


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUN 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-03-2010 to 00-06-2010  

4. TITLE AND SUBTITLE 
CrossTalk. The Journal of Defense Software Engineering. Volume 23,
Number 3, May/June 2010 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

32 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2 CROSSTALK The Journal of Defense Software Engineering May/June 2010

4

8

12

18

22

27

3
7

20
26
31

DeparDepar tmentstments

From the Sponsor

Coming Events

INCOSE Ad

Web Sites

BackTalk

Influencing Software Competencies Across the DoD
Acquisition Workforce
The DoD is overhauling the way software professionals learn through
the Software Acquisition Training and Education Working Group,
which is defining software-specific competencies, identifying curriculum
gaps, and improving learning.
by Don Scott Lucero

Recruiting Software Practitioners:The Importance
of Self-Efficacy
Believing in one’s own capabilities is important: This article explains
why it is, shares data measuring self-efficacy in Agile-oriented
professionals, and shows how to hire high SE-leveled practitioners.
by Dr. Orit Hazzan and Dr. Tali Seger

From Projects to People: Shifting the Software Acquisition
Paradigm
The authors recommend scrapping the DoD’s program-by-program
coordination strategy in favor of a grass-roots systems engineering
“lab” to manage costs and schedules and obtain the best
quality-minded engineers.
by Dr. Douglas J. Buettner and Lt. Col. Chad Millette

Allocating Resources in Multi-Project Programs: Lessons
Learned from the Trenches 
This article explores why traditional methods of resource allocation
aren’t working for program managers and shows how different
approaches, when used together, can solve complex problems.
by Edward Lari, Dr. Jeffrey Beach, Dr. Thomas A. Mazzuchi,
and Dr. Shahram Sarkani

Optimizing Myers-Briggs Type Indicator Training: Practical
Applications
This article shows how utilizing MBTI assessment—specifically its
underlying concept of psychological type along with the all-function
model—will improve systems management and project performance.
by Dr. Jennifer Tucker

Human Asset Management 
The author outlines seven human-centric rules for software
development, distinguishes between software professionals and
“amateurs,” and shares criteria for evaluating skills—as well as how
to enhance those competencies.
by Martin Allen

SoftwarSoftwaree HumanHuman CaCapitalpital

OpenOpen FForumorum

Cover Design by
Kent Bingham

ON THE COVER

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CrossTalk ONLINE

Stephen P. Welby

Jeff Schwalb

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Marek Steed

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cybersecurity Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 17.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

    



May/June 2010 www.stsc.hill.af.mil 3

From the Sponsor

The articles in this issue of CrossTalk discuss the human side of
our software development processes, and are part of a very impor-

tant dialogue. The DoD develops and delivers to our soldiers, sailors,
marines, and airmen incredibly effective—but increasingly complex—
weapons systems. Software has become such an integral part of these sys-
tems that it is virtually impossible to find a weapons system today that
does not contain mission-critical software at its core.

As the complexity of our systems has increased, so has the need for effective
systems and software engineering throughout the life-cycle. We face challenges in
implementing robust system and software processes starting with requirements
identification and analysis, through technology and architecture selection and
assessment, analysis, and coordination of complex system design, development,
and execution, to the delivery of rigorously tested production systems with a full complement
of hardware and software capabilities. Our greatest challenges, however, may be in our
approaches to building great people and teams: recruiting, growing, and maturing systems and
software engineering professionals who will successfully deliver today and tomorrow’s critical
defense systems.

Current development programs are already challenged to find the highly skilled systems and
software engineers we need, and numerous studies have raised concerns about our capability to
meet our future human capital needs. The DoD is seeking to address this challenge in the near-
term through improvements in the training, retention, and management of our workforce. New
development methodologies, models, and tools offer promise in increasing the effectiveness and
efficiency of our technical teams. Perhaps most importantly, we are continually looking at new
ways to share our sense of excitement, purpose, and professional pride with the next generation
of systems and software engineers.

