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Magnetized jets are important features of many systems of physical interest. To date, most interest
has focused on solar and space physics and astrophysical applications, and hence the unbounded
magnetized jet, and its cousin, the unbounded magnetized wake, have received the most attention.
This work presents calculations of a bounded, magnetized jet for a laboratory experiments in the
Helimak device �K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 �2008��. The Helimak
device has a toroidal magnetic field with a controlled velocity flow that represents jets in bounded
systems. Experimental and theoretical features include three spatial dimensions, the inclusion of
resistivity and viscosity, and the presence of no-slip walls. The results of the linearized model are
computed with a Chebyshev-� algorithm. The bounding walls stabilize the ideal varicose mode
found in unbounded magnetized jets. The ideal sinuous mode persists in the bounded system. A
comparison theorem is proved showing that two-dimensional modes are more unstable than the
corresponding three-dimensional modes for any given set of system parameters. This result is a
generalization of the hydrodynamic Squires theorem. An energy-stress theorem indicates that the
Maxwell stress is crucial for the growth of the instability. The results of the analysis are consistent
with the observed plasma fluctuations with in the limits of using a simple model for the more
complex measured jet velocity flow profile. The working gas is singly ionized argon and the jet
velocity profile is accurately measured with Doppler shift spectroscopy. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3166598�

I. INTRODUCTION

Many important physical systems can be modeled as
magnetofluids with combined flow and magnetic shears. By
combined flow and magnetic shears we denote a situation in
which a sheared flow field and a sheared magnetic field are
both present in close proximity.1 This type of system is per-
haps best illustrated by providing examples of the two ca-
nonical cases that have emerged: the magnetized jet2 and the
plane current-vortex sheet.3 Both of these systems have
sheared magnetic field structures. In the case of the magne-
tized jet, there is a fluid jet superimposed on the magnetic
field structure. The magnetized jet has been used to model a
variety of physical systems, including solar surges,4,5 and the
fast flows in Earth’s magnetotail.6 The magnetized jet can be
turned into a magnetized wake by application of a Galilean
transform. This closely related configuration has been used
to model the formation and acceleration of the slow solar
wind,7 the heliospheric current sheet,8 and nonthermal galac-
tic jets.9 This system with sheared magnetic fields and fast
flows is frequently used to model solar surges4 and tokamak
plasmas with equilibrium flows.10

There are in addition many interesting laboratory plasma
experiments with combined flows and magnetic shear, such
as the Helimak11 and the large plasma device12 �LAPD� ex-
periments. In general, these plasmas share the characteristic
that they are bounded, as opposed to space and astrophysical

plasmas in which boundaries are often so far away from the
region of interest that they are ignored. Hence it is of interest
to determine how the presence of walls alter the conclusions
of previous research on magnetofluids with combined flow
and magnetic shears. Are walls a stabilizing influence, or do
walls serve as regions for destabilization and turbulence pro-
duction? For example, many of the unstable modes found in
earlier studies have been ideal, dissipationless instabilities.
These modes are generally of large spatial extent in the
cross-stream direction. Walls could disrupt the structure of
these modes and alter their stability properties. Conversely, it
has been found that walls can provide a source region for
instabilities since large stresses can develop in response to
the velocity or magnetic field striving to meet the imposed
boundary condition. For example, in magnetized plane
Poiseuille flow, large Reynolds and Maxwell stresses de-
velop at the channel walls for the case of a dc magnetic
field.13 Kent14 showed that sheared magnetic fields also
strongly influenced the stability of magnetohydrodynamic
�MHD� plane Poiseuille flow.

Early studies of magnetized channel flows are encourag-
ing in that they indicate that there can be a significant inter-
action between sheared flows and magnetic fields in mag-
netofluids bounded in channels.14,15 Interest in MHD plane
Poiseuille flow16,17 has waned somewhat so we study a rep-
resentative system of contemporary interest. The Helimak
experiment at the University of Texas at Austin is an excel-
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lent candidate. The Helimak is a toroidal magnetic confine-
ment device designed to realize in the laboratory the sheared
magnetic field slab geometry used by theorists in the analysis
of localized modes in tokamaks.11 When small resistive
boundary layers are important it is not necessary for theory

to keep the global radial profiles to study the plasma
instabilities and turbulence. By virtue of the helical magnetic
field structures modes with long parallel wavelengths
��50–100 m are allowed in the experiment. The Alfvén
wave dynamics is thus part of the natural modes of the sys-
tem and the fluctuations of the magnetic field are an impor-
tant aspect of the system’s dynamics as opposed to experi-
ments with short lengths parallel to the magnetic field lines.

We show in this work that the sheared flows and mag-
netic fields of the Helimak can be classified as a bounded
magnetized plasma jet. Hence we can use this system to see
how the results of an earlier study of the unbounded magne-
tized jet are altered by the presence of walls.3 In this work
we focus on the linearized theory and calculation of MHD
instabilities associated with a complex, sheared, bounded
magnetofluid with flow and magnetic fields characteristic of
the Helimak. We include the effects of resistivity and viscos-
ity, as well as no-slip walls.18 Linear theory will provide us
with a guide to the parameter space of the Helimak. In par-
ticular, the stress analysis described in this paper gives us a
better understanding of the energetics of Helimak flow and
magnetic fields. In Fig. 1 we show three examples of the
vertical flow vz=w�x� configurations created in the Helimak
plasma with the data points and error bars from spectro-
scopic Doppler shift measurements of lines from the working
gas of singly ionized argon. The flow profiles are controlled
by the bias voltage Vbias given in the figure which changes
the cross-field electric field Er. The plasma responds in a
complex manner to give the measured velocity profiles
shown in frames a, b, and c for three values of the bias
voltage. The profiles have velocity shear, and the associated
vorticity dVz /dr of order �5�103�– �1�104 s−1� changes
sign at the inflection points in the profile. By virtue of
the long lengths L of the magnetic field lines given by
L=B�H /Bz�50 m the Alfvén wave frequency is low
�k�vA /2��10 kHz�. Here H=2 m is the height of the
plasma column and B� /Bz�0.1 T /0.01 T is the ratio of the
toroidal to vertical magnetic fields at midradius r�1.1 m
from the vertical symmetry axis.

In Fig. 2, we show the fluctuation amplitudes of the
electric potential and the electron density measured with
Langmuir probes in the 10 eV argon plasma. The model used
is incompressible, which is valid when the density fluctua-
tions �n /n are small compared to the dimensionless potential
fluctuations. In the theoretical model, this occurs when the
motions are resistive-viscous MHD-like with high vE relative
to the diamagnetic drift speeds. The probe data presented in
Fig. 2 support this modeling since over most of the radial
range shown, e�� /kBTe is twice as large as the fractional
density fluctuations. The feature that e�� /kBTe	�ne /ne

over much of the flow profile, or plasma jet, means that
one may drop the drift wave terms to first order. The
principal correction from adding the density fluctuations
would be to introduce the electron diamagnetic frequency

�e=ky�kBTe /eBLn� to the fluctuations �
→
�e+ i��.

