

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2010 2. REPORT TYPE

3. DATES COVERED
 00-03-2010 to 00-04-2010

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 23,
Number 2, March/April 2010

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Systems Assurance as a Team Sport
This article examines several standards and enumerations that are
changing the concepts of assurance, compliance, and security in
enterprises, products, and practices—and shows how procurement
officers, government organizations, and software professionals can bene-
fit from them.
by Robert A. Martin

A DoD-Oriented Introduction to the NDIA’s System
Assurance Guidebook
The National Defense Industrial Association’s “Engineering for System
Assurance” Guidebook is a must-have for DoD organizations and
contractors, and this article examines its benefits in the areas of
assurance case claims and the DoD Management Framework.
by Paul R. Popick, Dr. Terence E. Devine, and Rama S. Moorthy

Meaningful and Flexible Survivability Assessments:
Approach and Practice
Confidentiality, integrity, and availability are cornerstones for evaluating
the survivability of a system, and the authors share a methodology for
assessment as well as their first-hand experience with the most prevalent
forms of direct attack.
by Michael Atighetchi and Dr. Joseph Loyall

A Look at “Software Security Engineering:
A Guide for Project Managers”
The authors show how to use software security practices from the
recently published “Software Security Engineering: A Guide for Project
Managers” as a tool in selecting practices that will lead to more
security-responsive and robust systems.
by Julia H. Allen, Dr. Robert J. Ellison, Dr. Nancy R. Mead, Sean Barnum,
and Dr. Gary McGraw

Building Security In Using Continuous Integration
The authors look in-depth at CI: how it works, its tools and products,
its relation to the “economics of testing,” and how an organization can
successfully choose, incorporate, and utilize commercial and open source
CI tools.
by Thomas Stiehm and Gene Gotimer

4

7

12

19

24

SystemsSystems Assurance:Assurance: PrPreparationeparation andand PrPromiseomise

3
11
22
23
28
30
31

DeparDepartmentstments

From the Sponsor

INCOSE Ad

Coming Events

SSTC Conference Ad

Web Sites

Letter to the Editor

BackTalk

Cover Design by
Kent Bingham

ON THE COVER

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CrossTalk ONLINE

Stephen P.Welby

Jeff Schwalb

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Marek Steed

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cybersecurity Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 27.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Systems assurance is a matter of strategic concern to our nation’s security; one the
DHS takes very seriously. Fundamentally, it is the concerted effort to ensure that

users have the highest level of confidence possible in their critical systems and data.
In other words, systems assurance is the integrated effort to enhance user confi-

dence in the safety, security, reliability, availability, and maintainability of processes and
products. A number of factors impact the user community’s confidence, including
standards setting, procedures development, regulations, and specific verification and

certification criterion.
Industry and the government have been working hard and have made important progress in

providing systems assurance for their customers. Collaborative efforts are advancing standards
and practices for systems and software assurance.

However, building and sustaining customer confidence is difficult and in an ever-changing
technological environment where such confidence is easily diminished. In fact, malicious actors
have shown great adaptability in their efforts to undermine assurance efforts. This is why we
must be constantly vigilant and strive to implement innovative systems assurance technologies.

It also must not be forgotten that enhanced systems assurance supports intellectual proper-
ty rights protection, improved consumer trust, and more confident business operations and ser-
vices. A broad spectrum of critical applications and infrastructure, from process control systems
to commercial applications, depend on secure, resilient systems. That is why we must manage
risks to these systems effectively and improve our capabilities and capacity to mitigate those
risks.

Let me close with the observation that the most effective systems assurance efforts are
“baked” into the risk management process from the very beginning of the system development
life cycle. Security and resiliency must be integrated throughout the life cycle. If they are not,
customers may unknowingly accept risks that could have profound financial, legal, and nation-
al security implications.

By working together—building on efforts already underway, and striving to take steps that
will enhance and improve confidence in critical systems and data—we can make an impact that
will better secure the nation.

I sincerely hope you enjoy this issue of CrossTalk and learn from the keen insights and
recommendations contained herein.

Reinforcing Systems Assurance
In Cyber Risk Management

Gregory Schaeffer
Assistant Secretary for Cybersecurity and Communications

U.S. Department of Homeland Security

March/April 2010 www.stsc.hill.af.mil 3

From the Sponsor

4 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Many exciting and important changes
are happening within the market-

place of cybersecurity capabilities and the
way organizations address compliance,
assurance, and security. As documented in
[1, 2, 3, 4], MITRE has collaborated with
industry, government, and academia
throughout the last 10 years. They have
fostered the creation and adoption of a
number of information security standards
that are changing the concepts of compli-
ance, assurance, and security in enterpris-
es, products, and practices.

While still evolving, several of these
standardization efforts have made their
way into commercial solutions and gov-
ernment, industry, and academic use.
Perhaps the most visible of these have
been the:
• Common Vulnerabilities and Expo-

sures (CVE) initiative.
• Executive Office of the President–

Office of Management and Budget
(EOP-OMB)-mandated (see [5, 6, 7, 8,
9]) Federal Desktop Core Configura-
tion (FDCC) effort that leverages the
Security Content Automation Protocol
(SCAP).

• Consensus Audit Guidelines [10].
• Build Security In (BSI) initiative.

CVE is utilized by the majority of the
vulnerability-related information provi-
ders and tool vendors. The SCAP utilizes
CVE and the other mature standardiza-
tion efforts to clearly define common
security nomenclature and evaluation cri-
teria for vulnerability, patch, and configu-
ration measurement guidance; it is intend-
ed for adoption by automated tools. By
specifying and measuring compliance in
terms of these standardized concepts, the
community is moving towards compliant all
the time based on automated measurement.
This method takes an annual or tri-annual
activity that had questionable insights
about the current security posture of an
enterprise and makes it into a consistent
way of knowing both how and that your
enterprise is secured.

Similar to the transformation in opera-
tional security measurement (motivated by

the CVE initiative, FDCC, and the SCAP)
are the changes under way in assuring the
resilience and code security of the soft-
ware making up the applications and sys-
tems software bought and built in organi-
zations and government entities. The BSI
initiative is a software assurance effort that
provides practices, tools, guidelines, rules,
principles, and other resources software
developers, architects, and security practi-
tioners can use to build security into soft-
ware in every phase of its development.
BSI leverages the Common Weakness

Enumeration (CWE) and the Common
Attack Pattern Enumeration and
Classification (CAPEC) efforts.

To measure and manage their cyber
assets, an enterprise will need to employ
consistent approaches that are supported
by automation techniques, typically using
products from a variety of different ven-
dors. To make the finding and reporting of
issues consistent and composable across
different groups of practitioners and
tools, there has to be a set of standard def-
initions of the things that are being exam-
ined, reported, and managed [4].

To reach this level of capability, the
standardization has to make sense to com-
mercial industry so that it will be adopted
in baseline products and practices, and to
the academic world so that research will

continue to advance the state of the art in
a complementary manner.

While there has been great progress in
bringing standardization to some activities
and tools in some areas like the CVE ini-
tiative, the SCAP/FDCC, and BSI, there is
still more that individuals can do. Those
buying software products, creating organi-
zational policies related to the security and
resiliency of systems, or creating security
guidance and benchmarks can help us all
get to these greater capabilities faster by
taking the actions outlined in this article.

Procurement Guidance for
Purchasing Software
As a procurement officer, you can make
sure that the products being offered are
compliant with the new Federal
Acquisition Regulation provision [11],
specifying compliance with the FDCC.
Additionally, procurement officers can
levy requirements on the software
providers to:
• Submit a Common Platform Enu-

meration (CPE) name for each new
release of the provider’s software.

• Have a public address (e-mail and/or
Internet) for the reporting of security
relevant issues with the provider’s soft-
ware.

• Have a publicly available statement of
the time frame and process that the
software provider’s organization fol-
lows in addressing reports of security
relevant issues with the provider’s soft-
ware.

• Have public advisories of relevant
security-related issues and their resolu-
tion.

• Include a CVE Identifier for security-
related issues when the issues are relat-
ed to a software flaw or default setting
that constitutes a security shortcoming
in the provider’s software (as part of
the initial public advisory).

• Include an initial Open Vulnerability
and Assessment Language (OVAL)
definition(s) as a machine-readable
description of how to tell if the flaw,

Systems Assurance as a Team Sport
Robert A. Martin

The MITRE Corporation

It is time for individual procurement officers—and those who work with the vendors and software developers creating or deliv-
ering our day-to-day mission software-based systems—to contribute to, and accelerate the adoption of, standards-based cyber-
security. This article outlines several practical and straightforward steps that professionals can take to speed the adoption of
the enterprise security initiatives currently under way, and to make those efforts have a greater and quicker impact.

Systems Assurance: Preparation and Promise

“While still evolving,
several of these

standardization efforts
have made their

way into commercial
solutions and

government, industry,
and academic use.”

Systems Assurance as a Team Sport

March/April 2010 www.stsc.hill.af.mil 5

misconfiguration, or incorrect default
settings are present and whether any of
the known resolutions have been taken
as part of the initial public advisory.

• Include the base and initial temporal
severity score portions of the
Common Vulnerability Scoring System
(CVSS) rating for the flaw or incorrect
default settings as part of the initial
public advisory.

• Provide advice to customers on how
to securely configure their software
and do so utilizing the standards with-
in the SCAP. Specifically, offer
eXtensible Configuration Checklist
Description Format (XCCDF) and
OVAL documents representing the
vendor’s recommendations on secure
configuration. Include the appropriate
Common Configuration Enumeration
(CCE) identifiers for the configuration
controls that they recommend settings
for and CPE names for the software
packages discussed.

• Identify and discuss the assurance
activities that their software products
go through—in terms of the CWE
names that are reviewed and tested for
and the CAPEC names utilized in the
analysis and evaluation activities per-
formed on their software.

Government Organizations
As a government organization decides
how systems should be set-up for opera-
tional use, standards can be used to con-
vey this blessed configuration. This is
referred to in [12] as a SCAP-expressed
checklist. Specifically, government organi-
zations can levy requirements on their
user communities to:
• Express policies and guidelines in the

XCCDF/OVAL languages so that tool
technologies can use these machine-
readable descriptions to evaluate the
status of information technology with
regards to those policies and guide-
lines.

• Adopt automated methods utilizing
the machine-readable XCCDF/OVAL
policies and guidelines for assessing,
reporting, and directing action on
exceptions to the policies and guide-
lines.
Similarly, as a government organiza-

tion establishes its approach to gaining
assurance about the robustness, integrity,
and secureness of the software its systems
contain, standards can be used to clarify
and specify the types of evidence and
insights needed to gain sufficient software
assurance. Specifically, government orga-
nizations can require their user communi-
ties to:

• Express policies and guidelines about
the assurance of a capability by dis-
cussing the security weaknesses that
have been vetted for in terms of CWE
names and methods used to verify and
test for security issues in terms of
CAPEC names.

• Adopt the use of automated assess-
ment methods that utilize CWE and
CAPEC for assessing, reporting, doc-
umenting, and directing action on
weaknesses and exceptions to the
assurance policies and guidelines. This
way, issues can be tracked and man-
aged in a vendor-neutral and consis-
tent manner.

Procurement Guidance
for Purchasing Security Tools
In general, procurement and end-users
should request or require that the vendors
of security products that deal with securi-
ty flaws, configuration settings, policies, or
patches support the SCAP standards. It is
strongly recommended that the automat-
ed tools used to implement or verify secu-
rity controls employ SCAP (or similar
standardization) efforts for clearly defined
nomenclature and evaluation criteria not
covered by the SCAP. Specifically, these
types of products and services should:
• Include the appropriate CVE Identi-

fier for security information that is
related to a software flaw or a non-
secure default setting.

• Provide for the searching of security-
related information by CVE Identifier.

• Incorporate the machine-readable
tests for flaws, patches, and configura-
tion checks written in conformance
with the OVAL Definition Schema.

• Generate machine-readable assess-
ment results from tests for flaws,
patches, and configuration checks in

conformance with the XCCDF and
OVAL Results Schema. In the near
future, expect products to produce
results in the Assessment Results
Format, which is an emerging SCAP
specification that describes an XML
Schema for sharing per-device assess-
ment results of devices on IP-routed
networks.

• Incorporate the machine-readable re-
sults from flaw, patch, and configura-
tion check assessments that are written
in conformance with the OVAL
Results Schema.

• Incorporate, as appropriate to the
functionality of the tool, support for
the different severity score portions of
the CVSS rating for the flaw or incor-
rect default settings.
An assurance ecosystem has emerged

around these various types of enumera-
tive and language-based standardization
and has been adopted in various ways by
government and commercial industry1; it
continues to provide the framework to the
academic world for continued research
and to industry in advancing the state of
the art in a complementary, interoperable
manner.

While there has been great progress in
bringing standardization to many prac-
tices and tools, there is more that individ-
uals can do to push even greater capabili-
ties to emerge in a timely manner.
Procurement officials and consumers of
software products, as well as organization-
al security policy makers, should take
more deliberate action to demand secure
products and create security guidance and
benchmarks, in turn helping to get to
these greater capabilities faster; [12]
addresses many aspects of this issue.
Similar adoption endorsement initiatives
and efforts—to move forward and sup-
port other useful standards initiatives—

Activity Web siteFocus

Assessment Results Format Result Reporting <http://msm.mitre.org/incubator>

Common Event Expressions Security Events <http://cee.mitre.org>

Malware Attribute Enumeration
and Characterization

Malware Attributes <https://buildsecurityin.us-cert.gov/
swa/malact.html>

Common Remediation
Enumeration

Remediation Actions <http://msm.mitre.org/incubator>

Common Remediation Language Remediation Actions <http://msm.mitre.org/incubator>

Open Checklist Interactive
Language

Interactive Survey Questions <http://scap.nist.gov/specifications/ocil>

Open Checklist Reporting
Language

Interactive Survey Answers <http://ocrl.mitre.org>

Policy Language for Assessment
Results Reporting

Result Reporting <http://msm.mitre.org/incubator/plarr>

Table 1: Emerging Standardization Efforts

Systems Assurance: Preparation and Promise

6 CROSSTALK The Journal of Defense Software Engineering March/April 2010

will be important in creating needed
changes to their operational use and in
bringing discipline and repeatability into
security measurement [13, 14].

While already making many useful and
needed changes possible, these common
enumerations and languages will continue
to evolve and grow to cover additional
areas of standardization. Some of the
emerging areas already being worked as
standardization efforts are for security
events, malware attributes, attack patterns
as operational model templates, remedia-
tion actions, and interactive survey ques-
tions and result reporting (as shown in
Table 1, previous page).

These new standardization areas (like
those outlined in this article) have the
potential to evolve into similarly beneficial
standards efforts for those working to
secure their enterprises. The key to realiz-
ing the promise of these new efforts are
the communities working on them and the
inclusiveness and fair-handedness of the
process surrounding these efforts. The
growth and maturity of these new areas
should be monitored and evaluated
against today’s threats and operational
challenges. This way, organizations can
leverage the ideas and processes as soon as
possible and anyone with insights and
interests in these areas can get involved.u

References
1. Martin, Robert A. “The Vulnerabilities

of Developing on the Net.” Cross-
Talk Apr. 2001 <www.stsc.hill.af.
mil/crosstalk/2001/04/martin.html>.

2. Martin, Robert A. “Transformational
Vulnerability Management Through
Standards.” CrossTalk May 2005
<www.stsc.hill.af.mil/crosstalk/2005/
05/0505Martin.html>.

3. Martin, Robert A. “Being Explicit
About Security Weaknesses.” Cross-
Talk Mar. 2007 <www.stsc.hill.af.
mil/crosstalk/2007/03/0703Martin.
html>.

4. Martin, Robert A. “Making Security
Measurable and Manageable.” Cross-
Talk Sept. 2009 <www.stsc.hill.af.

mil/crosstalk/2009/09/0909Mar
tin.html>.