The articles in this issue offer a range of viewpoints and thought-provoking insights about
the human side of our software development and acquisition processes. They present a look at
current challenges as well as innovative ideas while supporting a common theme: Managing the
human side of our process is essential to delivering the best possible systems for the warfight-
er. I thank the authors for their ideas and hope readers find this issue of CrossTalk inter-
esting and informative.

Developing Our Software Human Capital

Stephen P. Welby
Director, Systems Engineering

Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics

CrossTalk
would like to thank
the Department of
Defense Systems
Engineering for
sponsoring
this issue.



4 CROSSTALK The Journal of Defense Software Engineering May/June 2010

The complexity and criticality of
defense software poses a significant

challenge to the acquisition workforce as
well as the human capital experts who
need to ensure that the workforce has the
right competencies to deliver this essential
capability to the warfighter. Add to this
the task of identifying cross-functional
software competencies that are critical
for acquisition professionals, and you
have the primary challenges facing the
SATEWG.

There have been a number of initia-
tives aimed at improving DoD acquisi-
tion outcomes over the years, which
have subsequently impacted the acquisi-
tion workforce. In the mid-’90s, the
DoD adopted a policy encouraging the
use of commercial products—rather
than those developed to military specifi-
cations—in order to take advantage of
the innovation available in the commer-
cial marketplace. Commercial standards
became preferred over military stan-
dards. The government moved toward
specifying the expected performance of
a system, rather than telling contractors
how to build it.

In the ’90s era of declining defense
budgets, policymakers expected acquisi-
tion reform to bring about greater effi-
ciencies in order to pay for defense
acquisition. The Federal Acquisition
Reform Act (FARA) of 1996 called for
greater efficiencies in defense acquisi-
tion [1]. The FARA eliminated 15,000
members of the defense acquisition
workforce, and called for reductions of
25 percent over the following five years.
The focus of the defense acquisition
workforce shifted ostensibly from engi-
neering of systems to systems acquisi-
tion. The numbers of acquisition per-
sonnel dwindled and systems became
larger and more complex, creating sig-
nificant challenges for defense acqui-
sition. These challenges were thrown
into the spotlight by Government

Accountability Office (GAO) annual
audits [2].

The acquisition reform pendulum
started swinging the other way when, in
2003, the DoD started an effort to rein-
vigorate systems engineering in defense
acquisition. In 2009, the Secretary of
Defense proposed hiring 20,000 new
acquisition professionals by the year
2015 [3]. The Weapon Systems Acqui-
sition Reform Act of 2009 established
new Directors for Systems Engineering

and Developmental Test and Evaluation
and called for reports on these parts of
the defense acquisition workforce [4].
The challenge, however, continues to be
that software engineering is not current-
ly designated by a standalone occupa-
tional career code, nor is it managed
within the acquisition workforce as its
own career field.

The evolution of acquisition policy
has had a significant impact on the
acquisition workforce and their ability to
manage software acquisition.

Software-Specific Human
Capital Challenges 
Software is a unique and critical compo-
nent in the products of DoD, and its

reach extends across the acquisition
career fields and each of the services at
varying levels. The application of mod-
ern software technologies, and the use of
sound software engineering practices
over the acquisition life cycle, are impor-
tant elements of program execution.

The DoD conducted the first phase
of a software industrial base study in
2006 [5], finding that their dependence
on larger, more complex software is
increasing the risk of not delivering sys-
tems on schedule and within budget.
Although the study found that the
nation’s overall number of software
developers was adequate for the near-
term, it found shortfalls in the number
of top-tier software program managers,
architects, and domain experts—with
perhaps as few as 500 having the skills to
develop the DoD’s complex, software-
intensive systems. Though the software
industrial base study did not address the
acquisition workforce per se, it is safe to
say that these shortfalls in top-tier talent
are evident there as well.

It should be noted that subsequent
phases of the software industrial base
study found shortfalls in the number of
adequately trained software developers,
which was the primary reason the Office
of the Secretary of Defense (OSD) –
Acquisition, Technology & Logistics
(AT&L) sponsored development of a
reference curriculum for graduate study
of software engineering [6].

