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Executive Summary 
 

Probabilistic engine health management (PHM) is expected to be a go-forward approach for the 

USAF and other DoD agencies to enable dramatic improvements in the assessment and 

management of military assets.  As a result, accurate and information-rich probabilistic lifing 

methods are essential to assess the benefits of technology insertion programs for PHM. 

 

The objective of this research was threefold: 1) to enhance probabilistic lifing methods to 

provide new information regarding the sensitivity of probabilistic lifing estimates with respect to 

non-destructive inspection methods, material parameters, loading, stress levels, etc., 1) to address 

computational efficiency issues such that application of the enhancements are practical, and 3) to 

integrate the new methods with existing approaches as permissible to foster adoption. 

 

Three major tasks were undertaken: 1) develop sensitivity methods for lifing scenarios with 

simulated inspections processes, 2) explore new complex variable methods for sensitivity 

analysis, and 3) enhance the score function method to address new scenarios. 

 

In each case significant research was accomplished that lead to several enhancements. In 

particular: 1) a new probabilistic sensitivity method was developed that will compute the partial 

derivative of the probability-of-failure with respect to the parameters of a Probability-of-

Detection (POD) curve for negligible cost, 2) new complex-variable sensitivity methods were 

developed and exploited to determine shape sensitivities for finite element models (particularly 

with respect to crack size) in a highly accurate manner and to solve initial value differential 

equations with extreme accuracy, and 3) a new method to compute probabilistic sensitivities with 

respect to bounds of truncated distributions was developed and tested.  

 

Ancillary objectives were also accomplished. In particular, four students were supported wholly 

or in part in obtaining a Masters of Science in Mechanical Engineering, 4 conference papers 

were submitted and presented, 1 journal paper was published, 2 journal papers are under review, 

and 4 Matlab-based software programs were provided to AFRL for technology transition. The 

software programs consisted of a) a generic probabilistic sensitivity module, b) a weight 

function-based fatigue lifing code, c) an inspection sensitivity program, and d) complex-variable 

finite element code for shape sensitivity analysis. 



2 

 1 Sensitivity methods probability-of-failure estimates with respect to 
POD curve parameters 

1.1 Introduction 
 
Nondestructive evaluation (NDE), also known as nondestructive testing (NDT) or nondestructive 

inspection (NDI), plays a vital role in fracture control plans. Methods such as visual, dye 

penetrant, ultrasonics, radiography, and eddy current are among the common inspection 

techniques used to ensure structural integrity [1]. The type of inspection and the times of 

inspection must be carefully selected to ensure safety with reasonable cost. There are a number 

of industries that have a long history of application of NDE methods for structural integrity. For 

example, applications include nuclear [2-4], petroleum [5], aircraft structures [6-8], gas turbines 

[9-10], and offshore structures [11] to name a few. Rummel at al. [12] provide a summary of a 

number of issues related to the application of NDE methods to systems. 

 

The inspection process is simulated using a Probability of Detection (POD) curve that quantifies 

the probability of detecting a crack as a function of the crack size. A probabilistic lifing analysis 

integrates probability distributions of crack sizes, load, geometries, and material properties with 

the inspection processes to determine the probability-of-failure with and without inspection. The 

purpose is to ensure a sufficient level of reliability in the structure and to optimize the inspection 

process for cost and maintenance-related issues. 

 

However, there is always some doubt as to the correct values for the parameters of a POD curve 

for a particular field application due to the mismatch of the environment for development of the 

POD curve versus its field application. In addition, there may be value in “what-if” scenarios to 

quickly assess the value of changes in the inspection method in reducing the POF or reducing the 

cost of inspections. As a result, it is useful to have a quantitative estimate how the probability-of-

failure varies as a function of the parameters of a particular POD curve. Therefore, a 

methodology was derived that provides a convenient low-cost means to calculate the POF 

sensitivities, that is, the partial derivative 



Pf / , where 



Pf  is the probability-of-failure and 



  is 

any parameter of a POD curve. 

1.2 Methodology Development 
 

The basic methodology is summarized here for a single inspection. A generalization to more 

inspections can be found in [13]. 

 

The probability-of-failure is determined by evaluating the integral 

  

  



Pf (t)  I(x,t) fX(x)dx




         (1) 

 
where x defines a vector of random variables such as initial crack size, external load, crack 

growth rate, fracture toughness,   



fX  represents the joint probability density function of the 

random variables, and   



I(x,t) denotes an indicator function such that 
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I(x,t) 
0 g(x,t)  0     safe

1 g(x,t)  0     fail





       (2) 

 
For a lifing analysis, 



g(x,t) is usually defined as 



g(x,t)  t f  t0, where 



t f  is the computed 

cycles to failure and 



t0 is a user-defined limit. Using this definition of 



g , the probability-of-

failure is the probability of the structural component failing before the user-defined time 



t0. 

 

The probability-of-failure with an inspection can be determined by evaluating the integral 

 

  



Pf (t)  I(x,t)(1POD(,a(y,t1))) fX (x)dx




 t  t1     (3) 

 
where 



t1 denotes the time of inspection 1, 



a represents the crack size, and 



y  represents the 

random variables that affect the crack size; 



y  is a subset of 



x . The sensitivity of the POF with 

respect to parameters of the POD curve (



 ) can be determined by taking the derivative of 

Equation 3 and rearranging to yield 

 

  



Pf (t)

1


0 t  t1

I(x,t)1(1,a(y,t1))CPOD1(1,a(y,t1)) fx (x)dx




 t  t1





  (4) 

 

where 

  



q (q,a(y,tq )  
PODq (q ,a(y,t1))

q

1

CPODq (q,a(y,t1))
. The derivative 

  



PODq(q,a(y,t1)) /q  can be computed analytically given an analytical definition of the POD 

curve. 

 

The sensitivity 



Pf /  can be approximated in the same manner as estimating the probability-

of-failure using sampling as  

 

  



Pf (t)

1



0 t  t1

1

N
I(xi,t)1(1 ,a(y i,t1))

i1

N1

 t  t1









      (5) 

 
where 



1  represents the vector of parameters of 



POD1, 



N1 denotes the samples that reach 

inspection 1, i.e., have not failed before 



t1 nor detected, 



a(y i,t1)  denotes the crack size at time 



t1, 



y i  represents the random variables that affect crack size for realization 



i , 



x i  represents all the 

random variables for realization 



i , and 



N  denotes the total number of samples in the simulation. 

Note, the summation in Equation 5 is divided by 



N  instead of 



N1 in order to provide the 

sensitivity with respect to the total samples 



N .  
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1.3 Results and Discussion 
 
A new sensitivity method has been developed that can provide accurate partial derivatives of the 

probability-of-failure with respect to the parameters of a POD curve. The accuracy of the 

sensitivities was verified by comparison with finite difference estimates on several numerical 

examples. The new method computes the sensitivity using the same samples used to calculate the 

probability-of-failure, hence the cost is negligible. In contrast, the finite difference approach is 

extremely laborious in that a new probabilistic analysis must be conducted for each sensitivity 

and a large number of samples is required for accuracy. 

 

1.3.1 Numerical Example 

An academic example is presented to demonstrate the methodology. The example presumes a 

defect exists, thus, the POF has been normalized to 1. The problem is fictitious but serves to 

demonstrate the elements of the method using an easy to understand problem. The problem 

consists of an edge through crack growing in a semi-infinite rectangular plate under constant 

amplitude loading. The initial crack size and material properties are representative of titanium, 

however, the POD curve is contrived. Four random variables were considered:  initial crack size 

(lognormal), Paris crack growth constants C and n (correlated normal) and fracture toughness 

(normal). The problem parameters are given in Table 1. The random variable vector 



X consists 

of 



Xai,C,n,KIC , and the 



Y vector of random variables consists of 



Yai,C,n. 

