration
The SEI and NAVAIR have joined forces to create TPI, a concept that
leverages the PSP and TSP body of research and practice. This article
reports on the status, progress, lessons learned, and results from a TPI
pilot project with the AV-8B Systems Engineering Team.
by Anita Carleton, Del Kellogg, and Jeff Schwalb

Building Critical Systems as a Cyborg
As outrageous as it may seem, adapting cybernetics to defense software
is a real possibility in building complex software systems. Ball discusses
the history of cybernetics, what a “cyborg” really is, and how commercial
open-source adaptive technology is being used in the real world.
by Greg Ball

Catching Catching UpUp WithWith TSPTSP

Cover Design by
Kent Bingham
Photo by Silar

ON THE COVER

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CrossTalk ONLINE

Stephen P.Welby

Jeff Schwalb

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Marek Steed

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cybersecurity Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 21.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

OpenOpen FForumorum

July/August 2010 www.stsc.hill.af.mil 3

From the Sponsor

If you’ve been involved with software and system process
improvement for even a short time, you’ve most likely experi-

enced the challenges associated with applying process methodolo-
gies and tools to your real-life projects. For many, the realization
that “one size does not fit all” can lead to frustration about how
best to tailor the processes and tools to fit real-life project needs.
TSP is one process framework and toolkit helping teams improve software quality and

productivity. Thoughtfully marrying TSP application with your unique team, products, and goals
can put you on the path to meeting software cost and schedule commitments.

In my experience, the most valuable leg up for adopting TSP are TSP coaches, who focus
on supporting the team (as well as individuals) to transition from workshop learning to practi-
cal application. They play a huge role in motivating and guiding the team through their TSP jour-
ney. Given the coaches’ first-hand TSP experience—and their in-depth knowledge and appreci-
ation of the toolkit—they lend a supportive hand as the team tailors, monitors, learns, and
grows.

An example of TSP tailoring that can have powerful results is modifying role definitions.
While TSP does define specific and meaningful roles, the assumption is that these roles can (and
may need to be) thoughtfully tailored. In considering how to apply the roles to your project, it
is best to evaluate each role in the context of your team’s culture, size, and dynamics. Also, make
an effort to align teammates to the roles based on the expectations for a specific role and their
unique capabilities. Just going through this effort to align roles with your team’s context and
characteristics can lead to unexpected insights and learning.

Standard TSP application assumes that you are tracking a single product from start to finish.
Since this is not always the case, think carefully about how best to apply the processes when mul-
tiple efforts need to be completed in unison.

TSP offers a useful and free tool to gather and report metrics. This tool is most valuable
when you take the time to understand how the metrics will be used in your larger project con-
text. Based on your experiences, you may even be able to offer insights into how to make the
tool more useful. For instance, based on user feedback that indicated a need for milestones to
support parallel task execution, the tool now offers a single target data feature. With this feature,
progress toward incremental milestones can be evaluated and understood.

While TSP is for software, it provides a construct for detailed planning and task allocation
to any engineering effort or product. Basically, any task or group of tasks that can be broken
down into increments, activities, goals, and timelines can benefit from applying TSP. Again, it’s
a matter of understanding your particular requirements and context, and determining how best
to integrate TSP capabilities.

And finally, to support your endeavors are the annual TSP user conferences, with the next
gathering in Pittsburgh September 20-23 (see <www.sei.cmu.edu/tspsymposium/2010>).
These get-togethers provide a forum for open and honest dialogue about the “goods, bads, and
others” related to teams’ efforts to adopt TSP. These symposiums reinforce the culture and con-
text you would expect to find in any authentic improvement and learning effort.

So the bottom line is that to be successful, no matter what approach you choose, means that
you have to take the long-haul perspective and tailor, learn, grow, apply, and repeat as needed.
Of course, it goes without saying that you will also need to factor in a healthy dose of relent-
less patience.

TSP: Tailor ... Learn ... Grow ... Apply ...
and, of Course, Repeat

Susan G. Raglin
Head, Software/Systems Product Development & Integration Division

Naval Air Systems Command

CrossTalk would
like to thank NAVAIR

for sponsoring
this issue.

4 CROSSTALK The Journal of Defense Software Engineering July/August 2010

Catching Up With TSP

The Naval Oceanographic Office
(NAVO) Systems Integration Divi-

sion began working with the SEI 15 years
ago. Their group produces software for a
range of systems that supply oceano-
graphic and meteorological data to the
U.S. Navy’s worldwide fleet. These are
enormous terabyte systems that operate
24-7, and their subsystems provide critical
operational information to almost every
branch of the Navy.

Ed Battle—branch head then, and
now Systems Integration Division direc-
tor—recalled that when they started work-
ing with the SEI, projects were always late,
requirements were frequently misunder-
stood or wrong, and there was no cooper-
ation among the many interdependent
groups. When critical delivery dates
approached, the director tracked the work
with regular Monday, Wednesday, and
Friday status meetings. While these meet-
ings raised the pressure and took a lot of
time, they didn’t shed much light on pro-
ject status.

Battle’s question to us at the SEI was:
“Isn’t there a better way?”

The Large System Problem
The problems Battle’s group faced are typ-
ical. Large system projects fail all the time
and the larger they are, the more likely
they are to fail. For example, the new IRS
system was five years late when it was first
used in 2005, but its costs had exploded to
$2 billion. A recent Government Ac-
countability Office defense acquisition
assessment of 72 typical weapons pro-
grams found that the development costs
had climbed 40 percent from the first esti-
mates, there was an average delay of 21
months, and the total systems overrun was
$2 billion [1].

The situation is even worse for truly
massive systems programs, as the New
York Times also recently reported: Two-
thirds of the largest weapons systems ran
over their budgets last year, for a com-

bined extra cost of $296 billion [2]. These
programs were, on average, almost two
years behind schedule.

Problem Causes
Studies show that these development
problems are typically not caused by tech-
nology issues but are largely due to pro-
gram management [3]. Unfortunately, the

common reaction to program manage-
ment problems is to replace the program
managers. This blame-based culture stifles
communication and fosters an opaque and
defensive management style. We have
been changing managers for years, but it
should now be obvious that the problem
isn’t bad managers: They are good people
put in untenable positions.

For example, the replacement FBI sys-
tem was recently killed when it fell three
years behind schedule and after the pro-
ject had spent $150 million. The program
had a total of five CIOs and nine program
managers. Clearly, changing managers did
not fix the FBI’s problems. But neither did
changing acquisition systems, reorganizing
the Pentagon, or modifying procedures.
Projects keep failing. In fact, more and
more large projects fail these days than in
the past—and the failures are even more
expensive and painful.

The common view is that the program
manager is responsible for doing whatever
is required to get the job done. If new
management or technical methods were
needed, he or she should put them in
place or take whatever steps were needed
to do so. But the fact that these large pro-
jects keep failing suggests that program
managers don’t know what to do.
However, we must do something and it
should by now be clear that relying on
program managers to fix these projects
isn’t working. This article suggests how to
address these problems in a way that pro-
gram managers can implement today.

Knowledge Work
We explained to the NAVO that the prob-
lems with software work were an early
indicator of the problems that would soon
plague all aspects of modern engineering
work. Software has been hard to manage
since the beginning, but the reason has
nothing to do with the technology. The
reason is that software is a different kind
of work.

For the more traditional work of the
past, the managers could walk around the
lab or plant and see what was going on.
This is called management by walking
around (MBWA), a very effective way to
keep management informed about the
work and for keeping the workers on their
toes. However, the principal problem with
MBWA is that it is only effective for work
that one can understand by watching the
workers do it. Today, most sophisticated
technical work is more like software: A
great deal of the creative effort is done on
a computer or in a worker’s head, and
results are largely invisible to the casual
observer. Peter Drucker, the first to
describe knowledge work, said that it is
work with the mind rather than with the
hands [4]. The products, instead of being
things you can touch and feel, are ideas.
While these ideas may ultimately be
embodied in physical products, the bulk of
the work, and the true product value, is in
the creative effort required to develop

Why Can’t We Manage Large Projects?

Changing managers, procurement regulations, acquisition procedures, or contracting provisions have not resolved the cost and
schedule problems of large-scale system development. This article shows the problems that organizations face with large sys-
tem projects—and how one government organization has succeeded, over a period of several years, using the Team Software
Process (TSP SM).

Watts S. Humphrey
Software Engineering Institute

“We have been
changing managers for
years, but it should now

be obvious that the
problem isn’t bad

managers: They are
good people put in

untenable positions.”

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

Why Can’t We Manage Large Projects?

July/August 2010 www.stsc.hill.af.mil 5

these ideas and transform them into mar-
ketable products.

Traditional Management
Even though the workers and much of
their work is vastly different from 100
years ago, today’s traditional management
methods are still based largely on the prin-
ciples from Fredrick Winslow Taylor’s
1911 book, “The Principles of Scientific
Management” [5]. Taylor’s methods were
designed for uneducated workers and the
relatively simple manual tasks of the past.
The kind of work and the skills and meth-
ods involved in much of today’s work are
quite different, but today’s management
methods still follow Taylor’s command
and control principles. Unfortunately, with
software and most other sophisticated
technical work, these methods are not
effective in controlling project costs,
schedules, or quality. While the managers
may try valiantly to manage the work, they
cannot know what the knowledge workers
are doing or how they are doing it.

The end result is that today’s managers
cannot truly manage their knowledge-
working projects. That means that these
projects are not being managed, and
everybody knows that unmanaged pro-
jects usually fail. Unfortunately, the man-
agers are generally blamed for the failures
when the real problem is with the man-
agement system—and not the managers.
The answer is not to replace potentially
very capable managers, but to change the
management methods. Program man-
agers, however, typically do not know
what changes to make and are under-
standably reluctant to change to a new
management method that is not in gener-
al use by other similar programs.

Managing Knowledge Work
In considering how to manage knowledge
work, Drucker concluded that since man-
agers cannot truly manage such work, the
knowledge workers must manage them-
selves. While many managers say that they
already involve their people in their own
management, involvement is quite differ-
ent from responsibility. To truly manage
themselves, the knowledge workers must
be trained in personal and team manage-
ment methods and they must be held
responsible for producing their own plans,
negotiating their own commitments, and
meeting these commitments with quality
products. The manager’s job is no longer
to manage the knowledge-working teams
but to lead, motivate, support, and coach
them.

Software teams like to work this way.
Where once they struggled to meet man-

agement’s schedule targets, they now
negotiate their own commitments with
management. The teams feel personally
responsible for and in control of their
work, they know project status, and they
have the data to defend their estimates.
When they see problems, they resolve
them or get management’s help. Further-
more, when the knowledge workers mea-
sure, track, and report on their work, the
managers have the data to help them
resolve problems. Then the entire man-
agement system can participate in making
their programs successful.

When knowledge-working teams have
appropriate management, training, and
support, they can work in this way (see the
sidebar for the principles of knowledge
management). Then they consistently meet
their cost and schedule commitments with
high-quality products. What’s more, these
identical knowledge-working principles
can be applied to all of the engineering
projects in an organization, producing a
measurable and trackable knowledge-work
management process across a large pro-
gram or even an entire organization.

Workplace Objectives
One of the more fundamental problems
with current management practices is that
the workers and managers have different
views of project success. Studies show
that product developers view a project as
successful if the work was technically
interesting and they worked on a cohesive
and supportive team [6]. This was true
whether or not the project met its cost or
schedule objectives. Conversely, the man-
agers viewed projects as successful if they
met their cost and schedule targets with
little regard for the nature of the technical
work or the working team environment.
This difference in workplace objectives
has a profound effect on program man-
agement. For example, when the program

manager wants to know when some large
program will finish, he or she asks the
project leaders. They then talk to their
team members. The team members view
the schedule as management’s problem,
however, and give vague answers such as
“I’m almost through the design,” or “Just
a couple more bugs and I’ll finish testing.”
While the knowledge workers are typically
the first to sense that a project is in sched-
ule trouble, they have no way to precisely
describe job status. Rather than say some-
thing and risk getting involved in a lot of
management debates, knowledge workers
would rather concentrate on their techni-
cal work and leave the schedule problems
for their managers.

The Surprise Problem
Fred Brooks once said, “Projects slip a day
at a time” [7]. To keep their projects on
schedule, all that managers have to do is
make sure that their teams recover from
these one-day slips every day. With large-
scale knowledge work, however, the man-
agers can’t see these small daily problems
and the developers don’t have the data to
describe them. As a result, the managers
can’t take action to recover from the one-
day slips. By the time the schedule slips are
large enough to be visible, it is too late to
do anything about them. This is why pro-
jects that are run by very capable and expe-
rienced managers keep having cost, sched-
ule, and quality problems. The managers
don’t have the feedback they need to see
problems in time to prevent them. It is as
if they were driving a car at a high speed in
a dense fog. Once they see a problem, it is
right in front of them, and they must make
a panicked effort to avoid a crash. Today,
in large systems projects, the managers are
driving fast in a fog—and crashes happen
all the time.

By the time more senior managers see
these project crashes, the schedule delays

The management principles for knowledge work are fundamentally different from
those for traditional engineering. The five management principles for knowledge
work—which were adopted from my forthcoming book “Leadership, Teamwork, and
Trust: Building a Competitive Software Capability”—are as follows:

1. Trust the knowledge workers. Management must trust the knowledge workers
and teams to manage themselves.

2. Build trustworthy teams. The knowledge-working teams must be trustworthy.
That is, they must be willing and able to manage themselves.

3. Rely on facts and data. The management system must rely on facts and dates—
rather than status and seniority—when making decisions.

4. Manage quality. Quality must be the organization’s highest priority.
5. Provide leadership. Management must provide their knowledge workers with

the leadership and support they need to manage themselves.

Management Principles for Knowledge Work

Catching Up With TSP

6 CROSSTALK The Journal of Defense Software Engineering July/August 2010

are typically quite significant. Further-
more, on a large project with many inter-
dependencies, delays in any one part will
affect many others. This means that many
parts of a large program will probably get
into schedule problems at about the same
time. The managers of the many parts of
the program then face a difficult choice:
be the first to admit to schedule problems
or wait for someone else to get into trou-
ble first.

Blame-Based Management
Unfortunately, with the current system,
senior leadership tends to blame the
managers for management problems. By
being the first to admit problems, the
managers could easily be blamed for the
entire program’s problems. Not surpris-
ingly, most managers decide to concen-
trate on the problems they can solve and
wait for someone else to blow the whis-
tle. By the time the problems are visible
to senior leadership, the program is in
such serious trouble that there is no
chance to recover. Then everyone
upstairs is surprised.

The combination of a blame-based man-
agement system and the lack of precise pro-
ject status measures motivates both
opaque management and a general reluc-
tance to admit to problems. With large
and complex systems programs, every
part is important: Problems anywhere
can delay everyone. That is why every
component element of the work must be
managed and tracked and why every team
must strive to meet all of its commit-
ments. That is also why, without precise
status information, all estimates and
commitments at the team level (and, for
that matter every higher level) are just
guesses. Finally, that is why, with today’s
typical management systems, large pro-
jects are almost always late and over bud-
get.

The NAVO and the TSP
After we had reviewed these points with
Battle and his associates, he agreed that it
all sounded very reasonable—but won-
dered how it would help him and the other
managers keep their large programs on
schedule. We explained that the SEI had
developed a knowledge-working process
called the TSP, and that one of its princi-
pal features was that its management sys-
tem was based on precise, operational-
level data [8]. With the TSP, the develop-
ers gather and use data to manage their
own work, and they use their data to accu-

rately measure project status to within
fractions of a day. TSP teams report their
status to management every week, and
management can see exactly where every
element of every project stands. With pre-
cise status information, management can
see small cost and schedule problems
before they become serious. They can
then take timely action to identify and
resolve the problems.