In [7], the National Defense Indus-
trial Association (NDIA)  recommends
actions including the broadening of
expertise “to enhance cross-functional
and domain knowledge and skills.” It is
critical that the DoD begin identifying
and embedding the basic software skills
needed for each career field. This will
reduce the reliance on software experts
while increasing the overall abilities of
the acquisition workforce.

In 2006, the Navy started the

Influencing Software Competencies
Across the DoD Acquisition Workforce

Don Scott Lucero
Office of the Director of Defense Research and Engineering

The growing importance of software in delivering military capabilities to the warfighter increases the need for the DoD to
identify and support software-specific competencies for the acquisition workforce. To help address this challenge, the Software
Acquisition Training and Education Working Group (SATEWG) is defining competencies for each acquisition career field,
and reviewing software acquisition curricula against these competencies. This article provides insight into the problems being
addressed, the SATEWG’s approach to these challenges, and their accomplishments to date.

Software Human Capital

“The application of
modern software

technologies and the use
of sound software

engineering practices ...
are important elements
of program execution.”



Influencing Software Competencies Across the DoD Acquisition Workforce

May/June 2010 www.stsc.hill.af.mil 5

Software Process Improvement Initia-
tive (SPII), which identified and exam-
ined issues preventing software-inten-
sive projects from meeting schedule,
cost, and/or performance goals [8]. A
survey conducted as part of the SPII
effort found that:
• There is a lack of adequately educat-

ed and trained software acquisition
professionals and systems engineers.

• There are no established education
standards.

• Key staff experience levels are below
average.

In [8], the SPII’s Human Resources
Focus Team recommended identifying
the software acquisition training needs
tailored to the respective roles and
responsibilities for six acquisition career
fields: program management, systems
and software engineering, acquisition
logistics, contracting, legal, and test and
evaluation engineering. They also rec-
ommended that the DoD use the find-
ings of the report as a baseline to ana-
lyze the software competencies and
training of the acquisition workforce [8].

In February 2008, the DoD estab-
lished the SATEWG  to develop soft-
ware competencies for the entire acqui-
sition workforce—not just software
experts—starting with program man-
agers and systems engineers [9]. In addi-
tion, the SATEWG was chartered to
develop and initiate a plan to address the
gaps in the existing software acquisition
curricula. The SATEWG is comprised
of individuals from different organiza-
tions with the goal of promoting, across
the DoD, collaboration focusing on
software and human capital initiatives
for the acquisition workforce.

SATEWG Membership
The SATEWG is comprised of repre-
sentatives from organizations designated
by the Under Secretary of Defense
(AT&L), and others including the OSD,
Army, Navy, Air Force, Defense
Acquisition University (DAU), Air Force
Institute of Technology, SEI, and
Sevatec, Inc.

Each of these organizations plays a
role in developing or supporting compe-
tencies and curricula, and their active
participation has been critical to the suc-
cess of the group. The diversity of these
stakeholders has made for a stronger
product. There are two types of
SATEWG members: core team mem-
bers and advisors. This structure
encourages leadership involvement and
provides flexibility for varying levels of
commitment.

Developing a Software
Competency Framework
A key challenge for the SATEWG was to
identify aspects of software engineering
that are truly unique to software and rele-
vant to the broader acquisition workforce.
For example, courses often address
requirements management and configura-
tion management, but they do not neces-
sarily take into account the volatility of
software requirements or the potential for
spawning a multitude of slightly different
software configurations.

Another challenge for the SATEWG
was to identify aspects of software acqui-
sition general enough to be considered
critical by the broader acquisition work-
force, yet specific enough to support
building an interdisciplinary software skill-
set. This interdisciplinary software skill set
reduces dependency on software experts,
which in turn becomes more important as
the acquisition workforce grows.

The SATEWG created an overarch-
ing body of skills called the software
competency framework. It is used as the
foundation for providing input to the
competency models specific to each
acquisition career field, and as a source
for analyzing existing curricula. During

the framework’s development, the
SATEWG reviewed 234 software com-
petencies and 790 competency elements
from the following sources:
• Existing DAU curricula.
• Competency studies and reports

conducted by the services (e.g., SPII)
[8].