5. Evans, Karen. “Managing Security Risk
By Using Common Security Configu-
rations.” EOP-OMB Memorandum for
Chief Information Officers and Chief
Acquisition Officers. 20 Mar. 2007 <www.
cio.gov/documents/Windows_Com
mon_Security_Configurations.doc>.

6. Johnson, Clay. “Implementation of
Commonly Accepted Security Config-
urations for Windows Operating
Systems.” EOP-OMB Memorandum for
Chief Information Officers and Chief
Acquisition Officers. M-07-11. 22 Mar.
2007 <www.whitehouse.gov/omb/
assets/omb/memoranda/fy2007/m0
7-11.pdf>.

7. Evans, Karen S., and Paul A. Denett.
“Ensuring New Acquisitions Include
Common Security Configurations.”
EOP-OMB Memorandum for Chief
Information Officers and Chief Acquisition
Officers. M-07018. 1 June 2007 <www.
whitehouse.gov/omb/assets/omb/
memoranda/fy2007/m07-18.pdf>.

8. Evans, Karen S. “Establishment of
Windows XP and VISTA Virtual
Machine and Procedures for Adopting
the Federal Desktop Core Configura-
tions.” EOP-OMB Memorandum for Chief
Information Officers and Chief Acquisition
Officers. 31 July 2007 <www.cio.gov/
documents/FDCC_memo.pdf>.

9. Evans, Karen S. “Guidance on the
Federal Desktop Core Configuration.”
EOP-OMB Memorandum for Chief
Information Officers and Chief Acquisition
Officers. M-08-22. 11 Aug. 2008 <www.
whitehouse.gov/omb/memoranda/fy
2008/m08-22.pdf>.

10. “Twenty Critical Security Controls for
Effective Cyber Defense: The Consen-
sus Audit Guidelines.” SANS Institute.
Vers. 2.3. 13 Nov. 2009 <www.sans. org/
critical-security-controls/cag.pdf>.

11. DoD – General Services Administra-
tion, and NASA. “Federal Acquisition
Regulation; FAR Case 2007–004,
Common Security Configurations.” 28
Feb. 2008 <http://download.micro

soft.com/download/7/6/c/76c0483
d-425e-4d99-8d08-15414cf504a2/
FAR%202007-004.pdf>.

12. Barrett, Matthew, et al. “Guide to
Adopting and Using the Security
Content Automation Protocol
(Draft).” NIST SP 800-117. May 2009
<http://csrc.nist.gov/publications/dr
afts/800-117/draft-sp800-117.pdf>.

13. “The MITRE Corporation – Infor-
mation Security Data Standards.”
Making Security Measurable. 10 Sept
2009 <http://makingsecuritymeasur
able.mitre.org/list/>.

14. Information Assurance Technology
Analysis Center.Measuring Cyber Security
and Information Assurance – State-of-the-
Art Report. 8 May 2009 <http://iac.
dtic.mil/iatac/download/cybersecur
ity.pdf>.

Note
1. The Web sites for these main stan-

dardization efforts are: CVE <http://
cve.mitre.org>, SCAP <http://scap.
nist.gov>, FDCC <http://fdcc.nist.
gov>, BSI <http://buildsecurityin.us
-cert.gov>, CWE <http://cwe.mitre.
org>, CAPEC <http://capec.mitre.
org>, CPE <http://cpe.mitre.org>,
OVAL <http://oval.mitre.org>, CVSS
<www.first.org/cvss>, XCC DF
<http://nvd.nist.gov/xccdf.cfm>,
CCE <http://cce. mitre.org>.

About the Author

Robert A. Martin is a
principal engineer in
MITRE’s Information
and Computing Technol-
ogies division. For the
past nine years, his ef-
forts have been focused

on the interplay of enterprise risk manage-
ment, cybersecurity standardization, criti-
cal infrastructure protection, and the use
of software-based technologies and ser-
vices. Martin is a member of the Associa-
tion for Computing Machinery, Armed
Forces Communications and Electronics
Association, IEEE, and the IEEE
Computer Society. He has bachelor’s and
master’s degrees in electrical engineering
from Rensselaer Polytechnic Institute, and
an MBA from Babson College.

The MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
Phone: (781) 271-3001
E-mail: ramartin@mitre.org

The rollout of efforts like SCAP-enabled operational measurement is setting the
stage for higher levels of assurance in cybersecurity, but it must be balanced with sim-
ilar levels of assurance in the software products themselves. Additionally, all of the
other commercial and open source applications and capabilities fielded in the DoD
must participate in these efforts. This article describes how the federal government
and the commercial industries working our nation’s critical industries and infrastruc-
ture can—by embracing and accelerating the adoption of these standards efforts into
all the procurement and development efforts in defense—make the promises of
greater assurance and resiliency happen faster and more completely.

Software Defense Application

March/April 2010 www.stsc.hill.af.mil 7

For decades, industry and defense orga-
nizations have tried to build afford-

able, secure, and trustworthy systems.
Despite significant strides toward this
goal, there is ample evidence showing that
adversaries retain their ability to compro-
mise systems. Consequently, there is grow-
ing awareness that systems must be
designed, built, and operated with the
expectation that system elements will have
both known and unknown vulnerabilities.

SA is defined as:

The justified confidence that the
system functions as intended and is
free of exploitable vulnerabilities,
either intentionally or unintention-
ally designed or inserted as part of
the system at any time during the
life cycle. [1]

This ideal of no exploitable vulnerabilities
is usually unachievable in practice, so pro-
grams must perform risk management to
reduce (to acceptable levels) the probabil-
ity and impact of vulnerabilities.

This confidence is achieved by SA
activities, which include a planned, sys-
tematic set of multi-disciplinary activities
to achieve the acceptable measures of SA
and manage the risk of exploitable vulner-
abilities. The assurance case is the enabling
mechanism showing that the system will
meet its prioritized requirements and that
it will work as intended in the operational
environment, minimizing the risk of
exploitation through weaknesses and vul-
nerabilities.

The Guidebook is intended primarily
to aid program managers and systems
engineers seeking guidance on how to
incorporate assurance measures into their
system life cycles. Assurance for security
must be integrated into the systems engi-
neering activities to be cost-effective,
timely, and consistent. The activities for
developing and maintaining the assurance

case enable rational decision-making so
that only the actions necessary to provide
adequate justification (arguments and evi-
dence) are performed. The Guidebook is
a synthesis of knowledge gained from
existing practices, recommendations, poli-
cies, and mandates. SA activities are exe-
cuted throughout the system life cycle. It
is organized based on the ISO/IEC’s

“Systems and Software Engineering –
System Life Cycle Processes” [2]; while
there are other life-cycle frameworks, this
standard combines a suitably encompass-
ing nature while also providing sufficient
specifics to drive SA.

This Guidebook also provides an
assurance guidance section for use by the
DoD and their contractors and subcon-
tractors. Future editions of this
Guidebook may add additional domain-
specific assurance guidance.

This article provides an overview of
the assurance case section (Section 2.2)
and then describes key SA activities com-
pleted for selected reviews within the
DoD Integrated Defense Acquisition,
Technology, and Logistics Life-Cycle
Management Framework (referred to in
this article simply as the DoD
Management Framework) from Section 4
of the Guidebook.

Assurance Case1

The purpose of an assurance case is to
provide a convincing justification to stake-
holders that critical SA requirements are
met in the system’s expected environ-
ment(s). Any assurance claims about the
system need to be incorporated into the
system requirements.

An assurance case is the set of claims
of critical SA properties, arguments that
justify the claims (including assumptions
and context), and evidence supporting the
arguments. The development of the assur-
ance case results in SA requirements that
are then flowed to the system architecture
and the product baseline. The assurance
case can be considered an extension or
adaptation of the safety case, which has
been used for safety-critical systems. Thus,
the concept is not entirely new.

The assurance case need not be a sep-
arate document; it may be distributed
among or embedded in existing docu-
ments. Even if there is an assurance case
document, it would typically contain many
references to other documents. Regardless
of how the assurance case is documented,
there must be a way to identify all of the
assurance claims, and from those claims
trace through to their supporting argu-
ments, and from those arguments to the
supporting evidence. For example, an
organization might maintain a list of sys-
tem requirements, tagging specific ones as
assurance claims with hyperlinks to argu-
ments that justify why the system will
meet the claim. As a minimum:
1. Assurance case claims, arguments, and

evidence must be relevant for the sys-
tem and its operating environment(s).

2. Claims are justified by their arguments.
3. Arguments are supported by their evi-

dence.
4. The assurance case must be developed

iteratively, be sustainable, and be main-
tained throughout the system life cycle

A DoD-Oriented Introduction to the
NDIA’s System Assurance Guidebook

Despite significant strides toward building secure and trustworthy systems, there is ample evidence that adversaries retain
their ability to compromise systems. “Engineering for System Assurance” [1] (the Guidebook)—a publication from the
National Defense Industrial Association (NDIA)—provides process and technology guidance to increase the level of sys-
tems assurance (SA). One section has guidance particularly useful to the DoD and their contractors. This article provides
an introduction to key SA activities with an emphasis on the selected reviews within the DoD Life-Cycle Management
Framework.

Rama Moorthy
Hatha Systems

Paul Popick
The Aerospace Corporation

Dr. Terence E. Devine
The MITRE Corporation

“... programs must
perform risk

management to reduce
(to acceptable levels)
the probability and

impact of
vulnerabilities.”

Systems Assurance: Preparation and Promise

8 CROSSTALK The Journal of Defense Software Engineering March/April 2010

as a living document.
5. The assurance case must be delivered

as part of the system, to be maintained
during system sustainment.
The Guidebook makes no attempt to

specify a format for an assurance case,
only providing guidance as to what infor-
mation should be included. The current
revision of ISO/IEC 15026 [3] specifies a

standard for assurance cases.
The assurance case is generated by the

systems engineering technical activities
applied to the assurance requirements, and
provides evidence of the growing techni-
cal maturity of the integration of the SA
requirements for use within event-driven
technical management. Sections 3 (gener-
al) and 4 (DoD-specific) of the Guide-

book relate the assurance case to the life-
cycle processes.

The DoD Management
Framework
Section 4 is for use by the DoD and DoD
contractors and subcontractors. It is orga-
nized according to phases of the DoD
Management Framework discussed in
DoD Directive 5000.1 [4], DoD
Instruction 5000.2 [5]2, and the Defense
Acquisition Guidebook (DAG) system life
cycle [6].

Section 4’s goal is to enable the DoD
to acquire or produce assured systems,
including both weapons systems and IT
systems. This section discusses the topics
that should be addressed during the phas-
es of the DoD Management Framework.
As discussed in [5] and [6], the life-cycle
phases include:
• Concept Refinement.
• Technology Development.
• System Development and Demonstra-

tion.
• Production and Deployment.
• Operations and Support.

Section 4.3 is subdivided into DoD
review milestones and milestone decision
points in this framework. For each review
(including the System Engineering
Technical Reviews), the DAG description
is quoted, followed by a list of the most
important SA items to complete prior to
that milestone. The non-SA activities nor-
mally associated with the review are not
specified, but should be considered as the
context in which the SA activities are per-
formed. For each review, a specific cross-
reference to the corresponding general
technical instruction is also provided.
Where there are assurance activities that
cannot be associated with specific reviews,
additional subsections are added to con-
tain them.

Figure 1 depicts the DoD life-cycle
phases. The reviews that are discussed in
this article are shown in their phases to
provide a visualization of when the review
occurs. Note that the reviews shown are a
subset of life-cycle reviews.

Section 4 focuses on the DoD and
makes the assumption that the audience
includes system integrators providing sys-
tems (both IT and warfighting) to the

Concept
Refinement

Technology
Development

System Development
and Demonstration

Production and
Deployment

Operations
and Support

A B C

ASR SRR SRR PDR CDR PRR

Milestone Milestone Milestone

Figure 1: Life-Cycle Phases with Reviews (from the 2003 Version of DoD Instruction 5000.2)

Figure 2: ASR Excerpt

Figure 3: SRR Excerpt

To successfully complete the ASR review, ensure the following SA items were satis-
factorily completed:
• System threats and SA claims were considered as part of the analysis of alterna-

tives and full system life-cycle costs were used in the analysis. Sometimes the
seemingly cheapest alternative has higher system life-cycle costs due to assurance
complications.

• A preliminary identification of critical technologies with a description of how to
assure these technologies. This list will eventually feed the Critical Program
Information (CPI) developed at the start of the System Development and
Demonstration phase. As an aid to this identification, review the Military Critical
Technologies List (http://www.dtic.mil/mctl/).

• The Initial Capabilities Document (ICD) and Preliminary System Specification
includes:
° The requirement for the development of an assurance case with high-level

claims for each system element determined to be critical.
° The sustaining mission operational requirements constrain the top-level SA

claims to counter identified threats to the mission. They should broadly iden-
tify an approach for developing the system assurance case.

° A critical elements list.
° The Support and Maintenance Concepts and Technologies with a description

of how assurance will be maintained.

To successfully complete the SRR, ensure that the following SA items were satisfac-
torily completed:
• ICD and Preliminary System Performance Specification:

° Establishes the requirement for the development of an assurance case, includ-
ing high-level claims for a system determined to be critical.

° The operational requirements necessary to sustain the mission include the
top-level SA claims that address identified threats to the mission that are the
foundation for the assurance case. Critical elements are identified.

° The Support and Maintenance Concepts and Technologies documented with
a description of how assurance will be maintained.

° Requirements with SA implication have been tagged for SA traceability and
verification.

• Identification of all critical elements to be protected, and what aspects of them
are to be protected (e.g., confidentiality, integrity, availability, authentication,
accountability [including non-repudiation], and auditability). For example, ensure
that an adversary cannot gain control over a weapon system.
° Initial identification of potential CPI, and a preliminary approach to the pro-

tection of that CPI is part of the system requirements.
° Identification of all relevant SA threats and their potential impact on critical

system assets.

A DoD-Oriented Introduction to the NDIA’s System Assurance Guidebook

March/April 2010 www.stsc.hill.af.mil 9

DoD environment.
The following subsections provide a

description of selected key activities for a
subset of the reviews and events.

Alternative Systems Review (ASR)
The ASR occurs during the Concept
Refinement Phase prior to Milestone A.
Figure 2 shows a partial excerpt of the list
of the SA activities to be completed prior
to the ASR.

At this point in the life cycle, a key SA
activity for each alternative is shown in the
first bullet of Figure 2. For each alterna-
tive, a threat analysis and the assurance
case claims (to counter the identified
threats) need to be developed. This analy-
sis needs to be factored into the alterna-
tive cost estimates, the selection of a pre-
ferred system concept, and the technology
development strategy. SA is made more
complex when it is not considered in the
early stages when alternative concepts are
being evaluated.

Systems Requirements Review (SRR)
The SRR can occur at the end of the
Technology Development Phase prior to
Milestone B, at the start of the System
Development and Demonstration Phase,
or both. Figure 3 shows a small excerpt of
the list of the SA activities to be complet-
ed prior to the SRR.

Development of the assurance case
claims assists with the development of the
system requirements for assurance. Using
an assurance case that systematically
examines the claims necessary to counter
the threats will produce a set of derived
security requirements that can be added to
the system requirements. Having a robust
set of security requirements by SRR
allows the security to be built into the sys-
tem rather than tacked on during the test-
ing or production phase.

Preliminary Design Review (PDR)
The PDR occurs during the System
Development and Demonstration Phase,
after Milestone B3. Figure 4 shows an
excerpt from the list of the SA activities to
be completed prior to the PDR.