When knowledge workers have been
trained and know how to manage them-
selves, they have detailed plans and know
project status precisely. They also feel
responsible for managing their own prob-
lems and, when they need help, can call on
their teammates or, if needed, on manage-

ment. No process can eliminate problems;
they are a natural consequence of doing
large-scale complex work. But with suffi-
cient warning, recovery actions are almost
always possible—and most of the prob-
lems can be avoided or resolved without a
crash. The key is early warning: That is
why detailed plans, precise status mea-
sures, and working-level issue ownership
are critical. For knowledge work, you will
only get an early warning when the knowl-
edge workers manage themselves.

However, just training workers how to
manage themselves is not enough. Many of
the problems with current engineering
work are caused not by the workers and
managers themselves, but because they do
not properly use the knowledge they
already have. To use what is learned, they
must know what to do and how and when
to do it. For large-scale projects, an opera-
tional process is essential. Program man-
agement is a matter of detail, and every
step must be done precisely and correctly.
Just like airline pilots when they do their
final preflight checks, they follow a detailed

checklist. While they know every step and
have done it thousands of times, studies
have shown that most airplane accidents
involve at least one case of a skipped step
or an improperly followed checklist. This
focus on precise work is the role of an
operational process: to ensure that every
step is done precisely and correctly.

For many of the simple tasks that we
do all the time, we know unconsciously
what to do and how to do it. But for com-
plex or new and unfamiliar tasks—such as
personal planning, precise schedule man-
agement, and data-intensive quality man-
agement—the steps are not obvious. That
means that merely training the knowledge
workers in theoretical methods will not
get them to use the methods correctly or
consistently. For that, they must have an
operational process with quality measures
and trackable plans. But once knowledge
workers are properly trained, know why
and how to manage themselves, and have
an operational process that they actually
use, they can make and follow detailed
plans and precisely track and report their
progress against these plans.

The NAVO Experience
When the NAVO started working with the
SEI, they originally used the Capability
Maturity Model® (CMM®). It was helpful,
but gave them the what when they needed
help with the how—and it was difficult to
implement. On the other hand, the
NAVO found that the TSP was a better
fit, with the guidance they needed to prop-
erly manage their projects. It also provid-
ed for rapid training (initial team-member
training takes a week), with teams soon
after launching the TSP and managing
themselves.

Once the teams were using the TSP,
the benefits of better planning, tracking,
and reduced test time were immediately
apparent. Many organizations even found
that the savings from just the first project
pay for that team’s entire training and
introduction costs. The team can then
continue using it without any further
training investment.

After using the TSP for several years,
Battle reported that their product quality
levels have improved by about 10 times
and that testing times have been reduced
from months to weeks. Schedule and cost
performance is much more predictable
than before, and the Monday, Wednesday,
and Friday weekly status meetings are no
longer needed. Team cooperation and
coordination was also greatly improved.
Battle’s final conclusion was that, “This is
the only way to manage large knowledge-
working projects.”

“No process can
eliminate problems ...

But with sufficient
warning, recovery actions

are almost always
possible—and most of
the problems can be
avoided or resolved
without a crash.”

® The Capability Maturity Model and CMM are registered
in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

July/August 2010 www.stsc.hill.af.mil 7

Conclusions
The consistent failure of large-scale devel-
opment programs not only costs a lot of
time and money, it delays the introduction
of promising new technology and
deprives our fighting forces of the tools
they need to protect our nation. By now it
should be obvious that the U.S. defense
industry lacks the motivation to address
this problem. For example, a mid-level
executive of a major defense contractor
recently told me that he could not afford
to use high quality development methods
like the TSP because it would reduce his
revenue. His organization gets paid when
they overrun projects and they get new
contracts to fix their defective products. If
this executive eliminated this source of
revenue, he would lose his job. One could
argue that the answer to this situation
would be fixed-price contracts, but this
approach has been tried several times in
the last 50 years and has not solved the
problem. It merely converts technical
issues into contract disputes and the con-
tractors get paid anyway.

Similarly, the program managers can’t
solve this problem. Even if they were
familiar with the TSP and convinced that
it would work, they would be reluctant to
try something before it had been widely
used by other programs or recommended
by acquisition management. The TSP has
a proven record of success and it could
help to address this problem right now.
The DoD—or some other government
agency—should evaluate or test the TSP1

and other promising methods to deter-
mine their suitability. It should then deter-
mine the best methods to use in managing
these large programs and recommend that
program managers require their contrac-
tors to use these methods. This should not
be an expensive or time-consuming effort.
Large-scale systems development is too
critical a national problem to ignore—and
the savings could be enormous.u

References
1. GAO. Defense Acquisitions: Assessments of

Selected Weapons Programs. Report to
Congressional Committees. GAO-08-
467SP. Mar. 2008 <www.gao.gov/
new.items/d08467sp.pdf>.

2. “A Lot More to Cut.” Editorial. New
York Times. 11 May 2009 <www.ny
times.com/2009/05/11/opinion/11
mon1.html>.

3. Office of the Under Secretary of
Defense. Report of the Defense Science
Board Task Force on Defense Software.
Nov. 2000 <www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA385923&Locati

on=U2&doc=GetTRDoc.pdf>.
4. Drucker, Peter F. Landmarks of

Tomorrow. New York: Harper & Row,
1957.

5. Taylor, Frederick Winslow. The
Principles of Scientific Management. New
York: Harper & Brothers, 1911.

6. Linberg, Kurt R. “Software Developer
Perceptions about Software Project
Failure: a Case Study.” The Journal of
Systems and Software 49 (1999): 177-192.

7. Brooks, Frederick P. The Mythical Man
Month: Essays on Software Engineering.
20th Anniversary Edition. Reading,
MA: Addison-Wesley, 1995.

8. Humphrey, Watts S. Winning with
Software. Reading, MA: Addison-
Wesley, 2002.

Additional Resources
1. Callison, Rachel, and Marlene Mac-

Donald. A Bibliography of the Personal
Software Process (PSP) and Team Software
Process (TSP). SEI, Carnegie Mellon
University. Special Report CMU/SEI-
2009-SR-025. Oct. 2009 <www.sei.
cmu.edu/reports/09sr025.pdf>.

2. Hefley, Bill, Jeff Schwalb, and Lisa
Pracchia. “AV-8B’s Experiences Using
the TSP to Accelerate SW-CMM
Adoption.” CrossTalk Sept. 2002
<www.stsc.hill.af.mil/crosstalk/2002/
09/hefley.html>.

3. Grojean, Carol A. “Microsoft’s IT
Organization Uses PSP/TSP to Ach-
ieve Engineering Excellence.” Cross-
Talk Mar. 2005 <www.stsc.hill.af.
mil/crosstalk/2005/03/0503 Grojean.
html>.

4. Lopez, Gerardo, et al. TOWA’s TSP
Initiative: The Ambition to Succeed. Proc.
of the 3rd Annual Software Engineer-
ing Institute Team Software Process
Symposium. Phoenix. 22-25 Sept.
2008.

5. Nichols, William R., et al. “A
Distributed Multi-Company Software
Project.” CrossTalk May/June
2009 <www.stsc.hill.af.mil/crosstalk/
2009/05/0905NicholsCarletonHump
hreyOver.html>.

Note
1. For the basics of the TSP, see <www.

sei.cmu.edu/tsp> and past Cross-
Talk issues (<www.stsc.hill.af.mil/
crosstalk/2005/03>, <www.stsc.hill.
af.mil/crosstalk/2006/03>, and <www.
stsc.hill.af.mil/crosstalk/2002/09>).
To examine more detailed information
about the TSP, see the Additional
Resources section of this article. For a
summary of TSP project results, see
<www.sei.cmu.edu/reports/03tr014.
pdf> and slide 17 of <www.cmmi
news.com/2009/pdfs-sessions/73.
pdf>. For more on organizations using
TSP, see <www.sei.cmu.edu/tsp/case
studies>.

There aren’t many organizations bigger than the defense industry—and none with a
bigger need for success in their large-scale development programs—where failure can
have billion-dollar financial impacts and, worse yet, present dangerous security vul-
nerabilities. TSP creator Watts S. Humphrey, whose groundbreaking 2000 report out-
lining the TSP (see <www.sei.cmu.edu/reports/00tr023.pdf>) was sponsored by the
DoD, feels that our defense industry can benefit significantly more from the process.
Through past experiences, and the success of an organization providing oceano-
graphic products and services to all DoD elements, Humphrey shows how and why
the DoD needs the TSP now more than ever.

Software Defense Application

About the Author

Watts S. Humphrey
joined the SEI after his
retirement from IBM. He
established the SEI’s
Process Program and led
development of the
CMM for Software, the

PSP, and the TSP. At IBM, he managed
their commercial software development
and was vice president of technical
development. He is a fellow for the SEI,
the Association of Computing Machin-
ery, and the IEEE. He is also a past
member of the Malcolm Baldrige Na-
tional Quality Award Board of Examin-
ers. In 2005, President George W. Bush
awarded Humphrey the prestigious
National Medal of Technology for his
contributions to the software engineer-
ing community. He holds master’s
degrees in physics and business adminis-
tration and an honorary doctorate in
software engineering.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-6379
E-mail: watts@sei.cmu.edu

Why Can’t We Manage Large Projects?

8 CROSSTALK The Journal of Defense Software Engineering July/August 2010

Q: What were the personal
experiences and values that
influenced you while creat-
ing CMM, PSP, and TSP
technologies?

Watts: Three experiences had a major
impact on me.

Let me start with one of my first man-
agement jobs. I got hired by Sylvania in
Boston to manage a fairly large circuit-
design group that was building a great big
cryptographic system. I had this group of
young engineers all designing circuits, but
I had been trained as a physicist and didn’t
know the first thing about circuit design.

Rather than fake it, I just spent my
time asking them what they were doing
and had them educate me. It was a differ-
ent kind of management style than what
people are used to. Usually, managers have
done development work themselves,
know how it ought to be done, and try to
tell everybody how to do things. I couldn’t
do that. It was an education for me and
highly motivating for the engineers. They
loved it, and began to manage themselves.
The exciting thing for me to discover was
the fact that it’s the only way you can man-

age really large groups. You discover when
you get groups of hundreds or thousands
of people—which I later did—that you
can’t manage what they are doing, so you
need to count on them. That is the style
I’ve used throughout my career. It’s influ-
enced everything I’ve done.

Basically you treat management as a
continuous learning process, as a leading
process, as a motivating process, and not
as a directional process. So you’re not
telling people what to do—you’re having
them work it out and explain it to you and
justify it. It really makes an extraordinary
difference.

The second experience was at IBM
where I was a crisis fixer. I found that the
problems were never technical; they were
always management problems. That’s
what I have struggled with trying to fix. I
didn’t know it then, but it’s something I
would be working on for rest of my life.

Fundamentally, you need to challenge
people to prove to you that they are man-
aging themselves: Putting motivation and
accountability together turned out to be
very effective. By and large I’d say that,
with essentially no exceptions, all the crisis
projects I led were successfully fixed. One
example was an enormous project of
4,000 developers building an operating
system for IBM. It was terribly late. We
basically stopped everything for about 60

days and had them make plans, and it
worked.

The reason I feel that the planning issue
was critical comes from my third influ-
ence—my MBA education at the University
of Chicago. For some strange reason, I
decided to major in manufacturing. The
manufacturing professor emphasized three
things in management: planning, planning,
and planning. Basically it’s what he focused
on throughout the whole course.

What fascinated me was that while
hardware engineers have to work with
manufacturing, the software engineers
don’t. The manufacturing people require
plans, so the hardware engineers have to
understand planning. The software peo-
ple could manage their own work if they
learned how to make plans and manage
themselves. The CMM, the TSP, and the
PSP all start with planning—it’s the first
step for everything you do. But software
people are never taught how to plan.
You can’t just tell them to plan—you
have to show them. That’s a big part of
what we do.

Q: As you expanded the PSP
process to the TSP, did the
industry develop at a slower
or faster pace than you
envisioned?

An Interview With Watts S. Humphrey

With more than 50 years in software and countless CrossTalk articles, Watts S. Humphrey
needs no introduction—but we will anyway.

After World War II and academic work at the University of Chicago, Humphrey
led an engineering group at Sylvania Electronic Products. Humphrey then joined
IBM in 1959, where he worked on everything from fixing the OS/360 to leading
projects as Director of Programming and Vice President of Technical Develop-
ment. After retiring from IBM in 1986, he joined the SEI, where he established
the Software Process Program, led development of the Software Capability
Maturity Model, and introduced the Software Process Assessment and Software
Capability Evaluation methods. Humphrey also led the development of the
Personal Software Process SM (PSP SM) and the TSP. At a White House ceremony
in 2005, President George W. Bush awarded Humphrey the National Medal of
Technology. Known as the “father of software quality,” he is also the author of 12
books—with another one, “Leadership, Teamwork, and Trust: Building a
Competitive Software Capability,” on the way.

CrossTalk talked with Humphrey, who delved into his past and present work, as well as
discussed the future of CMMI®, PSP, TSP—and the software industry.

SM The Personal Software Process and PSP are service
marks of Carnegie Mellon University.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

An Interview With Watts S. Humphrey

July/August 2010 www.stsc.hill.af.mil 9

Watts: Slower. I am reminded of a story
about Fredrick Winslow Taylor1. More
than a century ago he was working with a
machine tool shop in England and invent-
ed the idea of lubricating the cutting tool:
It was effective, it was very easy to intro-
duce, and it cost practically nothing. He
went back 20 years later and checked on
machine shops in England and discovered
that only one other shop was using it.

Now my point is that extraordinary
methods that save an enormous amount
of money are often relatively easy to put
in place and are unbelievably effective—
but they don’t get adopted. You have to
wonder why that is. I’ve concluded that
there are three reasons.

First, every five years or so for the past
60 years that I’ve been working, some
“magical new software method” comes
along, and most of them don’t work—
except for the person who invented them.
This has caused a lot of skepticism.
Workable new ideas won’t be believed
until software engineers see them work for
themselves. And they won’t try it for
themselves until they believe it will
work—so you’re stuck with a chicken and
egg problem.

The second is that introducing new
ideas is always difficult. When things are
going well, organizations don’t think they
need to change—and when things are
going badly they can’t afford to change. So
you’re stuck and it takes people with great
vision to see the strategic need to change
even when they don’t have to. Most only
change when there’s some pressure that
makes them change.

And the third is that very few man-
agers below senior levels are willing or
able to take the initiative to introduce new
methods—even when the benefits are
obvious and proven.

Q: So what you’re saying is
they feel powerless.

Watts: Well ... they feel that way, but peo-
ple really aren’t powerless. I’ve talked to
managers who have hundreds of people
working for them and say they can’t do
anything. But I’ve been a manager with
hundreds of people working for me and
I’ve done it. I basically would just do what
I felt I had to do and I’d tell my manager,
“Here’s what we’re doing.” I’ve always
believed that if it makes sense and you can
justify it, just do it and it almost always will

work. Tell people in advance and don’t
ever surprise your boss, but I’ve always
followed that old saying: “It is better to
ask for forgiveness than permission.”

Q: What are the other engi-
neering areas to which you
see the PSP/TSP expand-
ing?

Watts: The PSP and the TSP are funda-
mental; they’re not just about software. If
you’ve read Peter Drucker, he started talk-
ing about knowledge work in 1959.
Knowledge work is dramatically different
from the typical work we do with our
hands. It’s work where you can watch
knowledge workers but you can’t tell what
they’re doing.

Now with typical engineering work—
hardware engineering, manufacturing,
construction, you name it—you can watch
people doing their work and you can tell
what they are doing and how well they are
doing it. I mention in the article [in this
issue], the method called “management by
walking around” (MBWA): Managers go
out and walk around the shop and see
what is going on. As I say in the article, an
increasing amount of the true work is
done on computers and in people’s heads.
That’s where the value is. And that is
knowledge work.