• Industry best practices.
• Existing competency models such as

the Software Engineering Body of
Knowledge [10]; Systems Planning,
Research, Development and Engi-
neering (SPRDE); program manage-
ment; and IT career fields.
The framework includes the compe-

tencies that are both unique to software
and cross-functional in nature, so they
can be generalized for the various acqui-
sition career fields. Many software-relat-
ed competencies, although important,
weren’t deemed by the SATEWG as dif-
ferent enough from the other disciplines
to be included in the framework—at
least from the perspective of the acqui-
sition workforce. For example, software
specifications are certainly different
from typical system specifications; how-
ever, the process for managing these dif-
ferent types of specifications is quite



Software Human Capital

6 CROSSTALK The Journal of Defense Software Engineering May/June 2010

similar for the acquisition workforce.
The SATEWG also reviewed the

persistent software development and
acquisition issues to ensure that the
competencies identified are relevant to
the pressing needs. This review included
the original 1968 NATO efforts defining
software engineering [11] as well as the
top software issues identified by the
NDIA [12]. The most current source
turned out to be a systemic analysis of
software issues found in DoD reviews
of acquisition programs [13].

Components of the Framework
The SATEWG framework consists of
the following:
• Knowledge Areas (4): High-level

descriptions of the overarching skills
that make up the software elements
of the job.

• Competencies (29): Definitions
that provide information at a gener-
alized level that allows flexibility for
cross-functional comparison. Com-
petencies describe the job require-
ments and individual capabilities at a
broader, more process-oriented level
than a single knowledge, skill, or abil-
ity. There are multiple competencies
under each knowledge area.
The SATEWG decided not to identi-

fy the specific performance outcomes
for each competency (i.e., the behav-
ior[s] an employee must demonstrate for

successful job performance). These
expected outcomes will vary from career
field to career field. Instead, the
SATEWG decided that the performance
outcomes should be defined by the
groups that manage each career field.

The framework contains software
knowledge areas and competencies with-
in each knowledge area (see Table 1).

Applying the Framework
The SATEWG uses the software compe-
tency framework to work closely with each
career field to help integrate software
expertise into their existing competency
models.

The SATEWG started working with
the SPRDE expert panel to integrate soft-
ware into their draft SPRDE competency
model. The SATEWG identified the key
competencies from a software perspective,
while the SPRDE expert panel identified
the key software competencies from their
perspective. Using the competency frame-
work, the SATEWG and SPRDE expert
panel tailored the software competencies
to the needs of the engineering workforce.
The final SPRDE career field model now
contains 13 elements that address soft-
ware; more specifically, 14 of the frame-
work competencies in Table 1 (marked
with a “*”) were mapped to the final
SPRDE model.

The SATEWG followed a similar
process for both the Test & Evaluation

and Production, Quality & Manufactur-
ing career fields. The software compe-
tency framework allows the SATEWG
to provide input to the expert panels of
each career field that is consistent—as
well as customized—to the needs of
each career field.

The SATEWG has also started the
process of identifying gaps in the exist-
ing software acquisition curricula. To
conduct this analysis, the SATEWG uses
the software competency framework, as
well as the DAU’s terminal and enabling
learning objectives from their software
acquisition management courses.

Future Direction
While the SATEWG remains focused on
the goals outlined by the original charter,
members are identifying opportunities
that go beyond it. These efforts further
bridge the gap between current and
desired software proficiency and also
reach a new audience: software experts
who are critical in managing the com-
plexity of today’s software-intensive sys-
tems. Such efforts include:
• Formally validating the framework.
• Fostering a learning environment

and addressing the training needs of
software experts.

• Establishing a government-wide
occupational career code for soft-
ware engineering.

The SATEWG will start pursuing these
additional efforts when the elements of
the original charter are met. Current
goals and future efforts will require sup-
port and collaboration with software
and human capital leaders across the
DoD. The SATEWG will continue to
apply a collaborative approach to ensure
continued success.

The SATEWG welcomes the in-
volvement of software and human capi-
tal leaders across the DoD. Please con-
tact the author if you would like to
receive more information about the
SATEWG’s efforts.