 

For this crack geometry using the Paris crack growth law, the crack size as a function of cycles 



a, the critical crack size 



ac , the cycles-to-failure 



t f , the crack size 



aq  at any time of inspection 



tq , and the limit state 



g(x,t) can be determined in closed form as shown below. 



da /dt C K 
m

         (6) 

 



KI 1.12max a                      (7) 

 



ac  (KIc /(1.12max  ))2
        (8) 

 



t f 
2

(m 2)C 1.12  
m

1

ai

(m2)/ 2


1

ac

(m2)/ 2











     

(9) 

 



aq 
1

ai

(m2)/ 2
 tq

(m  2)C 1.12  
m

2















2 /(2m )

     

(10) 

 



g(x,t)  t f  t0         (11) 
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where 



t0  is a specified number of cycles. 

 

The values used in the analysis are shown in Table 1. For this problem, the initial crack size, 

Paris constants and the fracture toughness were random. 

 

Table 1Input Parameters for Example Problem 



K  



1.12 a  



(max )  



675MPa  



KIC  



N[55,5.5] MPa m  



Cm  -0.9751 

Log10(



C ) 



N[11.8,0.157] 

m 



N[3.81,0.146] 



ai  



L[15.1,8.48] m 

 
A single inspection was simulated at 10,000 cycles using a lognormal POD of the form 



POD(a) 
1

2


1

2
Erf

ln[a]

2









 with parameters 



1 9,1  0.8. The normalized POF as a 

function of cycles with and without inspection is shown in Figure 1. The sensitivity of the 

probability-of-failure with respect to 



1 and 



1 as a function of cycles is given in Figures 2 and 

3, respectively, with the solid (red) line denoting the results using the equations developed here 

and finite difference results denoted by the dotted (black) points. One million samples were used 

for the calculation. The results indicate a very good agreement with the finite difference 

solutions verifying the accuracy of the methodology. Finite difference sensitivity estimates 

require a separate reanalysis of the POF using a perturbed value of 



1 and 



1 (2 additional 

analyses), e.g., 



Pf /1  Pf /1  (Pf (1 1) Pf (1)) /1. A large number of samples 

must be used to ensure that the sampling variance is sufficiently small to accurately estimate the 

difference between two near-equal probabilities. Also, the accuracy is dependent upon the value 

chosen for 



1.  As a result, the finite difference operations are costly since they require multiple 

analyses and a large number of samples. Conversely, using the methodology presented here, all 

sensitivities are obtained from a single analysis through post-processing. 

 

The results for a single inspection shown here generalize to any number of inspections with 

similar accuracy. For multiple inspections, methodologies to address two cases were developed 

and demonstrated: different POD curves used during for the inspections, and b) the same POD 

curved used for all inspections. 
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Figure 1 Normalized Probability-of-Failure with and without Inspection 



7 

 

Figure 2 Single Inspection Case: Probability-of-Failure with respect to 



1 

 



8 

 

Figure 3 Single Inspection Case: Probability-of-Failure with respect to 



1 
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 2 Complex Variable Methods for Sensitivity Analysis 

2.1 Introduction 
 
Shape sensitivity analysis of finite element models is useful for optimization and design 

modifications. The use of complex variable methods for shape sensitivity analysis has some 

potential advantages over other methods. In particular, implementation for first order sensitivities 

is straightforward as the only the additional requirement is the analysis of a finite element model 

containing a perturbation of the finite element mesh along the imaginary axis, that is, the real 

valued coordinates of the mesh are unaltered. Higher order sensitivities can be determined using 

analyses with perturbations along the real and imaginary axes. Although simple in concept, 

standard finite element codes (including commercial ones) do not allow complex variable nodal 

coordinates, hence, special purpose codes were developed under this program. The methodology 

is demonstrated using a two dimensional finite element model on problems with known 

analytical solutions. It is found that the error in the sensitivities is primarily defined by the error 

in the finite element solution, not the error in the sensitivity method. 

 

2.2 Methodology Development 
 

Sensitivities, otherwise known as partial derivatives, are easily calculated through finite 

differencing methods. Finite differencing requires that a function be evaluated at additional 

sample points along the real axis and the derivative of the function estimated by calculating the 

relative difference in the function’s value divided by the difference in the sample points.   

 

Over the last twenty years, alternative numerical differentiation techniques have emerged for use 

in sensitivity analysis.  Two of these methods are complex variable based: the complex Taylor 

series expansion (CTSE), also referred to as the complex step derivative method, and Fourier 

differentiation (FD).  These methods offer more accurate and stable derivatives compared to 

finite differencing.   

 

CTSE was first described by Lyness and Moler in the late 1960’s [14,15].  It reemerged as a tool 

for engineering analysis with a paper by Squire and Trapp in 1998 [16].  Since then it has been 

used in a wide variety of engineering fields including computational fluid dynamics, dynamic 

system optimization and others [17-24].  In all of these fields, CTSE has offered a significant 

improvement in accuracy over standard finite differencing methods.  

 

Fourier differentiation was also developed by Lyness in the late 60’s and early 70’s[14,15,25].  

The method was further described by Henrici and more recently Bagley [26,27]. The method 

utilizes additional sample points in the complex plane and an FFT routine to calculate derivatives 

including high order derivatives with exceptional accuracy. To date, the method has not been 

widely used for the determination of sensitivities for engineering problems.  
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2.2.1 Numerical Differentiation 

  

Numerical differentiation is a process through which an estimate of a function’s derivative can 

be obtained.  A derivative is defined as the limit of the change in a function’s value across two 

different points as the distance between the two points goes to zero.   

 



f '(xo)  lim
xxo

f (x) f (xo)

x  xo       

(12) 

 
Finite differencing methods estimate derivatives by approximating the limit in Equation 12 as a 

difference between a function evaluated a two distinct points located a distance h apart divided 

by h.  

 



f '(xo) 
f (xo  h) f (xo)

h        
(13)

 

 

This distance, h, is often called the step size. When h is positive, the method is referred to as 

forward differencing. When h is negative it is called backwards differencing. When the forward 

difference and the backwards difference results are averaged, the method is called central 

differencing (CD). The equation for central differencing is as follows. 

 

 



f '(xo) 
f (xo  h) f (xo  h)

2h      
(14)

 

 

The approximation of the derivatives as a difference between two nearly-equal numbers leads to 

error due to the truncation of terms in the function’s Taylor series. This error can be eliminated 

by making the step size as small as possible. However, as the step size gets very small, a new 

source of error arises. This new error is round-off error and it is due to the fact that a computer 

cannot accurately calculate a small difference between two near-equal numbers. This means that 

for finite differencing there is a lower limit on the step size and also a limit on the maximum 

achievable accuracy.   

  

For the forward differencing method, all Taylor series terms above the first order term are 

ignored. This means that the order of accuracy for a given step size is O(h). Using CD, all the 

even order terms in the Taylor series cancel and the accuracy of the method becomes O(h
2
). 

  

Higher order derivatives can also be calculated through CD by using additional sample points.  

The formula for the second derivative is. 

 



f (2)(xo) 
f (xo  h)2 f (xo) f (xo  h)

h2
     

(15)
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where the superscript (2) denotes the second derivative.  

 

One of the problems with CD is that the calculation of higher order derivatives requires more 

sample points and more difference operations. Each additional difference operation results in an 

increase in the round-off error, which further restricts the lower limit of h. This means that CD is 

not a good choice for the calculation of higher order derivatives. 