So with a few exceptions, knowledge
work is becoming pervasive—and why it’s
so extremely hard to manage some of
these jobs. Managers don’t know how to
operate if they can’t use MBWA—you
can’t use it with knowledge work. That’s
why software has been so extraordinarily
hard to manage from the very beginning.
Drucker’s point was that the knowledge
workers have to manage themselves, and
that’s what we are showing them how to
do with the TSP.

Today’s knowledge workers don’t
know how to manage themselves because
they don’t believe that they need to. They
think that anything called management is
the manager’s job. So the knowledge
workers don’t manage themselves: they
don’t want to, they don’t know how to,
and they literally can’t do it. As a result,
knowledge work is not being managed—
which means that projects often fail.

The TSP is designed for knowledge
work. It’s not just designed for software,
it’s designed for any kind of knowledge
work—and we’ve used it with systems

design, video game development with
artists and game designers, as well as with
software people and hardware groups.
The TSP is universally helpful as a man-
agement system for just about any kind
of complex work. One of the most
impressive things to me was that we
trained some Mexican software engineers
to be TSP coaches—and they returned to
Mexico and started a business. They’ve
now grown that business to nearly 400
people, and they expect to be at 1,000 in
a few years. They’re even running their
corporate office with the TSP.

The places where it can be used are
almost limitless—and the benefits in
software are so extraordinary that that’s
where knowledge workers are most likely
to see the benefits of self-management.
In software, you can cut test time incre-
mentally. We’ve seen organizations that
have been spending a year in test; with
the TSP, they now spend a month and a
half in test. You don’t quite see that in
the other areas, but it is equally applica-
ble. The TSP is universally helpful as a
management system for just about any
kind of complex work.

Q: On a side note, our organi-
zation just finished a six-
year training program
where we trained more than
a thousand leaders here
and—I’ll just be honest—
we stole heavily from those
concepts to get folks out-
side of software to use those
types of disciplines. The
thing that I noticed is peo-
ple seem to inherently be
attracted to the PSP/TSP—
I mean, it just makes sense
to them.

Watts: Well, people love it: Their morale
goes up, they are excited about it, and their
jobs are much better. PSP-trained people
have to know how to manage, estimate,
and track their own work—personally. If
they don’t know how to plan, they don’t
have the foundation required for self-
management. That’s why the training is so
extraordinarily important. But managers
just want to read a book on “how to be a
team.” That doesn’t work because they
don’t really understand planning, manage-

10 CROSSTALK The Journal of Defense Software Engineering July/August 2010

ment, and tracking, or how to control a
project.

Q: What is your vision for
using the TSP concepts in
whole organizations and
how would they manage
such an effort?

Watts: There are two ways to look at this.
Let me first talk about a big company. I
recommend that organizations start with a
modest-sized area and run a few teams.
Typically, they’ll start with multiple pro-
jects of six to 12 people—which are great
for TSP teams—and we have them run
those projects and start building skills.
Then, broadening TSP use across the
business is purely a question of how
rapidly the organization wants to go and
how rapidly they can build the manage-
ment skills. The engineering skills can be
built very quickly: In one week, we can
train an engineering team to use the TSP
and be a TSP team. The problem is that it
takes quite a while for management to
understand what the TSP is all about. It’s
a change in management style, and chang-
ing management style in an organization is
much more difficult. The engineers take to
it like ducks to water—they just dive in.
We typically have engineers refusing to
work any other way after they’ve used it.

Second, there is the case where you’ve
got an entire organization-wide program
and the organization may have multiple
companies, multiple locations, and it’s all
one great big job. When the people run-
ning these great big projects want to real-
ly know project status, the managers must
go to the individual software and system
design teams—and talk to the developers
and ask them exactly where they stand on
their schedules and how they’re doing.
Unfortunately, the teams can’t tell them.
They’re guessing, they don’t know. The
project or team leaders may poke around
and talk to everybody and they get vague
stories. Then, when these managers talk to
more senior management, they’re guessing
and defensive. They really can’t level with
management because they really don’t
know.

With the TSP, you don’t sit down and
argue and debate. You say: “Here is exact-
ly where we stand, we’ve got these prob-
lems, and here we are.” You discover that
when you have the facts, your customers
and your managers will work with you to

solve problems. We have seen that with
the Navy and with several DoD projects
we’ve worked on. All of a sudden, instead
of faking it, you know exactly what you’re
talking about. Nobody is guessing. You’ve
got the data and you sit down and say,
“Okay, we’ve got a problem to solve. How
do we do that?” It is a totally different atti-
tude.

In big programs you need to start at
the base, get everybody using it, and have
that whole attitude—of honesty, of level-
ing, of data, of facts—where you can real-
ly negotiate and deal openly with the man-
agement team. Building an environment
of trust is absolutely crucial. We do not
have that today in large programs because
the facts aren’t there to engender trust.

Q: PSP theory talks of experi-
encing a 100 defect per
thousand lines of code
(KLOC) defect density as
typical for PSP software
engineers (as well as the
TSP teams they belong to)
when developing software.
With software teams using
more powerful, context-
sensitive editors for devel-
oping software, TSP teams
with which we are familiar
are seeing defect densities
of anywhere from 50-70
defects per KLOC. Assum-
ing this new “reality” exists
beyond the teams we study,
does this evolution in soft-
ware development impact
the way that PSP should be
taught?

Watts: Well, the 100 defects per KLOC
defect level is what we see when develop-
ers first start learning PSP. At the end of
training, they’re typically at 50-70 defects
per KLOC or less. I’ve seen some down in
the 20s. The numbers come down: People
are using more disciplined methods and
are aware of the defects they inject
because they are measuring and tracking
them. Just measuring and understanding
the mistakes you make generates feedback
real quickly. The numbers really do come
down sharply when people understand
their mistakes.

The second issue concerns the devel-
opment environment. I’ve written some
programs with .NET, with stuff like that.
But those tools do not eliminate your
errors and do not address the key prob-
lems with logic errors. All of these tools
are designed to generate a working pro-
gram from whatever the developer puts in,
so it could very cleverly produce a working
program from a highly erroneous design.
Software people tend to think that when
some tool fixes their trivial defects that all
the defects are fixed. People have to be
conscious of what they’re doing and even
more so when working with very sophisti-
cated tools like .NET, where you can put
in all these very complex functions that
most people don’t even understand. These
languages are so complicated that very few
people ever really understand them com-
pletely.

Q: Is it safe to say they are get-
ting a false sense of security,
as far as these defects go, by
using some of these tools?

Watts: Yes, that is true. Powerful tools
can lead to powerful mistakes. The whole
process of designing tools and languages
is aimed at richer and richer capabilities.
Not a whole lot of attention is paid to
understanding why developers make
errors and/or how to design languages
and tools that minimize human error. I’ve
hoped that the academic community
would look at this, but unfortunately no
one has done it yet. It is time they started.
We really do need that kind of help.

Q: You have stated that your
personal goal since the
mid-80s has been to trans-
form the world of software
engineering. In what ways
have you succeeded in this,
and what unreached goals
do you hope to meet in the
future?

Watts: When I retired from IBM, I made
the outrageous statement that I was going
to “change the world of software.” You
can never really do that sort of thing by
yourself, but it was really motivating. What
I found fascinating was that people got
excited about it. They joined in. I got a

Catching Up With TSP

An Interview With Watts S. Humphrey

July/August 2010 www.stsc.hill.af.mil 11

whole movement going and it was mar-
velous. When you get people working with
you, you can get a lot done. That has been
exciting—and we’ve had some remarkable
successes as well as some real disappoint-
ments.

Let me talk about the successes first.
With the OS/3602, after I took over that
project [at IBM], we put together a new
plan and we put in place the management
systems I’ve been talking about. This was
at a much earlier level—we didn’t under-
stand it all then. But we [then] didn’t miss
a single delivery date for two and half
years. There are not many people who
have done that with big software systems.
We put out the first 19 releases of OS/360
on schedule. Take a look at Microsoft or
anybody else today: They never deliver on
schedule, but we did, and it made an enor-
mous difference.

Okay, so that is the success. We now
have a basic understanding of this stuff.
We know how and why software costs,
schedules, and quality have been out of
control—and we know what to do to fix
them. I’m not saying that we have solved
every problem, but when we work with
organizations, we can help them build the
capabilities they need to consistently deliv-
er quality products on schedule. And it
works: We have seen it with hundreds of
teams across many businesses; we’ve seen
it work with small two, three, four person
projects, up to great big multi-company
programs.

What is so disappointing is the accep-
tance of these ideas. The defense industry
hasn’t really looked at this at all. One of
the main reasons and one of the big
objectives I had when I started this whole
thing was to address this national need:
We have these enormous programs and
our whole defense industry and military
preparedness is dependent on these pro-
jects getting completed—and on time.

During my very first SEI project, I was
working with the electronic systems com-
mand. That’s where we started the CMM,
the predecessor of CMMI. Every project
was failing. They were all behind sched-
ule—on average 60 to 70 percent late, and
costs were at least twice what was planned.
There was a recent report in the New
York Times3 saying that two-thirds of the
largest DoD weapons systems ran over
their budgets and the combined extra cost
was $296 billion dollars—and they were
on average two years behind schedule.
This is a tragedy. We know how to do bet-

ter—we are just throwing money down
the drain.

I had a major executive on a defense
contract ask me, “You mean to tell me you
want me to spend profit dollars to cut rev-
enue?” These companies today are being
paid to do crappy work and then fix it
later. And with the current system, you
and I as taxpayers just keep paying for it.
The more junior-level managers can’t fix
it, and it isn’t that they don’t want to; my
guess is that they would love to, but can’t.
They are measured on revenue and profit
and they literally cannot reduce it. They
can’t spend profit dollars to train their

people to do quality work and have their
revenue go down. The whole structure
does not allow them to do it.

The DoD is constantly struggling.
They are trying to change procurement
regulations and trying to change managers
and get smarter people, but there will be
exactly the same problems until they start
to deal with the fundamental management
system that’s currently being used. And
that is what the TSP does: It manages
knowledge work. It’s not dealing with the
work as something you can walk around
and watch, because you can’t. Knowledge
work is invisible to the managers and if we
continue to operate in the same way, none
of the band-aids the DoD is trying will
ever fix it. I’ve seen it for 50 years. So it is
not going to change in the next five, 10, or
20 years until leadership begins to realize
that we have to try something different.

And the TSP is different. It lets teams
know precisely where they stand. They
can give data to their managers, they can
tell them exactly what is going on, and
they can identify any problems. Most
crises in big programs are obvious: They

are identified years ahead by somebody
way down in the trenches. And usually
those people don’t feel that they own the
project. They assume somebody else will
handle the problems, so they just go on
with their jobs—and the crisis blows up.

What is exciting about TSP teams is
they actually do risk analysis and track
problems. They take ownership and assign
individual team members to track and
manage them. We have standard roles for
TSP teams—a customer interface manag-
er, a test manager, a design manager, and
others—and each of these roles is
assigned to a team member. So you now
have ownership at a team level; you have
team members who will bring issues
upstairs when they need to. Instead of hid-
ing their problems and going on with their
work, they’re actually addressing issues
proactively and getting management’s help
when they need to—and it works.

We need that attitude throughout these
enormous programs in the DoD. It must
start down at the root level. If you have it
there, it will build all the way up to the
executive level. When the managers know
what they are talking about, you begin to
get cooperation between the defense con-
tractors and the DoD. And the DoD can
now deal honestly with Congress. Right
now, Congress doesn’t trust the DoD
because they can’t get the facts and every-
thing is a surprise.

The other disappointment is the acad-
emic community. With few exceptions,
computer science and software engineer-
ing programs have shown no interest in
the TSP and PSP. Until they start teaching
this stuff, their graduates won’t under-
stand it and industry will have to re-edu-
cate their people—and that’s expensive.
The way people are working today, they’re
basically beating their heads against the
wall, testing until midnight, in at all hours.
Nobody likes it, it’s a painful job, there are
failures all the time—and it has become a
very unattractive career.

The U.S. Census Bureau did a study
some time ago—and unfortunately I don’t
have the reference—forecasting that with-
in 10 years, 50 percent of the people doing
software work would leave the field. These
are enormously talented and skilled people
who have had 10 years of experience that
are just going off and doing other things.
They make some money and then they
leave. They can’t take it. It’s because they
don’t know how to manage themselves;
they don’t know how to work in this envi-

“[The TSP] lets teams
know precisely where
they stand. They can

give data to their
managers, they can tell
them exactly what is

going on, and they can
identify any problems.”

Catching Up With TSP

12 CROSSTALK The Journal of Defense Software Engineering July/August 2010

ronment. The academic community really
has to get on board: understand it and
teach it. They ought to lead this charge.

Q: Do you see issues between
the model community
(CMMI) and the process
community (TSP) and, if
so, what are your thoughts
on how to overcome such
differences?

Watts: Frankly, in the past, we have had
differences, but they were principally due
to misunderstandings. The groups had not
been working that closely together. We
were basically on our own paths. Our chal-
lenge was to figure out how to make this
stuff work. Now we’ve worked through
these differences and see that the two
approaches work together extremely well.
The CMMI people now see that it works.

Fundamentally, one of the big prob-
lems CMMI has now is performance—
performance for high-maturity organiza-
tions. The CMMI community is beginning
to see that what we’ve got does work. And
so we are beginning to work together;
CMMI and the TSP are very complemen-
tary. We are now working as a coordinated
group to figure out how we can better
help people improve their organization’s
performance and accelerate process
improvement.

Q: What is your opinion of the
direction that CMMI ap-
pears to be headed for high
maturity? Specifically, do
you believe that we will see
benefits from the kinds of
Process Performance Base-
lines and Models for which
lead assessors are now look-
ing?

Watts: Let me talk about the two kinds
of processes: procedural and operational.

CMMI is an excellent example of a
procedural process. Fundamentally, it sets
organizational standards and sets baseline
procedures across a business.

The CMMI framework is exactly what
we did at IBM: We defined standard mile-
stones where the teams had to go through
six project review steps before they could
go out the door. They had to do this

before they could get funded, before they
could announce a product—that sort of
stuff. We had steps that all the projects
had to go through: guidelines for quality
assurance, testing techniques, and inspec-
tion procedures. We established a review
procedure and all the involved groups par-
ticipated—the maintenance people, the
marketing people, the support groups, and
so forth. They all had to sign off. While
this was a lot of bureaucracy, it forced the
organization to do things that TSP teams
do naturally. But it worked real fast. Since
we were in a crisis, we needed that.

Before CMMI, we didn’t have that
sort of thing—everybody was off doing
their own stuff, nobody had a standard
framework, none of that. CMMI is
extremely helpful in stabilizing an organi-
zation and getting a level of statistical
control: It is repeatable; you can more or
less get stuff to work in a predictable way.
And so that is how CMMI—in Levels 2,
3, 4, and ultimately 5—stabilizes an orga-
nization and begins to build the kind of
foundation you need for real improve-
ment. So CMMI is what I call a procedur-
al process.

Now you get to an operational process
where you are talking about what the
development teams do when they develop
software. How do they do it? How do
they manage quality and cost and sched-
ule? What data do they gather? What
measures do they use? We found that
until you provide specific guidance to the
developers, they won’t do it.

Think of it this way: When you tell a
developer, “I want you to make a plan,”
they don’t have the vaguest idea of how
to do it and they don’t even know what
one looks like. That’s what I saw at IBM.
Everybody was coding and testing.
Everybody knew that they ought to have
plans and requirements, and they knew
that they ought to have all this other
stuff in place—but they didn’t know
how to do it. I put a thousand managers
through a course on how to plan. If we
hadn’t done that, the managers wouldn’t
have been able to make plans. We put
that in place and it worked. It was extra-
ordinary.