Conclusion
Several studies conducted recently have
highlighted both the human capital and
software-related issues facing the DoD.
To address the growing concern regard-
ing software complexity and the capaci-
ty of the acquisition workforce, the
SATEWG has made strides to ensure
that software-related skills are both
embedded in competency models and
fostered within existing curricula.

The efforts of the SATEWG have
led to the development of a framework

Knowledge Area Competencies

1. Software Acquisition and Sustainment Planning: The
activities used to plan for the acquisition, development, and
sustainment of software across the life cycle.

2. Software Development Considerations: Software
development is a process of defining and executing software
solutions from system-level requirements, which have been
allocated to software. This includes the life-cycle activities such
as designing, developing, integrating, and testing of the
software components of a system. It also includes design
considerations such as compatibility, extensibility, fault-
tolerance, maintainability, packaging, reliability, reusability,
security, and usability, as well as the development of
associated documentation.

3. Software Management: Establishes a common framework
for software life-cycle processes, with well-defined terminology
that applies to the acquisition of systems and software products
and services, to the supply, development, operation,
maintenance, and disposal of software products, and to the
software portion of a system.

4. Post-Deployment Software Support: The planning,
sustainment, and management activities related to the
performance of preventative, predictive, scheduled, and
unscheduled actions aimed at maintaining or improving
software performance (e.g., functionality, efficiency, reliability,
availability, maintainability, security, and safety).

1. Software Impact on Acquisition Strategy*
2. Software Planning*
3. Software in the Work Breakdown Structure
4. Integrated Master Plan/Integrated Master Schedule
5. Planning for Software Transition and Sustainment

6. Software Architecture*
7. Software Requirements*
8. Integration of Software and Systems Engineering*
9. Software Design*
10. Software Development Methodology
11. Software Integration*
12. Software Interface Management
13. Software Modeling and Simulation
14. Verification & Validation of Software
15. Software in Systems Engineering Plans
16. Software Interoperability*
17. Software Safety*
18. Software Security*
19. System and Software Engineering Environment
20. Software Trade Studies

21. Software Configuration and Data Management
22. Software Risk Management*
23. Software Technical Reviews
24. Software Quality Assurance*
25. Software Financial Management and Estimation*
26. Software Contracting Considerations
27. Software Measures*

28. Transition to Sustainment
29. Sustainment

Table 1: SATEWG Software Competency Framework Summary



Influencing Software Competencies Across the DoD Acquisition Workforce

May/June 2010 www.stsc.hill.af.mil 7

which lists the critical software compe-
tencies that are cross-functional and can
be customized for each career field in
the DoD. The SATEWG also uses this
framework to review existing courses to
ensure that the acquisition workforce is
being trained in the necessary areas of
software.u

Acknowledgements
The author would like to thank the
members of the SATEWG for their par-
ticipation, feedback, and contributions.
Your expertise, focus, and hard work are
greatly appreciated. Also, thank you to
Abby Fronk, Paul Kulgavin, and Kristy
Murphy from Sevatec for all of your
support and contributions to the
SATEWG efforts and this article.

References
1. National Oceanic and Atmospheric

Administration – Office of the Chief
Information Officer and High
Performance Computing and Commu-
nications. Federal Acquisition Reform Act
of 1996. <www.cio.noaa.gov/Policy_
Programs/fara.pdf>.

2. GAO. Defense Acquisitions: Charting a
Course for Lasting Reform. Statement of
Paul Francis, Managing Director
Acquisition and Sourcing Manage-
ment. GAO-09-663T. 30 Apr. 2009
<www.gao.gov/new.items/d09663t
.pdf>.

3. GAO. Department of Defense: Additional
Actions and Data Are Needed to Effectively
Manage and Oversee DoD’s Acquisition
Workforce. GAO-09-342. Mar. 2009
<www.gao.gov/new.items/d09342
.pdf>.

4. 111th Congress. Weapon Systems Acqui-
sition Reform Act of 2009. Public Law
111–23. 22 May 2009 <www.acq.osd.
mil/sse/docs/PUBLIC-LAW-111-23
-22 MAY2009.pdf>.