  

CTSE is another numerical differentiation method similar in concept to finite differencing. CTSE 

uses the orthogonality of the real and imaginary axes of the complex plane to calculate 

derivatives with fewer difference operations and in turn less round-off error when compared to 

CD. Similar to finite differencing, CTSE requires the difference of two analyses but with a small 

perturbation along the imaginary axis. That is, variable 



X  x0 is perturbed to 



X  x0  ih , where 

i denotes an imaginary number and h denotes the step size. The formulae for the derivatives can 

be derived from the Taylor series representation of the function evaluated at the complex sample 

point. 



f (x0  ih)  f (x0) f (1)(x0)
ih

1!
 f (2)(x0)

(ih)2

2!
 f (3)(x0)

(ih)3

3!
L  

   
(16)

 
 

where 



f (1) denotes the first derivative, 



f (2) the second, etc. Taking the imaginary part of both 

sides of Equation 16 and solving for the first derivative will result in an approximation with 

accuracy O(h
2
).  

 



f (1)(xo) 
f (xo  ih)  f (xo)

h


Im( f (xo  ih))

h
     (17) 

 

It is noted that no difference operation is needed for the first derivative. This means that the step 

size can be made arbitrarily small with no concern about increasing round-off error. Taking the 

real part of Equation 16, the formula for the second derivative with error O(h
2
) can be derived. 

 



f (2)(xo) 
2( f (xo) Re( f (xo  ih)))

h2
       (18) 

 

It is noted that the second derivative contains a difference operation meaning that round-off error 

will be a problem if h is set too small. By using more sample points along the imaginary axis it is 

possible to solve Equation 16 to obtain the higher order derivatives [28].  

  

Higher order derivatives can be computed using complex variable sensitivity method such as 

Fourier Differentiation (FD) [27]. The heart of Fourier differentiation is making a real valued 

function become a periodic complex function. This is accomplished by adding a periodic, 

oscillatory, complex component to each of the function's real independent variables. The 

resulting periodic function now has a Taylor series representation that takes on the properties of 

a periodic Fourier series. Fast Fourier transform techniques are used to determine the coefficients 

of this series. The resulting coefficients contain the function's derivatives.  
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A central feature of Fourier differentiation is to make the individual terms in the Taylor series 

oscillate at different frequencies. To achieve these oscillations, the perturbation to the variable x 

is taken to be a complex number as 



x  cei
, where 



c  is a sampling radius. This expression 

extracts from the series the 



n th
 coefficient that contains the 



n th
derivative of the function, 

 



1

2
f (xo  cei )ein d





 
f (n )(x0)cn

n!        
(19)

 

 

If the function of interest is evaluated at N sample points along a circular contour c
 

in the 

complex plane centered on the initial point, a vector of the sampled data can be run through an 

FFT routine and the output will be the first N terms in the function’s Taylor series. The n
th 

order 

derivative of the function can then be calculated from the Taylor series coefficients by using the 

following relationship. 

 

 



f n (zo) 
ann!

cn
         

(20)
 

 

where an is the nth
 Taylor series coefficient. For more information on Fourier differentiation see 

ref. [27].
 

 

2.3 Results and Discussion 

2.3.1 Numerical Example: Thick Walled Cylinder 

  

Two problems with analytical solutions were examined in order to test the accuracy of the three 

numerical differentiation techniques; a thick walled cylinder under uniform boundary pressure 

and a disk under diametrical compression. The equations that govern the stress through the 

thickness of the cylinder are given in Equation 21 [29], 

 



 r 
r1

2
r2

2
p

r2

2
 r1

2

1

r2


r2

2
p

r2

2
 r1

2

  
r1

2
r2

2
p

r2

2
 r1

2

1

r2


r2

2
p

r2

2
 r1

2

        

(21)

 

 

where, r1 is the inner radius, r2 is the outer radius, and p is the boundary pressure. For this 

example, the inner radius of the cylinder is 0.5 m, the outer radius is 1 m and the boundary 

pressure is 10 kPa. The stress equations given in Equation 21 can be differentiated with respect 

to the inner radius to generate the sensitivities of the stresses. The first and second order 

sensitivities of the stresses with respect to the inner radius appear in Equations 22 and 23.  
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(23)

 

 
This problem was solved using four different meshes in order to examine the convergence of the 

error in the solution. The coarsest mesh contained 888 elements and 1868 nodes; the next mesh 

contained 1792 elements and 3716 nodes; the third mesh contained 6184 elements and 12,608 

nodes; and the finest mesh consisted of 25,124 elements and 50,724 nodes. The solutions for the 

radial and tangential stresses as calculated using the 6184 element mesh are shown in Figure 4.  

 

 

 
 
Figure 4. The Numerical Solution of the Radial and Tangential Stresses for Example 1. A) 

The FEM Solution for the Radial Stresses B) The FEM Solution for the Tangential Stresses 

 

The following norm was selected in order to compare the error in the four different mesh cases.  

 

 



error 
mean(analytical numerical )

mean(analytical)        

(24)
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Table 2 shows the norm of the error in both the radial and tangential stress solutions for each 

mesh case. This data is shown graphically in Figure 5. It is seen that each successive mesh 

iteration reduces the error by approximately half an order of magnitude.  

 

Table 2. The Norm of the Error in the Stress Solutions for a Thick Walled Cylinder 

Number of Elements Radial Stress Tangential Stress 

888 5.251E-3 3.1852E-3 

1792 2.626E-3 1.7412E-3 

6184 7.574E-4 5.3097E-4 

25124 1.860E-4 1.3248E-4 

 

 
 

 
Figure 5. Convergence of the Error in the Radial and Tangential Stress Models for Thick 

Walled Cylinder. A. The Norm of the Error in the Radial Stress, B. The Norm of the Error 

in the Tangential Stress 

 
The amount of computational time (wall time) needed to solve each finite element model is 

shown in Table 3. Given the amount of computational time required for the 25,124 element case 

and the fact that the complex sensitivity solutions will require three times more computation than 

the real valued case, the 6184 element case was used to generate the first, second and third order 

sensitivities. For each sensitivity method the step size or sampling radius was 0.001, which is 

approximately 1/30
th

 of the average element edge length. CTSE and CD were both performed 

using as few sample points as possible, and FD was performed using 6 sample points.  
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Table 3. The Computational Time Required to Solve each Model for a Thick Walled 

Cylinder 

Number of Elements Time For Solution (s) 

888 8.49 

1792 19.48 

6184 130.76 

25124 2799.77 

 

The pointwise error in the first and second order sensitivities is shown in Figure 6 and 7, 

respectively using the following formula, 

 



error 
analytical numerical

max( analytical)        

(25)

 

 

This formula was chosen so as to minimize the influence of large errors at locations where the 

solution is near zero such as at the inner radius for the radial stress. 

 
The norm of the error in the first, second, and third order sensitivities appears in Table 4. The 

error in the first order sensitivities of the radial stress over the entire domain appear in Figure 6, 

and the error in the second order sensitivities of the radial stress appear in Figure 7. These figures 

show only very slight differences between the three methods. It is also seen that along the inner 

circumference of the cylinder the error is large. This is due to the fact that the sensitivity cannot 

be accurately calculated on the inner radius because the boundary conditions require the solution 

to be fixed at the inner surface. 

