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Abstract 

Noninvasive functional imaging, monitoring and quantification of microbubbles forming in 
blood and tissues upon rapid changes in barometric pressure are extremely important for 
effective therapy and diagnostics of several diseases as well as for imaging and drug delivery 
projects. However, current techniques are unable of imaging and efficient detection of bubbles 
with diameter less than 50 micrometers. The goal of this proposal was to develop novel Phase-
Sensitive Swept Source Optical Coherence Tomography (PhS-SSOCT) technique capable of 
real-time, sensitive, accurate, and noninvasive imaging, monitoring, and quantification of 
microbubbles in tissues. During these studies, a novel phase resolved system based on Swept 
Source Optical Coherence Tomography (SSOCT) has been developed. The system has an axial 
resolution of 10 µm, phase sensitivity of 0.03 radians, imaging depth of up to 6 mm in air, and 
in-depth scanning speed of 20 kHz for a single A-line.  The performance of the sensing system 
was carefully evaluated in optical phantoms containing gas microbubbles with different 
diameter. Obtained results demonstrate that bubbles with diameter greater than 10 µm could be 
detected by both structural imaging and phase response whereas bubbles with diameters less than 
10 µm could be detected by the phase response of the SSOCT with high sensitivity. The 
accuracy for measurement of the diameter of gas microbubbles is limited to 10 µm in structural 
imaging and 0.01 µm in phase-sensitive monitoring. Preliminary studies were also performed in 
animals in vivo for the rapid assessment of the circulating microbubbles. The in vivo results 
demonstrate capability of the developed instrument to image bubbles with diameter above 8 µm. 
The results from the study indicate that the developed SSOCT system could be used to detect 
fast-moving microbubbles and warrant further investigation in biological tissues in vivo. 
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Introduction 
 

Formation of microbubbles in the human body has been extensively studied by many 
researches since discovery of Caisson disease by Paul Bert in 1878. In its classic and most severe 
form, gas emboli present catastrophically (~4% of victims) with collapse, loss of consciousness, 
apnea, and cardiac arrest. Formation of microbubbles inside the body could be attributed due to 
different physiological, physical, and intervention mechanisms. These bubbles can travel to any 
part of the body, accounting for many serious (and sometimes life-threatening) disorders [1]. Gas 
bubbles in the back or joints can cause localized pain (the bends). In the spinal cord or peripheral 
nerve tissues, bubbles may cause paresthesias, neurapraxia, or paralysis. A bubble forming in the 
circulatory system can lead to pulmonary or cerebral gas emboli. Formation and/or introduction 
of gas microbubbles in human blood and tissues remains a serious long-term sequel in patients 
undergoing cardiac valve replacement (with an annual risk of up to 4%) [2-4]; cardiopulmonary 
bypass and other open-heart surgeries [3-8]; high-intensity focused US therapy [9-11]; cesarean 
section and operative hysteroscopy [12-24]; orthopedic surgery [25, 26]; and various laser 
ablation and laparoscopic surgeries [27-30]. Additionally, gas embolism happens in endoscopy 
[31], tissue biopsy [32], neurosurgery [33], liver transplantation [34-36], during central venous 
line insertion and removal [37, 38], and even during intravenous antibiotic delivery at home [39]. 
The use of ultrasound bubble contrast media could also lead to the emboli [40, 41]. Moreover, 
FDA and Bristol Myers Squibb Imaging issued a new alert and important safety changes to the 
prescribing information for DEFINITY® (Perflutren Lipid Microsphere, a diagnostic drug used 
as a contrast enhancement during echocardiographic procedures) in October 2007 [40]. A new 
clinical study found serious cardiopulmonary problems including fatalities associated with the 
use of DEFINITY® microbubbles likely attributed to venous gas emboli. The maximum diameter 
of the DEFINITY® microbubbles is 20 μm. Thus, formation and introduction of gas 
microbubbles in human blood and tissues is not only a problem for the divers but also is a 
significant everyday clinical problem affecting thousands of patients undergoing various surgical 
and therapeutic procedures.  