So the whole idea here of the proce-
dural process is to build the base capabil-
ity and then begin to move toward an
operational process where people really
do what they have to do to generate the
data, manage the quality, and build the
performance of the organization. So

that’s the distinction between the proce-
dural process and operational process.
With a procedural process, you usually
need a bureaucracy to enforce it, but with
an operational process—as long as the
teams are properly coached—they can be
trusted to do their work properly and the
bureaucracy is unnecessary. So the trade-
off is coaching versus bureaucracy.

When we originally put together the
whole maturity model framework, we were
doing it for the acquisition community. We
knew that we had to give guidance on the
question, “What do you look for?” So we
focused on artifacts. What is the evidence
of an organization’s performance? Say we
want an organization that is producing
plans and that uses configuration manage-
ment and requirements management.
What are the things that you’d have to have
if you did that? You could say, “Well okay,
if you do planning then you ought to have
plans.” You can now look around and say,
“Do you have plans?”, “Do you have
review meetings?”, and “Do you have
review meeting minutes?” If you have
configuration management then you ought
to have configuration management audits,
reviews, and updates so that there are actu-
al artifacts produced as a natural conse-
quence using the process. It shouldn’t be
expensive to produce. If you’re actually
using that process those are things you
ought to naturally have; you look and make
sure they’re there.

When we put together the original
maturity models, this is what we did.
While the acquisition people didn’t really
understand the details, they could tell that
somebody had a development plan, it was
for this project, it was signed off, and it
had what appeared to be the right stuff in
it. It was fairly easy to do. The original
intent was that these artifacts were the
natural consequence of the process being
used, so there shouldn’t be a lot of cost
involved in preparing for such a review.

Now notice what happened with
CMMI: Appraisals became important so
organizations were in a great hurry to
reach a high maturity level. Increasingly,
organizations discovered that it is
extremely hard to change what the devel-
opment teams actually do. It’s a heck of a
lot quicker to have task groups generate
documents that meet the needs of the
appraisal. So you’ve got groups that put
together configuration plans, develop-
ment plans, and all of this stuff. And it’s
not developed by the developers—but

July/August 2010 www.stsc.hill.af.mil 13

there is nothing in CMMI says that it’s
wrong to do this—so you’ve got all of
these artifacts. Now you have these inde-
pendent groups bureaucratically produc-
ing stuff that has no relationship to the
work that is being done. And so you don’t
improve organization performance at all.
Unfortunately CMMI, as currently built,
doesn’t protect against that. And so that’s
what we need to focus on: How do we
work together so the CMMI and TSP
folks really focus on what it takes to have
a high-performance organization?

This is why the performance idea is so
critically important. If you really are talk-
ing about data and measurement, you
have to think about performance in a dif-
ferent way. You need to show that you not
only have the artifacts but you are getting
the performance the artifacts should pro-
duce. So that’s the thing that we are talk-
ing about. Up to this point, when we’ve
put people together, it has cut the cost
and time for process improvement. It
accelerates the movement from one level
to another and produces dramatic perfor-
mance improvements.

Q: Where do you see things
going in the future? Do you
see the DoD taking more
steps to utilize the TSP?

Watts: In terms of where we are going,

the future is exciting. I’ve found that even
enormous programs can be managed. Can
you imagine how our economy would
work and how the DoD would function if
people could actually put together plans
for these massive programs and then
delivered them on schedule and for their
planned costs?

People don’t understand when I say,
“Delivering on cost and within schedule,”
that this will be a fundamental problem
for the DoD. It doesn’t mean that the
teams can deliver on whatever schedule
the politicians or generals demand, it
means that the development teams them-
selves—when they know how to manage
their own operations and put together
their own plans—can go to the generals.
Then the generals can go to the politicians
and say, “Here is what it is really going to
take.” Instead of saying, “We’re going to
do it in 18 months,” you may do it in 30
months, but people will actually deliver on
schedule and they will meet their cost
goals with quality products.

We are seeing that time and time again.
We are seeing it with big teams and we’ve
even seen it with multi-company teams
where you have people working together
across several companies. There was one
case with two competing companies4—
under a DoD contract—where they actu-
ally did deliver on schedule and the prod-
uct really did work. We heard the cus-

tomers say, “This is extraordinary. We’re
not going to work any other way.” So we
know it can be done.

So the customers will like it, the politi-
cians will like it, the generals will like it, the
users will like it, and we’ll get a hell of a lot
faster stuff out there to the fighting
forces. It’s a very exciting future. I hope
I’m there to see it.u

Notes
1. See <http://en.wikipedia.org/wiki/

Fredrick_Winslow_Taylor>.
2. IBM’s OS/360, officially known as the

IBM System/360 Operating System,
was developed for IBM’s then-new
System/360 mainframe computers.
The multiple virtual storage version of
OS/360 was the first large-scale gener-
al purpose operating system and it was
one of the first to make direct access
storage devices a prerequisite for their
operation.

3. See <www.nytimes.com/2009/03/31/
business/31defense.html>.

4. This project is detailed in the
May/June 2009 CrossTalk article,
“A Distributed Multi-Company Soft-
ware Project,” co-written by Humph-
rey with Dr. William R. Nichols, Anita
D. Carleton, and James W. Over. See
<www.stsc.hill.af.mil/crosstalk/2009/
05/0905NicholsCarletonHumphrey
Over.pdf>.

An Interview With Watts S. Humphrey

DATA: Mining, Flow, and Reliability
Jan/Feb 2011

Submission Deadline: August 13, 2010

Rugged Software
March/April 2011

Submission Deadline: October 8, 2010

People Solutions to Software Problems
May/June 2011

Submission Deadline: December 10, 2010

Please follow the Author Guidelines for CrossTalk, available on the Internet
at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on software-related
topics at any time, along with Letters to the Editor and BackTalk. We also provide a

link to each monthly theme, giving greater detail on the types of articles we're
looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES

Ple
at <ww
topics

lin

If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are specifically
looking for articles on software-related topics to supplement upcoming
theme issues. Below is the submittal schedule for three areas of emphasis
we are looking for:

14 CROSSTALK The Journal of Defense Software Engineering July/August 2010

The TSP quality plan is composed dur-
ing meeting 5 of the launch1 by deter-

mining the defect injection rates and yields
for each phase of the product develop-
ment process. Using the team’s historical
averages for these rates and estimated
hours per phase, the team can predict how
many defects will likely be injected and
removed as products move through this
process. Unfortunately, these averages do
not take into account normal variability in
the process. However, by applying a
Monte Carlo simulation to the standard
TSP quality planning process, a team can
determine the historical distribution of
process variability and produce a plan with
ranges for expected defects injected and
removed, as well as a measure of goodness for
the product and process.

The TSP Quality Plan
One of the hallmarks of projects using
the TSP is the attention to quality or, more
accurately, the ability to manage product
defects. In fact, TSP creator Watts S.
Humphrey says:

... defect management must be a top
priority, because the defect content
of the product will largely deter-
mine your ability to develop that
product on a predictable schedule
and for its planned costs. [1]

A chief component of this focus is the
quality plan developed during meeting 5
of the TSP launch (for a project). This
plan is composed by estimating defects
injected and removed during the various
phases of the software process. The team
uses historical averages of defects injected
per hour to determine defects injected and
similar averages for yield (the percent of
existing defects found and fixed during a
phase) to determine those removed (see
Table 1 for a sample quality plan).
According to Humphrey, the true purpose
of the quality plan “is to establish team
yield goals for each process step” [2]. If
the team does not have sufficient histori-

cal data, average injection and removal
data collected by SEI can be employed.
Using this approach, the team estimates
final product quality and then determines
whether or not that quality will meet their
customer, management, and team goals. If
those goals are not met, the team decides
what process changes should be made to
meet them.

Once the plan has been developed and
the launch completed, it is the role of the
team’s quality manager (assigned during
the launch) to monitor progress against
the quality plan. Results of the monitoring
activities are discussed during the team’s
weekly meeting. In addition to monitoring
actual values for defects injected and
removed, the quality manager can help
focus the team on quality issues by exam-
ining other metrics, such as the defect
removal profile (the defects per thousand
lines of code removed from software
components as they move through the
development life cycle) and the product
quality index. Exercises such as the cap-
ture-recapture method2 can even predict
how many defects may have escaped a
personal review or inspection. When done
properly, these measures, metrics, and
activities can improve the team’s quality
focus, reducing rework and improving on-
time and within-budget performance.

Many TSP teams that have no issues
with most TSP concepts struggle with this
progress monitoring. While teams are
excited about producing the quality plan
during launch, the quality manager no
longer reports quality progress after a few
weeks—other than announcing when the
next quality event (inspection, test, etc.)
will take place. Let’s say, at the project
post-mortem, that a team dutifully collects
the quality data needed for the next
launch, but notes in the lessons learned
that they “need to do a better job on the
quality plan in the future.” In my experi-
ence, there are few key reasons for this
fall-off of the quality focus:
• The team has not collected sufficient

historical data for defect injection and
removal; they utilize the by-the-book

numbers provided by the SEI, but do
not really believe them because they
are not their numbers.

• Historical averages blend the results of
high performers with average or low
performers. Depending upon who is
working on a module or series of
modules, the predictions may or may
not truly represent the work being
done, so the team doesn’t trust them—
and certainly does not use the predic-
tions to guide their work.

• Defect injection rates (DIRs) are based
upon the effort estimate for each mod-
ule; while TSP teams are great at using
Earned Value techniques to balance
workloads to meet their estimates, not
every module is accurately estimated,
making the defect injection numbers
suspect.

• Team members are not consistently
collecting defect data; either individu-
als are counting defects differently or
they are not measuring them at all,
making any defect prediction model
inaccurate, and thus, unusable.

• When actual data begins to come in,
the quality manager, team leader, and
sometimes even the coach don’t really
know what to make of it (e.g., does a
lower number of defects than expect-
ed mean the team is just very good, or
that the quality activity was badly exe-
cuted?).
These issues can be addressed by two

basic practices: 1) consistently collecting
data; and 2) properly using the concepts of
variability in developing and tracking the
quality plan. What follows is an examina-
tion of some simple ways to ensure quality
data are consistently and properly collect-
ed, and a discussion of how to use Monte
Carlo simulation to account for inherent
process variability—in turn making the
quality plan more accurate and usable.

Consistent Data Collection
From an examination of the data of 10
randomly selected PSP students from
various classes over a five-year period, it
becomes obvious that the rate of defects

Updating the TSP Quality Plan
Using Monte Carlo Simulation

David R. Webb
309th Software Maintenance Group

The 309th Software Maintenance Group at Hill AFB has started implementing an updated version of the TSP quality
plan utilizing Monte Carlo simulation. This article presents an overview of why an updated quality plan with variability is
needed, what data the model requires to be useful, and how the new model works. Actual data from Hill AFB projects that
have implemented this method are presented for review.

Updating the TSP Quality Plan Using Monte Carlo Simulation

July/August 2010 www.stsc.hill.af.mil 15

injected per hour varies widely by person
(averaging 0-60 per hour); even the plots
of the averages of defect injection rates in
design (averaging from 0-30 per hour) and
code (averaging from 2-10 per hour) show
that every person is different—sometimes
vastly different.

While some of this variability has to do
with individual capabilities, the program-
ming environment used, the difficulty of
the assignment, and personal coding styles,
much of it also has to do with common
operational definitions and recording prac-
tices. Anyone who has taught a PSP class
has noticed that not everyone fills out their
defect logs the same way: Some students
record several missing semi-colons as a
single defect then fix them all at once,
while others count each semi-colon as an
individual defect with distinct fix times.
Most instructors allow this individual style
of defect logging, as long as the student is
consistent in the method used; however,
when determining team defect injection
rates, this kind of instability in definitions
and recording methods can cause a predic-
tion model to behave erratically. This leads
the observer to doubt the validity of using
personal defect logs, unless all engineers
are somehow coerced into using identical
logging techniques.

Another reason to suspect that per-
sonal defect data may not be the best fit
for a quality prediction model can be seen
in the actual project data. The distribu-
tions in personal defect logs were collect-
ed over an 18-month period from a TSP
team at Hill AFB. During this project’s
execution, the variability in personal
defect logging noted in the classroom data
did not stabilize or become more consis-
tent. The most disturbing trend in these
data is the severe lack of personally
recorded data, as evidenced by the num-
ber of engineers with data from only one
module or no defects logged at all. It is
important to note that these data come
from a team with strong coaching and a
heavy quality focus (they have never
released a major defect).

For these reasons, it appears to be
undesirable to use personal defect log data
for defect injection analyses. That being
the case, the question becomes: What
kinds of data would make sense?
Interviews with the engineers on the
noted project (as well as other TSP pro-
jects at Hill) suggest that more consisten-
cy may be found in defect data from
inspection and test databases. These pub-
lic databases require more strict control to
ensure that defects are properly identified,
analyzed, addressed, and tracked. This
typically requires users to enter data

according to a defined procedure and to
use common definitions for defects and
defect types. This kind of control seems
to drive more stable operational defini-
tions and data recording practices than
evidenced in the personal defect logs.

When looking at the design and code
inspection data from our TSP project, it
shows that the distributions are much
tighter than those in the personal logs
without the problem of a lack of record-
ed data. That being said, there is still some
variability in the data—in this case, higher
in the code inspections than the design
inspections. For example, the average DIR
on both the design and code review data is
toward the lower end of the distribution,
suggesting a skewed normal or lognormal
distribution in defect injection rates.

Therefore, a possible conclusion of
this analysis is that personal defect log
data is not as useful in creating a quality
model for the quality plan as is data from
public databases, such as the inspection
and test databases. However, even in these
data, the defect injection rates display a
certain amount of variability that should
be accounted for in our quality model.

One very important note here is that
this analysis should not be used to suggest
or validate the idea that personal defect
logs are not useful. Several engineers inter-
viewed found them very useful for per-
sonal improvement—they simply are not
consistent from person to person, making
the data unusable for team modeling pur-
poses. Strict coaching and quality manager
oversight, focusing on common opera-
tional definitions and recording proce-

dures, may make these data more usable.

Monte Carlo Simulation
One method of taking into account the
variability of the defect injection rates
and yields in a quality model would be
using a technique called Monte Carlo
simulation. The Monte Carlo method is
any technique using random numbers and
probability distributions to solve problems
[3, 4], using the brute force of computa-
tional power to overcome situations where
solving a problem analytically would be
difficult. Monte Carlo simulation iterative-
ly uses the Monte Carlo method many
hundreds or even thousands of times to
determine an expected solution.

The basic steps of Monte Carlo are as
follows:
1. Create a parametric model.
2. Generate random inputs.
3. Evaluate the model and store the

results.
4. Repeat steps 2 and 3 many, many

times.
5. Analyze the results of the runs.