Under the condition of weak compressibility, the parallel
component of Ohm’s law then simplifies to E�=�j� in the
modeling the experiment. The key fluctuations are the elec-
tric potential and perpendicular components of the magnetic

FIG. 1. Vertical flow profiles of a Helimak plasma at bias voltage values �a�
Vbias=0, �b� Vbias=−10 V, and �c� Vbias=−15 V. The error bars correspond
to the statistical uncertainty in spectroscopic Doppler shift measurements of
spectral atomic emission lines from a working gas of singly ionized argon.
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field in these flow dominated plasmas. Owing to the large
mass of the argon ions, these low temperature plasmas have
mie /me�1–2, where e is the ratio of the electron thermal
energy density to the magnetic energy density.

This article is organized as follows. In Sec. II we review
some relevant results of research on the unbounded magne-
tized jet. In Sec. III we discuss the relation of the Helimak to
the magnetized jet. In Sec. IV we examine the linear stability
of the system, prove a MHD Squires theorem, and derive an
energy-stress theorem for how the fluctuations received and
give up energy in the bounded, magnetized jet. In Sec. V we
discuss our results and consider some future directions for
this research.

II. MAGNETIZED JET REVIEW:
THE UNBOUNDED CASE

A first point to note is that a fluid jet can be transformed
into a wake field by a Galilean transformation. This transfor-
mation can be achieved by moving to a frame of reference
moving at the maximum jet speed in the original frame of
reference. Hence studies of magnetized wakes are also rel-
evant to the present paper. Unbounded magnetized jets and
wakes have been studied in a variety of contexts. In general,
researchers have investigated systems which are either mag-
netically dominated or flow dominated. It turns out that this
is significant because the Alfvén number �A=VA /V0, where
VA is the characteristic Alfvén velocity and V0 is the charac-
teristic flow velocity� is very important in determining the
evolution of the system �note that the inverse of the Alfvén
number A, is the Alfvén Mach number, or MA=V0 /VA�. For
example, for the low A, or flow dominated plasmas, re-
searchers have looked at the heliospheric current sheet,
Earth’s magnetotail, and at nonthermal galactic filaments.
For the high A, or magnetically dominated case, researchers
looked at solar surges and tokamaks. An interesting problem
that requires investigation of both the high A and low A
regimes is that of slow solar wind formation and accelera-
tion. In this case the plasma originates in a magnetically

dominated region below the solar Alfvén point, and then
moves to a flow dominated region above the Alfvén point.

For flow dominated systems, with 0�A�1, two un-
stable modes were found, an ideal varicose mode and a sinu-
ous mode. A varicose mode is one in which the cross-stream
flow is antisymmetric, and a sinuous mode is one in which
the cross-stream flow is symmetric about the maximum or
minimum of the flow profile. As A is increased these modes
are stabilized. A generalization of the Howard semicircle
theorem to the case of the magnetized jet showed that a
strong enough magnetic field will suppress the ideal insta-
bilities. As A increases above one, the system becomes mag-
netically dominated. In this case a resistive varicose mode
was found. Note that in the fusion literature the sinuous
mode would be denoted a kinklike mode and a resistive vari-
cose mode would be called a tearinglike mode.

An analysis of the fluctuation energy-stress balance2,3

shows that there are three stress components: the Reynolds
stress, the Maxwell stress, and the cross-field stress. The val-
ues of the stresses and direction of energy flow is sensitive to
the Alfvén number. We discuss these terms further in Sec.
IV F for the case of the bounded magnetized jet. The Rey-
nolds stress moderates the transfer of energy between the
basic flow field and the perturbed flow field. The Maxwell
stress moderates the transfer of energy between the basic
flow field and the perturbed magnetic field. The cross stress,
or dynamo term moderates the transfer of energy between
the basic magnetic field and the perturbed flow and magnetic
fields. The perturbed viscous dissipation determines the dis-
sipative loss of perturbed kinetic energy. The perturbed
Ohmic dissipation determines the dissipative loss of per-
turbed magnetic energy. The perturbed viscous and Ohmic
dissipation was also affected by changes in A. In general, the
resistive varicose mode is characterized by a large positive
cross-stress contribution to the perturbed energy in the high
A regime. For low A, the resistive varicose mode’s cross-
stress contribution is negative. The increase in a positive
Maxwell stress contribution is not enough to compensate for
increased Ohmic and viscous dissipation for low A, thus
damping results. The ideal varicose mode has a large positive
Maxwell stress contribution for all values of A. Again, dissi-
pation increases for high A, resulting in damping. For the
sinuous mode, the Reynolds stress is very large for low A.
There is also a more modest contribution to the perturbed
energy due to the Maxwell stress. As A increases, both of
these processes are strongly damped, leading to stability.

As far as the nonlinear incompressible problem goes,
most interest has focused on the magnetized wake due to its
use as a model for several solar physics, space physics, and
astrophysical situations. In two spatial dimensions, it has
been found that moving plasmoids form and accelerate.7 Of
great interest has been the finding that the wake, or jet,
spreads in the cross-stream direction and that its center line
flow speed approaches that of the free-stream.7 When the
spanwise direction is included, secondary instabilities have
been observed to occur, followed by a transition to
turbulence.5

Compressibility represents a significant increase in com-
plexity for this problem. The linearized equations are far

FIG. 2. Fluctuation amplitudes of the electric potential and the electron
density measured with Langmuir probes in a 10 eV argon Helimak plasma.
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more extensive. We find that three unstable modes occur.19

Increasing the Mach number leads to decreased growth rates.
In contrast with the current-vortex sheet, no second modes
were found at high Mach numbers.20 An interesting feature is
that for certain situations, the three-dimensional �3D� ideal
varicose modes grew at a faster rate than their two-
dimensional �2D� counterparts.19 In the nonlinear compress-
ible problem, massive accelerated plasmoids have been
observed.21 These are similar to the incompressible plas-
moids mentioned earlier, although the details of the accelera-
tion are altered. Rappazzo et al. considered diamagnetic and
expansion effects on this process.22

Based on our previous experience, in the present study
of the bounded magnetized jet we focus first on the incom-
pressible problem. This has proven to be a rather complex
physical problem in our previous studies. We have found it
profitable to study the linearized system to determine the
principal modes of evolution, and then move on to the study
of the two- and 3D nonlinear problems. Subsequently, the
study of the even more complex compressible system is ap-
propriate. The compressible linearized problem is much
more complicated because the governing equations cannot be
collapsed by invoking the solenoidal condition on the flow
fields. We can then move on to the nonlinear compressible
problem.23–35

III. HELIMAK AND ITS RELATION
TO THE MAGNETIZED JET

A. Description of the Helimak experiment
and its parameters

The slab geometry representation of the Helimak, shown
schematically in Fig. 3, is similar to the MHD Poiseuille
flow geometry16,17 with concentric conducting walls at
r=a=0.6 m and r=b=1.6 m and a height of H=2 m. The
dominant toroidal field, B�, of order 0.1 T is produced by a
set of 16 toroidal field coils around the vacuum chamber.
Three other poloidal field coils are used to produce a weaker
vertical field, Bz, which may be varied up to 10% of the
toroidal field by changing the ratio of the current flowing
through the toroidal coils to the current owing through the
poloidal field coils. The magnetic field lines are thus helices

spiraling from bottom to top and whose pitch varies with the
radius as the toroidal field decreases as 1 /r, where r is mea-
sured from the vertical symmetry axis of the device. The
field line length L� may be varied from less than 20 m to
more than 1 km by varying the strength of the vertical mag-
netic field Bz.