Bubbles may act as emboli and block circulation, as well as cause mechanical compression 
and stretching of the blood vessels and nerves [42-45]. Additionally, the blood-bubble interface 
acts as a foreign surface, activating the early phases of blood coagulation and the release of 
vasoactive substances from the cells lining the blood vessels and may trigger activation of 
inflammatory response and, therefore, expression of different proteins and protein patters [46-
54]. This can further worsen gas emboli symptoms. However, the underlying pathophysiology is 
still poorly understood [55]. Currently, there is no reliable method for prediction or diagnosis of 
bubble-associated diseases prior to commencement of apparent clinical symptoms (e.g. severe 
pain in joints, pulmonary problems, disorientation and mental dullness, vomiting, skin rush, and 
coma). It is widely recognized that prompt detection of microbubbles in tissues and blood is 
the key for successful management and treatment of persons with different forms of gas 
emboli [1]. Early noninvasive detection of bubbles forming in tissues is required for effective 
treatment and prediction of severity of emboli as well as for many therapeutic and research 
applications utilizing bubbles as contrast or drug delivery agents. 

Depending on the clinical situation, the nature of the gas emboli and the number of embolic 
events can vary greatly. For example, Hills and Butler [56] measured intravascular gaseous 
emboli ranging from 19 up to 700 µm following decompression in living dogs. Gersh detected 



bubble sizes between 60 and 300 µm in both intravascular and extravascular sites. However, 
several studies suggested that bubbles with diameter as small as 8 µm could cause blockage and 
result in the trauma and onset of the symptoms [40, 57, 58]. Therefore, in order to be effective, 
an imaging or sensing technique should accurately detect bubbles with diameter ≥8µm.  

The number of embolic signals can also show wide variations. Georgiadis et al. recorded 
between 0 and 620 embolic events per 30 min period for patients with prosthetic heart valves 
[59]. Mullges et al. have observed between 0.53 and 59.05 embolic signals per minute during 
extracorporeal circulation in patients undergoing cardiac surgery [60]. However, these 
observations were limited by the resolution of utilized technique (that is 50 µm at the best) and 
actual number of “trouble” microbubbles (diameter ≥ 8 µm) remains unknown. Accordingly, 
development of a device that allows detection of small microbubbles with sufficient accuracy 
and sensitivity would be a valuable tool for embolism studies, either for clinical or pre-clinical or 
both. 

Previously, several imaging techniques have been proposed and applied to study 
microbubbles in blood and tissues including Doppler Sonography, MRI, Nuclear Imaging, and 
Computer Tomography. Doppler Sonography, the most popular technique since air-bubble 
interface produce strong ultrasonic reflection in the region of 1 MHz to 20MHz, is an ultrasound 
diagnostic imaging technique, enhanced with Doppler effect, capable of assessment moving 
bubbles by calculating frequency shift of a particular sample volume [61, 62]. However, Doppler 
Sonography can detect only moving intravascular bubbles with a diameter of approximately 50 
μm [63-65]. Evidently, the resolution of this imaging method should be improved in order to 
achieve sensitive imaging and assessment of small µm-sized bubbles. Also, new method has to 
be developed for detection of stationary bubbles in tissue that could be used for prediction or 
diagnosis of gas emboli [66]. 

Optics-based techniques have great intrinsic potential to achieve the goal of noninvasive 
imaging of microbubbles in epithelial tissues and blood microvessels. Confocal laser scanning 
microscopy (CLSM) [67], two-photon fluorescence microscopy (2P-FM) [68-72], and higher 
harmonic generation (HHG) microscopy [73, 74] are some examples of optical methods that 
have been applied in different fields of biological research. CLSM have significant axial and 
lateral resolutions, but it is limited to ~100 µm penetration depth due to high attenuation of 
visible/ultraviolet excitation light. 2P-FM has higher penetration depth due to near-infrared 
(NIR) excitation of fluorophores, but general needs of exogenous fluorophores make this 
technique not truly “noninvasive”. HHG microscopy does not require application of exogenous 
fluorophores, but is very costly (a commercial Ti:sapphire system with just the basics goes for 
over $150K) and bulky [75].  

Optical interferometric techniques are extremely sensitive to local changes in scattering, 
absorption, and refractive index of the tissues and cells. Since the average refractive indexes of 
blood, skin, and air are quite different (1.4, 1.55 and 1.0, respectively in NIR), an optical-based 
sensor will be capable of assessing formation of gas bubbles with ultra-high sensitivity and 
accuracy [76, 77]. Here we describe our progress in development of a novel functional biosensor, 
based on phase-sensitive Optical Coherence Tomography (OCT) technique, for noninvasive, 
accurate, and sensitive imaging, monitoring, and assessment of microbubbles in skin and skin’s 
blood mirovessels by using both amplitude imaging and phase-resolved sensing methods. 