 

Table 4. The Norm of the Error in the Sensitivity of the Stress to the Inner Radius for a 

Thick Walled Cylinder 

 

 

Method Radial Stress Tangential Stress 

Order 1st 2nd 3rd 1st 2
nd

 3rd 

CD 4.7265E-2 8.1689E-2 2.4292E-2 8.4286E-2 3.2213E-1 1.4765E-2 

CTSE 4.7268E-2 8.1766E-2 2.4298E-2 8.2488E-2 3.1587E-1 1.4769E-2 

FD 4.7268E-2 8.1671E-2 2.4295E-2 8.7353E-2 3.3258E-1 1.4769E-2 
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Figure 6. The Error in the First Order Sensitivity of the Radial Stress for Example 1. A) 

Error in CD, B) error in CTSE, C) error in FD. 
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Figure 7. The Error in the Second Order Sensitivity of the Radial Stress to the Inner 

Radius for Example 1. A) Error in CD, B) error in CTSE, C) error in FD. 

 

The norm of the error in each case is mostly independent of the method selected. This is 

especially true for the first order sensitivities. The fact that the error is similar between all three 

methods points to the fact that the error in the solution is dominating errors arising from the 

differentiation methods themselves. This is seen by looking at the first and second order 

sensitivities of the radial stress as a function of the number of elements shown in Table 5. It is 

quickly seen that each additional mesh refinement increases the accuracy of the method. This 

reduction in the errors of the sensitivities is similar to the reduction in the error of the solution 

due to further mesh refinement seen in Table 2.  
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Table 5. The Norm of the Error in the First Order Sensitivity of the Radial Stress as a 

Function of the Number of Elements for a Thick Walled Cylinder 

Number of 

Elements 

CD CTSE FD 

Order 1
st
 2nd 1st 2nd 1st 2nd 

888 1.27E-1 2.08E-1 1.27E-1 2.08E-1 1.27E-1 2.08E-1 

1792 8.97E-2 1.53E-1 8.99E-2 1.52E-1 8.99E-2 1.52E-1 

6184 4.72E-2 8.16E-2 4.72E-2 8.17E-2 4.72E-2 8.16E-2 

25124 2.29E-2 4.00E-2 2.29E-2 4.00E-2 2.29E-2 3.98E-2 

 

The error in the first and second order sensitivities of the radial stress calculated using three 

different step sizes is shown in Table 6. It is seen that changing the step size does not have much 

effect on the accuracy of the sensitivity. This is a further indicator that the accuracy of the 

solution is limiting the accuracy of the sensitivities, not the accuracy of the numerical 

differentiation methods. One exception is the second order sensitivity at the smallest step size, 

0.0001 or 1/300
th

 of the average element edge length. At this step size each method produces 

sensitivities that are less accurate than those calculated with a larger step size. This indicates that 

the machine round-off error associated with this step size may be similar in magnitude to the 

error due to the solution.  

 

Table 6. The Norm of the Error in the First and Second Order Sensitivities of the Radial 

Stress as a Function of Step Size for a Thick Walled Cylinder 

 

Step Size CD CTSE FD 

Order 1st 2nd 1st 2nd 1st 2nd 

.0001 4.7268E-2 8.2959E-2 4.7268E-2 1.0500E-1 4.7268E-2 9.2942E-2 

.001 4.7265E-2 8.1689E-2 4.7268E-2 8.1766E-2 4.7268E-2 8.1671E-2 

.01 4.7091E-2 8.2920E-2 4.7249E-2 8.1197E-2 4.7271E-2 8.1748E-2 

 

2.3.2 Numerical Example: Disc in Diametrical Compression  

 
One of the classical tests in material analysis is the disc in diametrical compression [20]. In this 

test a circular disc is loaded in compression along its y-axis. The load is modeled as a point load. 

This loading and geometry generates a very nice uniform tensile stress along the x-axis of the 

specimen. It is thus useful in examining the tensile properties of a material without actually 

loading the specimen in tension. This test is also known as the indirect tensile test or the Brazil 

nut test. 

 

The diametrical compression test has an analytical solution that can be derived through simple 

superposition. The solution of the stresses is given in Equation 26 [29]. 
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(26)

 

 

In these equations, P is the magnitude of the point load, R is the radius of the disc, and x and y 

specify the location at which the stress is calculated, with the point (0,0) located at the center of 

the disc. The analytic solutions of Equation 26 can be differentiated to yield the sensitivities with 

respect to the radius of the disc. The equations for the first two sensitivities of the normal stress 

in the x-direction with respect to the radius are 
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  (27) 

 

The closed-form solutions for the sensitivities make this problem another excellent choice for 

exploring the use of the complex variable sensitivity methods. 

 

The diametrical compression test model was solved using three different meshes, with a coarse 

mesh consisting of 1148 elements and 2357 nodes; a moderately refined mesh of 2502 elements 

and 5093 nodes; and a fine mesh with 8,374 elements and 16,909 nodes. The solution for the 

stresses as calculated using the fine mesh appears in Figure 8. It should be noted that for each 

figure in this example, no solution is plotted for the elements that share the node where the load 

is applied. This is due to the fact that the stress on this node would be infinite.  
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Figure 8. The Finite Element Solution for the Stresses in a Disc in Diametrical 

Compression. A) The Numerical Solution for the Stresses in the x-direction B) The 

Numerical Solution for the Stresses in the y-direction C) The Numerical Solution for the 

Shear Stress 

 

The error norm used for this example is  

 



error 
analytical numerical

analytical

         (28) 

 

Table 7 shows the error for the three stresses for the three different mesh sizes using the error 

norm give in Equation 18. As before, it is seen that each successive mesh refinement results in a 

significant reduction in the error norm. This is shown visually in Figure 9. The red areas are 

regions of relatively higher error. As the number of elements increases, the total size of the red 

regions decreases significantly as the mesh is further refined. The computational time required to 

generate one solution for the three different mesh sizes is shown in Table 8. 
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Table 7. The Norm of the Error in the Stress Solutions for a Disk under Diametrical 

Compression 

Number of 

Elements 

Norm of Error in Stress 

in X 

Norm of Error in 

Stress in Y 

Norm of Error in 

Shear Stress 

1148 1.261E-1 4.379E-2 9.717E-2 

2502 8.633E-2 3.234E-2 6.122E-2 

8374 4.578E-2 2.085E-2 3.953E-2 

 

 
 

Figure 9. The Error in 



X  for Three Different Meshes for a Disc in Diametrical 

Compression. A) The error for the mesh with 1,148 elements and 2,357 nodes, B) The error 

for the mesh with 2,502 elements and 5,093 nodes, C) The error for the mesh with 8,374 

elements and 16,909 nodes. 
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Table 8. The Computational Time Required to Solve each Model for a Disk under 

Diametrical Compression 

Number of Elements Solution Time (s) 

1148 10.41 

2502 27.82 

8374 200.00 

 

The errors in the sensitivities of the normal stress in the x-direction, calculated by each of the 

three methods are plotted in Figure 10 (first order) and Figure 11 (second order) for the fine 

mesh case. It is seen that there is again relatively higher error along the circumference of the disc 

due to boundary conditions. It is also noted that a few lines of relatively high error form inside 

the discs. These lines represent regions where the analytical sensitivity is zero or near zero. Since 

the analytical sensitivity appears in the denominator of the error formula given in Equation 28, 

the error becomes very large when the analytical sensitivity tends towards zero.  

 

 
 
Figure 10. The Error in the First Order Sensitivity for a Disc in Diametrical Compression. 