To create the jet, or localized flow vz=w�x�, segmented
end plates are biased to create various plasma flows across
the magnetic field from the steady state radial electric field
�Er�. Probe measurements of the radial electric field show
localized Er which means that there is a localized high speed
vertical plasma stream in the vertical direction êz. Magnetic
probes in the Helimak show a broad frequency spectrum of
magnetic fluctuations.

The plasma studied has toroidal B=0.1 T, vertical or
poloidal field from 0 to 05 T with electron cyclotron heating
producing the ionized argon plasma with temperature of Te

=10 eV at the peak of the temperature profile. The plasma
density ranges from 2�1016 to 2�1017 m−3. For these pa-
rameter values and a density of 2�1017 m−3, the computed
Alfvén velocity is �1–3��108 cm /s, the resistivity is �
=10−5 � m and the kinetic viscosity is �=104 cm2 /s. More
details on the plasma parameters are given in Table I. For
this plasma we define the magnetic Reynolds number S
=VAa / �� /�0� and the viscous Reynolds number Sv=VAa /�.
Accordingly, we take S=5000 and Sv=5000 for the base line
case and consider variations from these values in the analy-
sis. The velocity of the argon ions Ar+1 is measured spectro-
scopically and is thus well known. Typical profiles are shown
in Fig. 1. Singly ionized argon has emission lines in the blue
part of the spectrum. The Doppler shift of these lines are
measured to give accurate, well-resolved measurements of
the ion velocity vz=w�x�. The ion velocity is of the order 1
km/s and thus larger than the ion thermal velocity, compa-
rable to the ion acoustic speed, and a significant fraction of
the Alfvén velocity. Due to the large mass of the argon ions,
mie /me�1, and electromagnetic fluctuations occur.

FIG. 3. A schematic drawing of the Helimak illustrating the coordinate
system used in this paper.

TABLE I. Helimak viscoresistive MHD parameters.

Toroidal magnetic field B�=0.1 T

Poloidal magnetic field Bz=0.01 T

Half height H=1.0 m

Half width L=0.5 m

Aspect ratio H /L=2

Magnetic field line length L�=20 m

Argon density ne= �2�1010�– �2�1011� cm−3

Electron temperature Te=10 eV

Chamber volume V=13.8 m3

Space-time scale �L ,T�= �0.5 m,0.6 �s�
Magnetic diffusivity � /�0=30 m2 /s
Magnetic Reynolds number SM =VAL / �� /��=104

Ion kinematic viscosity �=0.3�i
2�i=0.3 m2 /s

Viscous Reynolds number Sv=104

Bohm diffusivity �e =
1

16

Te

B
= 6 m2/s
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B. The slab model for the Helimak

In this paper we are exploring the behavior of a mag-
netofluid contained in a channel which corresponds to a slab
model of the Helimak geometry. Hence it is appropriate to
begin with a description of our slab, or channel, model and
its relation to the Helimak. A schematic drawing of the
Helimak and the slab coordinate systems is given in Fig. 3.
In the laboratory frame of reference, we let x correspond to
the radial direction, y� correspond to the toroidal direction,
and z� correspond to the axial direction �since most of our
research is performed in a rotated frame of reference, we use
primes to denote the laboratory frame of reference�. Periodic
boundary conditions are imposed in the y� and z� directions
and no-slip boundary conditions in the x direction, i.e.,

u��x = � 1� = v��x = � 1� = w��x = � 1� = 0, �1�

where u� is the perturbed flow in the x direction, v� is the
perturbed flow in the y� direction, and w� is the perturbed
flow in the z� direction.

In the Helimak, most of the magnetic field is due to the
currents flowing through the external coils, giving a base 1 /r
magnetic field,

B� =
B0R0

r
=

2aB0

b + a + �b − a�x
. �2�

In our slab coordinate system, x=0 is located at the center of
the channel. If we restrict the x coordinate to vary from
−1�x�1, then the magnetic field can be written as

B0y�
� �x� =

1.2

2.2 + x
êy�, B0z�

� = 0.1êz�, �3�

in which the magnetic field B0y� is normalized to its value at
Helimak’s inner wall, i.e., x=−1, where B��x=−1�=B0.

Probe measurements of the radial electric field show a
localized radial Er well which means that there is a localized
high speed vertical plasma stream in the vertical direction
W�=Er /B�=W0��x�. We model the W�x� with a hyperbolic
cosine function sech�r−r0 /w�→sech�3x�. For the base line
we take

V0� = 0.0êy�, W0��x� = 0.1
sech�3x� − sech�3�
sech�0� − sech�3�

êz�, �4�

where V0� is the basic flow in the y� direction and W0� is the
basic flow in the z� direction. These fields are shown in
Fig. 4.

C. Rotation to field-aligned coordinates

The model system has translational symmetry in the
toroidal direction êy� and the vertical direction êz�. Thus,
the modes will be described by wavenumber vector
k�= �0,�� ,��. Both axisymmetric �=0 and nonaxisym-
metric toroidal mode numbers are investigated, where �� and
� correspond to the streamwise and spanwise wavenum-
bers, respectively, in the slab approximation in MHD. There
is a continuum of Alfvén modes with 
=k�vA. The first
modes to go unstable are often centered at k�=0, thus we
actually look at a rotated field so that k ·B�x=0�=0. The

rotation through the angle � is in the �êy� , êz�� plane such that
k�→k, v�→v, and B�→B. Hence in the rotated frame of
reference we have for the magnetic field,

B0y�x�êy = B0y�
� êy� cos � + B0z�

� êz� sin � , �5�

and

B0z�x�êz = − B0y�
� êy� sin � + B0z�

� êz� cos � , �6�

and for the flow field we have

V0�x�êy = V0�êy� cos � + W0z�
� êz� sin � = W0z�

� êz� sin � , �7�

and

W0�x�êz = − V0�êy� sin � + W0�êz� cos � = W0�êz� cos � . �8�

For the rotation we want to have k ·B�x=0�=0. We
can obtain this by rotating through an angle �=sin−1

�Bz��x=0� /By��x=0��=sin−1��−0.1�2.2� /1.2�, which gives
��−10.56°. This rotation isolates the sheared magnetic field
in the y-direction.

We adopt the following hydrodynamic terminology for
the rotated coordinate system: The x-direction is referred to
as the cross-stream direction, the y-direction is referred to as
the streamwise direction, and the z-direction is referred to as
the spanwise direction, Note that because of the small mag-
nitude of the rotation employed ���−10.56°�, we can
roughly identify the streamwise direction �y� with the toroi-
dal direction, and the spanwise direction �z� with the axial
direction.