OCT is a relatively novel non-invasive optical diagnostic technique that provides depth-
resolved images of tissues with resolution up to few micrometers at depths of up to several 
millimeters. This technique was introduced in 1991 to perform tomographic imaging of the 
human eye [78]. Since then, OCT is being actively developed by several research groups mainly 
for clinical diagnostic applications (reviewed in [79-81]).  

Current OCT-based imaging techniques may 
be divided into two classes: time domain OCT 
(TDOCT) and spectral domain OCT (SOCT) (Figure 
1). While conventional TDOCT methods are widely 
used in clinical and research laboratories, recently, the 
significant signal-to-noise (SNR) advantage of SOCT 
over TDOCT (up to 30 dB) has been demonstrated 
[82-84]. Also, simplicity of the interferometer 
construction, the absence of mechanical in-depth 
scanning, and the SNR advantage of SDOCT are 
facilitating its further development for many 
applications. Moreover, the relaxed requirement for 
mechanical in-depth scanning in SOCT systems 
allows using a common beam path for the reference 
and sample arms of the interferometer with the 
reference plane located near the surface of the sample 
[85]. Such a common-path interferometer is easier to 
align and is less sensitive to mechanical vibrations, 
and it allows for more-straightforward compensation 
for dispersion and polarization differences between 
reference and sample arms.  

 SOCT may be further divided into two distinct 
methods of acquiring spectral information from an 
object under study: 1) Fourier-domain OCT (FDOCT) 
– using a broadband laser source (typical FWHM > 75 
nm) with a grating and a photodiode array in the 

detection arm; and 2) swept-source OCT (SSOCT) - using a rapidly tunable, narrow-linewidth 
laser source over a broad optical bandwidth with a single photodiode in the detection arm. While 
FDOCT and SSOCT have similar sensitivity advantages over conventional TDOCT systems 
[82], the SSOCT system can detect interference fringes over a substantially longer range of time 
delays between reflections from reference and sample interfaces. 

Phase-sensitive measurements of biological objects provide additional information on optical 
properties and play a key role in development of functional OCT (fOCT) methods. Recently 
introduced TDOCT with differential phase contrast [86, 87] shows great potential for imaging 
and classification of tissues as well as for fOCT [88]. While conventional OCT is based on the 
detection and analysis of amplitude (or spectrum) of back-scattered optical radiation, the phase 
sensitive OCT utilizes the phase information obtained from two tissue interfaces by the same or 
two probing beams. Variations in the sample refractive index will be reflected in the phase 

difference,  , between these two signals from different interfaces. The phase sensitive OCT 

Figure 1: Schematic diagram of time domain 
(upper part) and spectral domain (lower part) 
OCT systems. 



technique (that could be both TDOCT or FDOCT) is capable of measuring Angstrom scale path 

length change between the beams (associated with the phase difference as






4
p

) in tissues 
[88, 89].  

In OCT, a two-beam interferometer is used to detect the backscattered photons from a tissue 
of interest within the coherence length of the laser source.  Typically, a broadband low coherence 
laser source is split into two arms (reference arm and sample arm). The scattered light from the 
sample is captured in such a way that it recombines with the light from the reference arm which 
results in the formation of fringes, provided the distance travelled by light in both arms does not 
differ by more than the coherence length of the laser source. The interference signals are 
recorded by the photo detector which is given by the Equation 1: 

݅ሺݐሻ ∝ 2ඥ ௥ܲ ௦ܲ 	cos  ሻ  ,                                            (1)ݐሺߜ2݇

where i(t) is the recorded signal from the detector and δ(t) is the introduced path difference . 
௥ܲ , ௦ܲ are the optical powers from the reflected and the sample arms, respectively, and k is the 

wave number. The equation shows only the signal in the interferometric term neglecting zero 
frequency component.  Rewriting equation 1 will give: 

݅ሺݐሻ 	∝ ܴ݈݁ܽ ቄ׬ ܵሺ߱ െ ߱଴ሻ݁ି௝∆∅ሺఠିఠబሻ ௗሺఠିఠబሻ

ଶగ
ቅ ,                             (2) 

where Δøሺωሻ ൌ 	 ଶ஠
஛
∗ Δߜ	ሺ߱ሻ	is the phase delay due to the path difference δ (ω), and S(ω) is the 

spectrum of the source. The i(t) and Δø(ω) are Fourier Transform pairs,  thus by applying a 

complex Fast Fourier Transform (FFT) algorithm to i(k), which is i(t) in k-space (݇ ൌ ଶగ

ఒ
), one 

can obtain a 1-D OCT depth profile. By generating transversal set of similar 1-D depth profiles 
with a scanning galvo-mounted mirror, a 2-D image could be constructed. Thus, 2D image 
contains both axial and transverse information.  