This is useful in creating a form of pre-
diction interval around an estimate. For
example, assume the number of defects in
a software product (in the design phase of
development) can be predicted by multi-
plying the historical defects injected per
hour by the number of hours estimated
for the phase. We can improve that esti-
mate by using the ratio of historically esti-
mated hours to actual hours, known as the
Cost Productivity Index (CPI). The CPI

TSP (v1) Rollup Plan Summary Quality Summary

Plan Actual

Code Review 28.5
Code Inspection 5.51

Inspection/Review Rates

Defects/KLOC Plan Actual

Detailed Design Review 164
Detailed Design Inspection 49.1
Code Review 395
Compile 87.9
Code Inspection 61.6
Unit Test 31.1
Build and Integration Test 2.76
System Test 0.55

Total Development 1038
Total 1.04

Defect Density

Plan Actual

Percent Appraisal COQ 32.70%

Percent Failure COQ 4.69%

Cost of Quality (COQ)

Appraisal/Failure Ratio 6.98

Plan Actual

Requirements Review 70%

Requirements Inspection 70%

High-Level Design (HLD) Review 70%

HLD Inspection 70%

Detailed Design Review 70%

Code Review 70%

Compile 50%

Code Inspection 70%

Unit Test 90%

Build and Integration Test 80%

Phase Yields

System Test 80%

Defects Injected per Hour Plan Actual

Requirements 0.25

HLD 0.25

Detailed Design 0.75

Code 2

Compile 0.3

Unit Test 0.07

Defect Injection Rates

Table 1: Sample TSP Quality Plan Created During Meeting 5

Continued on Page 18

16 CROSSTALK The Journal of Defense Software Engineering July/August 2010

The 2010 Systems and Software Technol-
ogy Conference (SSTC), held April 26-

29 in Salt Lake City, explored various tech-
nologies which are expected to make abrupt
changes to common thought. Participants
explored the tools, processes, and ideas
which will change the game and make the
way we have done things in the past obsolete.

The SSTC kicked off with Monday
tutorials ranging from people technology to
Agile software and systems engineering.
After opening general session remarks by
Brig Gen John B. Cooper, Commander of
the 309th Maintenance Wing, afternoon
sessions focused on assurance/security
issues, modernizing systems and software,
new processes, and lessons learned.

Along with a full slate of presentations,
Tuesday marked the start of the always
popular two-day trade show, including
booths from IBM, INCOSE, the SEI, and
the Software Technology Support Center—
the organization behind CrossTalk.

Wednesday proved to be the most
action-packed day for conference-goers,
from the plenary breakfast sessions ... to
presentations ... to the trade show luncheon
... to dinner and the a cappella singing group
Voice Male.

As with previous years, there were sev-
eral CrossTalk authors represented
among the presenters. There was also some
good follow-up work during the plenary
sessions: Dr. Azad Madni’s “Integrating
Humans with Software and Systems” was a
great companion piece to CrossTalk’s
Software Human Capital-themed May/June
2010 issue; and Dr. Robert Cloutier’s
“Evolutionary Capabilities Developed and
Fielded in Zero to Nine Months” presented
an extended and updated version of his
May/June 2009 CrossTalk article (with
Portia Crowe) of the same name.

Information for the 2011 conference
will begin appearing in your e-mail and mail-
boxes beginning in late August with the
“Call for Speakers” brochure. We can’t wait
to start reading those abstracts!

Technology: Changing the Game
The 22nd Annual Systems and Software Technology Conference

Photography by Drew Brown, Marek Steed,
and Bill Orndorff

Brig Gen John B. Cooper gives the opening general session remarks.

Marek Steed, CrossTalk article coordinator
(far right), talks with visitors at the Software Tech-
nology Support Center trade show booth.SSTC attendees in-between track sessions.

July/August 2010 www.stsc.hill.af.mil 17

Above: David R. Webb (right) of the 309th Software Maintenance Group and CrossTalk publisher
Kasey Thompson (left) present “Combining TSP, CMMI, Project Management, and People Skills to Create
Better Software” with Larry W. Smith (unpictured).
Right: Lt. Col. Scott Brown of the Directorate of Science, Technology & Engineering leads a panel dis-
cussion of software technology readiness levels and assessments.
Bottom Right: Hillel Glazer of Entinex expands on his January/February 2010 CrossTalk arti-
cle “Love and Marriage: Why CMMI and Agile Need Each Other.”

Wednesday’s dinner social.Conference-goers enjoy the trade show.

Catching Up With TSP

18 CROSSTALK The Journal of Defense Software Engineering July/August 2010

represents how well tasks have been esti-
mated in the past; a number near 1 means
that estimates have been fairly accurate in
the past; a number greater than 1 tells us
that we tend to overestimate; a number less
than 1 says we typically underestimate our
tasks. Dividing the estimated hours by the
CPI will compensate for any tendencies to
over- or underestimate. Thus, our final
prediction equation for design defects
injected is the DIR for design multiplied
by the number of estimated hours in the
design phase, divided by the CPI for
design. This is the parametric model need-
ed for step 1 of the simulation:

d = DIRdesign x Hoursdesign ÷ CPIdesign

In step 2, we need to generate random
inputs to the DIR and CPI variables of the
equation, since these are parameters that
are subject to variability in our historical
data3. The question is: Where do we get
these random values from? The answer can
be found by examining each of the vari-

ables. For example, the typical TSP
approach to estimating design defects
would be to use the average historical val-
ues for the DIR and CPI, as defined in
Table 2. The only problem with that
approach is that, while the average DIR in
design is 2.1, it can vary from 1 to 5, in a
lognormal fashion. Additionally, the histor-
ical data in Table 2 shows that the average
CPI for design is 1, but it varies from 0.5 to
1.5 according to a normal curve. With this
in mind, we would use these distributions
to generate our random input data for step
2 of the Monte Carlo process. Having esti-
mated that 8.3 hours will be spent in
design, we randomly select values from
each of these distributions, choosing 0.88
defects per hour for the DIR and a value of
1.12 for the CPI. Therefore:

d = 0.88defects/hour x 8.3hours ÷
1.12 = 6.52defects

This gives us the value of 6.52 defects,
which is how we evaluate the model and
store the results for step 3 of the process.

Step 4 of the Monte Carlo process
simply requires repeating steps 2 and 3
many, many times—each time storing
away the newly generated answers. Let’s
say we do 10,000 of these calculations
and store them all away; when complete,
we will have built up a new distribution
for “d”, the results of the equation.

Step 5 of this process is examining the
distribution of the results to determine
what we can learn. In Figure 1, we can see
that the answers from our equation using
the Monte Carlo process fall into a lognor-
mal distribution, with a mean of 18.39
defects and a standard deviation of 11.56.
Further analysis of the data suggest that 70
percent of the time, we should expect no
more than about 21 defects will be injected
in the design phase of our process. This
provides us a bit more insight than we
would see in a typical TSP quality plan. For
instance, we now know that if there are

fewer than 21 design defects found during
our project, it’s not necessarily a bad thing;
however, if we find more than this, say 40
defects, something may be out of the ordi-
nary (since that happens rarely). If we find
many more than 21 defects—200, for
example—then we can be pretty certain we
have an issue that needs to be addressed.
The wonderful thing about this is that we
can determine these parameters at plan-
ning—a concept that fits well with TSP
principles and philosophies.

Using Monte Carlo Simulation
for the TSP Quality Plan
There are essentially five steps in modify-
ing a TSP quality plan to take advantage
of the previously described Monte Carlo
simulation techniques:
1. Gather historical data and determine

distributions for the DIR, yield, and
CPI.

2. Modify the equations that determine
defect injection, defect removal,
defects remaining, and any other met-
rics important to the team.

3. Run the Monte Carlo simulation using
estimates for hours per process phase
and the distributions for the DIR,
yield, and CPI.

4. Examine the results, determine how
well project goals are addressed, and
come up with next steps for the project.

5. Use this plan to guide and track the
project’s quality progress.

Gathering Historical Data and
Determining Distributions
The first step is fairly straightforward for
TSP projects that have been using the
process for a while and have post-mortem
data available. The team simply needs to
gather data on the DIR, yield, and CPI for
a number of past projects to determine
the actual distributions of data. This can
be done on a project-by-project basis, or
by module, capability, or build (as desired).
In Figure 2, the actual data from a Hill
AFB project are listed as Baseline Change
Requests (BCRs) and represent code
changes made to an existing software
baseline over 18 months. In this example,
the team used Oracle Crystal Ball (a
spreadsheet-based application suite for
predictive modeling) to determine the dis-
tributions of each set of data.

Once the data gathering and analysis
have been done, the team must determine
the quality planning parameters4, as shown
in Table 3.

Modifying the Equations
Currently, the TSP quality plan predicts

Project

Average

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

DIR-Design

2.10

1.02

1.33

2.06

1.13

5.00

2.50

1.30

4.10

3.20

1.08

1.00

1.62

1.88

3.10

1.23

CPI-Design

0.50

1.15

0.67

0.88

0.96

1.35

1.50

0.62

1.50

1.38

0.98

0.89

0.78

0.88

0.92

1.00

Table 2: DIR and CPI Notional Historical
Data

Figure 1: Sample Distribution of Results from Monte Carlo Simulation of Defects Injected in Design

Continued from Page 15

Updating the TSP Quality Plan Using Monte Carlo Simulation

July/August 2010 www.stsc.hill.af.mil 19

measures that are useful in the planning
stages of the project and can be used to
guide the engineers during project execu-
tion. Some of these measures include
defect densities per phase of review/
inspection, review rates, and appraisal-to-
failure ratios. In crafting the new quality
plan, we can now be more specific and
predict the expected number of found
defects during each quality phase and how
many defects are remaining in the prod-
uct, with a prediction interval. The equa-
tions for doing this are a modification of
the equation previously created, predicting
how many defects will be injected in the
design phase. Using this formula, we sim-
ply multiply by the planned yield of the
inspection phase to estimate how many
defects will be removed5:

ddesign inspection = DIRdesign x
HOURSdesign ÷ CPIdesign x

YIELDdesign inspection

Similar equations can be generated for
every phase, based upon the historical data
from Figure 2. We can then use these
equations, along with the distributions
identified, to determine the results for our
Monte Carlo simulations, as shown in the
estimated defects portion of Table 36.

Running Monte Carlo Simulation
and Examining the Results
At this point, during meeting 5 of the TSP
launch, the Monte Carlo simulation is run

with the variable inputs and the prediction
equations. The simulation can create dis-
tributions of results for all 14 predictions
highlighted in Table 3. The team can pre-
dict, for example, the minimum number
of defects they would expect to find in
each inspection phase, within a given pre-
diction range (e.g., 70 percent of the time).
In this case, the total number of defects
found in detailed design inspection should
be at least 456, and 633 in code inspection,
70 percent of the time, according to his-
torical data.

To make this prediction even more
useful, the team should run Monte Carlo
simulation for each module following
launch meeting 6. At this point in the TSP
launch process, bottom-up plans have

been made and hours have been estimated
for each process phase of every module in
the next-phase plan. Assuming every indi-
vidual performs within the parameters
established from the team data, the Monte
Carlo simulation can now be run for each
module. Table 4 (see next page), for exam-
ple, shows a single BCR update to a soft-
ware baseline, with its own design and
code inspection predictions. Note how the
numbers are much lower for this single
update than for the combined numbers of
the entire project update. When the
Monte Carlo simulation is run for these
planning numbers, the charts look similar.
However, the key advantage is that we can
now predict that 70 percent of the time
the design inspection for this update

Figure 2: Historical Data with Distributions

Estimated Time Plan Actual

High-Level Design 434.93

High-Level Design Inspection 147.28

Code 901.87

Code Inspection 175.82

Unit Test 275.87

TSP Quality Plan with Monte Carlo

Project CPI Plan Actual

High-Level Design 1.22

Code 1.73

Unit Test 2.72

Defects Injected per Hour Plan Actual

High-Level Design 0.11

Code 0.39

Phase Yields Plan Actual

High-Level Design Inspection 78%

Code Inspection 70%

Unit Test 95%

Estimated Defects Found Plan Actual

High-Level Design Inspection 30.61

Code Inspection 143.83

Unit Test 65.82

Estimated Defects Remaining After Plan Actual

High-Level Design Inspection 8.85

Code Inspection 154.21

Unit Test 88.39

Table 3: Sample Planning Parameters for a New Quality Plan

20 CROSSTALK The Journal of Defense Software Engineering July/August 2010

Catching Up With TSP

should find at least three defects (although
it would not be unusual for the code
review to find zero). This gives us some
indication of the goodness of the inspec-
tions and a lower limit that we can look for
during the execution of the project.
Likewise, in the unit test for this change,
we should find no more than 12 defects,
70 percent of the time (see Figure 3). In
this case, we look for the upper limit, since
our goals are to find more defects in
inspections than in testing.

Guiding and Tracking Project Progress
Once the TSP launch is complete and the
plans are approved by management, the
team uses these plans to guide their work.
The team also checks progress against the
plans during their weekly meetings. The
quality manager, for example, reports on
the current defect injection rates and
yields for modules complete to date. He or
she also provides feedback on the current
product quality index, defect removal pro-
file, and so forth (as shown in Table 1).

With the new Monte Carlo-generated
quality plan, the quality manager has addi-
tional information to present at the weekly
meetings. For example, he or she could pre-
sent how many defects have actually been
found in inspection or test activities—ver-
sus those predicted by the model. Another
new metric is an updated estimate of the
predicted defects remaining, easily calculat-
ed taking the estimates for defects injected
and subtracting the estimates for defects
removed. Once actual project quality data
begins to come in, these models can be
used again—this time replacing the esti-
mated values with actual values and rerun-
ning the simulation. This provides a new
prediction for defects remaining that can
be tracked throughout the project duration.

It is important to point out that this
new way of examining and predicting the
quality of the product in no way supplants
those currently being used by TSP pro-
jects. This is simply one more weapon to
add to the quality arsenal.

Summary
A TSP quality plan is a very effective way
of focusing a team on the tracking and
resolution of defects early in the project
life cycle. However, the current version of
the plan does not take into account vari-
ability. Applying Monte Carlo simulation
to data already being collected by TSP
teams provides a more robust insight into
the quality processes TSP teams employ.
It also gives further insight into what can
be expected in terms of product and
process quality. The TSP teams at Hill
AFB recently started using this technique
and are still gathering data on its useful-
ness.u

References
1. Humphrey, Watts S. TSP – Leading a

Development Team. Upper Saddle River,
NJ: Addison-Wesley, 2006. Page 138.

2. Humphrey, Watts S. TSP – Leading a
Development Team. Upper Saddle River,
NJ: Addison-Wesley, 2006. Page 87.

3. Weisstein, Eric W. “Monte Carlo
Method.” Wolfram MathWorld. <http://
mathworld.wolfram.com/MonteCarlo
Method.html>.

4. Wittwer, J.W. “Monte Carlo Simula-
tion Basics.” Vertex42. 1 June 2004
<http://vertex42.com/ExcelArticles/
mc/MonteCarloSimulation.html>.

Notes
1. The best resource to learn about TSP’s

numbered meetings and quality plans
is Watts S. Humphrey’s Nov. 2000
report “The Team Software Process.”
Section 7.1 discusses quality plans. See

Est. Time Plan Actual

High-Level Design 84

High-Level Design Inspection 21

Code 62

Code Inspection 25

Unit Test 14

TSP Quality Plan with Monte Carlo (Single BCR)

Project CPI Plan Actual

High-Level Design 1.22

Code 1.73

Unit Test 2.72

Defects Injected per Hour Plan Actual

High-Level Design 0.11

Code 0.39

Phase Yields Plan Actual

High-Level Design Inspection 78%

Code Inspection 70%

Unit Test 95%

Est. Defects Found Plan Actual

High-Level Design Inspection 5.91

Code Inspection 9.89

Unit Test 5.57

Est. Defects Remaining After Plan Actual

High-Level Design Inspection 1.71

Code Inspection 11.70

Unit Test 6.13

Table 4: Sample TSP Quality Plan for a Single Update

The software defense community will benefit from utilizing the proposed TSP qual-
ity plan update, as this article shows how to determine and apply variability into the
plan through Monte Carlo simulation. Users will be able to predict product and
process quality at stages throughout the life cycle and at delivery. It will also help in
meeting requirements for Quantitative Project Management and Organizational
Process Performance at CMMI Level 4. These methods closely track product and
process quality, providing tools for project managers in avoiding cost and schedule
pitfalls—and in delivering near zero-defect products.

Software Defense Application

Figure 3: Estimated Maximum Defects Found in a Unit Test for a Single BCR

Updating the TSP Quality Plan Using Monte Carlo Simulation

July/August 2010 www.stsc.hill.af.mil 21

<www.sei.cmu.edu/reports/00tr023.
pdf>.