A) Solution calculated by CD, B) Solution calculated by CTSE, C) Solution calculated by 

FD 
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Figure 11. The Error in the Second Order Sensitivity for a Disc in Diametrical 

Compression. A) Solution calculated by CD, B) Solution calculated by CTSE, C) Solution 

calculated by FD 

 

The norm of the error in the sensitivities is shown in Table 9. For this example, as compared to 

the thick walled cylinder, there is not a large dependence of the error norm on the number of 

elements. Also, there is not much difference between the methods themselves. This points to the 

fact that the error in the derivatives is not due to the truncation error of the derivative methods, 

since the truncation error of CTSE and CD should be of the order O(h
2
) while the truncation 

error of FD should be O(h
6
). The lack of dependence on the choice of method is further shown in 

Table 10 where the norm of the errors is shown for the 2502 element mesh for three different 

step sizes, or sampling radii. Very little variation in the error is seen as a function of the step size, 

which is not the behavior of truncation error. 

 



24 

Table 9. The Norm of the Error in the First Order Sensitivity of 



X  as a Function of the 

Number of Elements for a Disk under Diametrical Compression 

 

Number of Elements CD CTSE FD 

Order 1st 2nd 1st 2nd 1
st
 2nd 

1148 0.4681 0.6378 0.4681 0.6379 0.4681 0.6378 

2502 0.4164 0.5673 0.4164 0.5675 0.4164 0.5674 

8374 0.4267 0.6572 0.4270 0.6581 0.4270 0.6577 

 
Table 10. The Norm of the Error in the First and Second Order Sensitivities of the Radial 

Stress as a Function of Step Size for a Disk under Diametrical Compression 

 

Step Size CD CTSE FD 

Order 1st 2nd 1st 2nd 1st 2nd 

.0001 0.4164 0.5679 0.4164 0.5726 0.4164 0.5688 

.001 0.4164 0.5673 0.4164 0.5675 0.4164 0.5674 

.01 0.4143 0.5609 0.4166 0.5707 0.4164 0.5674 

 

2.3.3 Numerical Example: Sensitivity of stress intensity factor with respect to crack 

length 

 
In this example, CTSE was applied to several fracture mechanics problems to determine the 

sensitivity of the stress intensity factor with respect to crack length. Determining the stress 

intensity factor (K) at a crack tip and its sensitivity to changes in crack length (a) are important 

problems in fracture mechanics. A common method to calculate the stress intensity factor from 

finite element method results is to numerically compute a J-integral using the domain integral 

method and a truncated-pyramid virtual displacement (Q) function. As shown below, the first 

order derivative of the J integral (or K) with respect to crack length can be determined using 

CTSE by adding an imaginary step (h) to the elements’ nodal coordinates and applying Equation 

17. This methodology achieves high accuracy over a wide range of imaginary step sizes for the 

two-dimensional (2D) problems tested to date. 

 

Four well-known two-dimensional fracture mechanics problems, the single- and double-edge 

crack, central crack, and an infinite array of collinear cracks, can all be modeled using the same 

geometry, material properties, and remote loading, by varying the boundary conditions along 

symmetry planes as shown in Figure 12. 
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Figure 12. The Four Problems Modeled for Example 3, A) Single Edge Crack (SENT), B) 

Double Edge Crack (DENT), C) Center Crack (CCT), D) Infinite Array of Collinear 

Cracks.  The darker shaded area indicates the common geometry. 
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The mode I reference solutions for these problems are shown in Table 11. The infinite array of 

collinear cracks is particularly attractive as it has closed-form solution for K. The other K 

solutions are approximate fits to the numerical solutions. 

 

Table 11 Reference Formulas for the Stress Intensity Factor (K) 

Geometry 



KI ,ref remote aY  

Single Edge 

Crack
[30]

 

(SENT) 



 remote a

2tan
a

2W

cos
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2W
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+0.37 1 sin
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Double Edge 

Crack
[31]

  

(DENT) 
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a
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a

W
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Central Crack
[32]

  

(CCT) 



remote a sec
a

2W
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a
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2
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a
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Infinite Array
[33] 



remote a
2W

a
tan

a

2W
 

 

All of these problems assume an infinite longitudinal length (L), i.e., the height in Figure 12, but 

a model with a finite geometry produces a good approximation of the stress fields when the crack 

length is much less than height of the model.  

 

The sensitivities of K to crack length can be found by differentiating these formulas with respect 

to a as shown in Table 12.  
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Table 12 The First Partial Derivative of Each Reference Formula with Respect to Crack 

Length 
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In these problems, the stresses around the crack tip are pure mode I so the stress intensity factor 

may be determined from the J-integral values calculated using the finite element results as 



KI  J E  where 



E  E  for plane stress and 



E  E /(12) for plane strain. 

 

These four related problems use the same finite element mesh of eight-noded bi-quadratic 

quadrilaterals with degenerate quarter-point nodes around the crack tip. The material properties 

and loading conditions are also the same and the problems differ only in the boundary conditions 

applied. The numerical values used for the problems are shown in Table 13. 

 

Table 13 Parameters of the Plane Strain Problems Investigated 

Remote Load σremote 100×10
3 

Elasticity E 10×10
9 

Poisson’s Ratio Υ 0.3 

Height L 2 

Thickness B 1 

Width W 1 

Crack Length A 0.100 

 

In order to determine the derivative of K with respect to crack size, a complex variable finite 

code (CFEM) was written for 2D linear elasticity analysis with a J integral domain integration 
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calculation. The J integral results from CFEM were verified against results from Abaqus using 

identical finite element meshes.  

 

The recommended mesh to use around a crack tip in order to obtain accurate J integral 

calculations is called a “spider web mesh” of which a schematic is shown below. The mesh 

consists of a number of concentric rings of elements around the crack tip. The mesh in Figure 13 

consists of 6 concentric rings of elements. The heavy black line with gray interior indicates that 

the J integral was computed using this integration domain, i.e., 5 rings of elements. The elements 

in ring 1 are collapsed quadrilaterals elements with quarter point locations for mid-side nodes. 

The parameters used in the following numerical examples are given in Table 14.  

 

 
 

Figure 13 Schematic of "Spider Web" Finite Element Mesh Used for J Integral 

Calculations 

 

Table 14 Selected Finite Element Model Characteristics 

Approximate Domain Q1 Radius 1.5×10
-6 

Largest Domain (Q36) Radius 0.75a 

Radial Elements 36 

Circumferential Elements 36 

Number of Elements 12,482 

Number of Nodes 37,957 

Degrees of Freedom 75,914 

 

Although complex number operations typically require three times the computational effort of 

their real-valued equivalent, for many problems only a limited number of scalar values have an 

imaginary step applied. When estimating shape sensitivities, the number of complex operations 

needed is approximately proportional to the fraction of the node ordinates affected by the 

imaginary displacement, so that the total computational effort is less than it would be if all 

operations needed to be complex. Typical timing estimates are shown in Table 15. 
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Table 15 Typical Computation Times.  Note These Values Should Not Be Compared To 

Those In Table 4 Since This Example Uses A Different CFEM Implementation 

Imaginary 

Displacement 

Meethod 

Time to Build 

Stiffness 

Matrix (s) 

Time to Solve for 

System 

Displacement (s) 

Time to Calculate J 

for all Integration 

Domains (s) 

Total 

Solution 

Time (s) 

None (Pure Real) 27.9 2.4 1.6 31.9 

Tip Node 28.0 4.9 1.7 34.6 

Domain 1 28.0 4.9 1.6 34.5 

Crack Face 28.0 4.9 1.6 34.5 

Domain 4 28.0 4.9 1.8 34.7 

 

When a 2D finite element mesh represents a solid body with a straight crack, there are many 

ways to perturb the nodes to increase the crack length by a small imaginary amount ih. One 

simple method is to move only the node at the crack tip a small amount in the direction of crack 

extension. Another method is to move all the nodes along the crack face in the direction of crack 

extension proportional to the distance from the crack mouth so that the tip node moves ih and the 

nodes at the mouth remain unperturbed. These methods have the disadvantage of changing the 

relative locations of some of the effected elements’ mid-side nodes, i.e., the mid-side nodes on 

the crack face, so they are no longer precisely at mid- or quarter-points, and therefore represent a 

change in both crack length and a change to the elements’ shape functions, resulting in less 

accurate results. Although the effect is not large, it does affect the accuracy of the computed 

derivative of the J integral. A schematic of this effect is shown below. 