5. Center for Strategic and International
Studies Defense – Industrial Initiatives
Group. An Assessment of the National
Security Software Industrial Base. 19 Oct.
2006 <http://csis.org/files/media/
csis/pubs/061019_softwareindustrial
base.pdf>.

6. Stevens Institute of Technology –
School of Systems and Enterprises.
Graduate Software Engineering 2009
(GSwE2009):  Curriculum Guidelines for
Graduate Degree Programs in Software
Engineering. Vers. 1.0. 30 Sept. 2009.

7. NDIA – Systems Engineering Divi-
sion. Report on Systemic Root Cause
Analysis of Program Failures. Dec. 2008
<www.ndia.org/Divisions/Divisions/
SystemsEngineering/Documents/Stu

dies/NDIASRCAReportFINA18Dec
2008.pdf>.

8. Assistant Secretary of the Navy for
Research, Development, and Acquisi-
tion. Software Process Improvement Initia-
tive Human Resources Focus Team: Role-
Based Right-Fit Training Technical Report.
6 Nov. 2007 <https://acc.dau.mil/Get
Attachment.aspx?id=180970&pname
=file&aid=31763&lang=en-US>.

9. Under Secretary of Defense for
AT&L. Establishment of Defense Acquisi-
tion Workforce Improvement Act Software
Acquisition Training and Education Work-
ing Group. 2008.

10. Hilburn, Thomas B., et al. A Software
Engineering Body of Knowledge Version 1.0.
SEI, Carnegie Mellon University.
Technical Report. CMU/SEI-99-TR-
004, ESC-TR-99-004. Apr. 1999
<www.sei.cmu.edu/reports/99t004
.pdf>.

11. Naur, Peter, and Brian Randell, eds.
Software Engineering – Report on a Confer-
ence Sponsored by the NATO Science
Committee. Garmisch, Germany, 7-11
Oct. 1968. Jan. 1969 <http://home
pages.cs.ncl.ac.uk/brian.randell/NA
TO /nato1968.pdf>.

12. NDIA – Systems Engineering Divi-
sion. Top Software Engineering Issues
Within Department of Defense and Defense
Industry. Task Group Report. Vers. 5a.
26 Sept. 2006 <www.ndia.org/Divi
sions/Divisions/SystemsEngineering
/Documents/Content/Content
Groups/Divisions1/Systems_Engi
neering/PDFs18/NDIA_Top_SW_
Issues_2006_Report_v5a_final.pdf>.

13. “Software Problems Found on DoD
Acquisition Programs.” Presentation
to the Advisory Group for the Army’s
Strategic Software Improvement
Program. Oct. 2008.

About the Author

Don Scott Lucero is the
deputy director of soft-
ware engineering in the
Office of the Under
Secretary of Defense
(AT&L). He has bache-
lor’s and master’s degrees

in computer science and is DoD acquisi-
tion-certified in four career fields.

1851 S Bell ST
#102
Arlington,VA  22202
Phone: (703) 602-0851
E-mail: scott.lucero@osd.mil

COMING EVENTS

June 6-11

Association for Computing Machinery

SIGMOD/PODs Conference

Indianapolis, IN

www.sigmod2010.org

June 27- July 1

Cisco Live! 2010

Las Vegas, NV

www.cisco-live.com

June 28-30

Command and Control Summit 2010

Washington, D.C.

www.C2Event.com

July 1-3

22nd International Conference on

Software and Knowledge Engineering

Redwood City, CA

www.ksi.edu/seke/seke10.html

July 12-15

20th Anniversary INCOSE International

Symposium 2010

Chicago, IL

www.incose.org/symp2010

July 25-29

34th Annual IEEE Computer Software

and Applications Conference

Los Angeles, CA

www.siggraph.org/s2010

August 9-13

Agile Conference 2010

Nashville, TN

http://agile2010.agilealliance.org

August 15-19

30th International Cryptology Conference

Santa Barbara, CA

www.iacr.org/conferences/
crypto2010

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
<marek.steed.ctr@hill.af.mil>.