2. For more on this method, see <www.
stsc.hill.af.mil/CrossTalk/2007/08/07
08Schofield.html>.

3. Let us assume here that we determined
hours earlier via Proxy-Based Estima-
tion (PROBE) or other estimating
model.

4. Don’t be confused by the values you
see in the shaded cells. Each of the
highlighted cells for defects injected
per hour, CPI, and yield in Table 2 ini-
tially contain an average value, similar
to the current TSP quality plan; how-
ever, this value is replaced by the tool
with random values from the distribu-
tions in Figure 2 when the Monte
Carlo simulation is run.

5. In this situation, yield must be a deci-
mal number between 0 and 1 instead
of 0 and 100 percent.

6. The highlighted cells for “estimated
defects found” and “estimated defects
remaining after” in this table show the
results of the parametric equations
using the average values; these are
replaced with the results of the calcu-
lations using random values from the
distributions, during the Monte Carlo
simulation.

About the Author

David R. Webb is a
Technical Director for
the 520th Software Main-
tenance Squadron of the
309th Software Mainte-
nance Group at Hill
AFB, Utah. Webb is a

project management and process im-
provement specialist with 22 years of
technical, program management, and
process improvement experience in Air
Force software. Webb is an SEI-autho-
rized PSP instructor, a TSP launch
coach, and has worked as an Air Force
section chief, software engineering
process group member, systems software
engineer, and test engineer. He is a fre-
quent contributor to technical journals
and symposiums, and holds a bachelor’s
degree in electrical and computer engi-
neering from Brigham Young University.

7278 4th ST
BLDG 100
Hill AFB, UT 84056
Phone: (801) 586-9330
E-mail: david.webb@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

ELECTRONIC COPY ONLY? YES NO

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SW AND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

MAY/JUNE09 o RAPID & RELIABLE DEV.

JULY/AUG09o PROCESS REPLICATION

NOV/DEC09 o 21ST CENTURY DEFENSE

JAN/FEB10 o CMMI: PROCESS

MAR/APR10 o SYSTEMS ASSURANCE

MAY/JUNE10 o SW HUMAN CAPITAL

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

22 CROSSTALK The Journal of Defense Software Engineering July/August 2010

The ITMPI’s Fall Webinars and
Conferences
www.itmpi.org/webinars
Now is a good time to sign up for the IT Metrics &
Productivity Institute’s (ITMPI’s) free fall Webinars.
Forthcoming Webinars include: ways to revolutionize the
testing process with decision model; a “re-education” in
basic and advanced software engineering principles; a “how-
to” for organizations that want to become Agile; guidance
on preparing an organizational training plan; increasing
productivity through social networking; case studies from
test assessments; guidelines on maintenance, support, and
enhancement; and techniques, processes, and strategies to
improve bad project planning. The ITMPI will also have
all-day Webinars live from their Software Best Practices
conferences in Baltimore (Sept. 14), Detroit (Sept. 28),
Tallahassee (Oct. 7), Orlando (Oct. 13), Philadelphia (Oct.
21), and Rochester (Oct. 27).

Ahead in the Clouds
www.mitre.org/work/info _tech/cloud _computing
What are the essential components or capabilities necessary
to create a private cloud computing environment? What
can organizations do to facilitate the adoption of cloud
computing to more effectively provide IT services? What is
the most significant concern for federal organizations who

want to use cloud computing? “Ahead in the Clouds” is the
MITRE Corporation’s public forum to provide federal gov-
ernment agencies with meaningful answers to common
cloud computing questions like these, drawing from leading
thinkers in the field. New questions are posed—and then
industry experts chime-in with detailed responses.

Grady Booch Interviews Watts S.
Humphrey
http://archive.computerhistory.org/resources/access/text/Oral _
History/102702107.05.01.acc.pdf
With this issue’s article and interview with Watts S.
Humphrey—and CrossTalk’s interview with Grady
Booch appearing in our November/December 2010 edi-
tion—why not learn about what happened when the two
legends met? The Computer History Museum sponsored
this three-day (and eventually 184-page) oral history inter-
view, by a developer of UML, of the man who developed
the CMM, PSP, and TSP. Topics include his upbringing,
formative years, time at Sylvania and Northeastern
University, and his challenges in building a computer
group. Also included is a thorough examination of the IBM
years and, of course, his move to the SEI, discussing the
CMM and CMMI and how his famed software processes
took shape. Humphrey also talks about his family, and
looks into the future of software.

WEB SITES

Departments

July/August 2010 www.stsc.hill.af.mil 23

Since the emergence of software engi-
neering in the 1960s, the size, pervasive-

ness, and complexity of software-intensive
systems have increased by several orders of
magnitude. The size of aircraft software
systems in the 1960s approximated 1,000
lines of code while aircraft systems built in
2000 contained more than six million lines
of code. The pervasiveness of software
within aircraft systems has increased from
controlling less than 10 percent of the
functions the pilot performed in the 1960s
to 80 percent in 2000 (as shown in Figure 1
on the following page).

We know that increases in software and
system size contribute to increased com-
plexity which, in turn, has contributed to
pushing delivery and costs well beyond tar-
geted schedules and budgets [1].

In a recent workshop conducted by the
National Defense Industrial Association,
the top issues relative to the acquisition and
deployment of software-intensive systems
were identified. Among them are:
• The impact of system requirements

upon software is not consistently quan-
tified and managed in development or
sustainment.

• Fundamental systems engineering deci-
sions are made without full participa-
tion of software engineering.

• Software life-cycle planning and man-
agement by acquirers and suppliers is
ineffective.
So the biggest challenge is creating the

right foundation: estimation, planning,
development, and management practices as
well as team processes, training, coaching,
and operational support that will assist in a
migration from buggy products and unnec-
essary rework (resulting in inflating devel-
opment costs) to a proactive approach that
builds integrated, quality software-intensive
systems from requirements to field deploy-
ment.

Background
The SEI’s TSP provides engineers with
a structured framework for doing soft-
ware engineering work. It includes
scripts, forms, measures, standards, and
tools that show software engineers how
to use disciplined processes to plan,
measure, and manage their work [2].
The principal motivator for the TSP is
the conviction that engineering teams

can do extraordinary work if they are
properly formed, suitably trained,
staffed with skilled members, and effec-
tively coached and led.

The TSP is already being used with
great results on software teams [3]. A
Microsoft study reported that by using
the TSP, software teams cut schedule
error from 10 to one percent. With its
TSP teams, Intuit has increased by 50
percent the time that teams can spend
in developing products during a typical
year-long release cycle: Increased quali-
ty has dramatically cut the testing time
required. An analysis of 20 projects in

13 organizations showed TSP teams
averaged 0.06 defects per thousand
lines of new or modified code.
Approximately one-third of these pro-
jects were defect-free. Other studies
show that TSP teams delivered their
products an average of just six percent
later than planned. This compares
favorably with industry data showing
that more than half of all software pro-
jects were more than 100 percent late—
or were cancelled. These TSP teams
also improved their productivity (size
of developed code per hour of devel-
opment time) by an average of 78 per-
cent.

NAVAIR develops, acquires, and
supports the aircraft and related
weapons systems used by the U.S. Navy
and Marine Corps. In recent years, inter-
est in applying TSP to non-software
domains has increased. The SEI TSP
team has collaborated with NAVAIR to
expand the TSP to teams that do other
engineering along with software. These
include areas such as systems engineer-
ing and integration, product integrity,
CM/DM/QA (Configuration Manage-
ment/Data Management/Quality Assur-
ance), and process improvement itself.

NAVAIR already has a proven track
record with the TSP and has demon-
strated return on investment on their
software projects [4, 5]. Table 1 (on the
following page) shows TSP results from
two NAVAIR programs: the AV-8B’s
Joint Mission Planning System (JMPS)
program and the P-3C program. This
result, due to the reduction in defect
density, is a gross savings of $3,225,606
($3,782,153 less the investment of
$556,547). In turn, the ROI is derived
from the cost savings compared to the
cost of initially putting the TSP in
place; in this case, it was a ratio of bet-
ter than 7 to 1. Further, these organiza-
tions each reached CMM Level 4 in less

Extending the TSP to Systems Engineering:
Early Results from Team Process Integration

A collaboration between the SEI and NAVAIR—Team Process Integration (TPI SM)—is currently underway. The TPI
effort leverages the PSP and TSP research and body of practice. This article discusses the progress and performance through
a pilot project with the AV-8B Systems Engineering team as well as others within NAVAIR that have utilized TPI in
non-software domains. This article will share lessons and experiences with other industry/government organizations interest-
ed in applying the TSP in a non-software setting. The early results suggest some encouraging trends.

Del Kellogg and Jeff Schwalb
NAVAIR

Anita Carleton
SEI

“The principal motivator
for the TSP is the
conviction that

engineering teams can
do extraordinary work

if they are properly
formed, suitably trained,

staffed with skilled
members, and effectively

coached and led.”

SM TPI is a service mark of Carnegie Mellon University.

Catching Up With TSP

24 CROSSTALK The Journal of Defense Software Engineering July/August 2010

than 30 months—instead of the typical
six years.

Very similar results occurred with
other programs at that time, like with the
E-2C aircraft program, also achieving
CMM Level 4 in less than 30 months
with their development teams using the
TSP at the same time. Most recently (Jan.
2010), the H1 aircraft program worked
less than 20 months to obtain a CMMI
Level 3 rating while their development
team used TSP to maintain aircraft soft-
ware for the fleet.

The organizations referenced have
standardized the TSP for all of their
software development and maintenance
work. These early adopters of the TSP
are meeting their mission of producing
higher quality products while maintain-
ing significant cost savings. Their devel-
opment teams now like using the TSP,
saying of their staffs, “Once they have
adopted it, they can’t imagine working
any other way.” In all presented cases, the
initial investment was returned in their
first project and has then gone forward
time and again to benefit the organiza-
tions for many years.

Results from these examples continue
to inspire other NAVAIR System Support
Activities (SSAs) to use the TSP. There are
more than 20 additional NAVAIR SSAs
now pursuing software process improve-
ment activities. NAVAIR is seeing recurring
savings and can now direct cost savings to

the procurement of additional aircraft and
weapons. In addition, NAVAIR used the
TSP to accelerate CMMI improvement.

Starting TPI Efforts
Based on the demonstrated, measured
success of software projects using the
TSP in NAVAIR, other teams asked if
they could apply the same processes to
systems engineering and software/systems
acquisition projects. As a result, NAVAIR
has teamed with the SEI to expand the
TSP framework to a technology called
TPI. The SEI is also receiving additional
requests to apply the TSP to non-software
settings since it is becoming increasingly
difficult to solve software problems with-
out addressing systems engineering issues.

The NAVAIR/SEI collaboration
entails testing the hypothesis that we can
achieve the same kind of performance
improvements applying TPI to systems
engineering as we did applying the TSP to
software projects, thereby improving man-
agement and communications in software-
intensive systems and acquisitions. Our
approach will entail conducting a series of
pilot projects to determine if extending
TSP practices to systems engineering
results in measurable improvement. We
will then use the results of this work to
establish common processes for both sys-
tems and software engineering across the
NAVAIR teams. Initially, the AV-8B Joint
SSAs (developing the Harrier Aircraft)

was selected as the systems engineering
pilot program.

In kicking off these efforts, we real-
ized that there were a number of research
challenges that specifically had to be
addressed. We extended the TSP practices
to systems engineering by:
• Determining the baseline performance

for systems engineering work at
NAVAIR.

• Developing prototype processes/
process definitions/scripts for systems
engineering.

• Formulating relevant measures, espe-
cially size and quality measures perti-
nent to systems engineering.

• Building conviction and discipline in
our leadership and team member train-
ing materials for teams that don’t nec-
essarily write software programs.

• Developing an extensible tool that
allows for outlining any process, for
collecting data unobtrusively, and for
defining a measurement framework
pertinent to any engineering domain.
Early results of applying TPI show

some encouraging trends. The AV-8B
Systems Engineering pilot project team is
changing the way they do their work and is
beginning to see some results similar to
those realized by TSP teams. The AV-8B
team is practicing more disciplined meth-
ods for planning and executing their work.
They are meeting their missions and
beginning to see some cost savings. In
addition, the pilot team is inspiring other
NAVAIR 4.0 SSAs to pursue process
improvement [6].

Benefits
Through the pilot effort, we are seeing
some of the following benefits:

Establishment of a Systems
Engineering Baseline
We are beginning to establish a baseline
for systems engineering performance at
NAVAIR that can be used for estimating,
planning, and tracking projects and pro-
grams:
• The requirements productivity rate

varies between three and nine require-

0

10

20

30

40

50

60

70

80

90

F-4

1960

A-7

1964

F-111

1970

F-15

1975

F-16

1982

F/A-22

2000

Multi-year
delays

associated
with

software
and system
stability

B-2

1990

Software and
testing delays
push cost
above

Congressional
ceiling

P
er
ce
n
t
o
f
S
p
ec
if
ic
at
io
n
R
eq
u
ir
em
en
ts

In
vo
lv
in
g
S
o
ft
w
ar
e
C
o
n
tr
o
l

Defect Density
Before TSP

1.13

4.60

Defect Density
After TSP

0.59

0.60

Total Defects
Before TSP

176

501

Total Defects
After TSP

261

23

Average
Cost to Fix

$8,330

$8,432

Product Size
(KSLOC)

443.0

38.3

Cost Savings
From Reduced

Defects

$1,992,663

$1,789,490

$3,782,153Total Savings:

Figure 1: Increasing Capabilities and Challenges of Software in DoD Systems 1

0

10

20

30

40

50

60

70

80

90

F-4

1960

A-7

1964

F-111

1970

F-15

1975

F-16

1982

F/A-22

2000

Multi-year
delays

associated
with

software
and system
stability

B-2

1990

Software and
testing delays
push cost
above

Congressional
ceiling

P
er
ce
n
t
o
f
S
p
ec
if
ic
at
io
n
R
eq
u
ir
em
en
ts

In
vo
lv
in
g
S
o
ft
w
ar
e
C
o
n
tr
o
l

Defect Density
Before TSP

1.13

4.60

Defect Density
After TSP

0.59

0.60

Total Defects
Before TSP

176

501

Total Defects
After TSP

261

23

Average
Cost to Fix

$8,330

$8,432

Product Size
(KSLOC)

443.0

38.3

Cost Savings
From Reduced

Defects

$1,992,663

$1,789,490

$3,782,153Total Savings:

AV-JMPS

P-3C

Project

Table 1: TSP Results at NAVAIR

Extending the TSP to Systems Engineering: Early Results from Team Process Integration

July/August 2010 www.stsc.hill.af.mil 25

ment statements per hour, depending
on the complexity of the project2.

• By just tracking requirements size
growth, the team was able to decrease
the rate of project size growth from
23.6 percent in the initial development
cycle to 11.5 percent in the subsequent
development cycle.

• By collecting the planned and actual
requirements size and growth for the
various components and the team pro-
ductivity rate, the team builds up his-
torical data that can be used on future
projects.

• To quote one team leader: “Prior to
TPI, we made estimates in a bubble.
Now we are establishing and maintain-
ing baselines for all of our releases,
which allow us to make better esti-
mates and more realistic plans and
schedules.”

Establishment of Planning Practices
Planning at the program and team level is
now accomplished by holding multi-team
launches that involve all of the teams
implementing either the TSP or TPI. At
first, they plan for no more than four
months of work at a time so that their
tasks can be detailed enough with fairly
stable component sets. The component
sets start to vary for a longer development
duration so their plan would be less stable.
This process is used by the AV-8B pro-
gram to understand requirements from
management, assemble plans, allocate
work, and achieve commitment to plans
from management and team members.
The overall plan for the year and the next-
phase plan are developed by the teams,
work is allocated by the team, and the
schedule is determined and committed to
by team members.