 

 

Figure 14 Schematic of the Effect of Perturbing only the Nodes Along the Crack Face 

 

A solution to this problem is to perturb all the elements within a user-defined group around the 

crack tip as a rigid body in the imaginary domain. For example, in Figure 15, all the nodes along 

the black line (ring 5) remain unperturbed, whereas, the nodes within ring 4 are all perturbed as a 

rigid body. In this case, we call the perturbation method Q4 to indicate the all the nodes within 

ring 4 are perturbed as a rigid body. Obviously, any ring can be chosen for the perturbation. As 

shown in figures below, the highest accuracy appears to be obtained when using Q4 for the 

imaginary perturbation, then using the J integral results obtained from a ring of elements larger 

than Q4.   
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Figure 15 Schematic of Rigid Body Perturbation of Nodes Around the Crack Tip 

 

Since the effect of the complex step h is relative to the size of the elements having their nodes 

perturbed, the complex step h is normalized by h1, with h1 defined as the smallest real-valued 

distance by which any corner node can be moved in the displacement direction without 

overtaking another node.  

 

Table 16 compares the mode I stress intensity factor and the stress intensity factor derivative 

results for the infinite array problem from CFEM using the J integral (



KCFEM ), computed using 

the J integral with Abaqus (



KAbq), from the reference solution (



Kref ), and the first order 

derivatives obtained using CTSE within CFEM (



K CFEM ) and the solution in Table 12 (



K ref ). Four 

different methods were used to implement the perturbation of the crack length in the imaginary 

domain. The results reported are obtained from the 36
th

 ring of circumferential elements. 
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Table 16 Accuracy of 



K  and 



K  for Four Methods of Imaginary Displacement for the 

Infinite Array Problem, J-Integration Domain 36, 



h /h1 106  

 



KCFEM /



KAbq  



KCFEM /



Kref  



K CFEM /



K ref  

Single Edge Crack 

Tip Node 0.983060 0.977694 0.990846 

Domain 1 0.983060 0.977694 0.990833 

Crack Face 0.983060 0.977694 0.991554 

Domain 4 0.983060 0.977694 0.989891 

Double Edge Crack 

Tip Node 0.999718 1.010374 0.962984 

Domain 1 0.999718 1.010374 0.962971 

Crack Face 0.999718 1.010374 0.963675 

Domain 4 0.999718 1.010374 0.962056 

Central Crack 

Tip Node 0.999510 0.999613 1.001053 

Domain 1 0.999510 0.999613 1.001039 

Crack Face 0.999510 0.999613 1.001776 

Domain 4 0.999510 0.999613 1.000088 

Infinite Array 

Tip Node 0.999591 0.999623 1.000761 

Domain 1 0.999591 0.999623 1.000748 

Crack Face 0.999591 0.999623 1.001485 

Domain 4 0.999591 0.999623 0.999797 

 

Figure 16 shows the results for K as a function of the J integration domain. The results indicate 

that the most accurate solution is obtained from the J integral domain 4, e.g., 4
th

 ring of elements. 

This result appears to be independent of the complex perturbation method.  
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Figure 16. CFEM and ABAQUS Infinite Array Stress Intensity Factor (K) Accuracy vs. J 

integral domain 

 

The results in Table 16 and Figure 16 indicate close agreement in K between CFEM and Abaqus, 

independent of the implementation of the complex perturbation of the crack length; the stress 

intensity factors calculated by CFEM and Abaqus are both within the expected errors of the 

reference formulas and solution methods used. As described in Section 2.2.1, the imaginary step 

size has an effect on the real-valued solution of 



O(h2) , but if h is sufficiently small, the J integral 

calculation will not be significantly effected as shown in this analysis. 

 

Figure 17 shows the accuracy in 



K CFEM /



K ref as a function of the J integration domain for the 4 

different perturbation methods. Figure 18 shows a closer view of the same data. These data 

indicate from which domain the 



J  integral should be extracted as a function of the perturbation 

method. From Figure 17, the results from the Tip Node, Domain 1, and Domain 4 methods all 

converge at around the 4
th

 integration domain. The results for the Face Only method don’t 

converge until about the 24
th

 integration domain. The close up view in Figure 18 indicates that 

ultimately, the best results are obtained from the 36
th

 domain using the 



Q4  method to implement 

the imaginary crack length perturbation. 
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Figure 17. Imaginary Displacement Method Influence on K' Accuracy, Infinite Array, 



h /h1 106 , CFEM K' within 30% of Reference 
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Figure 18. Imaginary Displacement Method Influence on K' Accuracy, Infinite Array, 



h /h1 106
, CFEM K' within 0.5% of Reference 

 

These results suggest that using CTSE to estimate the first-order sensitivity of K with respect to a 

change in a is more accurate when larger integration domains are used to calculate K. Because of 

this, the largest J-integration domain (36) is used to examine the effects of varying the CTSE 
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complex step size h on the the accuracy of K and K' in Figure 19. The results show the 

remarkable stability of the method since 



h /h1 varies from 



101 to 



10300. 

 

 

Figure 19 Accuracy of K and K’ over a wide range of Complex Step Size 
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 3 Probabilistic Sensitivity Analysis with respect to Bounds of 
Truncated Distributions 
 
The Score Function (SF) method is a mathematical technique to compute the partial derivative of 

the probability-of-failure, mean (



Z ) or standard deviation (



Z ) of some response (



Z ) with 

respect to the parameters of the input PDFs, e.g. (



i, i ) [34]. Under this program, the SF method 

was extended to address the case of computing the probabilistic sensitivities with respect to 

bounds of truncated distributions. Examples of truncated distributions include uniform, truncated 

normal, and truncated Weibull among others. 

 

Bounds on variables are often implemented as part of a quality control program to ensure a 

sufficient pedigree of a product component and these bounds may significantly affect the 

product’s reliability and design through constraints such as cost, manufacturability and 

reliability. The methodology to compute the sensitivity of the probability-of-failure with respect 

to bounds of truncated distributions is summarized below. Extension to the sensitivities of the 

mean and standard deviation of the response can be found in ref. [35] 

 

3.1 Methodology 
 

The probability-of-failure integral can be written 

 



Pf  I(x) fX (x)dx




          (29) 

 
where 



x represents a vector of random variables, 



I(x) denotes the indicator function, (1 if failure 

occurs, 0 otherwise), and 



fX  represents the joint probability density function of the random 

variables. 