Self-efficacy is a characteristic that dis-
tinguishes between individuals accord-

ing to their tendency to perceive difficult
events as challenging and to what extent
they feel capable of accomplishing almost
any task [1]. Based on the research pre-
sented in this article, we suggest consider-
ing self-efficacy as one selection criterion
for software practitioners. Recruiting
practitioners with high levels of self-effi-
cacy may contribute to the organiza-
tion—not only with individuals, but also
on the team and organization levels.

Our research was conducted in a large
international communication company
located in Israel. During Phase I, we
explored for two job levels (i.e., senior
versus junior) personal characteristics that
can predict practitioners’ orientation
towards cooperative software develop-
ment environments, such as Agile ones.
Self-efficacy was found to be a crucial fac-
tor for practitioners in senior positions
only [2]. This finding led us to focus (in
Phase II) on how different levels of self-
efficacy are related to software practition-
ers’ perception of their working environ-
ment.

This article describes the research and
its findings and discusses specific implica-
tions derived from the findings with
respect to the recruitment processes of
software practitioners. One of our prima-
ry contributions, we suggest, is the wider
perspective offered on self-efficacy in the
context of software organizations.
Specifically, our research indicates that
self-efficacy is also related to software
practitioners’ perception of their work
environment.

Phase I: Job-Level Comparison
of Agile Orientation
The first phase of the research (see [2])
examined how software practitioners’
personal characteristics are related to
their Agile orientation. Research partici-
pants comprised 376 software practition-
ers employed in two divisions of the

company. In terms of job level, the sam-
ple included 228 experts and managerial-
level practitioners (61 percent) and 148
junior-level practitioners (39 percent).

The research variables examined in
Phase I were:
• Agile Orientation. Agile orientation

was determined by examining practi-
tioners’ perceptions of how Agile
software development takes place in
practice. It was measured using eight
out of the 23 items from the original
version of Hazzan and Dubinsky’s [3]

questionnaire. The items address cus-
tomer expectations, teamwork habits,
and perceptions.

• Self-efficacy. Software practitioners’
level of self-efficacy was measured
using the new general self-efficacy
scale, as adapted from [4].

• Psychological Needs. McClelland’s
needs theory [5] and needs survey [6]
were used. The needs theory attempts
to explain and predict attitude and
behavior based on an individual’s
internal needs. Software practitioners’
level of psychological needs is exam-
ined using 35 items that appeared on
the original version of the needs sur-
vey, addressing the following five
needs: achievement, dominance, affil-

iation, difference, and attitudes
toward change.

• Perceived Supervisory and Co-
workers’ Support. Software practi-
tioners’ perceptions of co-workers’
and supervisory support was mea-
sured using 26 of the 44 items
appearing on the original question-
naire developed by Halpin and Croft
[7]. This variable includes seven indi-
cators, four of which were adopted
due to their correspondence with the
topic of this study (software develop-
ment environments): cooperation,
morale, intimacy, and manager sup-
portiveness.
All research variables were rated on

the Likert scale (where 1 indicates a low
perceived level of the measured item and
5 indicates a high perceived level)1.

Specifically, by using the structural
equation modeling analysis method [8, 9],
Phase I examined relations between Agile
orientation and psychological needs, self-
efficacy, and perceived supervisory and
co-worker support at junior and manage-
rial-level practitioner job levels. Main
findings in this phase included:
• For both job levels, perceived super-

visory and co-worker support seem to
be a crucial factor that mediates the
relations between the individual’s dif-
ferent psychological needs and his or
her Agile orientation. Specifically, a
high level of perceived support is
positively related to a high level of
orientation. This finding is important
since it has direct implications for the
design of a software development
environment.

• For managerial-level practitioners
only, a high level of self-efficacy is
positively associated with a high level
of perceived support and a high level
of Agile orientation.

Further details on Phase I and explana-
tions of the results are presented in [2].

The fact that self-efficacy is frequent-
ly researched in organizational behavior
studies—and that it appears in our Phase

Recruiting Software Practitioners:
The Importance of Self-Efficacy

Software organizations face challenges when trying to recruit highly competent software practitioners who can successfully par-
ticipate in and contribute to a cooperative working environment. This article suggests—based on the presented research con-
ducted in a large international communication company—that recruiting practitioners with high levels of self-efficacy can con-
tribute to the organization on both the individual and team levels. This article also describes the research and its findings and
discusses specific recommendations based on the research. 