The rotated fields are shown in Fig. 5. Note that the
y-direction fields are a modified bounded form of the un-
bounded magnetized jet,2 i.e., a fluid jet embedded in a
sheared magnetic field. However, there are some interesting
differences between the two cases that might lead to differ-
ences in evolution. As noted before, there are rigid bound-

FIG. 4. Plot of the basic flow and magnetic field profiles for the calculations
in this paper in the laboratory frame of reference. In the laboratory frame of
reference x corresponds to the radial direction; y� corresponds to the toroidal
direction; and z� corresponds to the axial direction �Since most of our re-
search in performed in a rotated frame of reference, we use primes to denote
the laboratory frame of reference�. Note that the maximum flow speed is
one-tenth of the maximum Alfvén speed.
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aries in the channel problem. Boundaries can have both a
stabilizing and a destabilizing influence. Another significant
difference between the unbounded magnetized jet and the
present fields is the lack of symmetry in the magnetic field.
In particular, while the streamwise flow field is symmetric in
x, the magnetic field is about three times larger at x=−1
than at x=1. This lack of symmetry influences the details of
our numerical method, in that we must retain all of the
Chebyshev polynomials to account for the asymmetry. We
describe this numerical method more fully in Sec. IV. Fi-
nally, an examination of the y-direction fields alone in Fig. 5
might lead to the conclusion that this system is flow domi-
nated since for these fields alone the characteristic flow
speed exceeds the characteristic Alfvén speed. However, in
terms of the total kinetic and magnetic energies, the system
could also be described as magnetically dominated once the
large z-direction magnetic field is taken into account. As we
shall see, the linear dynamics appear to be best described as
flow dominated. However, the guide field can have a large
effect on the nonlinear dynamics.

IV. LINEAR CALCULATIONS

A. Derivation of linearized equations

First we consider the derivation of the linearized equa-
tions. We start with a dimensionless form of the nonlinear
MHD equations,

�v

�t
= v � � − �� + j � B +

1

Sv
�2v , �9�

and

�B

�t
= � � �v � B� +

1

S
�2B , �10�

together with the constraints: � ·v=0 and � ·B=0. In the
above equations v�x , t� is the flow velocity, ��x , t�=��v is

the vorticity, B�x , t� is the magnetic field, j�x , t�=��B is
the electric current density, ��x , t� is the mechanical
pressure+kinetic energy density per unit mass, and S is the
Lundquist number, Sv�viscous Lundquist number �the resis-
tivity and viscosity are assumed to be constant and
uniform�.36,37 The velocities are measured in units of the
Alfvén speed �VA�, and time is measured in units of the
Alfvén transit time, l /VA, where the characteristic distance l
is defined as the channel half width. In this work we inten-
tionally neglect the buoyancy instabilities associated with the
pressure fluctuations in the curved magnetic fields to focus
on the shear flow as a source of plasma turbulence in the
resistive-viscous finite geometry system. Moreover, owing
to Helimak’s low ion temperature, the Hall effect from
the separation of the ion drift velocity from the E�B
drift velocity is negligible, hence �v− j /ene��B=v�B
− �kBTe /e�� ln ne. Upon taking the curl of Ohm’s law in the
form E=�j− �kBTe /e�� ln ne for isothermal electrons, the
electron pressure gradient drops out of Eq. �10� for �B /�t.

After linearizing Eqs. �9� and �10�, and the solenoidality
conditions of the state given in Eqs. �5�–�8�, we decompose
the first-order terms in the following manner:

a1�x,y,z,t� = a�x�ei�y+iz−i
t, �11�

where � is the streamwise wavenumber,  is the spanwise
wavenumber, and 
 is the complex growth rate.

After eliminating the pressure, the equations which de-
termine the linear modes are found. To write the equations

compactly we define the operators D�d /dx and �̂=D2

− ��2+2�, then the cross-stream �or radial� velocity �u� and
magnetic induction �bx� equations reduce to

�̂2u − iSvF�̂u + iSv�D2F�u

= − i
Sv�̂u + iSv��D2G�bx − G�̂bx� , �12�

and

��̂ − iSF + i
S�bx = − iSGu , �13�

with the boundary conditions: u�x= �1�=Du
�x= �1�=bx�x= �1�=0. Here u and bx are the x �radial�
components of the perturbed velocity and magnetic field, re-
spectively, F=�V0+W0 and G=�B0y+B0z are the primary
equilibrium velocity and magnetic fields. The remaining field
components then are determined by using the solenoidality
relations for the velocity and magnetic field.

Alfvén wave resonances occur from Eqs. �12� and �13�
with 
2=G2�x� in the local limit with flow F=0 and no
dissipation 1 /S=1 /Sv→0. To get the 3D eigenfunction, we
also solve perturbed vorticity ��=v−�w� and electric cur-
rent ��=by−�bz� equations,

��̂ − i�SvF�� + i�SvG�

= − i
Sv� − Sv��DQ�v − �DP�by� , �14�

and

FIG. 5. Plot of the basic flow and magnetic field profiles for the calculations
in this paper in the rotated frame of reference. The fields shown in Fig. 4 are
rotated through an angle ��−10.56° to move to the k ·B=0 	y=0 frame of
reference. This is the frame of reference used for the calculations described
in this paper.
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��̂ − i�SF�� + i�SG� = − i
S� − S��DQ�by − �DP�v� ,

�15�

with the boundary conditions ��x= �1�=��x= �1�=0. Here
v and w denote the streamwise and spanwise perturbed ve-
locities, by and bz denote the streamwise and spanwise com-
ponents of the perturbed magnetic field, P=B0y−�B0z, and
Q=V0−�W0.

B. Numerical method

We solve the linear equations with a Chebyshev-�
method.38–40 The basic and perturbed fields are first ex-
panded in truncated Chebyshev series, e.g., for the basic
fields,

F�x� = 

n=0

N

F̃nTn�x� and G�x� = 

n=0

N

G̃nTn�x� , �16�

and for the perturbed fields,

u�x� = 

n=0

N

ṽnTn�x� and bx�x� = 

n=0

N

b̃nTn�x� . �17�

Tn�x� is the nth Chebyshev polynomial of the first kind and,
for example, ũn is the expansion coefficient of the perturbed
velocity field.

The equations satisfied by the unknown expansion coef-
ficients are obtained by substituting the N→� expansions of
Eqs. �16� and �17� into Eqs. �12� and �13�. Each equation
produces a countably infinite number of equations in the ex-
pansion coefficients for n=0,1 ,2 , . . . when the orthogonality
and recursion relations are used.38 We then set all coefficients
beyond n=N to zero and use the n=0 to N−4 equations from
Eq. �12� and the n=0 to N−2 equations from Eq. �13� and
the boundary conditions 
n=0

N ṽn=0, 
n=0
N �−1�nṽn=0,


n=0
N n2ṽn=0, 
n=0

N �−1�nn2ṽn=0, 
n=0
N b̃n=0, and 
n=0

N �−1�nb̃n

=0. This method of truncation is called the
�-approximation.41 It differs from the Galerkin method in the
test functions, e.g., Chebyshev polynomials, are not required

to satisfy the boundary conditions. These are enforced by the
inclusion of the boundary condition equations.

The spectral discretization process yields a generalized
eigenvalue problem that can be written as Ax=
Bx, where

the vector x= �ṽ0 , ṽ1 , . . . , ṽN , b̃0 , b̃1 , . . . , b̃N� and A and B are
nonsymmetric �2N+2� by �2N+2� square matrices.