The first bullet of Figure 4 lists the
identification of critical components and
examination of those components for
weaknesses and vulnerabilities. Critical
components may be managed through
techniques such as graceful degradation,
isolation, modularity, diversity, single-
point-of-failure reduction/multipathing,
and the use of interchange standards to
reduce the number, size, and impact of
critical elements. Many of these approach-
es become cost-prohibitive if the weak-

ness and vulnerability analysis is delayed
until late-stage testing and production.
These activities tie into IA through its
control for vulnerability management,
known as VIVM-1.

Critical Design Review (CDR)
The CDR occurs during the System
Development and Demonstration Phase.
Figure 5 shows an excerpt from the list of
the SA activities to be completed prior to
the CDR.

The first bullet in Figure 5 indicates
that prior to the CDR the system require-
ments, the functional baseline, and the
allocated baseline need to be updated to
incorporate the claims, arguments, scenar-
ios, and any design changes as a result of
the assurance case analysis. The fourth
main bullet indicates the need to define
and select assurance-specific static analysis
and criteria for examination during peer
reviews (performed during implementa-
tion). These are key activities needed to

Figure 4: PDR Excerpt

Figure 5: CDR Excerpt

To successfully complete the PDR, ensure the following SA items were satisfactorily
completed:
• Use the architecture and preliminary design information (as available) to identify

critical components. Identify weaknesses and their associated potential vulnera-
bilities. Note that a weak architecture can result in a systemic weakness, which can
in turn lead to many vulnerabilities. Thus, a rigorous review of the architecture
may be required prior to release to design phase. Refine and document a baseline
of attack scenarios of the identified threats and assets (see Information
Assurance [IA] control: VIVM-1).

• Development of specific instances of SA scenarios, at least for the critical SA
requirements, to verify that the system will counter the attack.

• Architecture and preliminary system design includes IA accreditation require-
ments in its relationship to all hosting enclaves and impact analysis is completed
for the architecture. Develop a list of all hosting enclaves as a baseline for track-
ing purposes as the system moves into the detailed design phase (see IA controls:
DCII-1, DCID-1).
° Ensure that the architecture and preliminary system design of mobile code

usage is evaluated for acceptable risk, avoiding high risk as defined by DoD
requirements (see IA control: DCMC-1 [Mobile Code]).

° Exclude binary or machine executable public domain software products with
no warranty and no source code (see IA control: DCPD-1).

To successfully complete the CDR review, ensure the following SA items were satis-
factorily completed:
• Update the system requirements, the functional baselines, and the allocated base-

line to incorporate the claims, arguments, and scenarios.
• Capture assurance designs in the associated configuration item build-to docu-

mentation as part of the system’s Product Baseline. The system’s configuration
item verification planning should be updated and included in the Product
Baseline.

• Update the SA case based on the design, new weaknesses, vulnerabilities identi-
fied, and the preceding analysis.
° For each SA claim, define the detailed argument(s) to be used to justify the

claim, identify the expected evidence (type and expected measure) that will
support the argument, and how that evidence will be acquired (including what
verification data must be created to acquire that evidence).

° After CDR, the assurance case’s claims and argument structure are baselined,
some evidence is already available, and the methods for acquiring the remain-
ing evidence have been defined.

• Define and select assurance-specific static analysis and assurance-specific criteria
to be examined during peer reviews, to be performed during implementation.
° Plan for training for assurance-unique static analysis tools and peer reviews.
° Ensure that another party (such as a peer) will independently perform static

analysis and test, and that the element being reviewed will be the element that
will be delivered. This counteracts the risk of a developer intentionally sub-
verting analysis and test, as well as aiding against unintentional errors.

Systems Assurance: Preparation and Promise

10 CROSSTALK The Journal of Defense Software Engineering March/April 2010

ensure the software being developed. Also
at this point, the design must meet IA
accreditation requirements, including:

• Developing a list of hosting enclaves.
• Evaluating mobile code usage.
• Excluding binary and machine-exe-

cutable public domain software prod-
ucts with no warranty and no source
code.

Production Readiness Review (PRR)
The PRR examines whether the system is
ready for production. From an SA stand-
point, the test results are examined to
ensure that all of the system require-
ments have been met. This entails look-
ing at test results that substantiate the
claims in the assurance case. Figure 6
shows an excerpt from the list of the SA
activities to be completed prior to the
PRR.

The first bullet discusses the need to
incorporate test results for weaknesses
into the assurance case as evidence. The
weaknesses and vulnerabilities need to be
baselined and documented appropriately
in accordance with the applicable IA con-
trol. The extent to which SA work was
performed during the early stages is
apparent during the verification of the test
results tied to each of the requirements;
early emphasis greatly simplifies the verifi-
cation.

Conclusion
The Guidebook is intended to help allevi-
ate problems by increasing awareness of
SA issues, encouraging these issues to be
addressed early in the development life

About the Authors

Terence E. Devine,
Ph.D., is a software engi-
neer with MITRE. He has
more than 35 years of
experience in software
design and development.

Devine is a principal author of the NDIA’s
“Engineering for System Assurance”
Guidebook. He has a doctorate in comput-
er science from UCLA.

The MITRE Corporation
260 Industrial Way West
Eatontown, NJ 07724
Phone: (732) 578-6339
Fax: (732) 578-6014
E-mail: tdevine@mitre.org

Paul Popick is the asso-
ciate director of software
systems engineering with
the Aerospace Corpora-
tion. He has more than 35
years of experience in

project management and systems engi-
neering management. Popick is a princi-
pal author of the NDIA’s “Engineering
for System Assurance” Guidebook. Prior
to joining the Aerospace Corporation, he
was director of delivery excellence for a
unit of IBM Global Services.

Aerospace Corporation
15049 Conference Center DR
MS CH3-320
Chantilly,VA 20151
Phone: (571) 307-3701
Fax: (571) 307-1833
E-mail: Paul.R.Popick@aero.org

Rama Moorthy, CEO
of Hatha Systems, has
more than 20 years of
experience in the high-
tech industry, building
and delivering products,

services, and strategies—both in the
commercial and government sectors. In
addition to her role as CEO, she sup-
ports the DoD’s Globalization Task
Force on software assurance and supply
chain risk management. Moorthy is a
principal author of the NDIA’s
“Engineering for System Assurance”
Guidebook. She has a bachelor’s degree
in electrical engineering and an MBA
(marketing and finance).

Hatha Systems
1101 Pennsylvania AVE, NW
STE 600
Washington, D.C. 20004
Phone: (202) 756-2974
E-mail: Rama.Moorthy@

hathasystems.com

Figure 6: PRR Excerpt

To successfully complete the PRR review, ensure the following SA items were satis-
factorily completed:
• Incorporation of the results of system test for weaknesses and their associated

vulnerabilities into the assurance case. Verification that the system weaknesses
and vulnerabilities have been baselined and appropriately documented (see IA
control: VIVM-1).

• Verification that the developed system uses comprehensive test procedures to test
any and all patches and upgrades required throughout its life cycle (see IA con-
trol: DCCT-1).

• Incorporation of the results of any testing, using industry tools and test cases, for
any binary or machine-executable public domain software products with no war-
ranty and no source code being used in the system (see IA control: DCPD-1).

• Evaluation of the relevant test results to obtain the evidence required to build the
assurance case from the following list of defensive functions of a system as well
as assurance mechanisms that address security, partitioning, access, and traceabil-
ity mechanisms:
° Evaluation of the protection mechanisms with each external interface and

associated security requirements using test results as well as other evidence
(see IA control: DCFA-1).

° Evaluation of the adequacy of security best practices of such functions as
identification/authentication (individual and group) using DoD PKI, logon
including single sign-on, PKE, key management, smart card, and biometrics
(see IA controls: as per DoDI 8500.2, DCBP-1, IATS-2, IAAC-1, IAGA-1,
IAIA-2, IAKM-3, ECLO-2, ECPA-1).

° Reverification that user interface services are logically or physically separated
from data storage and management services. This is particularly important in
high assurance systems (see IA control: DCPA-1).

A DoD-Oriented Introduction to the NDIA’s System Assurance Guidebook

March/April 2010 www.stsc.hill.af.mil 11

cycle, and providing pointers to available
resources. The Guidebook shows how SA
can be implemented in the existing envi-
ronment and life cycle. It does not repre-
sent original research, but rather a survey
of existing work.

The plan is to update the Guidebook
to reflect and incorporate feedback
received from the programs that use it,
December 2008 changes to [5], and new
techniques as they emerge. The expecta-
tion is that this article will encourage pro-
grams to use the Guidebook and to
address SA issues early in the life cycle.u

Acknowledgements
The authors would like to thank the fol-
lowing:
• The NDIA SA Committee Chairs:

Kristen Baldwin, Office of the Under
Secretary of Defense (Acquisition,
Technology, and Logistics); Mitch
Komaroff, Office of the Assistant
Secretary of Defense (Network and
Information Integration); Paul Croll,
Computer Sciences Corporation.

• The other principal authors of the
Guidebook: David Wheeler, Marie
Stanley Collins, Murray Donaldson,
and John Miller.

• Arch McKinlay, who wrote the original
draft Guidebook’s Assurance Case sec-
tion, which is quoted extensively in
this article.

References
1. NDIA – Systems Assurance Commit-

tee. Engineering for System Assurance. Oct.
2008 <www.acq.osd.mil/sse/docs/
SA-Guidebook-v1-Oct2008.pdf>.

2. ISO/IEC. Systems and Software Engi-
neering – System Life Cycle Processes. Inter-
national Standard 15288-2008. 1 Feb.
2008.

3. ISO/IEC. Systems and Software Engi-
neering – Systems and Software Assurance.
International Standard 15026. Draft.

4. DoD. The Defense Acquisition System.
Directive 5000.1. 2003.

5. DoD. Operation of the Defense Acquisition
System. Directive 5000.2. 12 May 2003.

6. Defense Acquisition University. Defense
Acquisition Guidebook. 12 Dec. 2004.

Notes
1. The Introduction and Assurance Case

sections of this article are excerpted
from [1].

2. The Guidebook is written the 2003
release of 5000.2 [5]; although the cur-
rent release (2008) has changed the
phases, the Guidebook 5A instruc-
tions for the systems engineering tech-

nical review criteria remain applicable.
3. The 2008 release of DoD Instruction

5000.2 now has the PDR prior to
Milestone B.

Additional Resources
1. DoD. Information Assurance. Directive

8500.01E. 23 Apr. 2007 <www.dtic.
mil/whs/directives/corres/pdf/850
001p.pdf>.

2. DoD. Acquisition Systems Protection
Program. Directive 5200.1-M. Mar.
1994 <www.dtic.mil/whs/directives/
corres/pdf/520001m.pdf>.

3. DoD. National Industrial Security
Program. Directive 5220.22. 1 Dec.
2006 <www.dtic.mil/whs/directives/
corres/pdf/522022p.pdf>.

4. DoD. Defense Intelligence Agency. Direc-
tive 5105.21. 18 Mar. 2008 <www.dtic.
mil/whs/directives/corres/pdf/510
521p.pdf>.

5. DoD. Security, Intelligence, and Counter-
intelligence Support to Acquisition Program
Protection. Directive 5200.39. 10 Sept.
1997 <http://fas.org/irp/doddir/dod
/d5200_39.pdf>.

6. DoD. Operation of the Defense Acquisition
System. Instruction 5000.2. 8 Dec. 2008
<www.dtic.mil/whs/directives/corres
/pdf/500002p.pdf>.

7. DoD. Information Assurance Implemen-

tation. Instruction 8500.2 <www.dtic.
mil/whs/directives/corres/pdf/850
002p.pdf>.

8. DoD. DoD Information Assurance
Certification and Accreditation Process.
Instruction 8510.01. 28 Nov. 2007
<www.dtic.mil/whs/directives/cor
res/pdf/851001p.pdf>.

9. Information Assurance Technology
Analysis Center. DoD Information Assur-
ance and Computer Network Defense Stra-
tegies: A Comprehensive Review of Common
Needs and Capability Gaps – State-of-the-
Art-Report. 21 July 2005 <http://iac.
dtic.mil/iatac/pdf/gap.pdf>.

10. DHS. Security in the Software Lifecycle:
Making Software Development Processes—
and the Software Produced by Them—More
Secure. Draft 1.2. Aug. 2006 <www.
sis.uncc.edu/~seoklee/teaching/Pa
pers/SwA%20Security%20in%20the
%20Software%20Lifcycle%20v1.2%
20-%20091306.pdf>.

11. Redwine, Samuel T., Jr., Ed. Software
Assurance: A Curriculum Guide to the
Common Body of Knowledge to Produce,
Acquire, and Sustain Secure Software. Ver-
sion 1.2. U.S. Department of Home-
land Security. Oct. 2007 <https://
buildsecurityin.us-cert.gov/daisy/bsi/
resources/dhs/927-BSI.html>.

12 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Current systems assurance testing tends
to focus on functional and perfor-

mance testing and often postpones securi-
ty assessments until the end of the project
life cycle—or after deployment or release.
In our view, this shortcoming can be par-
tially explained by the large cost and tech-
nical difficulty of formal security testing
(e.g., during certification and accredita-
tion), and the lack of standardized non-
binary security metrics. For example, the
testing guide of the Open Web
Application Security Project (OWASP) [1]
contains more than 340 pages on good
security testing procedures but provides
little guidance in selecting which tests to
perform for a given application.

In this article, we present a flexible
process for assessing evolving prototype
systems with respect to security and sur-
vivability. Also discussed is how our
approach enables assessments of confi-

dentiality, integrity, and availability (CIA, a
concept detailed in the sidebar) through-
out the project life cycle by tailoring the
testing to a specific evaluation scope in
terms of depth and coverage. This
process has enabled us to conduct securi-
ty evaluations early in project life cycles
and focus architecture and design efforts
on addressing the shortcomings identified
through repeated tests.

To show the testing methodology in
action, this article provides details on a set
of specific open-source and freely avail-
able tools we have found useful in our
evaluations. The focus of this article is not
on comparing different tools and their
capabilities, but rather on showing,
through insight from our test attacks, what
vulnerabilities can be identified and how
these tools can be reused across evalua-
tions of different systems.

Finally, we report on the most recent

assessment of an information manage-
ment system (IMS), implementing a pub-
lish, subscribe, and query (PSQ) capability.

After giving a brief testing methodolo-
gy overview, this article will detail static
code analysis and memory profiling tools
used in capturing a broad set of coding
mistakes, present significant hands-on
technical knowledge that can be used to
study risk exposure CIA loss, and propose
the next steps in both improving surviv-
ability assessments and mitigating vulnera-
bilities.

Survivability Assessment
Methodology
Continuous test and evaluation of securi-
ty attributes of systems is an important
part of testing as it allows software devel-
opers to identify and address vulnerabili-
ties as part of the system architecture and
design. This article describes a repeatable
survivability testing methodology that
optimizes the set of tests to execute given
limited budget constraints and can run as
part of continuous build processes. Figure
1 displays the main threads of our testing
methodology as boxes.

First, we utilized existing tools for stat-
ic code analysis and memory profiling. These
tools provide excellent coverage at mini-
mal cost but only support validation
against a set of specialized known prob-
lems. Next, we performed a series of
stress tests that simulated conditions
found in operational environments, which
tend to be less controllable than lab envi-
ronments. Tests in this category focused
on studying the impact of a large number
of clients and large size information
objects on critical server functionality.
These tests were narrower in scope than
static code checks and memory profiling,
symbolized by the “Stress Testing” box in
Figure 1. Finally, we developed a set of
direct attacks against the system with dif-
ferent attacker privileges, ranging from
attacks launched with only network layer

Meaningful and Flexible Survivability Assessments:
Approach and Practice©

With the increase of IT assets and attacks against them—along with increased attention to, and concern for, cybersecurity
and the survivability of systems—systems assurance assessment has become more important than ever. This article describes
a flexible process for assessing systems with respect to security and survivability. We discuss how our approach enables assess-
ments throughout the project life cycle by tailoring the testing to a specific evaluation scope in terms of depth and coverage.