For a Swept Source laser, k (t) = 2π/λ(t)  is the wave number that does not always obey a 
linear relation k(t) = k0 + k1t.  In theory if it obeys a linear relation, then the laser would have 
effectively mapped the k-space to time domain, i.e., i(t) = i(k). In reality, the frequency sweep of 
the chirped laser is non-linear. The k(t) contains higher order terms and causes non-linearity in 
the frequency sweep which  leads to a non-uniform sampling interval. As the Fourier transform 
is applied to get the depth information, uniformly-spaced samples are required. By performing 
Non-Uniform Fourier Transformation (NUFT), depth information from the non-uniformly 
spaced samples can be obtained. Another approach is by using the interference fringes from a 
fabry-perot interferometer, uniformly spaced samples are obtained. The non-linearity in 
frequency sweep is analyzed by several groups and proposed different methods to overcome the 
problem. In this design we employs a Mach-Zehnder interferometer based optical clock (MZI-
OC) which generates equally-spaced frequency interferogram that range from 12.5 GHz to 200 
GHz. All peaks, as well as the zero crossings in the recorded fringes of MZI-OC, are always 
equally spaced in optical frequency space and are used for recalibration. The samples are 
collected at these zero crossings thus eliminating the non-linearity in the sampling interval. This  
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pulse is passed to the detector by the third arm of the circulator. This detector outputs a voltage 
signal which is converted to an electrically tunable TTL pulse by a pulse generator (Stanford 
Research Systems, Inc.). The TTL signal is tuned to a required duty cycle and used to trigger the 
analog to digital converter (ADC). The other 1% is fed to the MZI-OC whose signal is detected 
in balanced detection mode, and these electric signals from the detector are acquired by one of 
the channels of the ADC. In the interferometer arm, the 90% light is split into 1% and 99%, each 
going to the reference arm and sample arm respectively via circulators. The light coming from 
the reference arm is passed through an adjustable pin hole to allow attenuation if required. The 
reflected light from the reference arm and sample arm are coupled into a 50-50 fiber coupler 
where they recombine and form the interference fringes. These fringes are then detected by a 
balanced photo detector (BPD), which subtracts the two signals to remove the common mode 
noise. As the fringes would be out of phase, this BPD is effectively adding the fringes but 
subtracting the common mode noise. After removing the common mode noise, the fringe 
encoded voltage is then amplified by a Transimpedance amplifier (TIA) and then RF modulated 
and acquired by a PC through the other channel of the ADC. Both the information from MZI and 
the interferometer is acquired simultaneously by the ADC with the receiving of the trigger from 
the FBG. 

The fringes are acquired by a 14-bit high-speed digitizer (PCI 5122, National Instruments). 
The digitizer is operated at 50 MS/s and acquires 2500 sample points per A-scan. The sampling 
rate is chosen by considering the fact that the sampling interval should be smaller than the 
instantaneous line-width (0.1 nm); otherwise, a large sensitivity drop off along the depth scan 
would be observed.  Out of these 2500 points, the first 200 and last 252 points are deleted so as 
to select the data corresponding to the laser wavelength scans. Both the raw signal and the MZI-
OC signal will now have 2048 points. After recalibration using MZI-OC, the number of points is 
decreased due to the fact that the number of peaks and zeros are always less than the total 
number of points. As a matter of fact, if the nearest neighborhood algorithm is used to find the 
peaks, which gives 1 point out of 3 points, only one-third of the sample signal would be utilized. 
Thus, the number of peaks and zeros registered are around 600 indicating the presence of 600 
raw data points. Using spline interpolation, three points are inserted between consecutive raw 
data points thus giving 2400 points. Again, the signal is windowed to have 2048 points. It must 
be noted that the points that are deleted from the raw signal should not contain any information 
from the signal. If, in the process of getting 2048 from 2400, any information containing the 
fringes is lost, then instead of getting 2048 points in the first deletion, more points are retained. 
The selection of points is made in such a way that the calibrated signal always has 2048 points 
without losing any fringe information. A complex FFT of this signal gives the depth profile and, 
due to the symmetry of FFT, each A-line corresponding depth is constructed using 1024 points. 
It is worth noting that inserting a lower number of points, e.g. two, might result in losing some of 
the higher frequency components which in turn might reduce the imaging depth of the system. 
Since the back-scattered light at a depth greater than the coherence length of the laser source 
cannot form fringes, the maximum imaging depth would not exceed the coherence length of the 
laser source.  