As is customary for this type of stability problem, either
global or local methods are used to determine the eigenval-
ues. For the global method we first transform the problem
into the standard eigenvalue problem �Cx=
x�, and then use
the QR algorithm.42 This produces a full spectrum of eigen-
values. When a good guess is available, local solutions are
found using inverse Rayleigh power iteration. This con-
verges to the eigenvalue �and its associated eigenfunction�
closest to the initial guess for the eigenvalue. Generally we
use the global method to identify the eigenvalue with the
largest imaginary part �this is the most unstable mode or the
least stable mode�, and then use the local method to refine
the eigenvalue and to compute the form of the eigenfunction.
The local method is also used for examining how the solu-
tion changes as a parameter, for example, the Lundquist
number, is varied.

C. Linear results: Spectrum, unstable eigenfunction,
and dispersion relations

We now examine solutions of the linearized equations
�Eqs. �12� and �13��. For the base line Helimak case we
use the following parameters: the streamwise wavenumber
�=2.3, the spanwise wavenumber =0.0, the resistive
Lundquist number S=5000, and the viscous Lundquist num-
ber Sv=5000. �As mentioned before, we can roughly identify
the streamwise direction �y� with the toroidal direction, and
the spanwise direction �z� with the axial direction in the
Helimak. Our coordinate system is rotated �−10.56° about
the x direction shown in Fig. 3 to isolate the sheared mag-

FIG. 6. The complete eigenmode spectrum for a typical axisymmetric ver-
tical mode ��=2.3, =0.0, S=Sv=5000� for the reference flow profile
given in Eqs. �5�–�8�. Equations �12� and �13� are solved to obtain this
solution.

FIG. 7. The unstable eigenfunction for the bounded magnetized jet
��=2.3, =0.0, S=Sv=5000�. This mode resembles the ideal sinuous
mode found in the unbounded magnetized jet. For Helimak parameters the
Alfvén time is 0.6 ms so the eigenmode has an angular frequency of
2�105 rad /s and a growth rate of 1.4�104 s−1. It propagates perpendicu-
lar to the helical magnetic field at x=0 with ky=� /r=4.6 m−1. This is well
into the resistive MHD regime with ky�s=0.014.
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netic field component.� We will show later that this choice of
� and  produces the largest growth rate for these values of
S and Sv. The discrete eigenvalue spectrum is shown in Fig.
6 for this same set parameters. It can be seen that due to the
presence of the basic streamwise flow, there are a large num-
ber of damped, traveling modes for these particular param-
eters. There is also one unstable traveling mode. The eigen-
function corresponding to this unstable mode is shown in
Fig. 7. The form of the perturbed fields show that this is a
global instability with comparable magnetic and flow veloc-
ity amplitudes. As mentioned before, the streamwise compo-
nents of the rotated basic fields resembles the magnetized
jet.2 Three types of unstable mode have been identified for
the magnetized jet: an ideal sinuous mode, an ideal varicose
mode, and a resistive varicose mode. The sinuous mode
magnetic field is kinklike in appearance, while for the vari-
cose modes the magnetic field is sausagelike �ideal� or tear-
inglike �resistive�. We find for the Helimak fields that the
unstable mode is a somewhat distorted version of the sinuous
mode reported for the magnetized jet.2 In contrast with the
magnetized jet sinuous mode, the Helimak mode is sup-
pressed near the x=−1 wall, where the streamwise magnetic
field is enhanced. There are no unstable ideal or resistive
varicose unstable modes, as are seen in the magnetized jet,
found for the Helimak fields. Note that the resistive varicose
mode is a tearinglike mode which is expected to be stable in
the Helimak. We now consider the dispersion relation. The
variation of the growth rate 
i with respect to �, param-
etrized by the spanwise wavenumber , is shown in Fig. 8.
We set Sv=S=5000 for these calculations. A nested family of
curves is produced as the  is increased. All of the curves
have the same form. This dispersion relation shows evidence
of both low- and high-� cutoffs, as is typical for dissipative
fluids confined to channels,43 i.e., the lower cutoff is due to
the finite channel width and the upper cutoff is due to the
finite dissipation. It can be seen that the variation of  has
several effects on the � dispersion relation. First, an increase
in  generally leads to a decrease in the growth rate. We will
return to this point later. Second, increasing  moves the
maximum growth rate value to a larger value of �.

These variations of the growth rate �
i� with respect to

the spanwise wavenumber , parametrized by �, is shown in
Fig. 9. We set Sv=S=5000 for these calculations. For all
cases computed there is a cutoff value c above which the
mode is stabilized. Note also that there is a decrease in the
magnitude of the growth rate as  is increased. This implies
that a Squires theorem44–47 might be proved for the Helimak-
like configuration, which we now proceed to do.

D. A magnetohydrodynamic Squires theorem

We prove that for the same wavenumber �,  and the
same dissipation parameters S and Sv, the 2D system is more
unstable than the 3D system. In hydrodynamics this theorem
is well known as the Squires theorem. Thus, we show how
the Squires theorem is generalized to a dissipative magneto-
hydrodynamical system. Hence, for the same S and Sv, the
growth rate of the 2D unstable mode will be greater than that
of the 3D unstable eigenmode.

After linearizing Eqs. �9� and �10� about the basic mag-
netic and flow fields, and then applying the eikonal decom-
position, we are left with the following six coupled differen-
tial equations:

�D2 − ��2 + 2� − iSv��V0 + W0� + i�Svc�u

= SvDp − iSv��B0y + B0z�bx, �18�

�D2 − ��2 + 2� − iSv��V0 + W0� + i�Svc�v

= i�Svp + Sv�DV0�v − iSv��B0y + B0z�by

− Sv�DB0z�bx, �19�

�D2 − ��2 + 2� − iSv��V0 + W0� + i�Svc�w

= iSvp + Sv�DW0�u − iSv��B0y + B0z�bz, �20�

�D2 − ��2 + 2� − iS��V0 + W0� + i�Sc�bx

= − iS��B0y + B0z�u , �21�

�D2 − ��2 + 2� − iS��V0 + W0� + i�Sc�bx

= S�DB0y�u − S�DV0�bx − iS��B0y + B0z�v , �22�

and

FIG. 8. Dispersion relations for the 2D case, parametrized by the spanwise
wavenumber �=0�. For these calculations Sv=S=5000.

FIG. 9. Variation of growth rate with respect to spanwise wavenumber,
parametrized by the streamwise wavenumber ���. For these calculations
Sv=S=5000.
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�D2 − ��2 + 2� − iS��V0 + W0� + i�Sc�bz

= S�DB0z�u − S�DW0�bx − iS��B0y + B0z�w , �23�

where c=
 /�. The 2D problem is found by setting =0 and
w=bz=0, or

�D2 − �2 + i�Svc�u = SvDp − i�SvB0ybx + i�SvV0u , �24�

�D2 − �2 + i�Svc�u = i�Svp + i�SvV0v + Sv�DVo�u

− Sv�DB0y�bx − i�B0yby , �25�

�D2 − �2 + i�Sc�bx = i�SV0bx − i�SB0yu , �26�

and

�D2 − �2 + i�Svc�by = i�SB0yu − i�SV0by + S�DB0y�v

− S�DV0�bx. �27�

Can a transformation be found which casts Eqs.
�18�–�23� in the same form as Eqs. �24�–�27�? Multiply Eqs.
�19� and �22� by �, and multiply Eqs. �20� and �23� by .
Then add the new Eq. �20� to the new Eq. �19�, and the new
Eq. �23� to the new Eq. �22�. This gives the following result:

�D2 − ��2 + 2� − iSv��V0 + W0� + i�Svc���v + w�

= iSv��2 + 2�p + SvD��V0 + W0�u + SvDbx

+ i��B0y + B0z���v + w� , �28�

�D2 − ��2 + 2� − iS��V0 + W0� + i�Svc���by + bz�

= SvD��B0y + B0z�u − iS��B0y + B0z���v + w� .