 

The derivative of the probability integral with respect to a parameter of a random variable that 

affects the boundary can be determined by using the idea of the classical Material Derivative 

from continuum mechanics [36], 

 



D

Dt
(x,t)dV

V

 
(x,t)

t
dV

V

  (x,t)v jn jdS
S

      (30) 

 
where 



 is a property of the continuum, 



  denotes the velocity of the material, 



n represents the 

unit normal along the boundary 



S , and 



V  is the volume enclosed by 



S . The surface integral term 

in Equation 30 is the value of 



 on the boundary multiplied by the volume swept by the particles 

on the boundary in the time interval 



dt , integrated over 



dS. This term can be considered as a 

flux of the property 



 over the surface 



S .  
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The concept of the material derivative can be utilized to take the derivative of the probability 

integral, Equation 30, with respect to a bound of a random variable PDF. Here, the independent 

parameter, 



 i , is a bound of the distribution representing 



X i , the JPDF is equivalent to the 

property 



, the volume is the N dimensional random variable space, and 



S  is the surface of the 

random variable space remaining when random variable 



X i  is set to the bound 



 i . For 

rectangular truncation, the surface 



S  is straightforward to compute as the independent parameter, 



 i , is a bound of the N dimensional random variable space.  

 

The unit normal and the equivalent velocity term and their relation can be discerned from a 

problem of two random variables, see Figure 20. Since the independent parameter 



  is an 

element of X, the velocity becomes 



 x / 1. At the lower bound 



v  and n are in opposite 

directions, hence, the dot product 



 jn j  equals -1. At the upper bound 



 jn j  equals +1. 

 

 

Figure 20 Descriptions of Velocity and Unit Normal Along Bounds 

 

Carrying out the Material Derivative of the probability-of-failure integral, the sensitivities 

become 

 



Pf

ai

 fX i
(a)(Pf  PI

a )         (31) 

 



Pf

bi

  fX i
(b)(Pf  PI

b )        (32) 

 
where 



Pf  represents the usual probability-of-failure integral and 



PI

a  and 



PI

b  denote supplemental 

flux integrals. Thus, the effort to obtain the sensitivities becomes one of evaluating the flux 

integrals 



PI

a  and 



PI

b  in addition to the probability-of-failure. 
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The flux integral can be evaluated by integrating the joint probability density function times the 

indicator function over the surface S defined by the condition 



xi  . That is, one integrates the 

JPDF in the failure region over the surface S. Thus, the dimension of the flux integral is N-1. A 

schematic of the flux in two dimensions (two random variable problem) is shown in Figure 21 

where the value of the joint PDF along the upper bound of 



X1 is outlined.  

 

 

Figure 21 Flux of the JPDF in the Failure Region over the Surface 



S  

 

It is straightforward to calculate the flux integrals using sampling as  

 



PI

 
1

m
I(yk ,)

k1

m

          (33) 

That is, the samples used to compute 



Pf  are reused to compute 



PI

  by projecting the samples 

onto the surface 



X i  a  or 



X i  b and the indicator function is evaluated along the surface 



Xi i.  

 

3.2 Results and Discussion 

3.2.1 Numerical Example 

 

A two dimensional example is solved to illustrate the concepts. Consider a limit state of 



g(r,s)  r s with R and S modeled as independent random variables. The indicator function 

defines the failure region as 
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I[r,s] 1       if g(r,s)  0

0                   otherwise
        (34) 

 
R is a standard normal distribution and S is a uniform distribution with bounds 



a  0 and 



b 1. 

 



fR (r) 
1

2
Exp[r2 /2]       r         (35) 



fS (s) 1     0  s 1

0                 otherwise
         (36) 

 
 

Table 17 summarizes results obtained using both the flux-based methodology and the standard 

finite difference (forward differencing) method. The derivatives of the probability-of-failure with 

respect to the bounds were computed using Eqs. (31) and (32) using both symbolic integration 

and sampling. Finite difference estimates were also computing using symbolic integration and 

sampling with a forward step size of 0.00001.  

 

Table 17 Probabilistic Sensitivity Results for Limit State



g r s (R Standard Normal, S 

Uniform) 

 
Flux-based Finite Difference 

 Integration 

(exact) 

Sampling 

(10
4
 samples) 

Integration 

(exact) 

Sampling 

(10
6
 samples) 



Pf

a
 

0.1844 0.1842
1
 0.1844 .1876

1
 



Pf

b
 

0.1560 0.1571
1
 0.1570 .1608

1
 

1
expected value of 100 trials 

 

The sensitivities for the flux-based and finite difference methods using exact integration are very 

close, as expected. The results using sampling are also in good agreement; however, note that 10
4
 

samples were used for the flux-based approach to obtain a solution with good accuracy versus 

10
6
 samples for the finite difference sampling-based approach. The superiority of the flux-based 

approach compared to the standard finite difference (forward differencing) approach using 

sampling can be shown clearly by comparing the 95% confidence bounds and the coefficient of 

variation (COV = standard deviation/mean) obtained using both methods obtained from 100 

trials. Figure 22 shows a plot of the 95% confidence bounds for finite difference (dashed) versus 

flux-based (solid) for 



Pf /a  (similar results are obtained for 



Pf /b ). The number of samples 
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are shown in the X axis in 



log10 scale. The bounds for the flux-based approach are so much 

narrower than the finite difference approach that they show almost as a straight line. The bounds 

are so wide for the finite difference method that any solution obtained is completely unreliable 

until the number of samples approaches one million.  

 

A closer examination of the benefits of using common random variables during the sampling 

process is provided in Table 18. Variance results for negative, approximately zero, and positive 

sampling correlation are provided. The results clearly show that positive correlation provides 

approximately a three times reduction in the variance of the sensitivities with respect to 

independent sampling; at zero cost. Positive correlation was accomplished simply by using the 

same samples to compute the probability-of-failure and the fluxes. 

 

 

Figure 22 95% confidence limits (100 trials) for 



Pf /a  as a function of the number of 

samples in 



log10 scale (dashed - finite difference; solid – flux based) 
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Table 18 Variance of sensitivity estimates 



Pf /  as a function of sampling correlation 

(100 trials) – actual correlation in parentheses 

# 

Samples 



Pf

a
 



(  0) 


Pf

a
 



(  0)  


Pf

a
 



(  0) 


Pf

b
 



(  0) 


Pf

b
 



(  0)  


Pf

b
 



(  0) 

10
3 8.81E-4 

(=-0.75) 

4.64E-4 

(~0) 

1.37E-4 

(=0.82) 

4.84E-4 

(=-0.46) 

3.48E-4 

(~0) 

1.29E-4 

(=0.78) 

10
4 7.37E-4 

(=-0.66) 

4.01E-5 

(=0.09) 

1.44E-5 

(=0.68) 

4.03E-4 

(=-0.27) 

2.70E-5 

(=0.09) 

1.22E-5 

(=0.64) 

 

Table 19 shows the coefficient of variation of the two methods as a function of the number of 

samples. The COV for the finite difference method is approximately two orders of magnitude 

larger than that obtained using the flux-based method for the same number of samples. These 

results imply that there are approximately 4 orders of magnitude difference in the number of 

samples required to achieve similar accuracy using both methods. The explanation is that the 

finite difference method requires an approximation of a limiting process estimated by subtracting 

two near-equal numbers. The flux-based approach, on the other hand, requires no limiting 

process or subtraction of near-equal numbers. The results from Table 19 indicate that using the 

flux-based approach with 10
3
 samples is superior to the finite difference method with 10

6
 

samples. 
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Table 19 Coefficient of Variation (100 Trials) of Sensitivities with respect to Bounds as a 

Function of the Number of Samples 

 
Flux-based Finite Difference 

# Samples 



Pf

a
 



Pf

b
 



Pf

a
 



Pf

b
 

10
3 

.076 .063 4.4 8.9 

10
4 

.019 .022 2.1 1.8 

10
5 

.0076 .0076 .61 0.66 

10
6 

.0021 .0025 .16 0.22 
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4.  Conclusions 
 

Development of probabilistic sensitivities is frequently considered an essential component of a 

probabilistic analysis and often critical towards understanding the physical mechanisms 

underlying failure and modifying the design to mitigate and manage risk. As a result, it is useful 

to explore and enhance the probabilistic sensitivity methods that are available for analysis. In this 

work, three sensitivity approaches were developed and applied. In particular, the developments 

accomplished include: 1) a new method to compute the sensitivity of the probability-of-failure 

with respect to the parameters that define the probability of detection curve of an NDE,  2) the 

investigation of complex variable methods for sensitivity analysis of structures using finite 

element analysis, and 3) enhancements to the score function method to compute the sensitivity 

with respect to bounds of truncated distributions. 