Establishing Tracking Practices
For tracking purposes, work is broken
down into small chunks that can easily be
tracked (tasks are tracked at a granularity
of less than 10 hours). Tracking only the
task hours per week (planning for around
20) allows two or three tasks to be com-
pleted each week. Work is tracked daily by
team members and discussed weekly in
team meetings: Every team member
knows how they are performing to their
individual plan and the team plan.
Monthly status reports are derived from
the consolidated weekly reports by the
team leader and presented to the integrat-
ed product team leads.

Twelve team members were able to
achieve (on average) between 18 and 22
on-project task hours per week. The team
performed well above the planned task

hours: 15 per week in the first cycle.
The engineers embraced project plan-

ning and tracking. Each individual is able
to track personal commitments to the
team, enabling the team to better monitor
commitments to the program. Tracking
the work helped the team members with
staying on-task, commenting that: “I need
to stop doing X to get back on track. It is
very easy to see the impact daily and week-
ly of not working to the plan.”

Developing Standard Processes,
Measures, and Tools
Standard processes, measures, terminol-
ogy, and tools were developed and used
by the AV-8B Program:
• The PSP-derived Excel spreadsheet

and a process support technology
Access-based tool were used for esti-
mating, planning, and tracking work
for team members and team leads.

• Team members identified, defined,
and documented all systems engi-
neering standard life-cycle processes
in the tool. The team defined and
developed an 18-step overall systems
engineering process and a 482-step
detailed systems engineering process.

• Through the defined processes,
NAVAIR was able to maintain the
consistency of processes across pro-
jects/programs. The defined processes
also offered the ability to cross-train
individuals. One integrated product
team lead said: “We have a team con-
cept across our program with all of the
sub-teams (systems engineering, prod-
uct integrity, software, test, lab, etc.).
We also have a common set of
processes and metrics to help all of the
teams better communicate and address
dependencies across the teams.”

Performance Trends
With no historical data to go by, the team’s
initial plan identified a guess at a goal of
less than 5 percent schedule slip and mea-
sured performance against the goal. The
actual performance had an overrun of less
than 10 percent. Now with some historical
data, the team can set more realistic goals
and try to continually improve on them.
As far as cost and quality performance,
size and effort estimates were within ±10
percent of what was planned, and there
were no high-priority problem reports
coming out of test.

Employee Work/Life Balance
TPI helped improve employee work/life
balance. In order to get their job done
before implementing TPI, employees rou-
tinely worked overtime. With TPI (and in

COMING EVENTS

August 23-25

The 13th IASTED International

Conference on Computers and

Advanced Technology in Education

Maui, HI

www.iasted.org/conferences/

home-709.html

September 13-16

Military Logistics Summit 2010

Washington, D.C.

www.militarylogisticssummit.com

September 13-17

PSQT 2010

Practical Software Quality and Testing

Minneapolis, MN

www.psqtconference.com/2010north

September 19-23

Oracle OpenWorld 2010

San Francisco, CA

www.oracle.com/us/openworld

September 26-October 1

STARWEST 2010

San Diego, CA

www.sqe.com/starwest

October 25-28

TechNet Asia-Pacific International

Conference and Exposition 2010

Honolulu, HI

www.afcea.org/events/asiapacific

October 31-November 3

MILCOM 2010

San Jose, CA

www.milcom.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
<marek.steed.ctr@hill.af.mil>.

Catching Up With TSP

26 CROSSTALK The Journal of Defense Software Engineering July/August 2010

order to get their 18-22 task hours per
week), they did not have to work as much
overtime. Overtime was decreased from
being standard practice—sometimes 25
percent or more—to occasional overtime
hours (less than 10 percent).

Customer Responsiveness
Customer responsiveness has improved to
the fleet, the naval aviators, and to the
internal program managers. The systems
engineering team is able to more easily
adapt to program and personnel changes.
The pilots are beginning to provide input
early on in the project—during the launch
process—before the work has com-
menced (instead of providing feedback
during the test phases). Program manage-
ment feels that the TSP/TPI efforts are a
success because the teams understand
their work and the dependencies among
all of the teams. The systems engineering
team can also plan for a percentage of
unplanned tasks to use their data to nego-
tiate impact and trade-offs of unplanned
work to planned work.

More Teams Doing TPI
We have since launched more non-soft-
ware teams using the TPI approach. One

of these is a mixed engineering team at
Joint Munitions Effectiveness Matrix
Weaponeering Systems that is applying
the TPI to their non-software work as
well as to their software team. This team
has been using TPI for more than a year,
has gone through four launch/relaunch-
es, and has seen the types of benefits
that the AV-8B team has seen. They also
are seeing steady progress in making
more accurate and precise estimates of
their work, and have refined the triggers
that would initiate an adjustment of their
behavior so they stay on schedule.

Another example is the Precision
Attack Weapon System Tactical Program
Office, demonstrating the effectiveness
of the TPI approach for one of their
systems engineering teams. Their team
has been using the TPI approach for
more than a year and saw immediate
benefits. During the initial launch, they
developed a never-before-seen detailed
plan that gave senior management the
needed data to get additional project
funding without having to arm wrestle the
Program Manager, Air (PMA).

Then there is the P-3 lab team at the
Patuxent River, Maryland Naval Air
Station, who has been applying this

approach to the many configurations of
the lab setup they must provide. The P-3
team started applying TPI as an
approach to the implementation phase of
their Black Belt DMAIC (or Define,
Measure, Analyze, Improve, and
Control) project. Since starting about
three years ago, the team has since pro-
vided two annual cycles of lab services
and is halfway through their third. The
P-3 lab team supports their customers by
providing more than a dozen lab config-
urations across the PMA. This breaks
into two basic types of support: usage in
terms of running tests, and support in
terms of configuring labs for those tests.
Aggregate lab usage data shows a devia-
tion of 12 percent less than planned
while aggregate lab support data shows a
deviation of .5 percent more than
planned. While performance is impres-
sive, deviation was at times greater when
examined at the individual lab-customer
level. As expected, this aggregate devia-
tion demonstrates the advantage of esti-
mating in smaller increments.

At the time of writing this article,
several other process improvement
efforts at NAVAIR are getting started
with plans of applying TSP to their soft-
ware teams and TPI to their non-soft-
ware teams.

Summary
All engineering efforts must start with
integrated teams. These teams must plan
their work—and work to those plans—
while collecting basic measures. They
must then apply analyses to this data and
derive metrics to determine their status on
current work and, eventually, as a source
for improving their planning capability on
future work. From this approach, we have
seen quality products and services deliv-
ered over and over with the potential for
further improvement.

To make this happen, we have seen the
need to put in place the TPI foundation of
estimation and planning processes, team
processes, development and management
practices, effective and timely training, as
well as launch, coaching, and operational
support.

Projects that have adopted these meth-
ods have shown a dramatic increase in
product quality and fidelity of schedule
and effort estimates. The methods are
supported by a doctrine that trains and
sustains performance and quality im-
provement in an organization.

This article has shown what is possi-
ble when teams use TPI to establish this
foundation to meet critical business
needs. The end result is the delivery of

Extending the TSP to Systems Engineering: Early Results from Team Process Integration

July/August 2010 www.stsc.hill.af.mil 27

About the Authors

Del Kellogg is a PSP
Certified Developer, PSP
Certified Instructor, and
TSP Authorized Coach
for NAVAIR-China Lake.
He has spent most of his

30 years at NAVAIR working on devel-
opment of embedded software for the
A-7E, AV-8B, and the AH-1W aircraft.
He has applied the PSP and TSP for the
last nine years within multiple NAVAIR
teams. He is currently working in the
Process Resource Team at NAVAIR.
Kellogg’s background is in computer sci-
ence, physics, and math, and received his
bachelor’s degree in computer science
from the University of Idaho.

NAVAIR Systems/Software
Support Center
1900 N Knox RD
BLDG 1494 (MS 6308)
China Lake, CA 93555
Phone: (760) 939-5494
Fax: (760) 939-0150
E-mail: delwyn.kellogg@navy.mil

Anita Carleton is a
senior member of the
technical staff at the SEI,
Carnegie Mellon Univer-
sity, where she has work-
ed for more than 20 years

on software process improvement,
process measurement, and the TSP. She
is the author of “Measuring the
Software Process: Statistical Process
Control for Software Process Improve-
ment.” Carleton has a degree in applied
mathematics from Carnegie Mellon
University and is a member of the IEEE
Computer Society and the National
Defense Industrial Association.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone (412) 268-7718
Fax: (412) 268-5758
E-mail: adc@sei.cmu.edu

Jeff Schwalb is em-
ployed by NAVAIR at
China Lake, California,
where he has been since
1984. He currently leads
a NAVAIR enterprise

team that helps provide continuous
process improvement support across
NAVAIR. Schwalb first became involved
with process improvement in the 1990s
using the SW-CMM, then becoming a
certified PSP instructor and TSP coach.
He has taught each of the TSP/PSP
courses and has been involved in the
TSP launch of several projects across
NAVAIR. He is now working with the
SEI to extend TSP practices into other
domains. He received his bachelor’s
degree in computer science from
California State University, Chico.

NAVAIR Systems/Software
Support Center
1900 N Knox RD
Building 1494 (MS 6308)
China Lake, CA 93555-6106
Phone: (760) 939-6226
Fax: (760) 939-0150
E-mail: jeff.schwalb@navy.mil

high quality systems, on cost, and with
improved productivity.u

References
1. Walker, Ellen. “Tech Views – Challen-

ges Dominate Our Future.” DACS
Software Tech News. Oct. 2007 <www.
softwaretechnews.com/stn_view.php?
stn_id=43&article_id=86>.

2. Humphrey, Watts S. TSP: Leading a
Development Team. Upper Saddle River,
NJ: Addison-Wesley Publishers, 2006.

3. Davis, Noopur, and Julia Mullaney. The
Team Software Process (TSP) in Practice: A
Summary of Recent Results. SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2003-TR-014. Sept.
2003 <www.sei.cmu.edu/reports/03
tr014. pdf>.

4. Wall, Daniel S., James McHale, and
Marsha Pomeroy-Huff. Case Study:
Accelerating Process Improvement by
Integrating the TSP and CMMI. SEI,
Carnegie Mellon University. Special
Report CMU/SEI-2005-SR-012. June
2007 <www.sei.cmu.edu/reports/07
tr013.pdf>.

5. Saint-Amand, David. Process Improve-
ment at NAVAIR Using TSP and CMM.
Proc. of the 1st Annual TSP Sympo-
sium. San Diego: Sept. 2006.

6. Carleton, Anita, et al. Extending Team
Software Process (TSP) to Systems
Engineering: A NAVAIR Experience
Report. SEI, Carnegie Mellon Univer-
sity. Technical Report CMU/SEI-
2010-TR-008. Mar. 2010 <www.sei.
cmu.edu/reports/10tr008.pdf>.

Notes
1. This graphic was created based on a

table called “System Functionality

Requiring Software,” but the original
creator of the table is debated: either
PM Magazine or a U.S. Air Force “Bold
Strike” Executive Software Course
from 1992. To view the table, see:
Ferguson, Jack. “Crouching Dragon,
Hidden Software: Software in DoD
Weapon Systems.” IEEE Software
July/Aug. (2001): 105-107.

2. For example, AV-8B uses Telelogic
DOORS Objects to identify the num-
ber of requirement statements and,
hence, the size of the requirement set.
Any organization/program product
can be viewed as a comparable proxy.

Software defense organizations will benefit by learning about Team Process
Integration, the continuing collaboration between the SEI and NAVAIR. As detailed
in the article, results from current projects utilizing TPI show a gross savings of more
than $3.7 million and a net savings of more than $3.2 million, with a return seven
times the original investment. Quality improvement on two examined projects was a
reduction in defect density from 1.1 to 0.59 defects per thousand LOC on one and
4.6 to 0.6 defects per thousand LOC on the other. TPI lowers costs, helps projects
meet schedules, and improves productivity.

Software Defense Application

28 CROSSTALK The Journal of Defense Software Engineering July/August 2010

Cybernetics is the study of communica-
tion and control processes, especially

the comparison of these processes in bio-
logical and artificial systems. It attempts to
learn principles that can be applied to any
type of system regardless of its material
realization. This kind of study began long
before the existence of the modern digital
computer. The term itself goes back to
Plato.

Don’t assume those early cyberneticists
would be impressed by our modern high-
availability computer systems. They might
even view our conventional approach to
software as fatally arrogant, requiring a
programmer to anticipate everything.

Conventional software is based on the
algorithmic approach pioneered by John
von Neumann in the 1940s. An algorithm
is just “a series of steps to achieve a desired
aim” [1] that we then give to our machines
to execute. It is a well-behaved approach
with predictable results—so long as all of
your assumptions are valid, your code is
perfect, the world doesn’t change, and your
enemies are powerless to interfere.

I assume you’ve experienced what hap-
pens otherwise. The more critical a con-
ventional system is, the more rigidly and
exhaustively we must define those steps.
We must also carefully control its runtime
environment. According to the highest
standards of compliance (e.g., DO-178B/
ED-12B or MIL-STD-498) we must test
every possible decision, every pathway, and
every conceivable combination of data.

If certification is required, then the
cost to produce the associated verification
evidence grows exponentially with the size
of the application. At some point, this is
impossible—even in a modestly complex
closed system. And in an open system, we
can’t even control the scope of the prob-
lem.

I sometimes wonder if, like an overpro-
tective parent, our emphasis on rigor hasn’t
actually made our systems more vulnerable.
Whenever our conventional systems
encounter something other than the sterile
environment that we intended, what sort of

coping skills have we given them?
Von Neumann himself wrote about an

alternative neural approach, one in which
new behaviors can emerge in response to
changes in the environment. This would fit
the theoretical principles of our cyberneti-
cists exactly, as they emphasize the use of
feedback to accomplish goals rather than
following a predetermined set of steps.
While a neural or cybernetic approach is
less well-behaved and less predictable than
the software we are used to, it is also
extremely adaptable and powerful.

Rather than spending too much time
on a soapbox, I would rather present you
with a question: Given the right tools,
could you design a system that is safer and
more economical to build because it has
the ability to overcome its own imperfec-
tions and environmental obstacles and still
complete the mission? Assuming that you
are at least thinking about it, let’s talk about
how you might go about designing such a
system.

What Is a Cyborg?
We want both kinds of the behavior that
I’ve talked about, with predictable systems
that follow established rules and proce-
dures. But we also want them to adapt in
the face of the unexpected. So it would
seem that what we need is a hybrid
approach: a combination of cybernetics
technology with some other type of sys-
tem. And that’s a fairly good working defi-
nition of a cyborg. Fair, but not great; it is
a bit like describing a car as “something
with tires.”

The original authoritative definition
was published by Dr. Nathan S. Kline and
Manfred Clynes in the September 1960
issue of the scientific journal Astronautics.
And yes, they did suggest that the bodies of
pilots could be modified for space travel
using drugs and assorted parts (yikes, can’t
imagine why that wasn’t popular). But
those sensational examples were not part
of the definition. Instead, they proposed a
cybernetic principle that can be applied to
any type of system. In their own words:

What are some of the devices nec-
essary for creating self-regulating
man-machine systems? This self-
regulation must function without
the benefit of consciousness in
order to cooperate with the body’s
own autonomous homeostatic
controls. For the exogenously
extended organizational complex
functioning as an integrated home-
ostatic system unconsciously, we
propose the term “Cyborg.” [2]

Homeostatic is the idea of an open sys-
tem that can regulate itself to function
effectively in a broad range of conditions.

Open, as used here, refers to a system in
which energy or material (resources) can be
added or lost. It also means that the type
and number of parts that make up the sys-
tem are not static.