�29�

Then apply a MHD version of the Squire transformation,

i.e., define �̃ṽ=�v+w, �̃b̃y=�by+bz, ũ=u, b̃x=bx , �̃

= ��2+2�1/2, p̃ / �̃=p /�, c̃=c, �̃S̃v=�Sv, and �̃S̃=�S. First
apply this transformation to Eqs. �18�, �21�, �28�, and �29�,
then after dividing out a factor of �̃ we are left with

�D2 − �̃2 + i�̃S̃vc̃�ũ = i�̃S̃vp̃ − i�̃S̃vB0b̃x − S̃v�DB0�b̃z,

�30�

�D2 − �̃2 + i�̃S̃vc̃�w̃ = S̃vDp̃ − i�̃S̃vB0b̃z, �31�

�D2 − �̃2 + i�̃S̃vc̃�bx = S̃v�DB0�w̃ − i�̃S̃B0ũ , �32�

and

�D2 − �̃2 + i�̃S̃vc̃�bz = − i�̃S̃B0w̃ . �33�

These equations have the same form as Eqs. �24�–�27� and
hence define an equivalent 2D problem. Since �̃�� for the
3D problem, the growth rate for the 3D problem is equal to
the growth rate for a 2D problem at lower S and Sv. Hence,

for the same S and Sv, the growth rate of the 2D unstable
mode will always exceed that of the 3D unstable eigenmode
Q.E.D.

E. Effects of viscous and resistive dissipation

It is of interest to determine how viscous and Ohmic
dissipation affect the evolution of the unstable mode, so next
we will examine how the growth rate �
i� of the unstable
mode varies with the resistive �S� and viscous �Sv� Lundquist
numbers. Since we have denoted the unstable mode to be an
“ideal sinuous mode” this might seem a little odd. However,
by ideal we mean that neither viscosity or resistivity are
needed for the instability to develop. Viscosity and resistivity
can slow the rate of growth. As we will show, this effect will
be insignificant at large values of S and Sv. Note that the
expected values of S and Sv are limited to somewhat low
values in the Helimak, e.g., 103�S�104 and 103�Sv
�104, so that resistivity and viscosity could decrease growth
rates from their values at S→� and Sv→�. We will examine
the variation of the growth rate within these bounds. The
variation of the growth rate with respect to the Lundquist
number �S�, parametrized by the viscous Lundquist number
�Sv�, is shown in Fig. 10. The curves all exhibit the same
general behavior. A small increase in the growth rate is seen
as S increases from 1000, then there is a gradual decrease out
to S=104. The Sv=2000 curve shows an increase out to ap-
proximately S=2000 and then slowly decreases. At least over
this upper range of the Lundquist number we can say that the
growth rate is almost independent of S, or, at most, very
weakly dependent. However, the values of the growth rate
are seen to change a lot between the curves with different
values of Sv in Fig. 10, suggesting that 
i is more sensitive to
changes in Sv. Thus it is of interest to examine the variation
of the growth rate with respect to viscous Lundquist number
�Sv�. This is shown in Fig. 11. Only curves for S=2500 and
S=104 are shown because the various S curves do not show
a lot of variation and tend to lie on top of each other. It is
evident that over this range of values in Sv, there is a lot of
change. It is of particular interest that stabilization is

FIG. 10. Variation of growth rate with respect to Lundquist number �S�,
parametrized by the viscous Lundquist number �Sv�. For these calculations
�=2.3 and =0.0. Here 
i=Im�L
 /vA� corresponding to ��104 /s for the
parameters in Table I.
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achieved for Sv�1500, a region of parameter space acces-
sible to the Helimak. As Sv increases, a monotonic increase
in 
i is seen. Above Sv�5000 the rate of increase in 
i

slows considerably. The results suggest that increasing the
value of the viscosity has a strong damping effect on the
instability, whereas the growth of the instability is largely
independent of the resistivity of the plasma.

Finally, we have adopted the terminology of our previ-
ous research in describing the unstable mode as the ideal
sinuous mode. However, we have limited our discussion
about the Lundquist numbers thus far to ranges which are
relevant to the Helimak, i.e., 103�S�104 and 103�Sv
�104. It is of interest to consider what happens for larger
values of S and Sv. If the mode is ideal then its growth rate
should show little variation for large S and Sv. From Figs. 10
and 11 it appears that there is relatively little change in the
growth rate for larger values and that there could be a well
defined growth rate in the inviscid limit Sv→�, reinforcing
our description of the sinuous mode as ideal. Another, less
computationally intensive, way to approach this question is
to see if the Rayleigh condition is satisfied. That is, does
d2V0 /dx2 change sign within −1�x�1, i.e., within the slab?
This is a necessary condition for ideal flow instability. It can
be shown that d2V0 /dx2 does change sign in two places �we
use our code and find the turning points at x� �0.29�.
Hence the Rayleigh criterion is satisfied and the chosen flow
profile is ideally unstable.

F. Perturbation energy analysis

We can gain some insight into what is happening in this
�=0� problem by a consideration of the energetics, a tech-
nique previously employed for the study of magnetized
channel flows,13,16 the current-vortex sheet,3 and the magne-
tized jet.2 The linear stresses and perturbed dissipation as
functions of x are shown in Fig. 12 for the unstable eigen-
mode shown in Fig. 8. For the given system, the Reynolds
stress is −uv; the Maxwell stress is bxby; and the cross stress,
or dynamo term, is uby−vbx. These terms are described
qualitatively in Sec. II and in further detail in Ref. 3. An
examination of Fig. 12 indicates that the stresses all are sig-

nificant while the perturbed dissipation remains relatively
small. Bear in mind, however, that it is the net effect of the
stress that is important to the growth of the perturbation.
Changes in sign of the stress terms indicates that the energy
transfer is not a one-way process. There are spatial regions of
the flow channels where the basic fields pump energy into
the fluctuating fields. The process is reversed elsewhere in
the flow channels. As far as growth of the perturbation goes,
it is the net energy transfer that counts. Note also that the
stresses are all at their largest values in the interior of the
flow channel �especially at the high field, or inner, wall side�,
so it appears that the walls exert only a minimal effect on the
energy transfers.