Signal processing includes several steps, including reference subtraction, recalibrating and 
resampling to uniform k-space and image construction. The background signal is recorded at the 
beginning of every acquisition by blocking the sample arm. This signal contains the 1% residual 
light reflected from the reference arm and from the residual signal in the detectors due to 
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Grating (FBG) as shown in Figure 3. A reflected optical pulse is generated whenever the source 
sweeps the FBG reflection wavelength. An optical pulse is detected by the detector every time 
the laser swept 1315 nm (the reflection wavelength of FBG), thus the frequency of the FBG 
pulses are also at 20 kHz as shown in Figure 4(a). Figure 4(b) depicts the oscilloscope trace 
showing the TTL trigger signal (2nd trace), the signal from the sample (3rd trace) and the MZI-
OC signal (4th trace). This pulse is converted into a TTL signal using a signal generator (Stanford 
Research Systems). The TTL signal generator generates an optical pulse which can be 
electrically tunable to get the required duty cycle as shown in the Figure 4(a). By triggering the 
ADC with the above TTL signal, the jitter due to electronics is reduced by introducing perfect 
synchronization between the source and data acquisition, which in turn reduces the phase 
variations: standard deviation of 0.016 radians for 512 A-line scans has been achieved as shown 
in Figure 4(d).  

Regardless of the above removal of π jumps, the MZI-OC introduces some phase noise to the 
system. This is due to the fact that zeros and peaks keep changing with every laser scan due to 
thermal and mechanical vibrations. Thus, the phase measured from the sampled fringe signal 
inhibits high phase variations. To avoid this, the MZI-OC is recorded only once and hence the 
zeros and peaks will not change with every scan and the recalibrated signal will be stable in the 
phase. The obtained uncertainty in phase is very low and is experimentally verified in the 
following manner. The phase shift measured in water as a function of time for different glucose 
concentrations and corresponding change in sample’s refractive index as a function of glucose 
concentration are shown in Figure 5a and Figure 5b, respectively. Glucose-induced changes in  

the refractive index, 
ௗ௡

ௗ஼
, were calculated as 

ௗ௡

ௗ஼
ൌ ଵ

ௗ

ఒ

ସగ

ௗఝ

ௗ஼
, where d is the cell thickness and 

ௗఝ

ௗ஼
 is 

the glucose-induced changes in the phase. The standard deviation for each 
ௗ௡

ௗ஼
 data point was 

calculated from 80 independent measurements of the same glucose concentration (Figure 5b). 
Linear fitting of the data points using a linear least squares algorithm yielded a correlation 
coefficient r>0.999 and p< 0.01%. The phase increased in equal steps indicating that the phase 
measured is indeed the phase introduced by the change in concentration of the glucose solution 
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Figure 5: (a) Phase shift measured in a clear aqueous solution of glucose vs. time (or scan number); and (b) change 
in the sample’s refractive index as a function of glucose concentration. 
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imaging depth. However, Y. Verma et.al. recently have shown that the use of  a tapered single 
mode fiber could increase the transverse resolution without significant decrease of the imaging 
depth [91]. 

Performance of the developed system was further evaluated in water containing gas 
microbubbles of different diameters. Water was injected into a 500 µm flow-through cuvette, and 
bubbles were generated by introducing different pressures using a peristaltic pump (Fisher 
Scientific). The beam is scanned across the cuvette as shown in the Figure 7(a). The amplitude of 
the interference signals in the time-delay domain was recorded from the cuvette. Four 
characteristic interferometric peaks were observed corresponding to the interferences between 
the four surfaces of the cuvette [an example is shown in Figure 7(b)]. 

In these experiments, the optical delay is calculated as a function of dynamic refractive index 
(modified by presence/absence of microbubbles) from the interferometric peaks that are 
produced by the reflection from the inner walls of the cuvette in the time-delay domain (between 
the surfaces 3 and 2 or B in Figure 7(b)). The phase is extracted from the complex Fourier 
transform of the interference fringes and monitored at the interferometric peak that corresponds 
to the self-interference between the inner glass surfaces 3 and 2. The signal from surface 2 in 
Figure 7(a) is used as a reference arm in generating the self-interference signal. Phase-sensitive 
measurements of water are taken before and after injection of the microbubbles. Since the 
bubbles induced changes in the refractive index, the diameter of the bubble from the phase shift 
is calculated from the Equation 3: 

݀݊ ൌ ଵ

௟

ఒ

ସగ	
	݀߮,                                         (3) 

where dn is the refractive index change introduced by the bubble (equal to 0.33 for an air bubble 
in water), l is the diameter of the bubble,  dφ is the bubble-induced phase shift. Phase difference 
between the A line corresponding to the center of the bubble (determined as a maximal possible 
change in the phase) and the A-line outside the bubble are computed to quantify the diameters of 
the bubbles. 