 

4.1 Conclusions  
 

A probabilistic methodology was developed and verified to compute the sensitivity of the 

probability-of-failure with respect to parameters of a POD curve used during an inspection 

process. The methodology has several attractive features. The formulation is such that the 

probabilistic sensitivities can be obtained at negligible cost using standard (Monte Carlo) or 

other sampling (Latin hypercube, importance sampling) methods. The key is that the same 

samples used to compute probability-of-failure are reused to compute the sensitivities. As such, 

the methodology can be implemented in a post-processing non-intrusive manner thereby 

facilitating implementation with existing or commercial codes; the methodology only needs the 

crack sizes at the times of inspection and the cycles-to-failure for each realization. 

 

The formulation is generic and not limited to any specific random variables, fracture mechanics 

formulation, or any specific POD curve as long as the POD is modeled parametrically. The 

example problems demonstrated sensitivities with respect to two parameters of the lognormal-

form POD curve but any POD form with any number of parameters can be used if the 



 term 

can be calculated.  

 

The resulting equations are remarkably simple and involve an evaluation and summation of an 



 

term with the summation occurring only for samples that have failed before time 



t  and the 

evaluation occurs only at the time of inspection. The form of 



 requires the derivative of the 

POD curve with respect to its parameters and can be derived analytically. The time dependent 

nature of the sensitivity is accounted for by the time dependent indicator function term. The 

sensitivity equations for a particular inspection are unchanged in form due to subsequent 

inspections however their numerical evaluation may change due to samples being detected and 

removed by subsequent inspections.  

4.2 Conclusions 
  

Complex Taylor series expansion (CTSE), Fourier differentiation (FD), and central differencing 

(CD) can all be used to calculate shape sensitivities. To our knowledge, the work presented here 

marks the first time that FD has been used for calculating finite element shape sensitivities.  
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Experience shows that each method can compute reasonably accurate first order derivatives; 

however, the complex variable methods are attractive in that they are extremely robust to the 

complex step size h whereas finite difference is not. For 2-D finite element problems using 

second order shape functions, the error in the model was greater than the error due to the 

truncation errors associated with the numerical differentiation methods. This means that the 

complex variable sensitivity methods do not offer extra accuracy compared to CD if the model is 

not sufficiently accurate. They do, however, offer some ease in implementation. If the model 

were made to be more accurate, such as with higher order basis functions or more elements, then 

FD and CTSE could offer improved accuracy with respect to CD.  

 

It has been shown that FD is capable of producing highly accurate sensitivities for functions with 

solutions that are accurate to machine precision [27]. The trade-off for the increased accuracy of 

FD is the requirement of several complex sample points. It may take as much as three times more 

computational effort to generate a complex sample than a real valued sample. Thus for the 

problems described in this paper, FD is not a good choice for shape sensitivity calculations, due 

to the limited accuracy of the solution. CTSE requires only half of the number of sample points 

required by CD, thus CTSE only requires about 1.5 times more computational effort than CD, at 

most. When the evaluation of a shape sensitivity requires displacement of only a small 

proportion of nodal ordinates the additional computational effort may be much less. This coupled 

with the fact that CTSE doesn’t require changing the location of nodes in the complex plane 

means that it may still be a good choice for shape sensitivity problems. 

  

One of the biggest problems with CD is that it requires the user to change the location of 

multiple nodes and maybe surrounding elements to implement a change in the desired shape. 

This may lead to elements with poor aspect ratios, or require complete remeshing of the domain, 

or both.  This is especially true when the step size is rather large. Since CTSE does not require 

moving the nodes in the real plane, remeshing is not required, and there is less concern over the 

aspect ratio of the elements. Furthermore, if only the first order sensitivity is required, than the 

step size can be made very small without fear of increasing the round-off error.  

4.3 Conclusions 
 

Efficient evaluation of the sensitivity of the probability-of-failure or the response moments to the 

bounds of truncated distributions can provide useful information in the design stage in order to 

optimize product reliability, minimize cost, determine quality assurance procedures, etc. The 

method outlined here can be used to compute these sensitivities with a significant improvement 

in computational efficiency over standard finite difference methods. 

 

The methodology is based upon an application of the material derivative concept to the 

probability-of-failure or the response moment integrals thus yielding a flux integral that must be 

computed in addition to the standard probability-of-failure or response integrals. The 

methodology is applicable to any limit state formulation, either component or system, and any 

random variables described by a truncated joint probability density function containing either 

correlated, e.g., truncated multivariate normal, or independent random variables. 

 

The sensitivities require a supplemental flux integral for each bound that, when combined with 

the probability-of-failure and kernel functions, provides the sensitivity with respect to the bound 
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of a truncated distribution. However, the flux integral itself is a probability integral and, 

therefore, amenable to solution using existing probabilistic methods. If sampling is used to 

compute the probability-of-failure, the samples can be reused to compute flux integrals by 

projecting the samples to the bound of interest. Thus, the flux integrals are computed with 

negligible additional computation. 

 

The superiority of the flux-based approach over the standard finite difference method was clearly 

evident from numerical studies using Monte Carlo sampling that indicated that the estimate of 

the sensitivities using the flux-integral approach required approximately 4 orders of magnitude 

fewer samples for the same accuracy as a standard finite difference approach. 
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5. Recommendations 
The field of probabilistic sensitivity analysis is a critical aspect of probabilistic analysis. In order 

to put the results of a probabilistic analysis into practice, it is necessary to know the relative 

importance of the variables to the problem at hand. This is very dynamic and evolving field with 

the work describing only portion of the methods in the literature. In effect, the field largely did 

not exist 20 years ago. Hence it is incumbent upon the analyst to stay abreast of the latest 

developments. 

 

Although significant progress has been made, there are still challenges to be overcome. The 

tension of computational efficiency versus accuracy is a continual challenge. For example, the 

Score Function method provides sensitivities for negligible cost since the Monte Carlo samples 

are reused, however, the variance of the sensitivities may be too large. As a result, accurate 

quantification of the sensitivities may require significantly more samples than used to compute 

the probability-of-failure or the response moments. This is likely to be true for variables of 

secondary importance but maybe true for primary variables also. Thus, new methods that provide 

accurate sensitivity information for minimal cost are still needed. 

 

The complex variable sensitivity methods investigated provide an exciting new approach to 

calculate sensitivities of all types. This is especially true for shape sensitivities as the only the 

affected nodes need to be perturbed along the imaginary axis – no modifications to the real mesh 

are required. Since the mathematics are general, it is incumbent that we explore further 

applications and derivations of this method. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 

POD Probability-of-Detection 



Pf  Probability-of-failure 



fX  Joint density function 



I  Indicator function 



X  Vector of random variables 



a  Crack size 

t Time or cycles-to-failure  



  Parameter of POD curve 



 Kernel function for POD sensitivity analysis 



C  Paris crack growth constant 



m  Paris crack growth exponent 



ac  Critical crack size 



g  Limit state 



KIC  Fracture toughness 



K  Stress intensity factor 



K  Derivative of K with respect to crack length 

 

 

 