The perturbation energy balance for this 2D problem is
given by

1

2

d

dt


−1

1 
0

2�/�

�u2 + v2 + bx
2 + by

2�dydx

= − 
−1

1 
0

2�/�

uv
dV0

dx
dydx

+ 
−1

1 
0

2�/�

bxby
dV0

dx
dydx

+ 
−1

1 
0

2�/�

�uby − vbx�
dB0y

dx
dydx

−
1

Sv


−1

1 
0

2�/�

�2dydx −
1

S


−1

1 
0

2�/�

j2dydx . �34�

Here � is the perturbed vorticity and j is the perturbed elec-
tric current. The first term on the right hand side of Eq. �34�
represents contributions to the perturbed kinetic energy due
to Reynolds stress. If this term is positive, it implies that the
perturbation is gaining energy from V0. If this term is nega-
tive, it implies that the perturbation is feeding energy into V0.
The second term determines contributions due to the
Maxwell stress, which represents an energy exchange be-

FIG. 11. Variation of growth rate with respect to viscous Lundquist number
�Sv�, parametrized by the Lundquist number �S�. For these calculations
�=2.3 and =0.0. Here 
i=Im�L
 /vA�.

FIG. 12. Linear stresses for the model Helimak for the unstable mode
shown in Fig. 7 ��=2.3, =0.0, S=Sv=5000�.The Reynolds and Maxwell
stresses dominate the other terms.
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tween the perturbed magnetic field and V0. The third term
contains the effect of the cross stress, which determines the
exchanges of energy between the perturbation and B0y. The
fourth term represents energy losses due to viscous dissipa-
tion, and the fifth term determines the energy lost due to
Joule heating. These last two terms are always negative. The
growth rate of the perturbation depends on the sum of all
these integral terms: Growth only results if the sum of all of

these terms is positive. With two background fields, this al-
lows for some complicated behavior. For example, the per-
turbation could lose energy to V0, but still gain enough en-
ergy from B0y to grow.

We can evaluate the terms in Eq. �34� by using the
eigenfunctions obtained from solving the eigenvalue prob-
lem. After some algebra and separating the fields into the real
and imaginary parts ur, ui, bxr, and bxi we are left with

�

�


−1

1 ��du

dx
�2

+ �2	u	2 + �dbx

dx
�2

+ �2	bx	2�dx

= − 
−1

1 �− ui
dur

dx
+ ur

dui

dx
�dV0

dx
dx + 

−1

1 �bxi
dbxr

dx
− bxr

dbxi

dx
�dV0

dx
dx + 

−1

1 �dur

dx
bxi −

dui

dx
bxr − ui

dbxr

dx
+ ur

dbxi

dx
�dB0y

dx
dx

−
1

�Sv


−1

1 ��d2ur

dx2 − �2ur�2

+ �d2ui

dx2 − �2ui�2�dx −
1

�S


−1

1 ��d2bxr

dx2 − �2bxr
2 � + �d2bxi

dx2 − �2bxi�2�dx , �35�

where � is the energy-based growth rate.
Let us consider the terms in Eq. �35� for a moment,

neglecting the dissipation. In the neutral fluid limit only the
Reynolds stress term survives. This term governs the energy
exchanges that drive the Kelvin–Helmholtz instability. In
cases in which there is a basic magnetic field but no mean
flow V0�x� the parts of the cross-stress term containing both
bxr and ui survive. These are the terms that are important for
Alfvén waves and resistive instabilities. The new features in
the combined case considered in this paper are the Maxwell
stress term and the parts of the cross-stress term containing
bxi and ur. Thus, the phases of the fields are now important,
which increases the complexity of the flow patterns.

We can rewrite Eq. �35� symbolically as

�E = �I1 + �I2 + �I3 −
1

Sv
I4 −

1

S
I5. �36�

We then can solve for the perturbation energy-based growth
rate ���,

� = �
I1

E
+ �

I2

E
+ �

I3

E
−

1

Sv

I4

E
−

1

S

I5

E
= TR + TM + TC + � + J .

�37�

Here TR, TM, TC, �, and J represent normalized versions of
the perturbed energy contributions due to the Reynolds
stress, Maxwell stress, cross stress, viscous dissipation, and
Ohmic dissipation, respectively. The stress terms TR, TM, and
TC can be positive or negative depending on whether energy
is being transferred from the basic field to the perturbed field,
or vice versa. The dissipative terms � and J are always nega-
tive and thus subtract energy from the perturbation.

We now compare the energy-based � to the growth rate
�
i� computed by solution of the eigenvalue problem to de-
termine the accuracy of this analysis. Typically the relative

error is less than one percent. For example, for the case
shown in Fig. 12, the growth rate, computed from the
linearized equations �Eqs. �12� and �13�� using 189
Chebyshev polynomials, is 0.008 52. For comparison, direct
computation from Eq. �37� gives the results TR=0.006 540,
TM =0.013 98, Tc=0.000 072 70, �=−0.005 516, and
J=−0.006 572. Adding these up, results in ��0.008 50.
Thus the growth rate based on the stress computation has as
error of �0.1%. Finally, note that the stresses are largest in
the interior of the flow channel, and that that they remain
close to zero near the walls. This implies that the walls are
relatively insignificant in the linear evolution of the unstable
mode.

We can use the terms in Eq. �37� to figure out why the
perturbed modes are damped out when, for example, the
streamwise wavenumber ��� becomes too large or too small.
These various terms, along with the growth rate, are shown
for the sinuous case in Fig. 13 as a function of the stream-
wise wavenumber ���. First, it is apparent from this figure
that the major contributor to the growth of the perturbation is
the Maxwell stress term, i.e., the basic flow is pumping en-
ergy into the perturbed magnetic field. The Reynolds stress
term is smaller in magnitude, and only positive over a lim-
ited range of �. For those regions where it is negative, the
perturbed flow field is pumping energy into the basic field.
The cross-stress term remains negligible over all � relative to
the Maxwell stress. Figure 13 indicates that the stabilization
and eventual damping of the mode at low � occur primarily
because of a decrease in the Maxwell stress term. The stabi-
lization and eventual damping at large � occurs because of
an increase in the magnitude of the perturbed viscous and
Ohmic dissipation. A decrease in the Reynolds stress term
also contributes to the decrease in the growth rate.

Now let us apply the same analysis to the damping ob-
served at low values of the viscous Lundquist number �Sv�.
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These stress and dissipation terms, along with the growth
rate, are shown for the sinuous case in Fig. 14 as a function
of the viscous Lundquist number. Again, the major contribu-
tor to the growth rate is the Maxwell stress term. This term
actually increases as Sv decreases, but this is basically can-
celed out by the Ohmic dissipation �J�. All of the other terms
contribute to the damping effect. The Reynolds stress term
becomes negative below S�5000, and there is a small in-
crease in the magnitude of the viscous dissipation as well.

This energy analysis can also be used to determine why
the growth rate increases as the Lundquist number is de-
creased down to about 2000, as seen in Fig. 10. The results
of a perturbation energy analysis are shown in Fig. 15. For
large S, the major contributor to the perturbed energy is TM.

As S is decreased, TM also decreases, while TR increases.
Thus an increase in the Reynolds stress contribution leads to
an increase in 
i as S is decreased, at least for S�2000.