Michael Atighetchi and Dr. Joseph Loyall
Raytheon BBN Technologies

Static Code Analysis

Memory Profiling

Stress Testing

Direct Attacks

Network Database

Crash Flood Corrupt

Tested
System

CPU Network Disk IO

Generic

Depth

Specific

Narrow Coverage Broad

Figure 1: The Survivability Evaluation Process

© 2010 Michael Atighetchi and Dr. Joseph Loyall. All rights
reserved.

Meaningful and Flexible Survivability Assessments: Approach and Practice

March/April 2010 www.stsc.hill.af.mil 13

access to attacks that assumed corrupted
clients. These attacks focused on exploit-
ing specific vulnerabilities, therefore pro-
viding the least amount of coverage but
the most amount of depth. Figure 1 visu-
alizes our approach of subjecting the
whole system to a set of low-cost generic
checks to maximize coverage while per-
forming a more in-depth analysis on care-
fully selected parts of the system. As the
figure indicates, the methodology enables
a flexible amount of testing from specific
(i.e., to the requirements of the tested pro-
gram) to generic (i.e., testing that could be
applied to any program) and from narrow
to broad coverage of the tested system.
The depth and coverage of the testing can
be chosen to enable the best testing possi-
ble in given time and budget constraints.

Static Code Analysis and
Memory Profiling
The purpose of static code analysis is to
automatically flag common coding errors
that leave the system vulnerable to
exploits. A large number of code analysis
algorithms and tools for finding security
vulnerabilities exist, including both com-
mercial- and research-grade tools, with dif-
ferent trade-offs for cost and effectiveness.

We utilized several analysis tools as
part of our research efforts (as described
in the following text). We did not conduct
a comprehensive comparison of the avail-
able analysis tools, but instead selected a
representative set that provided useful
analysis. There are alternatives to the par-
ticular tools that we selected, although the
amount of coverage and analysis differs
between tools. Furthermore, we concen-
trated on tools that analyze programs writ-
ten in Java and C++. Arguably, these are
the most common languages in use today
and are the languages in which the systems
that we tested were written. We believe the
concepts and process that we put forward
are valid for any language (although the set
of available tools will certainly vary and
the tools for languages other than Java and
C++ might be less readily available).

FindBugs [2] was the most useful tool
for us when analyzing Java code. FindBugs
uses static analysis to inspect Java byte
code for occurrences of bug patterns
without the need to execute the program.
For analyzing C++ code, we used
FlawFinder [3] and RATS [4] open-source
tools. FlawFinder is a program that exam-
ines source code and reports possible
security weaknesses (flaws) sorted by risk
level. It is useful for quickly finding and
removing some potential security prob-
lems before a program is released. RATS

is a tool for scanning C, C++, Perl, PHP,
and Python source code, and for flagging
common security-related programming
errors such as buffer overflows and time-
of-check-to-time-of-use race conditions.

In order to detect memory leaks
(which can adversely affect availability)
and memory corruption (which can be
exploited to escalate privilege through
buffer overflow attacks), this phase of the
testing process runs a system through a set
of memory profiling tools that keep track
of dynamic memory allocations and per-
form analysis to detect errors during oper-
ation.

For C++ programs, we successfully
used Valgrind [5], Mudflap [6], and mpa-
trol [7]. This set was selected to maximize
coverage and mitigate errors introduced by
individual tools. For Java programs, the

scope of memory profiling is not to direct-
ly detect bad memory conditions (since
Java avoids memory corruption and leak
issues through garbage collection), but to
provide useful debugging functionality in
cases where Java runs out of memory.

Stress Testing
The goal of stress testing is to assess sys-
tem functionality under application-level
boundary conditions, such as high load
scenarios with large information objects,
large numbers of clients, and high rates of
client requests.

Large MIOs
During the IMS assessment, we studied
whether a single client can affect the avail-
ability of the IMS server by publishing a
few very large managed information

Database
Server

(JBOSS)

Admin

PSQ

Security R
M

I
R

e
g

is
tr

y

[8]
[6]

TCP IP Stack[2]

TCP Socket

[9]

Attack
JVM

Attack Host Client Host

[7] [5] [4] [3]

[1]
PSQ Activity

Client
JVM

[1] Network Sniffing:
Break confidentiality.

[2] TCP Connection Flooding:
Deny service to legitimate
clients.

[3] Serialization Attacks:
Take control over JVM.

[4] MBean Backdoors:
Get unauthorized access to
critical services.

[5] Password Cracking:
Determine passwords through
brute-force trial and error.

[6] Malformed XML:
Crash PSQ logic.

[7] SQL Injection:
Circumvent authentication
and cause loss of confidentiality
and integrity.

[8] XPath/XQuery Injection:
Cause loss of confidentiality
and integrity.

[9] Simulated Node Failures:
Test liveliness monitoring.

Figure 2: Progression of Direct Attacks that Compromise CIA

Confidentiality (C) is the assurance that information is not disclosed to unau-
thorized individuals, programs, or processes. For example, a credit card transaction
on the Internet requires the credit card number to be transmitted from the buyer
to the merchant and from the merchant to a transaction processing network. The
system attempts to enforce confidentiality by encrypting the card number during
transmission, by limiting the places where it might appear (e.g., in databases, back-
ups, or printed receipts), and by restricting access to the places where it is stored.
If an unauthorized party obtains the card number in any way, a breach of confi-
dentiality has occurred.
Integrity (I) is the assurance that information is not altered in an unauthorized
fashion. For example, integrity is violated when an employee deletes important
data files, when a computer virus infects a computer, or when an employee is able
to modify his own salary in a payroll database.
Availability (A) is the assurance that information, systems, and resources are avail-
able to users in a timely manner so productivity will not be affected.

The CIA Triad

Systems Assurance: Preparation and Promise

14 CROSSTALK The Journal of Defense Software Engineering March/April 2010

objects (MIOs)1. To study the impact of
MIO size, we modified an existing test
client to publish MIOs with various
metadata and payload sizes. The goal of
this test was to identify the boundary
point at which MIOs get rejected by the
server due to their size. For scenarios
with no active subscriptions, a client pub-
lishing an MIO with a combined payload
size of 28MB (payload = 14MB and
metadata = 14MB) caused exceptions in
the core IMS and sometimes on the client
side, leading to loss of the MIO. This was
well below the maximum Java Virtual
Machine (JVM) memory limits of
1024MB on both the client and server
side and represented an inadvertent inter-
nal size limit that could be exploited by
rogue clients. In a follow-on experiment,
we studied the impact of the number of
active subscriptions on the maximum
accepted MIO size. One active subscrip-
tion reduced the maximum MIO size to
5.8MB, while only MIOs with less than
2MB could be delivered to two sub-
scribers. The expected cause was prolific
copy operations on the metadata strings
during subscription predicate matching.
The IMS code has been tested with large
payloads but never with MIOs with large
metadata based on an undocumented
assumption that metadata is usually small
compared to payloads. While this
assumption may hold in practice during
normal use, it is the type of assumption
likely to be exploited by a determined
adversary. The solution to this problem is
to refactor the code to avoid duplication
of byte arrays.

Large Number of Clients
Another stress test focused on evaluating
the impact of a large number of concur-
rent clients on IMS server availability. For
that purpose, we simply started multiple
publishing clients on the same client host.
Out of memory exceptions occurred in
the core IMS after registering 36 clients,
resulting in a denial of service to all
clients. In addition to identifying a point
of optimization to increase the number of
clients supported, this test also pointed

out a survivability and security need. Since
there is always going to be an upper limit
to the number of clients that can be prop-
erly supported by a single server, there
should be code in the server that checks
the number of clients and refuses new
clients when the limit is reached.

Direct Attacks
Adversaries typically don’t start from
scratch when attacking applications and
can leverage a large collection of openly
available tools to construct customized
multi-step attacks targeting critical appli-
cation functionality. Figure 2 (see previous
page) displays a progression of attacks

(with an increasing level of privilege) that
an adversary might follow to compromise
CIA. This attack sequence crosses multi-
ple system and protection boundaries, as is
common during sophisticated attacks. The
following subsections describe each attack
in more detail, describe observations
made during test attacks, and provide sug-
gestions on mitigation strategies.

Network Sniffing
Description: Attackers use sniffing to
find out information about the system (for
attack purposes) and to steal sensitive
information.
Risk: Loss of confidentiality and integri-
ty.

Example: Wireshark [8] was used to cap-
ture the raw content of packets sent out
by a publishing client to the IMS core.
Although the IMS uses Transport Layer
Security (TLS) [9] for encrypting data on
the network and preventing sniffing
attacks, it was noticed that TLS was only
used for initial authentication and connec-
tion establishment between clients and the
server. Published MIOs went over a sepa-
rate Transmission Control Protocol (TCP)
connection that did not provide TLS pro-
tection. As a result, the IMS was vulnera-
ble to a loss of confidentiality via standard
network sniffing. Furthermore, attackers
could cause integrity violations by
exchanging MIO payloads (e.g., swapping
out targets in a target nomination list).
Traffic was also vulnerable to replay
attacks, which are a special form of data
corruption where the data content isn’t
changed but corruption is still introduced
by republishing MIOs.
Mitigation: The solution to these vulner-
abilities is protecting all communication
between clients and the server via TLS,
and devising automated tests that classify
all observed traffic.

TCP Connection Flooding
Description: The main idea of the TCP
connection flood is to initiate and estab-
lish a large number of TCP connections
from an infiltrated client to a listening
socket. Since servers typically set aside
memory and process resources for new
connections, a large number of connec-
tions can create memory exhaustion in
which further connections from legitimate
clients will be dropped. The top of Figure
3 shows the normal three-way handshake
during TCP connection establishment. A
client initiates the connection via a syn-
chronize (SYN) packet, which gets
answered by the server with a
SYN/Acknowledge (ACK) packet. Upon
receiving the SYN/ACK packet, the client
replies with another ACK packet, which
establishes the TCP connection.

TCP connection floods are different
from SYN floods, in which the client sim-
ply goes on to send out a large number of
SYN packets originating either from the
same client IP address or multiple (spoofed)
client IP addresses without completing the
three-way handshake. Each SYN packet
needs to get processed by the server’s TCP
IP stack; such a situation can cause mem-
ory and CPU exhaustion in the server’s
TCP IP stack. Modern operating systems
deal with SYN floods effectively using
SYN cookies [10].

Figure 3 displays the sequence of
events during a TCP connection flooding

Figure 3: TCP Connection Flooding Attack Figure 4: Java Serialization Attack

“Adversaries ... can
leverage a large

collection of openly
available tools to

construct customized
multi-step attacks
targeting critical

application functionality.”

Meaningful and Flexible Survivability Assessments: Approach and Practice

March/April 2010 www.stsc.hill.af.mil 15

attack. Here the client completes the
three-way TCP handshake, but then keeps
creating new connections. A straightfor-
ward version of this attack keeps the
client’s source IP of all connections the
same, whereas more sophisticated ver-
sions can spread to multiple client IPs.
Note, however, that this escalation cannot
simply be achieved through IP address
spoofing, since the client needs to get the
server’s SYN/ACK packet routed to it in
order to proceed. Since each established
connection generally causes application
resources to be used (e.g., threads and
associated memory structures), a large
number of connections can cause applica-
tions to run out of memory, causing legit-
imate clients to fail.
Risk: Loss of availability.
Example: In an experiment to assess the
IMS software’s vulnerabilities to TCP con-
nection floods, we used an attack client
that established and held 1,200 TCP con-
nections, and studied the effect of point-
ing this client to each of 15 listening ports
in separate runs. The results were interest-
ing. The maximum number of established
connections varied across ports (from 60
to 753) as did attack effects. This included:
• A loss of publish functionality.
• A loss of administration functionality.
• A loss of system access on the node

running the IMS server process due to
maximum file handle limits.

• Denial-of-service through disk ex-
hausting via large log files.

• No log generation for floods on cer-
tain ports, enabling attackers to exe-
cute stealthy attacks that are hard to
diagnose.

Mitigation: A threshold scheme taking
into account the source IP of the connec-
tion together with past connection history
makes execution of this attack significant-
ly harder. In addition, code to limit the
rate of outgoing TCP connections from
legitimate clients helps prevent such con-
ditions in the case of accidental applica-
tion programming interface misuse in
client programs. Furthermore, ports that
only require local access (e.g., 5400)
should be bound to 127.0.0.1 instead of
0.0.0.0 to prevent remote execution of
connection flooding attacks. Finally, all
code should be augmented with proper
exception handling to generate a small
number of succinct exceptions in flooding
conditions.

Serialization Attacks
Description: This attack exploits known
type safety issues Java programs encounter
during deserialization. Creating and send-
ing a special serialized Java object to a

remote method invocation (RMI) server
port (as shown in Figure 4) allows attack-
ers to remotely exploit JVM bugs and
cause client-initiated execution of arbi-
trary code.
Risk: Loss of CIA.
Example: Let’s consider the following
server code snippet used for reading
objects off the network, as described in
[11]:

mySocket = new ServerSocket(3000);
while (true) {
Socket client = mySocket.accept();
ReceiveRequest dtwt = new Receive

Request (client);
}
class Request implements Serializable { }
class ReceiveRequest extends Thread{

Socket clientSocket = null ;
ObjectInputStream ois = null;
ReceiveRequest (Socket theClient)

throws Exception {
clientSocket = theClient;
// get the Streams
ois = new

ObjectInputStream(clientSocket.
get InputStream());
}

public void run() {
try {

Request ac = (Request)
t=2

ois.readObject(); }
t=1

catch (Exception e)
{ System.out.println(e) ; }

// ...
}

}

Note how the server first reads in the
Object (t=1) and then performs the cast to
the expected Request type (t=2). The gen-
erated byte code shows the following exe-
cution sequence:

public void run();
Code:
0: aload_0

t=1 1: getfield #3; //Field
ois:Ljava/io/Object
InputStream;

4: invokevirtual #7; //Method
java/io/ObjectInputStream.
readObject:()
Ljava/lang/Object;

t=2 7: checkcast #8; //class Request
10: astore_1
11: goto 22
14: astore_1
…

The sequence of events is as follows:
• t=0 client sends byte stream (serialized
object data) via ObjectInputStream.
• t=1 Server branches into the

readObject method of the class
according to the result returned by
getfield.

• t=2 server casts the object to the need-
ed type.
o Cast is valid: continue work.
o Cast is invalid: throw ClassCast

Exception.
Between t=0 and t=2, there is no type

safety. The client gets to decide (at t=0)
which code the server branches into (at
t=1). This opens up an attack path in con-
junction with an existing vulnerability of a
readObject method on any class that is on
the server’s load path. First, attackers can
find some vulnerable class definitions on
the server (especially in a readObject
method, any serializable class will do).
Next, they can construct an object accord-
ing to this class definition and finally
embed the malicious object in the
ObjectInputStream payload of the Java 2
Platform Enterprise Edition (J2EE) pro-
tocol (RMI, RMI/Internet Inter-Orb
Protocol, Java Naming and Directory
Interface [JNDI], and so forth).
Serialization attacks have been used fre-
quently in the past: see [11] for regular
expression exploits and [12] for exploiting
hash table collisions.
Mitigation: Our suggestions to prevent
serialization vulnerabilities involve careful
review and minimization of loadable
classes on the server’s classpath. In addi-

Figure 5: Direct Calls on MBeans Without Authentication

Systems Assurance: Preparation and Promise

16 CROSSTALK The Journal of Defense Software Engineering March/April 2010

tion, a crumple zone—a layer of proxy
components that anyone seeking service
must go through—can be deployed to
perform the deserialization of all objects
entering the core. Augmenting proxies
with proper monitoring and restart capa-
bilities, and introducing diversity through
different JVM implementations and pro-
gramming languages, will help reduce the
dangers of this attack type.