Exogenous in this context means any
material that is present and active in an
individual organism but that originated
outside of that organism. It is meant to
describe a cyborg’s blended nature, where
control is extended over other non-cyber-
netic parts.

A cyborg has the authority to uncon-
sciously alter its operation. This language
coincides with their example of the human
autonomic nervous system. For example,
you don’t generally think about breathing.
You can control it, but normally you con-
centrate on the mission while the body
adjusts to your activities, environmental
conditions, threats, etc.

A cyborg may alter its operation, but
only to maintain a stable state or accom-
plish goals that we’ve set for it. Therefore,
this definition both empowers and sets spe-
cific limits on the authority that is given to
a cyborg.

One thing that the original definition
does not explicitly mention is the concept
of self—though you might infer that from
the root words cybernetic organism: An organ-
ism is a separate distinct individual.

In my opinion, a cyborg must be able
to distinguish self from any other organism,

Building Critical Systems as a Cyborg
Greg Ball
cyborgg.com

In science fiction, a cyborg is a marriage of machine and human flesh. I’m not suggesting that you turn your favorite officer into an
espresso machine, but this article explains the seemingly outrageous possibility that cybernetics may be the next step in the evolution
of critical systems, demonstrates actual code and technology that is available, and describes real-world experiences in using it. The
strength of this technology is in its resilience and adaptability in building complex critical systems that must face the real world.
However, its use requires a shift in thinking about software—much like the introduction of “object-oriented” concepts once did.

Open Forum

Building Critical Systems as a Cyborg

July/August 2010 www.stsc.hill.af.mil 29

or the environment, because it must
attempt to regulate only itself.

It must not get confused and try to
impose its goals on others. It must not
attempt to change or take over the uni-
verse. It has to have a clear idea of which
parts belong to it and which do not. It
must have healthy boundaries to protect
itself and play well with others.

Since we’re now somewhat stretching
the original definition of a cyborg, the
term we propose to use is cyborg gratia or
“for the sake of the cyborg.” It means
that the cybernetic organism is operating
for itself as an independent organism
inside a larger social structure.

Social governance is the final piece
necessary to complete the concept. In an
open system, you have to expect commu-
nication and cooperation, but also some-
times conflict between organisms. It is
highly desirable to design a resilient sys-
tem as an ecology of independent, coop-
erative, and adaptive organisms—one
that can embody complex relationships
with security and selective trust.

Such systems can align themselves
with the changing and varied relation-
ships between partners, alliances, and
customers. They also enable a different
paradigm for development and mainte-
nance that embraces change and diversi-
ty.

Technology in Action
The question now is how to make that a
reality. Cyborgg (pronounced “cyborg
gee”) is commercial open-source cyber-
netic technology in its second generation.
It is impossible to describe everything in
a short article—and difficult to know
where to start. But I can show that work-
ing with a cyborg is not onerous.

Cyborgg employs a heterogeneous
network of several neuron types to facil-
itate the integration of these cybernetic
extensions into the rest of your system1.
The data that they work with is not limit-
ed to numerical values2. They fall into two
general classifications:
• Afferent (or sensory) neurons are

used to receive input.
• Efferent neurons are used to manipu-

late or interact with the outside world.
One reason cyborgg was made open was
to drive consensus on some basic terms
and standards. For example: Just as the
format of an e-mail address is important
to everyone, so is standardizing the for-
mat of a Cyborg URI3 (or CURI).

CURIs are a key mechanism for surgi-
cally implanting complex cybernetic
components in conventional code, as
shown in the following three examples:

EXAMPLE No. 1
Hooking into the neural net: We provide it
with some feedback on system perfor-
mance using a cyborg helper class.

// Define the neuron in question
CURI curi = new
CURI(“curi://afferent/response
time$my service”);

// You could obtain and use the neuron
directly
// but this helper class is convenient
TimeMarker marker =
TimeMarker.start(curi);

// Do something that you want to mea-
sure, then
marker.stopAndRecordTime();

EXAMPLE No. 2
Another indirect way of hooking into the
neural net includes defining an attribute for
a class that cyborgg will dynamically con-
trol. The following organelle shown is a
convenient wrapper around a neuron that
implies that this class is an organ. But
where is the CURI? Cyborgg creates it
behind the scenes by inspecting the rest of
the class:

protected Organelle queueSize =
Organelle.newInteger(“queue size”,
10);

EXAMPLE No. 3
One can also select a cybernetic compo-
nent or service. Note that many factors are
in play here including failover, system load,
authentication, biases, automated service
discovery, etc. But these are handled invisi-
bly by the cybernetic core:

// Asking for a certain type of service
with no filters or restrictions
CURI curi = new CURI(“curi://$my ser-
vice”);

// Cyborgg class used for dynamic depen-
dency injection
Injector injector = new Injector();
// obtain the service
MyService service = injector.use(curi);

What happens when you do something
like this? Under the hood, cyborgg com-
plies with Aleksander’s definition of a
neural net as having a “network of adapt-
able nodes which, through a process of
learning, store experiential knowledge and
make it available for use” [3]4. New system
behaviors can and do arise from changes to
the structure of this net.

Each cyborgg neuron has a complex

internal structure that is more cell-like than
the classical neural approaches5. This was
done to overcome two barriers to general
use.

The first barrier was the difficulty of
understanding and having confidence in the
decisions made by the net (analysis of a
classical neural net is something only a
researcher could love).

To address this, each cyborgg neuron
contains a nucleus—a statistical model
that captures information about the neu-
ron’s behavior (most of the information
that a Six Sigma practitioner would ask
for). Therefore, when a neuron fires, it can
tell you plainly things like “with 80 percent
certainty, these adjustments to the system
are predicted to change the behavior of a
certain aspect by 68 percent (plus or
minus 10 percent).”

You can track the difference between
the neuron’s prediction and the actual
result—and track the performance of the
system in general. It keeps the cyborg
from acting on weak or invalid assump-
tions. It is also used to discover new or
unexpected correlations. This not only
gives the cyborg power, but allows it to
serve as a research tool.

The second barrier was the difficulty of
training the net, of knowing what synapses
to forge, and how the health of one neuron
is related to the health of another. So each
neuron contains a genetic algorithm or
genotype that is used to grow and test new
relationships. A pluggable axon allows the
system to grapple with how it should
respond6. Both of these are guided during
the cyborg configuration.

This configuration includes the ability
to define rules to shape, as well as extend or
modify, the cyborg’s behavior even after the
system is deployed and running. It will obey
broadcasted commands (using an extensi-
ble lexical command processor), including
built-in diagnostic and test commands.

I have barely scratched the surface of
just this one aspect, and there is no room to
explain how service selection and failover
takes place. There so much to describe
about the social structure that is a central
part of that decision—or the communica-
tion and other technology that supports it.
Still, I’ve made clear what the purposes of a
cyborg are and presented enough about the
technology to encourage you to explore
and test it for yourselves.

Lessons of Use
Cyborgg is currently in use supporting a
number of medical facilities from cancer
research to small practices. It is the techni-
cal foundation or glue inside a leading

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering July/August 2010

health care software vendor’s product,
which brings together a distributed group
of components from multiple vendors
into a single enterprise services bus for
health care. Its application has included
electronic medical record services, disease
management, clinical trials management,
transcription, and document scanning.

Among the lessons learned in its use
(so far):
• Configuration of a large distributed

adaptable system can be problematic,
which led to a redesign of the config-
uration subsystem in the latest version
of cyborgg7.

• The amount of benefit that you
receive is closely related to the way
that you modularize and package your
system. Greater benefits come when
applications are not monolithic.

• We found that good modular designs
were sometimes negated by the
deployment model. This led to the
introduction of organs as an addition-
al cyborgg concept, and Java Network
Launch Protocol Replaceable Units as
a supporting service or technology.

• The concepts are currently different
and new enough to require good
training of your development team. It
particularly rewards a savvy architect

that takes the time to learn its capabil-
ities.

• Visibility is a key organizational suc-
cess factor, underlining the impor-
tance of features to allow technical
users to interact with a cyborg.
The strength of this technology is in

building complex critical systems that
defense organizations face in the real
world. That the old combat phrase “no
plan survives contact with the enemy”
still holds true, as is the belief that any
system that cannot adapt is likely to fail.
Cyborg technology represents a con-
trolled step defense organizations can
take to be more adaptable—away from
their stiff, pre-programmed conventional
software and towards systems that have
greater problem-solving skills.u

References
1. von Neumann, John, Arthur Burks, and

Herman H. Goldstine. Preliminary Dis-
cussion of the Logical Design of an Electronic
Computing Instrument. U.S. Army Ordi-
nance Department Report. June 1946.

2. Clynes, Manfred E., and Nathan S.
Kline. “Cyborgs and Space.” Astronaut-
ics (Sept. 1960): 26-27 and 74-75.

3. Aleksander, Igor, and Helen Morton.
An Introduction to Neural Computing. Lon-

don: International Thomson Com-
puter, 1995.

Notes
1. For example, motor neurons work with

threaded processes, failure analysis neu-
rons are for failure analysis, and germ lay-
ers work with exogenous services in a
service-oriented architecture.

2. Strings and other non-numeric data are
converted to ordinals.

3. A Uniform Resource Identifier (URI) is
like the familiar Uniform Resource
Locator (URL) except that the resource
it identifies does not necessarily specify
location. A URL is a type of URI.

4. Igor Aleksander’s work led to the devel-
opment of the first computer based on
neural principles to reach the market-
place.

5. For example, Boltzmann machines,
Kohonen maps, and perceptrons.

6. Slipping into the math for a minute, the
relationship between real-world neu-
rons is likely not a simple linear rela-
tionship. Ask questions such as
“Should it be quadratic?” and “Should
we use a radial basis function?” The
default axon uses a type of ragged cube
that allows each neuron to fire accord-
ing to a data-driven complex curve.
However, the cyborgg application pro-
gramming interface allows and encour-
ages the researcher to substitute their
own firing function and measure its
effectiveness versus other approaches.

7. Changes included: automatic discovery
of cyborgg-enabled services; the option
to use configuration references where a
commonly used set of goals or other
parameters is defined only once, using a
unique identification, and then refer-
enced by other components; and with
the addition of new installation and con-
figuration services that allow the push-
ing of upgrades to remote customers.

About the Author

Greg Ball is a software
and system architect with
more than 15 years of
government and private
industry experience. He
prefers a complex techni-
cal problem to most

other forms of entertainment. Ball is the
original creator of cyborgg.

7911 Woodstone LN
Dallas,TX 75248
E-mail: gball@cyborgg.com

BACKTALK

July/August 2010 www.stsc.hill.af.mil 31

It happens to the best of us: the dreaded day our trusty
computer leaves the surly bonds of electromagnetism to

touch the face of neutrality—leaving the unprepared in sev-
eral days of pure hell. Sure, it teases with a spark or sputter
only to return to the blue screen of death, the black screen
of doom, or the nauseous bios merry-go-round.

Such was my fate at the onset of 2010. It began with an
unsolicited Windows upgrade that automatically downloaded
and deemed itself so urgent the operating system incessantly
begged for a restart and eventually took matters into its own
hands. Luckily, I had the common sense to back-up my data
to my new Christmas present—a 500GB Hitachi mobile hard
drive that resembles an armadillo tank. Thanks, Santa!

My first step in Hades started with a “Gold Support” call.
It sounded good when purchased, but what I didn’t realize
was that Gold Support starts with a call center operator on a
mission to get you to fix your computer via telephone. Sure,
I don’t mind a few qualifying questions to eliminate bone-
heads (“yes, it’s plugged in...”), but after that I want help; not
computer repair on-the-job training. Note to computer man-
ufacturers: How about “Platinum Support” that gets me back
up and running without delay, no questions asked?

After Harold and Kumar failed to find my laptop’s heart-
beat, I took it to a local repair shop only to find out the reme-
dy would outpace the cost of a replacement. The computer was
limping through its fourth year of service and I was eager to jet-
tison Vista (and its barnacles picked up over those years). It was
time for a new computer. I had threatened to purchase a new
computer over the past nine months; those threats rang hollow
as I realized that necessity is not only the mother of invention
but also the ugly stepsister of action.

I needed a computer quick—and a custom computer was
going to take time. I don’t know about you, but if I’m taking a
computer into the trenches, I prefer it be tailored to my needs.
So I was in need of quick makeshift computing while I found a
long term solution. Enter my son’s college computer (he’s on
hiatus in Oregon). With minimum processing power and disk
space, I coupled it with my new tank drive to survive. It was
enlightening to see what you can do with mobile storage and
provisional computing.

Now I could take some time to find a suitable replacement.
Along with Windows 7, I was interested in the new Intel Core
i3, i5, and i7 processors—as well as their 32-nanometer submi-
cron processing technology. While perusing the specs, some-
thing caught my eye. The i7 has floating-point processing capa-
bility.

Did you hear me? A readily available, commercially sup-
ported floating-point processor. To the ears of an embedded
system designer that is like Charlie finding the golden ticket.
Finally!

After years of neglect, has Intel decided to focus on military
embedded systems? Hardly. It turns out Intel customers are
attracted to floating-point to power a new generation of per-
sonal computers that handle high resolution graphics and high
volume video.

Nowadays, it’s not good enough to share pictures. Those
pictures have to move in multiple windows, at the same time,
and in high definition. We want “Avatar” in 3D THX surround
sound streaming on our laptop with pop-up director notes

devoid of jitter, loading stutter, or delay. That’s where floating-
point comes in.

While The Buggles decried, “Video Killed the Radio Star,”
it turns out in this millennium, video has an unlikely partner: the
military. Not a partner in murder, rather a partner in readily
available commercial off-the-shelf floating-point processors.

Video is an unintentional accessory to the art of war. Yes,
your desire to stream your baby’s first steps to grandma and
grandpa has military embedded computer designers dreaming
of a commercial processor crunching complex fast moving
radar, sonar, and electronic warfare data by day and handling
routine data parsing, links, stores management, and fault toler-
ant checks by night.

Sure, standalone digital signal processing (DSP) chips have
been in operation for years; however, as standalone chips, they
command their own real-estate on densely populated circuit
boards. That gives rise to high rent, heavy footprints, and con-
gestion. Now designers can use a processor that performs DSP
as well as general-purpose processing on a single chip, shrink-
ing substantial processing capability into a smaller space.

Couple size benefits with the cost savings from commercial
processor mass manufacturing, and you have embedded system
designers squirming with joy like Iggy Pop sucking an extra sour
Warhead.

So I had a choice: i3, i5, or i7. Did I really need the i7? No.
Did I want the i7? Yes. Did I get the i7? Of course—as well as
a couple of 500GB hard drives in RAID configuration with a
boatload of RAM.

Now I need a good lead on a miniature radar antenna—
about five to six inches in diameter with a SCSI output. I’ll plug
that into my new laptop and start painting targets in the office
by day and research why Cher is morphing into Joey Ramone by
night. All because Dave Cook wants to watch movies on his lap-
top1.

Thanks Dave.

—Gary A. Petersen
Arrowpoint Solutions, Inc.
gpetersen@arrowpoint.us

Note
1. Although Dave’s always talking about his laptop in his

BackTalk, see <www.stsc.hill.af.mil/crosstalk/2008/
12/0812BackTalk.html>.

Video Thrills the Radar Tsars

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Sponsor
	Catching Up With TSP
	Why Can’t We Manage Large Projects?
	An Interview With Watts S.Humphrey
	Updating the TSP Quality PlanUsing Monte Carlo Simulation
	Extending the TSP to Systems Engineering:Early Results from Team Process Integration

	Open Forum
	Building Critical Systems as a Cyborg

	Call For Articles
	SSTC 2010 Wrap-Up
	Web Sites
	Coming Events
	BackTalk
	Back Cover