Bubbles are generated by creating a pressure difference and are circulated using the pump. 
Bubbles of diameters greater than 10 μm, were imaged first to test the consistency of the PhS-
SSOCT imaging. The images were taken in the inter-interference mode, in which the reference  
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whole cuvette can be imaged without any negative images that arise due to the symmetry of FFT. 
Therefore, for Figure 8(a), all four bright lines correspond to all four surfaces of the cuvette. Each 
bright line in the Figure 8(a) and Figure 9(a), correspond to each surface of the cuvette (numbered 
1 to 4 in the Figure 7).  The missing part in the surfaces 3 and 4 is observed only in the case of 
huge bubbles indicating that the beam has refracted so that the reflection from the surface below 
the bubble is not coupled back. In the clear aqueous media, the maximal phase variations were as 
low as 0.03 radians after a 5-point averaging (repeated for at least 10 times), which implies that 
any microbubble that introduces a phase shift greater than 0.03 radians can be detected.  

Generally, for an optical path difference of one wavelength the phase shift would be 2π in a 
homogenous media.  Equation 3 describes a relationship between the changes in the refractive 
index and the phase of PhS-SSOCT.  For an air bubble in water, the change in the refractive 
index would be 0.33 which translates to a minimum bubble size of 2 µm for the phase to be 
unwrapped by one 2π jump. Since the system’s resolution is 10 µm, bubbles with diameters 
greater than 10 µm can be clearly seen in the structural image, as shown in Figure 8(a).  When 
there is no bubble, the optical path length between the inner surfaces of the cuvette is 665 µm 
(refractive index of water is 1.33, so 500 μm x 1.33 = 665 µm), which is observed as a peak at 
665 µm in corresponding 1-D depth profile. As the beam interacts with the bubble, the optical 
path length keeps decreasing until it reaches the center of the bubble and increases again to the 
original value. This change in the optical path length is reflected as a shift in the peak in the 
corresponding 1-D profile as shown in the Figure 8(b). The larger the bubble, the greater is the 
decrease in the optical path length and hence the greater is the shift. The number of 2π jumps by 
which the phase to be unwrapped is then calculated from the peak shifted in the 1-D profile. This 
unwrapped phase is then added to the PhS-SSOCT phase response to get the true phase response. 
For the clear media, each depth pixel corresponds to a one way physical path difference of 5.88 
µm, which is equal to 2.94 “2π” jumps. Thus, for the bubble shown in Figure 8(a), the number of 
2π jumps would be 69/2*2.94 = 113 as the peak shifts by 69 depth pixels [Figure 8(b)]. By 
plugging this true phase in Equation 3, the size of the bubble obtained is 219 µm. The actual 
diameter of the bubble measured is 224 µm. The true phase and the PhS-SSOCT phase (phase 
before adding required 2π jumps) is plotted in the same graph with two different scales on the 
right and left of the Y-axis. 

Similarly, several bubbles with different diameters (52 µm, 94 µm, 160 µm etc.,) were taken 
and quantified. The obtained error ranged from 0.19 µm to 10 µm which can be attributed to the 
2π ambiguity.  The change in the path differences less than 10 µm is not reflected in the 1-D 
profile (due to limited imaging resolution of 10 µm). In this case, the number of 2π jumps by 
which the phase should be unwrapped cannot be determined and can take any integer value 
between 1 and 5.  This means that microbubbles with diameters with multiples of 2 µm (up to 10 
µm) would show the same phase response. For instance, if the number of 2π jumps calculated 
from the phase shift is 60, the actual number of 2π jumps can be any number between 60 and 65. 
Likewise, if the measured diameter of a bubble is 120 µm, then the actual bubble diameter could 
be 120, 122, 124, 126 or 128 µm. However, this ambiguity can be resolved by implementing a 
fast real-time continuous unwrapping algorithm which will be developed in our future studies. 
This algorithm would acquire multiple phase recordings between consecutive changes in the path 
difference of less than 2 µm and continuously unwrap the phase information. It would also allow 
the exact quantification of microbubbles that are beyond the imaging capabilities of the system.  
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