MBean Backdoors
Description: This attack attaches a
remote client to the managed beans
(MBeans) available—via Java Management
Extensions inside of a J2EE server—and
makes dynamic calls into the server with-
out the need for authentication. As shown
in Figure 5 (see previous page), clients can
make direct calls on MBeans handled by a
JBoss Application Server (AS) by simply
performing a lookup, creating an
RMIAdaptor connection, and making RMI
calls.
Risk: Loss of CIA.
Example: In the IMS code, clients could
directly connect to the MBeans via
jmx/invoker/RMIAdaptor and make calls
through the MBeanServerConnection
without needing to authenticate. This
would enable calls that could remove all
repositories, inject a man-in-the-middle
master repository (loss of confidentiality),
and change security policies (loss of
integrity), for example. No logging is per-
formed during these remote calls, which
makes this attack very stealthy.
Mitigation: To prevent this attack, one
needs to harden access to 127.0.0.1:
8080/invoker/JNDIFactory and lookup of
jvm/invoker/RMIAdaptor. Using TLS and
binding, the listening socket to 127.0.0.1
only will make access by unauthorized
clients more difficult. In addition, tighter

integration of the socket listener on port
8080 with security handling code helps
prevent this attack.

Password Cracking
Description: This attack guesses correct
passwords through repetitive trials of
passwords retrieved from common attack
dictionaries. Once the valid administrator
password has been determined, the adver-
sary can simply log in as the administrator
and perform all actions normally granted
to administrators, including deletion of
critical MIOs and removal of users.
Risk: Loss of CIA.
Example: The prototype IMS code was
susceptible to brute force password
attacks because it allowed attack scripts to
try an unlimited number of password
combinations without impacting account
status. No log events occurred in the
JBoss AS console when authentication
failed, making the attack difficult to detect.
Mitigation: An effective approach to
counter-password attacks is to establish a
cutoff scheme in which accounts are
locked down after a specific number of
failed login attempts. In addition, failed
login attempts should be logged to a man-
agement station.

Malformed XML
Description: These attacks attempt to
deny service to legitimate clients by taking
over a single client and publishing mal-
formed XML input data with the intent to
crash the server.
Risk: Loss of availability.
Example: We tested the vulnerability of
the prototype IMS to this kind of attack
by modifying the client to publish MIOs
with improperly formatted metadata.
XML validation properly caught and han-
dled the bad content. Next, we tried

uploading a malformed schema and
observed the following issues:
• Schemas were properly validated, but

validation exceptions cause ClassNot-
FoundExceptions.

• Schemas that don’t start with <?xml
version passed validation but caused
errors during publication.

• Schemas with duplicate xsd:schema
lines passed validation but cause Null
Pointer Exceptions in the Berkeley DB
XML backend, and cause Web console
access to the Interoperable Object
Reference to fail.
These issues are easy to fix but are

indicative of the bugs that can creep in,
even when XML content is validated
through schemas but the schema itself is
not.
Mitigation: The use of restrictive XML
schemas and validation of all XML input
against them goes a long way in addressing
this vulnerability.

SQL Injection
Description: SQL injection is a technique
that exploits a security vulnerability occur-
ring in the database layer of an applica-
tion. The vulnerability is present when
user input is either incorrectly filtered for
string literal escape characters embedded
in SQL statements or user input is not
strongly typed and, thereby, unexpectedly
executed. It is (in fact) an instance of a
more general class of vulnerabilities that
can occur whenever one programming or
scripting language is embedded inside
another.
Risk: Loss of CIA.
Example: Figure 6 displays the normal
flow of data from a client via a server to
the backend SQL DB. If the data sent by
the client is not filtered before reaching
the SQL DB, the client can execute arbi-
trary commands on it.

Figure 7 depicts one such example that
was used by attackers during the 2005
OASIS Dem/Val red team exercise [13].
The attack locked up servers by inserting a
BENCHMARK command, which would
cause the SQL DB to use 100 percent of
the available CPUs. The BENCHMARK
command causes MySQL (a relational
database management system) to run
through an extensive set of mathematical-
ly expensive computations, pre-empting
useful computation for hours.

Our testing indicated that the proto-
type IMS code was not vulnerable to SQL
injection attacks.
Mitigation: To prevent SQL injection
attacks, user interfaces should be designed
to be as restrictive as possible (e.g., a selec-
tion menu instead of free text entry, and

Figure 6: Data Propagation to SQL Databases (SQL DBs)

Figure 7: Example SQL Injection Attack

Meaningful and Flexible Survivability Assessments: Approach and Practice

March/April 2010 www.stsc.hill.af.mil 17

all user input should be checked for
embedded SQL commands).

XPath/XQuery Injection
Description: This attack attempts to gain
the same effects described in the SQL
injection attack by providing specially
crafted query predicates.
Risk: Loss of CIA.
Example: The following code fragment
shows an example in which the client
explicitly specifies parts of the XQuery
that usually gets implicitly generated and
executed by the IMS server:

connection.createQuerySequence
(“mil.af.rl.oim.training.xmlx-

path”, “1.0”);
String xmlxpathPredicate =
Utils.createPredicate
(“TestPredicate”, “XQuery”,
“for $a in

collection(\”SCHEMA_422547673.dbxml\”)
/child::sys:Metadata
where ($a//ATO/type = \”ATO\”)

returndbxml:metadata(\”dbxml:name\”,
$a)”);

XPath injection attacks proved partial-
ly effective against the prototype IMS,
partly because it dynamically constructed
and executed XQuery statements from
XPath input. Custom XQuery predicates
allow a small amount of information exfil-
tration. For instance, an attack client could
probe through repeated queries to deter-
mine whether air task orders (ATOs) were
available with certain metadata fields,
although the client could not actually
retrieve the ATO payload. In addition, the
IMS, which explicitly prohibited full
XQuery predicates because of their ability
to modify the database, included a backdoor
through which full XQuery commands
could be sent to the database. This only
presented a vulnerability if the backdoor
code persisted through releases of the
code. In addition to vulnerabilities to the
IMS database, XQuery is a powerful lan-
guage, allowing (in principle) direct calls
into the JVM through external functions.
This would allow an attacker, for instance,
to call System.exit(-1) through a specially
crafted query. The prototype IMS did not
exhibit this vulnerability because it used an
earlier version of XQuery that did not
support embedded Java functions.
Mitigation: To prevent XQuery exploits,
all user input should be checked for dan-
gerous XQuery commands, such as
delete, update, and references to external
functions.

Simulated Node Failures
Description: A common survivability
experiment involves studying the impact
of crashes of one component on other
components. However, it can be difficult
to devise an attack that is so precise that it
crashes only the targeted component.
Therefore, this attack uses fault injection
techniques to simply cause the desired
fault (e.g., by manually stopping a compo-
nent).
Risk: Sustained loss of availability.
Example: We injected crash faults in the
IMS database (Berkeley DB XML) by
sending the database a kill -9 signal. The
IMS did not contain a monitoring proto-
col to test the liveliness of processes. An
accidental crash of the Berkeley DB XML
process led to situations in which the IMS
server was unavailable, and the situation
was noticed only when critical operations
started failing.
Mitigation: A secure, heartbeat-based
monitor that provides low failure detec-
tion latencies and is resistant to spoofing
attacks. The monitor can reduce the

impact and speed the recovery from these
attacks.

Results and Summary
Table 1 displays a summary of both stress
tests and direct attacks conducted, their
results, and their effects on CIA.

In summary, nine of the 11 tests were
successful in achieving attack objectives.
Risks to confidentiality were exposed in
five tests, which is a surprisingly high
number given that it is generally much eas-
ier to cause a denial of service than to
exfiltrate data without being detected. The
experiment generated new requirements
for the IMS—both in terms of fixing bugs
and ease-of-use issues as well as in
addressing deeper problems, including a
single point of failure for various compo-
nents, lack of adequate management tools,
and susceptibility to direct attacks

This article presented a flexible
process for evaluating systems early on in
their life cycles for information survivabil-
ity and showed its application during an
assessment of a prototype PSQ informa-
tion management system. This work

Test Result Effect*

Large MIOs Out of memory errors with IOs over md = 14MB, pl = 14MB,
0 subscribers md = 5.8MB, pl = 5.8MB,
1 subscriber md = 2MB, pl = 2MB, 2 subscribers.

A

Large Number of
Clients

Out of memory errors after registration of 36 clients. A

Network Sniffing MIOs are sent in the clear. CI

TCP Connection
Flooding

Denial-of-service without generating log entries. A

Serialization Attacks Clients can execute arbitrary code in the JVM without
authentication.

CIA

MBean Backdoors Clients can make anonymous calls on MBeans. CIA

Password Cracking Brute-force password testing at the rate of 100 per second. CI

Malformed User Data Apollo resilient against malformed metadata and schemas. None

SQL Injection Suspicious SQL code turns out to be dead code. None

XQuery Injection Unauthorized access to MIOs and execution of arbitrary code. CIA

Simulated Node
Failures

Absence of monitoring protocol. A

*C = Confidentiality, I = Integrity, A = Availability pl = Payload, md = Metadata

Table 1: IMS Assessment Results

This article describes survivability assessment techniques that will benefit the defense
software community through more flexible design evaluations, more useful assess-
ments, and reduced time in identifying and mitigating vulnerabilities. The in-depth
analysis of the most prevalent cyberattack scenarios will help defense software devel-
opers understand what they may encounter; but, more importantly, the authors pre-
sent first-hand accounts detailing how they solved these problems. The end result is
a significant increase in a system’s overall security.

Software Defense Application

Systems Assurance: Preparation and Promise

18 CROSSTALK The Journal of Defense Software Engineering March/April 2010

builds upon previous and ongoing
research in survivable distributed systems
and addresses the current and future need
to effectively and accurately evaluate sys-
tem guarantees in the presence of sophis-
ticated cyberattacks. We have packaged a
number of reusable attack techniques and
associated tools that can be customized
for new systems with little overhead.

Next Steps
Our future research will continue to build
upon the work presented in this article in
two ways.

First, we plan to extend our assess-
ment approach by adding more techniques
and automating customization and
automation aspects of attack scenarios.
This will further reduce overhead costs for
assessments and increase their frequency
during a project life cycle. We clearly see
the value of establishing a community-
based collaboration platform for surviv-
ability assessments (e.g., those hosted on
<https://www.forge.mil>). As more pro-
jects start using the techniques described
in this article, system survivability require-
ments will need to be taken into account
as systems need to provide different levels
of survivability. More research is needed
to develop a point/scoring system that
evaluates survivability in a systematic and
quantitative way—given the security pos-
ture and criticality of an application.

Second, we plan on investigating solu-
tions to the deeper problems of the exis-
tence of single points of failures and the
lack of adequate management tools. For
future work in service-oriented informa-
tion management systems, we intend to:
1. Extend service-oriented architecture

and design techniques to include secu-
rity and survivability concepts that
facilitate survivable designs.

2. Develop security services, mecha-
nisms, and execution containers for
preserving system CIA in the presence
of cyberattacks.

3. Develop an environment to assess and
evaluate composition patterns, en-
abling customization of tradeoffs
between survivability, performance,
and functionality for specific environ-
ments.u

Acknowledgements
The authors would like to acknowledge
the support and collaboration of the U.S.
Air Force Research Laboratory (AFRL)
Information Directorate and the ITT
Corporation. This work was sponsored by
the AFRL under contract number
SPO700-98-D-4000, Subcontract Num-
ber: 205344 – Modification No. 5.

References
1. OWASP Foundation. OWASP Testing

Guide. Vers. 3.0. 2008 <www.owasp.
org/images/5/56/OWASP_Testing_
Guide_v3.pdf>.

2. The University of Maryland. “Find
Bugs – Find Bugs in Java Programs.”
SourceForge.net. 21 Aug. 2009 <http://
findbugs.sourceforge.net>.

3. Wheeler, David W. “FlawFinder.”
<www.dwheeler.com/flawfinder>.

4. Fortify Software, Inc. “Welcome to
RATS – Rough Auditing Tool For
Security.” 2009 <www.fortifysoftware.
com/security-resources/rats.jsp>.

5. Valgrind Developers. “Valgrind.”
<http://valgrind.org>.

6. GCC, the GNU Compiler Collection
Wiki. “Mudflap Pointer Debugging.”
10 Jan. 2008 <http://gcc.gnu.org/
wiki/Mudflap_Pointer_Debugging>.

7. Roy, Graeme S. “mpatrol.” 16 June
2009 <http://mpatrol.sourceforge.
net>.

8. Wireshark Foundation. “About Wire-
shark.” <www.wireshark.org/about.
html>.

9. Wagner, David, and Bruce Schneier.
Analysis of the SSL 3.0 Protocol. Proc. of
the Second USENIX Workshop on
Electronic Commerce. Oakland: 18-20
Nov. 1996. Paper Revised 15 Apr. 1997

<www.schneier.com/paper-ssl-re
vised.pdf>.

10. Bernstein, D.J. “SYN Cookies.”
<http://cr.yp.to/syncookies.html>.

11. Schönefeld, Marc. Pentesting J2EE.
Proc. of Black Hat Federal 2006. 25
Jan. 2006 <www.blackhat.com/pres
entations/bh-federal-06/BH-Fed-06-
Schoenefeld-up.pdf>.

12. Crosby, Scott A., and Dan S. Wallach.
Denial of Service via Algorithmic Complex-
ity Attacks. Proc. of the 12th USENIX
Security Symposium. Washington,
D.C.: 4-8 Aug. 2003 <www.cs.rice.
edu/~scrosby/hash/CrosbyWallach_
UsenixSec2003.pdf>.

13. Pal, Partha, Franklin Webber, and
Richard Schantz. The DPASA Survi-
vable JBI—A High-Water Mark in
Intrusion-Tolerant Systems. Proc. of the
2nd EuroSys Workshop on Recent
Advances in Intrusion-Tolerant Sys-
tems. Lisbon, Portugal: 23 Mar. 2007
<http://wraits07.di.fc.ul.pt/4. pdf>.

Note
1. A unit of information consisting of

payload (the information) and metada-
ta describing the information and used
for brokering.

About the Authors

Michael Atighetchi is a
scientist at Raytheon
BBN’s Information and
Knowledge Technologies
business unit. His re-
search interests include

cross-domain information sharing, secu-
rity and survivability architectures, and
middleware technologies. Atighetchi has
published more than 35 technical papers
in peer-reviewed journals and for con-
ferences, and is a senior member of the
IEEE. He holds a master’s degree in
computer science from the University of
Massachusetts at Amherst, and a mas-
ter’s degree in IT from the University of
Stuttgart, Germany.

Raytheon BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-1679
E-mail: matighet@bbn.com

Joseph Loyall, Ph.D., is
a principal scientist at
Raytheon BBN Technol-
ogies. He was the princi-
pal investigator for De-
fense Advanced Research

Projects Agency and AFRL research and
development projects in the areas of
information management, distributed
middleware, adaptive applications, and
quality of service. He is the author of
more than 75 published papers; was the
program committee co-chair for the
Distributed Objects and Applications
conference (2002, 2005); and has been
invited speaker at several conferences
and workshops. Loyall has a doctorate in
computer science from the University of
Illinois.

Raytheon BBN Technologies
10 Moulton ST
Cambridge, MA 02138
Phone: (617) 873-4679
E-mail: jloyall@bbn.com

March/April 2010 www.stsc.hill.af.mil 19

Software is ubiquitous. Many of the
products, services, and processes that

organizations use and offer are highly
dependent on software to handle the sen-
sitive and high-value data on which peo-
ple’s privacy, livelihoods, and very lives
depend. National security relies on
increasingly complex, interconnected,
software-intensive information systems—
systems that (in many cases) use the
Internet or Internet-exposed private net-
works as their means for communication
and transporting data.

Dependence on IT makes software
security a key element of business conti-
nuity, disaster recovery, incident response,
and national security. Software vulnerabil-
ities can jeopardize intellectual property,
consumer trust, business operations and
services, and a broad spectrum of critical
applications and infrastructures, including
everything from process control systems
to commercial application products.