V. DISCUSSION

This work investigates the details of the low frequency
electromagnetic modes in a bounded, multiple sheared, vis-
coresistive magnetofluid. Among our objectives was to de-
termine if and how the presence of walls modifies the results
and conclusions of our previous studies of unbounded mag-
netized jets.3 The Helimak configuration was chosen because
it produces a bounded magnetized jet with a long effective
parallel length L=HB� /Bz of great contemporary interest.

We found that bounded magnetized jets do evolve dif-
ferently than unbounded magnetized jets. For the Helimak
fields and parameters, the system is flow dominated for the
linear case. Based on the unbounded jet results, there are two
unstable modes for this case, an ideal sinuous �kinklike�
mode and an ideal varicose mode. For the bounded jet case
reported in this work, we find only one unstable sinuous
mode. This unstable mode strongly resembles the ideal sinu-
ous mode found for the unbounded magnetized jet.3 An un-
stable ideal varicose mode is not found. Both high and low
streamwise wavenumber ��� cutoffs are found for the ideal
sinuous mode. This mode is driven by the velocity shear and
thus is relatively insensitive to variations in the resistive
Lundquist number �S�, but it can be stabilized for values of
the viscous Lundquist number �Sv� that are accessible in the
Helimak.

We performed a stress analysis to obtain some insight
into the transfer of energy between the perturbed fields and
the basic fields. A low streamwise wavenumber cutoff occurs
due to a decrease in the Maxwell stress. A high streamwise
wavenumber cutoff occurs, as expected, because of an in-
crease in viscous and Ohmic dissipation. We found that the
stabilization with the viscous Lundquist number occurs due
to increases in the magnitude of both the viscous and Ohmic

FIG. 13. Variation of perturbation energy balance terms with respect to
streamwise wavenumber. Here the y-axis � is the growth rate in units of
vA /L and, TR, TM, TC, �, and J are the normalized values of the fluctuation
energy contributions due to the Reynolds stress, Maxwell stress, cross stress,
viscous dissipation, and Ohmic dissipation, respectively. For these calcula-
tions =0.0 and S=Sv=5000.

FIG. 14. Variation of perturbation energy balance terms with respect to
viscous Lundquist number �Sv�. Here � is the growth rate and, TR, TM, TC,
�, and J represent normalized versions of the perturbed energy contribu-
tions due to the Reynolds stress, Maxwell stress, cross stress, viscous dissi-
pation, and Ohmic dissipation, respectively. For these calculations
�=2.3, =0.0, and S=5000.

FIG. 15. Variation of perturbation energy balance terms with respect to
Lundquist number �S�. Here � is the growth rate and TR, TM, TC, �, and J
represent normalized versions of the perturbed energy contributions due to
the Reynolds stress, Maxwell stress, cross stress, viscous dissipation, and
Ohmic dissipation, respectively. For these calculations �=2.3, =0.0, and
Sv=5000.
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dissipation, as well as a decrease in the Reynolds stress, as
the viscous Lundquist number is decreased. We found nu-
merically that at least linearly, the 2D modes are the most
dangerous. A rigorous demonstration of this point is given by
our proof of a generalized MHD Squires theorem. However,
the 3D modes may be more important for the dynamo pro-
cesses and for magnetic reconnection. The laboratory signa-
ture of these unstable sinuous modes is the presence of cor-
related magnetic �bx� and flow �vx� fluctuations that increase
in amplitude with the strength of the flow shear �dV0 /dr� and
its curvature �d2V0 /dr2�.

We plan to follow up these linear calculations with some
nonlinear simulations and analyses. The results presented in
the present work are useful guides for the nonlinear simula-
tions. We have developed a 3D Chebyshev collocation-
Fourier pseudospectral code called MHDCHAN for these non-
linear simulations. We will describe this code in detail in a
latter publication �a 2D electrostatic drift wave version is
described in Ref. 48�. To illustrate the utility of the present
calculations we show here some results, using the nonlinear
MHDCHAN code, of the time evolution of small perturbations
in the basic bounded magnetized jet fields given by Eqs. �3�
and �4�. Figure 16 shows the fluctuating kinetic energy �ev�
and fluctuating magnetic energy �eB� for a simulation with
the same parameters as those used in Fig. 8. This simulation
is run with four Fourier modes in each of the periodic direc-
tions �x and y� and 64 Chebyshev modes in the cross-stream
direction �z�. Hence the linear behavior should be resolved
and the simulation should break down as the fluctuating
fields attain finite amplitude. Figure 16 shows that after
about 200 Alfvén times both ev and eB enter into a period of
growth that appears to be exponential. The computed growth

rate for ev as a function of time is shown in Fig. 17. Recall
that the growth rate computed for these parameters is based
on the solution of the linearized equations �Eqs. �12� and
�13�� was 0.008 52. The kinetic energy growth rate at late
times shown in Fig. 17 is close to this, lending support to the
linearized calculations. In Fig. 18 we show the results of
computation of the stress terms given in Eq. �37�. Note that
the stress and dissipation terms settle down to values close to
those given by the eigenvalue computation.

We plan to investigate the full 3D nonlinear evolution of
the bounded magnetized jet more thoroughly in a subsequent

FIG. 16. Fluctuating kinetic energy �ev� and fluctuating magnetic energy
�eB� for a simulation with the same parameters as those used in Fig. 7. The
results shown here are computed using a 3D, nonlinear Chebyshev
collocation-Fourier pseudospectral code that solves Eqs. �9� and �10� in a
channel geometry. An exponential phase of growth is seen to occur in both
ev and eB after about 200 characteristic times.

FIG. 17. Fluctuating kinetic energy growth rate as a function of time com-
puted from the result shown in Fig. 16. This case uses the same parameters
as are used in Fig. 7. Note that the growth rate computed from the linearized
equations �Eqs. �12� and �13�� is 0.008 52.

FIG. 18. Perturbation energy balance stress components as functions of time
as given by Eq. �37�. This case uses the same parameters as are used in Fig.
7. Here TR is the Reynolds stress term, TM is the Maxwell stress term, TC is
the cross-stress term, � is the viscous dissipation term, and J is the Ohmic
dissipation term. The growth rate determined from addition of these com-
ponents is �. For comparison, direct computation from Eq. �37� gives the
results: TR=0.006 540, TM =0.013 98, Tc=0.000 072 70, �=−0.005 516,
and J=−0.006 572. Adding these up, we compute that ��0.008 50. Note as
well that the growth rate computed from the linearized equations �Eqs. �12�
and �13�� is 0.008 52.
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publication. The results of linear stability analyses for chan-
nel flows are often widely divergent from experimental
results.43,49 In particular, the linear results for plane
Poiseuille flow and plane Couette flow do not mesh well
with the actual behavior of pressure driven and wall driven
channel flows. Other cases of evolution, such as rotating
Couette flow and flat plate boundary layers, are well de-
scribed by linear analysis. In general, it is desirable to in-
clude nonlinearity and three dimensionality to account for
experimental results. Three dimensionality and nonlinear in-
teractions are crucial for turbulence and the transition to tur-
bulence. In a subsequent paper we will consider the nonlin-
ear evolution of the system described in the present paper. It
is also important to advance to the compressible extension of
this system to allow for the inclusion of the resistive inter-
change instabilities driven by magnetic curvature in the
Helimak and solar corona configurations.
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