The integrity of critical digital assets
(systems, networks, applications, and
information) depends on the reliability
and security of the software that enables
and controls those assets. However, busi-
ness leaders and informed consumers
have growing concerns about the scarcity
of practitioners with requisite competen-
cies to address software security [2]. They
have concerns about suppliers’ capabilities
to build and deliver secure software that
can be used with confidence and without
fear of compromise. Application software
is the primary gateway to sensitive infor-
mation. According to the Deloitte survey
of 169 major global financial institutions,
current application software countermea-
sures are no longer adequate—application
security is the number one issue for chief
information officers [3].

The absence of security discipline in
today’s software development practices
often produces software with exploitable
weaknesses. Security-enhanced processes

and practices—and the skilled people to
manage and perform them—are required
to build software that can be trusted to
operate more securely than the software
being used today.

That being said, there is an economic
counterargument, or at least the percep-
tion of one. Some business leaders and
project managers believe that developing
secure software slows the process and
adds to the cost while not offering any
apparent advantage. In many cases, when

the decision reduces to ship now or be secure
and ship later, ship now is almost always the
choice made by those who control the
money but have no idea of the risks.
Information combating this argument—
showing ways software security has led to
cost and schedule reduction and docu-
mented successful experiences (e.g.,
Microsoft’s Security Development
Lifecycle)—is out there.

The Goal of Software Security
Engineering
Software security engineering is using
practices, processes, tools, and techniques
for addressing issues in every phase of the
software development life cycle (SDLC).
Software that is developed with security in
mind is typically more resistant to both

intentional attack and unintentional fail-
ures. One view of secure software is that
software is engineered “so that it contin-
ues to function correctly under malicious
attack” [4] and is able to recognize, resist,
tolerate, and recover from events that
intentionally threaten its dependability.
Broader views that can overlap with soft-
ware security (e.g., software safety, reliabil-
ity, and fault tolerance) include proper
functioning in the face of unintentional
failures or accidents, inadvertent misuse
and abuse, and software defect and weak-
ness reduction to the greatest extent pos-
sible (regardless of its cause).

The goal of software security engi-
neering is to build better, defect-free soft-
ware. Software-intensive systems that are
constructed using more securely devel-
oped software are better able to:
• Continue operating correctly in the

presence of most attacks by either
resisting the exploitation of weakness-
es in the software or tolerating the fail-
ures that result from such exploits.

• Limit the damage from attack-trig-
gered fault failures that the software
was unable to resist—or tolerate and
recover quickly from those failures.

Software Security Practices
No single practice offers a universal silver
bullet for software security. With this in
mind, “Software Security Engineering”
provides software project managers with
sound practices that they can evaluate and
selectively adopt to help reshape their own
development practices. The objective is to
increase the security and dependability of
the software produced by these practices,
both during its development and its oper-
ation.

The book—and material referenced
on the BSI Web site at <https://build
securityin.us-cert.gov>—identify and
compare potential new practices that can
be adapted to augment a project’s current
software development practices. These
resources also greatly increase the likeli-

A Look at “Software Security Engineering:
A Guide for Project Managers”©

The goal of software security engineering is to build better, defect-free software. The book “Software Security Engineering: A
Guide for Project Managers” [1]1—and its key resource, the Build Security In (BSI) Web site—provide software project
managers with sound practices that they can evaluate and selectively adopt to help reshape their own development practices.
Software developed and assembled using these practices should contain significantly fewer exploitable weaknesses.

Sean Barnum and Dr. Gary McGraw
Cigital, Inc.

Julia H. Allen, Dr. Robert J. Ellison, and Dr. Nancy R. Mead
SEI

© 2010 Carnegie Mellon University, Dr. Gary McGraw, and
Sean Barnum. All rights reserved.

“Security-enhanced
processes and practices
... are required to build

software that can
be trusted to operate
more securely than
the software being

used today.”

Systems Assurance: Preparation and Promise

20 CROSSTALK The Journal of Defense Software Engineering March/April 2010

hood of producing more secure software
and meeting specified security require-
ments. As one example, assurance cases
can be used to assert and specify desired
security properties, including the extent to
which security practices have been suc-
cessful in satisfying security requirements.

Software developed and assembled
using software security practices should
contain significantly fewer exploitable
weaknesses. Such software can be relied
on to more capably recognize, resist or
tolerate, and recover from attacks—in
turn functioning more securely in an oper-
ational environment. Project managers
responsible for ensuring that software and
systems adequately address their security
requirements throughout the SDLC can
review, select, and tailor guidance from the
book and Web site as part of normal pro-
ject management activities.

The five key takeaways from the book
are as follows:
1. Software security is about more than

eliminating vulnerabilities and con-
ducting penetration tests. Project man-
agers need to take a systematic
approach to incorporate sound soft-
ware security practices into their devel-
opment processes. Examples include
security requirements elicitation, attack
pattern and misuse/abuse case defini-
tion, architectural risk analysis, secure
coding and code analysis, and risk-
based security testing.

2. Network security mechanisms and IT
infrastructure security services do not
sufficiently protect application soft-
ware from security risks.

3. Software security initiatives should fol-
low a risk management approach to
identify priorities and what is good
enough, understanding that software
security risks will change throughout
the life cycle. Risk management
reviews and actions are conducted
during each SDLC phase.

4. Developing secure software depends
on understanding the operational con-
text in which it will be used. This con-
text includes conducting end-to-end
analysis of cross-system work process-
es, working to contain and recover
from failures using lessons learned
from business continuity, and explor-
ing failure analysis and mitigation to
deal with system and system-of-sys-
tems complexity.

5. Project managers and software engi-
neers need to think like an attacker in
order to address the range of things
that software should not do and how
software can better resist, tolerate, and
recover when under attack. The use of

attack patterns and misuse/abuse
cases throughout the SDLC encour-
ages this perspective.

Practice Maturity and
Relevance
As a community, we recognize that some
software security practices are in broader
use and thus more tested and mature than
others, such as security coding practices
and vulnerability testing. As a practice
description and selection aid, descriptive
tags mark the book’s sections and key
practices in two practical ways:
1. Identifying the content’s relative matu-

rity of practice as follows:
• Maturity Level 1 (L1): The con-

tent provides guidance for how to
think about a topic for which there

is no proven or widely accepted
approach. The intent of the
description is to raise awareness
and aid in thinking about the prob-
lem and candidate solutions. The
content may also describe promis-
ing research results that may have
been demonstrated in a con-
strained setting.

• Maturity Level 2 (L2): The con-
tent describes practices that are in
early pilot use and are demonstrat-
ing some successful results.

• Maturity Level 3 (L3): The con-
tent describes practices that are in
limited use in industry or govern-
ment organizations, perhaps for a
particular market sector.

• Maturity Level 4 (L4): The con-
tent describes practices that have
been successfully deployed and are
in widespread use. These practices
can be used with confidence.
Experience reports and case stud-
ies are typically available.

2. Identifying the designated audiences
for which each chapter section or prac-
tice is most relevant:

• E: Executive and senior managers.
• M: Project and mid-level managers.
• L: Technical leaders, engineering

managers, first-line managers, and
supervisors.

Build Security In: A Key
Resource
Since 2004, the DHS Assurance Program
has sponsored development for the BSI
Web site, a significant resource used in
developing “Software Security Engineer-
ing.” BSI content, referenced throughout
the book, is based on the principle that
software security is fundamentally a soft-
ware engineering problem and must be
managed in a systematic way throughout
the SDLC.

BSI both contains and links to a broad
range of information about sound prac-
tices, tools, guidelines, rules, principles, and
other knowledge to help project managers
deploy software security practices and build
secure and reliable software. Contributing
authors to this book and articles appearing
on the BSI site include senior staff from
the SEI and Cigital, Inc.

Readers can consult BSI for additional
details, ongoing research results, and infor-
mation about related Web sites, books, and
articles.

Start the Journey
As software and security professionals, we
will never be able to get ahead of the game
by addressing security solely as an opera-
tional issue. Attackers are creative, inge-
nious, and increasingly motivated by finan-
cial gain. They have been learning how to
exploit software for several decades; the
same is not true for software engineers, and
we need to change this. Given the extent to
which nations, economies, businesses, and
families rely on software to sustain and
improve the quality of life, we must make
significant progress in putting higher quali-
ty and more secure software into produc-
tion. The practices described in “Software
Security Engineering” serve as a useful
starting point.

Each project manager needs to careful-
ly consider the knowledge, skills, and com-
petencies of their development team, their
organizational culture’s tolerance (and
attention span) for change, and the degree
to which sponsoring executives have
bought in (a prerequisite for sustaining any
improvement initiative). In some cases, it
may be best to start with secure software
coding and testing practices: They are the
most mature, have a fair level of automat-
ed support, and can demonstrate some
early successes, providing visible benefits in
helping software security efforts gain sup-

“Software developed
and assembled using

software security
practices should

contain significantly
fewer exploitable
weaknesses ...”

A Look at “Software Security Engineering: A Guide for Project Managers”

March/April 2010 www.stsc.hill.af.mil 21

port and build momentum. On the other
hand, secure software requirements engi-
neering and architecture and design prac-
tices offer opportunities to address more
substantive root cause issues early in the
life cycle that, if left unaddressed, will show
up in the code and test phase. Practice
selection and tailoring are specific to each
organization and project based on objec-
tives, constraints, and the criticality of the
software under development.

Project managers and software engi-
neers need to develop a better understand-
ing of what constitutes secure software—
honing their skills to think like an attack-
er—applying this mindset throughout the
SDLC. The book describes practices to get
this ball rolling, such as attack patterns and
assurance cases. Alternatively, if you have
access to experienced security analysts,
adding a few of them to your development
team can get this jump-started.

Two of the key project management
practices are 1) defining and deploying a
risk management framework to help
inform practice selection and determine
where best to devote scarce resources and
2) identifying the best way to integrate soft-
ware security practices into the organiza-
tion’s current SDLC.

Also keep in mind that this process, if
done properly, will take time. As John
Steven stated:

Don’t demand teams to begin con-
ducting every activity on day one.
Slowly introduce the simplest activ-
ities first, then iterate ... [Have]
patience. It will take at least three to
five years to create a working, evolv-
ing software security machine.
Initial organization-wide successes
can be shown within a year. Use
that time to obtain more buy-in and
a bigger budget. [5]

Clearly, there is no one-size-fits-all
approach. Project managers and their
teams need to think through the choices,
define their tradeoff and decision criteria,
learn as they go, and understand that this
effort requires continuous refinement and
improvement.

In Closing
Sound software security engineering prac-
tices should be incorporated throughout
the entire SDLC. “Software Security
Engineering” is one resource that captures
both standard and emerging software secu-
rity practices and explains why they are
needed to develop more security-respon-
sive and robust systems.u

References
1. Allen, Julia, et al. Software Security

Engineering: A Guide for Project Managers.
Upper Saddle River, NJ: Addison-
Wesley, 2008.

2. Carey, Allan. “2006 Global Infor-
mation Security Workforce Study.”
IDC. Oct. 2006 <www.isc2.org/
uploadedFiles/Industry_Resources/
workforcestudy06(1).pdf>.

3. Deloitte. 2007 Global Security Survey:
The Shifting Security Paradigm. Sept. 2007
<www.deloitte.com/assets/Dcom
-Serbia/Local%20Assets/Documents
/rs_Deloitte_Global_Security_Survey
_2007.pdf>.

4. McGraw, Gary. Software Security:
Building Security In. Boston: Addison-
Wesley Professional, 2006.

5. Steven, John. “Adopting an Enterprise
Software Security Framework.” IEEE
Security & Privacy 4.2 (Mar./Apr. 2006):

85-87 <https://buildsecurityin.us-cert.
gov/daisy/bsi/resources/published/
series/bsi-ieee/568. html>.

Note
1. Material from this article has been

taken from the preface and Chapter 8
of “Software Security Engineering: A
Guide for Project Managers.” It is
reproduced with permission of Pear-
son Education, Inc. For additional
information about the book, including
a full table of contents, please refer to
<www.informit.com/store/product.as
px?isbn=032150917X> and <www.
sei.cmu.edu/library/abstracts/books/
032150917X.cfm>. As well, podcasts
including Julia Allen, Nancy Mead, and
Gary McGraw are a nice introduction
to the book’s content. Find the CERT
Podcast series at <www.cert.org/pod
cast/#softsecurity>.

The book “Software Security Engineering: A Guide for Project Managers”—based
primarily around the DHS’ Build Security In Web site—is a defense software
industry mainstay for selecting the right systems assurance tools. This article illu-
minates ways to use the book in planning software security improvements, from
the early development stages through deployment and operations. As well, soft-
ware developed using the suggested practices will result in on-time and on-budget
projects that are more predictably secure.

Software Defense Application

Systems Assurance: Preparation and Promise

22 CROSSTALK The Journal of Defense Software Engineering March/April 2010

About the Authors

Julia H. Allen is a senior
member of the technical
staff within the CERT
Program at the SEI. In
addition to her work in
software security and

assurance, Allen conducts research in se-
curity governance, operational resilience,
and metrics. She is the author of “The
CERT Guide to System and Network
Security Practices,” and “Governing for
Enterprise Security,” and co-hosts dis-
cussions for the CERT Podcast Series:
“Security for Business Leaders.”

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-3890
Phone: (412) 268-7700
E-mail: jha@sei.cmu.edu

Robert J. Ellison, Ph.D.,
is a member of the Survi-
vable Systems Engineering
Team within the CERT
Program at the SEI, and
has served in a number of

technical and management roles. Ellison
regularly participates in the evaluation of
software architectures and contributes from
the perspective of security and reliability
measures. His research draws on that expe-
rience to integrate security issues into the
overall architecture design process. Ellison’s
current work explores developing reasoning
frameworks to help architects select and
refine design tactics to mitigate the impact
of a class of cyberattacks.

E-mail: ellison@sei.cmu.edu

Nancy R. Mead, Ph.D.,
is a senior member of
the technical staff in the
Survivable Systems Engi-
neering Group within the
CERT Program at the

SEI. She is a faculty member in the
Master of Software Engineering and
Master of Information Systems Manage-
ment programs at Carnegie Mellon Uni-
versity. Mead is a fellow for the IEEE
and the IEEE Computer Society and is

Sean Barnum is a princi-
pal consultant at Cigital and
is technical lead for their
federal services practice.
He has more than 20 years
of experience in the soft-

ware industry in the areas of development,
software quality assurance, quality manage-
ment, process architecture and improve-
ment, knowledge management, and security.
He is involved in numerous knowledge
standards-defining efforts, including Com-
mon Weakness Enumeration, Common
Attack Pattern Enumeration and Classifi-
cation, and other elements of software
assurance programs for the DHS and DoD.
He is also the lead technical subject matter
expert for the Air Force Application
Software Assurance Center of Excellence.

Cigital, Inc.
21351 Ridgetop CR, STE 400
Dulles,VA 20166
Phone: (703) 473-8262
E-mail: sbarnum@cigital.com

also a distinguished member of the
Association for Computing Machinery.
Mead has more than 100 publications and
invited presentations.

E-mail: nrm@sei.cmu.edu

Gary McGraw, Ph.D., is
the chief technical officer
of Cigital, Inc. He is a
globally recognized auth-
ority on software security
and the author or co-

author of six best-selling books on this
topic. The latest, “Exploiting Online
Games,” was released in 2007. His other
titles include “Java Security,” “Building
Secure Software,” “Exploiting Software,”
and “Software Security”; he is also con-
tributing editor for the Addison-Wesley
Software Security series. McGraw has writ-
ten more than 90 peer-reviewed scientific
publications, and authors a monthly column
for Dark Reading <www.darkreading.com>.

Phone: (703) 404-9293
E-mail: gem@cigital.com

COMING EVENTS

March 9-12

12th Semi-Annual

Software Assurance Forum

McLean, VA

https://buildsecurityin.us-cert.

gov/daisy/bsi/events.html

April 26-29

22nd Annual Systems and Software

Technology Conference

Salt Lake City, UT

www.sstc-online.org

May 3-7

DISA Customer Partnership Conference

2010/AFCEA Technology Showcase

Nashville, TN

http://events.jspargo.com/disa10

May 10-14

PSQT 2010 West

Las Vegas, NV

www.psqtconference.com/2010west

May 24-27

Siemens PLM Connection 2010

Nashville, TN

http://event.plmworld.org

June 6-10

IBM Rational Software Conference

Orlando, FL

http://www-01.ibm.com/

software/rational/innovate

June 6-11

Better Software Conference

Las Vegas, NV

www.sqe.com/BetterSoftwareConf

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
<marek.steed.ctr@hill.af.mil>.

March/April 2010 www.stsc.hill.af.mil 23

Departments

24 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Application development and security
practices are often at odds. Appli-

cation development is concerned with
creating software quickly with the most
features possible in the minimum amount
of time. Application security is con-
cerned with finding and removing securi-
ty vulnerabilities and releasing software
when critical security risks have been mit-
igated.

Many project stakeholders see appli-
cation security practices as an increase in
scope that adversely impacts the software
delivery schedule. In order to build
secure applications, it is important to
align application development and securi-
ty practices. Our analysis has found that
one of the best ways to do that is to inte-
grate secure code analysis and security
testing into CI. CI is a software develop-
ment practice where members of a team
integrate their work frequently, verifying
each integration by an automated
build/test process to detect integration
errors as quickly as possible [1]. Using CI,
the time and effort to build security into
the development process can be mini-
mized, making teams more likely to
include security practices in their soft-
ware development process and thereby
reducing the risk of a successful attack.

Immediate Notification
CI ensures that ongoing changes to the
source code do not break the intent or
design of the software. If a change does
break the software, that break is identi-
fied immediately and can be fixed with a
minimal cost and impact to the project’s
schedule.

CI started with the notion that each CI
cycle should make a clean build from an up-
to-date checkout from the source code
repository, and that a set of unit tests
should be run against the clean build as a
regression against the changes in the code
base. If the build and unit tests pass, then
the recent checked-in changes did not
break the software. If the build or unit
tests fail, then the changes broke the soft-
ware, and the CI server immediately noti-
fies the team that the software is broken.

Secure Development
CI is now the foundation for serving many
crucial software development process
tasks. Originally focused on compiling and
unit testing, CI practices have grown and
evolved over time. They now include
expanded practices, such as functional test-
ing and code analysis to evaluate the health
of a project. By integrating security testing
and secure code analysis, CI can be further
leveraged to include secure development
practices while minimizing the amount of
extra effort required to get the benefits of
secure development. Since it is tied to CI,
security testing and secure code review
begins when a project begins and runs con-
tinuously throughout project development.
With CI, security vulnerabilities testing
becomes part of the regression test bed,
executed automatically with each successive
build on the CI platform.

Changing Testing Economics
Technology advances have changed the
economics of testing, allowing more
aggressive approaches to testing than his-
torically possible. Using CI for build, test,
and analysis automation has increased the
depth and breadth of tests while also mak-
ing them faster and less expensive. By mak-
ing it cheap and easy to perform tests,
teams are encouraged to test more and test
sooner in the development cycle, reducing
the cost of fixing bugs. It has also made it
easier for managers and non-technical
stakeholders to understand project
progress and health.

For many projects, testing has gone
from a process that slowed deployment
down to one that provides true quality
assurance, in turn helping stakeholders
have more confidence in their projects. By
reducing the cost of many quality control
aspects of application development, teams
have been able to use those controls more
often and more effectively and have accel-
erated development while improving quali-
ty. This same change can be applied to
security practices integrated into CI. The
reduced cost of gathering security vulnera-
bility data will encourage teams to collect
the data more often and sooner in their

development cycle, reducing the cost to fix
issues such as cross-site scripting and SQL
injection.

Building Security Testing
Into CI
In order to integrate static code analysis
and security testing into CI, a few key
pieces of software are needed. Organiza-
tions should select a specific application for
each of the software categories (as shown
in Table 1), bearing in mind that some
products might fit into more than one cat-
egory. For example, Microsoft’s Team
Foundation Server (TFS) [2], fits into the
CI Server, Source Code Repository, and
Issue Tracking categories.

Choosing the Right Tools
It is possible to build a completely open
source CI process that includes static code
analysis and security testing. SecureCI is
one example of a CI product that is made
of all open source tools and can be down-
loaded and used free of charge [3]. There
are also many good commercial products
that, in some cases, provide more value
than their open source alternatives, such as
the Web crawling capability of AppScan
and WebInspect.

There are many tools to choose from,
ranging from unsupported to company-
supported open source software to com-
mercial software that is developed and
maintained completely by the company
that created it. In other words, an organiza-
tion can purchase support contracts to
commercial software—products that are
then developed and maintained completely
by the company that created them. There
are even some commercial software prod-
ucts that are free to use but come with
some restrictions, such as a limited number
of users. There is no correct or incorrect
tool as long as the acquired software works
together and can meet organizational
objectives.

Tool Integration
In general, the CI server will be the inte-
gration hub and orchestrator for a CI
process. CI servers come with integration

Building Security In Using Continuous Integration

Building security into software is harder than it should be. This article explores a way to align application security practices
with other software development best practices in order to make building security in easier to manage and more cost effective.
In particular, this article looks at combining continuous integration (CI) with security testing and secure static code analysis.

Thomas Stiehm and Gene Gotimer
Coveros

Building Security In Using Continuous Integration

March/April 2010 www.stsc.hill.af.mil 25

application programming interfaces (APIs)
for many of the tools an organization puts
in its toolset so that working with those
tools will be easy. If there isn’t an API for
one of the selected tools, CI servers can be
extended using scripting languages and
compiled code plug-ins. This flexibility
means that an organization can add any
tools that can be scripted or programmati-
cally controlled into their CI process, mak-
ing it possible to add security practices to
an existing CI process without having to
reinvent that process. For example, with
Hudson, in order to use PMD [4] or
FindBugs [5] for static code analysis, all
that is needed is creation of a build job that
uses an Ant [6] build to run the tool. You
then point the tool’s Hudson [7] plug-in to
the XML reports created during the Ant
build. The plug-in picks up the reports and
parses them for display using HTML and
generated graphics.

The CI server market is full of both
open source and commercial products.
Many of the open source CI servers have
commercial support contracts available.
Because of the mature CI server market,
there is no advantage in using either open
source or commercial products. The excep-
tion to this statement is when an organiza-
tion is considering development ecosystem
suites like Microsoft’s TFS and Visual
Studio suite.

Integrating security testing tools
requires a little more work. The application
under test needs to be deployed and run-
ning because security testing tools work by
interacting with the application, analyzing
the requests and responses from the point
of view of a Web browser. This means that
the CI server will have to deploy to an
application server, start it, and then kick off
the security testing tool. While it seems like
a lot of work, there are a number of good
examples on the Internet to help get start-
ed. The commercial security testing tools
can be configured to just launch and crawl
an application.

Creating Multiple
Complementary Builds to
Support Specific Needs
One of the first things organizations will
notice about using static code analysis and
automated security testing tools is that
build times—the time it takes to go
through a CI process—will increase signif-
icantly. Because of this increase, it is com-
mon for projects to use multiple CI jobs.
The different jobs are set to run on differ-
ent intervals and for different reasons. For
instance, most teams have a quick job that
runs within 10 minutes of a check-in and

produces a result within 10 minutes. This
quick job consists of a clean build and only
executes unit tests. This quick build tells the
developers that the new code works and
that all of the unit tests pass (i.e., the code
hasn’t introduced defects into previously
working code). Many teams will also use
longer running tests (a couple of hours),
compiling the project and running the unit
tests, while also executing other kinds of
tests (e.g., database tests and automated
functional tests). These tests take longer to
complete and have a longer feedback cycle.
By executing multiple jobs, an organization
can provide the team with feedback as
quickly as possible for a given type of feed-
back. Finally, many projects have jobs run-
ning from once a day to once a week that
perform static analysis or security testing.
This allows the processes to run at their
own pace without slowing down other test
processes.

The selection of a source code reposi-
tory is generally based on what already
exists in an organization’s environment.
From the overall goal of building security
into applications, the choice of source
repository makes little difference—it just
needs to work with the CI server.

Utilizing Both Commercial
and Open Source Tools
There is a healthy marketplace for issue
tracking applications having both open
source and commercial products.

Commercial issue tracking software has
an advantage over open source in terms of

the reporting and integration options.
Commercial applications tend to have a
better and more customizable reporting
system and tend to integrate more with
(usually commercial) software that might
be used in an overall development process.
That said, many projects and organizations
don’t need or use the extra capability of
commercial issue tracking software. For
small project teams or small companies,
open source issue tracking software works
just fine. For large enterprises with multiple
related development projects, a commercial
issue tracking application may offer needed
features that can justify the cost of acquir-
ing the software.

Open source unit testing tools are usu-
ally frameworks that provide a core unit
testing capability. These tools require a
developer to write and maintain unit tests.
If the developer follows the conventions of
the framework, running unit tests is very
simple and easy and many CI servers can
read and report on the results. The com-
mercial products in the space build on top
of the open source tools by adding the
capability to generate unit tests. The com-
mercial tools will scan the source code and
determine how to exercise the code paths
(in the source code) in order to get 100 per-
cent test coverage and possibly add nega-
tive unit tests.

We have worked on projects that have
used both developer-written unit tests and
tool-generated unit tests. When dealing
with security features, it is important to
write comprehensive unit tests that exercise
both the positive and negative paths

Software
Category

Open Source
ToolsDescription

Commercial
Tools

CI Server Server software that monitors the
source code repository and runs
the build when changes to the
repository are detected.

Hudson,
CruiseControl

TeamCity,
Bamboo,
TFS

Source Code
Repository

Software that keeps source code,
maintaining versions of the source files
and file groups (i.e., labels and tags).

Concurrent
Versions
Systems,
Subversion

Polytron
Version Control
System,
Clearview,
TFS

Issue Tracking Software that is used to manage software
issues and report their status.

Trac and
Sonar,
Bugzilla

Quality
Center,
TFS

Unit Testing Tools or frameworks used by developers
to test at a source code level.

JUnit,
NUnit

JTest

Functional Testing Tools, frameworks, or applications
used to test the functionality of software.

Selenium,
Watir

Quick Test
Professional,
SilkTest

Security Testing Tools, frameworks, or applications used
to test the security aspects of software
(i.e., penetration testing tools).

RatProxy,
WebScarab

AppScan,
WebInspect

Static Code
Analysis

Tools, frameworks, or applications used
to inspect either source code or compiled
files for known issues.

FindBugs,
PMD,
CheckStyle

Fortify
Source Code
Analyzer

Table 1: Tools for Different Software Categories

Systems Assurance: Preparation and Promise

26 CROSSTALK The Journal of Defense Software Engineering March/April 2010

through the code. Many security defects
come from security features that don’t have
a proper fail-safemethod for when there are
program or data processing errors.
Negative testing—or the testing for failure
paths in the source code—addresses the
correctness of failure states and can show
that a specific security feature can fail-
safely when something unexpected hap-
pens. If there is a large legacy code base
that doesn’t have unit tests, using a tool to
generate unit tests is a good way to add
tests quickly. Keep in mind, however, that
the project team still needs to review all of
those tests, change some, remove others,
and write new tests covering situations
that the tools couldn’t.

Security Testing Tools
Security testing is an excellent way to dis-
cover many of the security vulnerabilities
in an application. These tools are run
against an application, usually in a testing
environment, in its production configura-
tion. One goal of this testing is to deter-
mine if the application has defects, mak-
ing it vulnerable to outside attack while in
production; another is to see if the appli-
cation will fail safely when attacked.
Failing safe has different meanings to dif-
ferent applications, with the basic guide-
line that an application should not give
users unauthorized information or allow
them to take unauthorized actions.

In order to automate many open
source security-testing tools, they will
need to be used in conjunction with func-
tional test tools. For example Ratproxy [8],
a popular open source security-testing
tool, can’t (unlike popular commercial
security testing tools) crawl a Web applica-
tion. This means that people using
Ratproxy need to use another tool to crawl
the Web application while Ratproxy is
running. Another alternative is to have the
testers use Ratproxy while they are con-
ducting manual functional tests.

Another area where commercial secu-
rity testing tools have an advantage is in
reporting. Commercial security testing
tools, like AppScan [9], have a customiz-
able reporting capability that gives users
numerous ways to report their findings (in
order to conform to organizational stan-

dards or highlight different aspects of the
findings for different audiences). The
reporting capability also does a good job
of explaining the findings—that is, how
they can be exploited and remediated. In
contrast, Ratproxy has only one report
format that provides little detailed infor-
mation about an issue beyond its name
and where it was found. An analyst using
Ratproxy has to figure out what the issue
means and how to remediate it. Finding
out this information isn’t hard, but it can
be time-consuming.

Static Code Analysis Tools
Static code analysis tools examine the code
base for many problems including security
and code style issues, potential code
defects, and race conditions. These tools
are more akin to automated code review
than to unit and integration tests. The dif-
ference between commercial and static
code analysis tools mirror the differences
found in security testing tools: Commercial
tools have better reporting capabilities and
provide more information on the nature of
the findings and suggested remediation.
Another area where some commercial
tools have added value is in the depth of
analysis. Fortify Software’s Source Code
Analyzer [10] creates an entire model of
the application under analysis, examining
the data and control flow of the software
to determine if there is a larger-context
problem. Most open source static code
analysis tools only look for problems in a
local context (i.e., the immediate line of
code, code block, or file).

Static code analysis can either be per-
formed on the source code of an applica-
tion or on the compiled binaries. For exam-
ple, FindBugs runs against compiled Java
class files. It can find bad practices, null
pointer dereferences, static use of non-
thread safe code, and security issues. PMD
runs against Java source files. It can find
dead code, performance issues, style issues,
and potentially dangerous code practices.
While there is overlap with FindBugs, using
both is not considered redundant.

Data Analysis and Evaluation
Once the vulnerability data has been col-
lected from both security testing and code

analysis, it has to be analyzed and evaluat-
ed. The goal of this step is to decide if the
findings are truly a problem and what to
do about it. This step includes determining
the priority and severity of the security
issues and putting them into an issue track-
ing system. In order for application securi-
ty practices to positively affect the project,
issues uncovered in testing and analysis
need to be tracked and fixed. By integrat-
ing security practices into CI, security
issues are discovered and dealt with more
quickly, in turn preventing many security
risks from entering production and mini-
mizing the possibility of exploitation.

Building application security practices
into a project can be done with minimum
impact to a project’s budget, schedule, and
resources. Integrating security testing and
secure code analysis into CI is the first
step to building security into software.
These practices help build security aware-
ness by showing developers how and why
their code is vulnerable. They give testers
the tools needed to find many security vul-
nerabilities, and project managers a way to
demonstrate the results of security prac-
tices. While it would be instructive to pro-
vide quantitative analysis of the benefits
of integration CI and security, the practice
is still new enough that no major studies
have been conducted.

Application security practices are hard
for many teams to adopt because they
don’t have the time, budget, or resources
needed. CI can help change the econom-
ics of security testing and analysis by giv-
ing project teams tools that can be
deployed in their environment. These
solutions can enable a team to quickly go
from not considering security to a solid
initial step in finding and proactively fixing
security vulnerabilities.u

References
1. Duvall, Paul, and Steve Matyas. Contin-

uous Integration: Improving Software Quality
and Reducing Risk. New York: Addison-
Wesley, 2007.

2. Microsoft. “Team Foundation Server
Home.” Team Foundation Server Home.
2009 <http://msdn.microsoft.com/
en-us/teamsystem/dd408382.aspx>.

3. Coveros. Coveros: Research & Insights –
Free Secure CI Download. Fairfax, VA:
Coveros, 2009.

4. InfoEther. “PMD” SourceForge.net.
2009 <http://pmd.sourceforge.net>.

5. The University of Maryland. “Find-
Bugs – Find Bugs in Java Programs.”
SourceForge.net. 21 Aug. 2009 <http://
findbugs.sourceforge.net>.

6. The Apache Ant Project. “Apache Ant
– Welcome.” Apache Ant. 15 Oct. 2009

Application security is a priority for DoD applications, given the always on, global
nature of the DoD mission. At the same time, it is important to make application
security work within the development practices in common use among DoD devel-
opment teams. By integrating application security practices with CI, we can address
both the security needs of the applications as well as the efficiency and cost-effective
requirements of the development teams.

Software Defense Application

Building Security In Using Continuous Integration

March/April 2010 www.stsc.hill.af.mil 27

About the Authors

Thomas Stiehm has
been developing applica-
tions and managing the
software development
teams for 16 years. As
Chief Technical Officer

of Coveros, he is responsible for the
oversight of all technical projects and
integrating application security practices
into software development projects.

Coveros
4000 Legato RD
STE 1100
Fairfax,VA 22033
Phone: (703) 599-6243
E-mail: tom.stiehm@coveros.com

Gene Gotimer has been
building Web applications
and working with security
for the last 13 years. He
specializes in CI and
Agile Java development.

Coveros
4000 Legato RD
STE 1100
Fairfax,VA 22033
Phone: (703) 963-1620
E-mail: gene.gotimer

@coveros.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

ELECTRONIC COPY ONLY? YES NO

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2008 o LEAN PRINCIPLES

SEPT2008 o APPLICATION SECURITY

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SWAND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

MAY/JUNE09 o RAPID & RELIABLE DEV.

JULY/AUG09o PROCESS REPLICATION

NOV/DEC09 o 21STCENTURYDEFENSE

JAN/FEB09 o CMMI: PROCESS

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

<http://ant.apache.org>.
7. Sun Microsystems. “Hudson CI”.

Hudson: Extensible continuous integration
server. 2009 <http://hudson-ci.org>.

8. Google. “Ratproxy: passive web appli-
cation security assessment tool.”
Ratproxy – Project Hosting on Google
Code. 2009 <http://code.google.com
/p/ratproxy>.

9. IBM. “Help ensure Web site security
and compliance.” IBM Web Site Security
and Compliance – Rational. 2009 <http:
//www-01.ibm.com/software/ration
al/offerings/websecurity>.

10. Fortify Software, Inc. “Source Code
Analyzer (SCA) in Development.”
2009 <www.fortify.com/products/
detect/in_development.jsp>.

Departments

28 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Making Security Measurable
http://measurablesecurity.mitre.org
At the heart of this issue’s article Systems Assurance as a Team
Sport are several MITRE-led information security commu-
nity standardization activities and initiatives—now visit the
Web site which houses comprehensive information on them
all. The goal of this collaboration with government, indus-
try, and academic stakeholders is to improve the measurabil-
ity of security through enumerating baseline security data,
providing standardized languages as a means of communi-
cating accurately, and encouraging the sharing of the infor-
mation with users by developing repositories. These efforts
are helping to make security more measurable by defining
the concepts that need to be measured and providing a loca-
tion for high-fidelity communications about the measure-
ments.

Engineering for System Assurance
www.acq.osd.mil/sse/docs/SA-Guidebook-v1-Oct2008.pdf
After reading A DoD-Oriented Introduction to the NDIA’s
System Assurance Guidebook, why not go directly to the
source? This Guidebook provides process and technology
guidance to increase the level of systems assurance. It is
intended primarily to aid program managers and systems
engineers who are seeking guidance on how to incorporate
assurance measures into their system life cycles. The
Guidebook discusses systems assurance by focusing on the
entire system, and specifically addressing the assurance of
security properties throughout the system life cycle. It also
identifies processes, methods, techniques, activities, and
tools for systems assurance, and focuses on the electronic
hardware, firmware, and software elements that make up the
system.

Forge.mil
www.forge.mil
In their article, Michael Atighetchi and Dr. Joseph Loyall
state their belief that successful survivability assessment
includes community-based collaboration platforms. They
mention Forge.mil, a Defense Information Systems Agency-
led family of services provided to support the DoD’s tech-
nology development community. The system currently
enables the collaborative development and use of open
source and DoD community source software. These initial
software development capabilities are growing to support
the full system life cycle and allow for continuous collabora-
tion among all stakeholders, including developers, testers,
certifiers, operators, and users. Forge.mil’s goals include
enabling and promoting: cross-program sharing of software,
system components, and services; early and continuous
stakeholder collaboration; the rapid delivery of effective and
efficient development and test capabilities for DoD technol-
ogy development efforts; and the protection of the opera-
tional environment from potentially harmful systems and
services.

Software Assurance (SwA)
https://buildsecurityin.us-cert.gov/swa
This issue’s focus on systems assurance—and the article
from Julia H. Allen, Dr. Robert J. Ellison, Dr. Nancy R.
Mead, Sean Barnum, and Dr. Gary McGraw outlining the

importance of the DHS’ Build Security In (BSI) Web site—
make it a perfect time to visit this BSI-sponsored site, specif-
ically focused on SwA. Visitors can learn more about what
SwA is, why it is critical, how it is advancing, the DHS’ SwA
Program, past and present SwA Forum meetings, and the
progress of specific SwA “working groups.” There are also
links to several of their published resources, past and future
events, as well as to Webinars, Webcasts, and podcasts.

Software Testing Boot Camp – The
Economics of Testing
www.riceconsulting.com/public_pdf/STBC-WM.pdf
In Building Security In Using Continuous Integration, Thomas
Stiehm and Gene Gotimer explore the economics of software
testing, stating that it has “gone from a process that slowed
deployment down to one that provides true quality assurance.”
This document has more evidence to support this assertion,
discussing early defect detection and exploring why software
defects are costly to find and fix. As part of a four-day “boot
camp,” it explores the cost of software defects, where defects
originate, why a “big bang” testing phase at the end of a pro-
ject doesn’t work, the relative cost of defect fixing, as well as
the benefits of testing early—and throughout a project.

Systems Assurance and Cybersecurity:
Guidance and Tools
www.acq.osd.mil/sse/pg/guidance.html#sa
Looking for a “one-stop shop” for pertinent government and
DoD documents on systems assurance? At this Systems and
Software Engineering Web site—sponsored by the Office of
the Deputy Under Secretary of Defense for Acquisition,
Technology, and Logistics—visitors can access the most perti-
nent government publications and Web sites for systems assur-
ance, including the “Defense Acquisition Guidebook,” the
historical “Acquisition Systems Protection Program” manual,
Version 1.0 of “Engineering for System Assurance,” and the
recently-released “Acquisition Security Related Policies and
Issuances Tool.” This site also provides resources in the DoD
focus areas of Defense Acquisition, Systems Engineering,
Developmental Test and Evaluation, and Modeling and
Simulation, as well as procedural documents from the Army,
Navy, Air Force, and NASA.

Maturity Framework for Assuring
Resiliency Under Stress
https://buildsecurityin.us-cert.gov/daisy/bsi/1016-BSI.html
Don O’Neill expands on his Sept./Oct. 2009 CrossTalk
article Meeting the Challenge of Assuring Resiliency Under Stress,
now exploring his Maturity Framework. The concept is
intended to drive the business case and enterprise commit-
ment towards the assurance of software security, business con-
tinuity, system survivability, and system of systems resiliency.
The framework serves as a road map to help software develop-
ers and managers in understanding the software security deci-
sion process, to guide the selection of models appropriate for
the enterprise, and to assist in their instantiation using local
factors that best characterize the business environment and
enterprise culture in achieving the best possible outcome.

WEB SITES

Departments

March/April 2010 www.stsc.hill.af.mil 29

Feeling

environmentally

friendly?

Start a new subscrip-

tion or update an

existing one to get

CrossTalk deliv-

ered by e-mail instead

of snail mail.

sshhaannaaee..
hheeaaddlleeyy@@
hhiillll..aaff..mmiill

COMING IN THE MAY/JUNE ISSUE

Software Human Capital
Understanding of the economic importance of people goes back to the 1700s, with Adam Smith’s declaration that humans
are one of the four types of “capital.” Software managers are quickly finding that success comes from human intelligence,

innovation, and teamwork—and that failures are rooted in the sociological, rather than the technological.

This edition of CrossTalk documents success stories and explores the possibilities
in developing the skills, talents, knowledge, and abilities needed to both perform at a high level and

produce innovative products.

Look for it in your mailbox early May!

Issue sponsored by:

Department of Defense
Systems Engineering

Departments

30 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Dear CrossTalk Editor,
I have found CrossTalk to be an exceptional resource. In gen-
eral, CrossTalk is a vast repository of knowledge for those in
defense software engineering. Virtually every software topic has its
own theme issue. One of our software engineers asked me what I
knew about Agile Software Development. I immediately directed
him to your April 2007 issue, themed Agile Development, which was
easy to access on your Web site <www.stsc.hill.af.mil/crosstalk/
2007/04/>.

Recent editions have also been both useful and enlightening. I
really enjoyed CrossTalk’s November/December 2009 issue,
focused on 21st Century Defense:
• PKI: The DoD’s Critical Supporting Infrastructure for Information

Assurance (IA) by Susan Chandler and Jerrod Loyless was a
great “101”-type article on Public Key Infrastructure (PKI) and
IA. It was the first time I have really understood the mechanics
of both, as well as how the PKI interfaces with my Common
Access Card. I now appreciate IA a whole lot more, and what
goes into making it work.

• The link to the DoD IA Certification and Accreditation
Process page (see <www.stsc.hill.af.mil/crosstalk/2009/11/
0911WebSites.html>) is handy to have around when IA issues
come up. CrossTalk’s Web Sites section is an extremely valu-
able and relevant resource for busy managers who don’t have
the time to ferret out “nuggets” like this.
I also liked the Process Replication-themed July/August 2009 issue:

• David P. Quinn’s Resistance as a Learning Opportunity discussed
why and how people resist process improvement (PI), and
effectively showed how leaders can deal with resistance. It is
often difficult for someone who is passionate about PI—and
whose full-time job it is to help implement it—to understand
and deal with those who are not. Quinn provided solid, practi-
cal suggestions for doing so. Just like a salesperson making a
sale, PI folks need to “sell” PI with what’s in it for the
“resisters.” It’s a fine article that helps the PI movement go for-
ward.

• Kudos to Gary Petersen for his BackTalk article, Raiders of
the Lost Art. Long ago, I learned the difference between “effi-
cient” and “effective.” Something that is fast and cheap may be
efficient, but not effective. I read management book after man-
agement book that tried to teach people the old ways of com-
munication pointed out in Petersen’s article. I don’t know if we
can ever get the toothpaste back in the tube, or the genie back
in the bottle, but thank you very much, Gary, for pointing out
the wrong direction we are going with communication and
offering good suggestions for getting society back on course.
Thank you, CrossTalk, for your diligence, dedication, and

great articles!

—Al Kaniss
Naval Air Systems Command

alan.kaniss@navy.mil

LETTER TO THE EDITOR

BACKTALK

March/April 2010 www.stsc.hill.af.mil 31

I’ve been thinking a lot about why it is so hard to get soft-ware right, and I think I may have hit on something.
I have noticed when visiting with relatives who live in the

country that they are mechanically astute. They can fix or
jury-rig almost anything. They work on problems at least as
complicated as, say, running an automated payroll system for
hourly employees. Have you ever tried to replace the boot on
a compensating velocity gear on a tractor, or unsnarl an old
fishing line reel and not lose that eight-pound bass? See what
I mean!

What is of particular interest to me is their multi-channel
knowledge transfer methodology. When describing a tech-
nique or process, conversations are punctuated and animated
with hand motions and body postures. I get tired just watch-
ing one explain how to tighten a strand of barbed wire with
nothing but a broomstick and some seagrass string, or how
to pluck a chicken for supper on the kitchen table when it is
storming outside.

You can look all around and see different groups with
their own lexicon of hand and body motions: baseball coach-
es instructing a runner to steal, steelworkers guiding crane
operators as they put I-beams into place, or a driver express-
ing disdain—with merely one finger—when another driver
cuts them off.

Software developers are no less creative and resourceful,
but are clearly missing the hand motions and body postures.
I recommend computer science centers of excellence imme-
diately pair up with psychologists in academia and begin
developing these visual clues forthwith.

As a departmental process expert, it is my job to intro-
duce and explain the latest processes and forms required for
all projects. In my opinion, visuals are needed.

I have worked up a few on a trial basis, such as inserting
a new item in the middle of a doubly linked list. I find the
hand motions needed to help explain how to create a new
relational table to be much less complicated than the doubly
linked list—though initial trials with my colleagues on the job
have so far proved unproductive.

I have also attempted the utilization of several hand signs,
such as illuminating the walk-through process using two fin-
gers walking across the desk. Some of the trainees respond-
ed with their own lower energy-state hand sign using less
motion ... and fewer fingers. Hand and body motions are
often more efficient (requiring less mental effort) than words
in expressing concrete ideas and procedures. It is easier to
describe a spiral staircase with your hands than it is with
words.

In my humble opinion, these less than enthusiastic reac-
tions are a case of new technology being rejected by sea-
soned veterans who fail to see the value in something they
didn’t invent themselves. It is, as they say, “not the way we do
things around here.”

I wanted to call this new technology UML, Universal
Motion Language, but I am told that acronym has already
been taken by some upstart language those smarty college

new-hires keep wanting us to use1. I also toyed with calling it
Associative Symbolic Signing, but my wife nixed that name.
She suggested Symbolic Transfer Using Polite Indicative
Directions.

The need for this new technology is accelerating faster
than Moore’s Law2 as new ideas for improving software
development productivity are popping up, I suspect, at
roughly two new ideas every 18 months. Concomitant with
the new ideas are their techniques, processes, models, books,
and conferences, thus driving up the need for better knowl-
edge transfer techniques exponentially.

We are almost to the point where we need both an XML
open gesture tag and close gesture tag to identify the ever-
growing list of standard gestures and distinguish them from
other more prosaic hand motions and postures, such as
combing one’s hair, scratching one’s posterior, or testing the
pH of one’s azalea bed.

Adapting this technology for supply chain automation
activities should be a great place to start since the hand sig-
nals for driving a truck, pulling inventory, and shelf restock-
ing are fairly intuitive, while request-for-price and backorder
transactions would be more problematic.

But if we make this technology “freeware” and also give
away rather than sell the documentation, then the open
source and freeware communities can make short work of
those type problems. After all, no problem can withstand
10,000 hands.

—Carl Wayne Hardeman
cwhardeman@yahoo.com

Notes
1. They also suggested adopting a technology they call

PowerPoint. We told them that is not the way we do
things around here.

2. Moore’s Law, which dates back to 1965, states that the
number of transistors on a chip will double every two
years. See <http://en.wikipedia.org/wiki/Moore’s_law>
to learn more.

My Own Kind of UML:
Innovative Technology Transfer

With the Universal Motion Language

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover

	Table of Contents

	From the Sponsor

	Systems Assurance: Preparation and Promise
	Systems Assurance as a Team Sport
	A DoD-Oriented Introduction to theNDIA’s System Assurance Guidebook
	Meaningful and Flexible Survivability Assessments:Approach and Practice©
	A Look at “Software Security Engineering:A Guide for Project Managers”©
	Building Security In Using Continuous Integration

	INCOSE Ad

	Coming Events

	SSTC Conference Ad

	Web Sites

	Letter to the Editor

	BackTalk

	Back Cover