Dr. Tali Seger
Ruppin College, Israel

Dr. Orit Hazzan
Israel Institute of Technology

8 CROSSTALK The Journal of Defense Software Engineering May/June 2010

“Recruiting practitioners
with high levels of
self-efficacy may
contribute to the

organization—not only
with individuals, but also

on the team and
organizational levels.”



I research as a variable that dominates
perceived support and Agile orientation
only among managerial-level practition-
ers—led us to examine its role in soft-
ware practitioners’ perceptions of their
work environment. Such an examination
suggests that self-efficacy may also be
indicative of practitioners’ perception of
climate (expressed by their perceived sup-
port). In other words, along with acting
as an indicator on the individual level,
self-efficacy is an indicator that is related
to the team and organizational levels. The
following sections elaborate on self-effi-
cacy and describe the second phase of
the research, where self-efficacy played a
central role.

Self-Efficacy
The concept of self-efficacy has received
increased attention in organizational
research over the past two decades [10].
Bandura defines self-efficacy as the “belief
in one’s capabilities to organize and exe-
cute the courses of action required to pro-
duce given attainments” [1]. Thus, the
higher one’s self-efficacy is, the more like-
ly that he or she engages and persists in
task-related behavior. Research showed
that self-efficacy positively predicts job
attitudes [11], training proficiency [12],
and job performance [13], and acts as a
buffer to improve the negative effects of
work stressors on employees’ psychologi-
cal well-being [14].

Self-efficacy has also gained some
attention in the software engineering
research, where it is addressed mainly
with respect to competence. For exam-
ple, Paul J. Ambrose proposed that in
order to obtain a holistic assessment of
competence, it is essential to evaluate
developer perceptions and beliefs on
what they can achieve—since these
beliefs can impact their performance,
regardless of the skills the developer
possesses [15]. For this purpose,
Ambrose developed a measure of devel-
oper self-efficacy to assess a critical facet
of developer competence. In [16], the
self-efficacy model is used in the context
of knowledge sharing. The authors con-
cluded that a software manager (or other
managers) can easily look at the inputs
and outcomes of the model and see
where he or she could positively affect
tacit knowledge sharing. The authors of
[17] investigated factors associated with
software developers’ intention to reuse
software assets. They found that techno-
logical-level (infrastructure) and individ-
ual-level (reuse-related experience and
self-efficacy) factors were major determi-
nants of the developers’ behavior.

Phase II: Self-Efficacy in
Software Practitioners’ Profile 
Phase II of the research focused on the
role of self-efficacy in practitioners’ per-
ceptions of their work environment.
Specifically, we wanted to determine
whether or not it was possible to distin-
guish between practitioners with different
(high and low) levels of self-efficacy using
the variables included in our research. If it
is possible, we could argue that software
organizations may benefit from the
recruitment of practitioners with a high
level of self-efficacy, not only on the indi-
vidual level (based on the general studies
on self-efficacy), but also on the
team/organization level (based on the
results of Phase I of our research).

Discriminant function analysis2 was
used to explore the research hypothesis—
that is, the ability to differentiate between
software practitioners according to their
level of self-efficacy by relying on the
other Phase I variables. In general, this
analysis method enables the determination

of which variables discriminate between
two or more groups. The basic idea under-
lying discriminant function analysis is to
establish whether groups differ with
respect to the mean value of the variables,
and then to use these variables to predict
group membership (e.g., of new cases). If
the mean values of the variables are sig-
nificantly different in different groups,
then we can say that these variables dis-
criminate between the groups.

Specifically, given two groups, the dis-
criminant function analysis selects from
the set of the research variables, a subset
of variables that significantly distinguish
between the two groups (significance level
of at least p < .05). In the case of a single
continuous variable, a tt test is used to
determine whether or not a variable dis-
criminates between groups; in the case of
nominal variables, the chi-square (χ22)  test
is used and for ordinal variables, and a
Mann-Whitney test3 is employed. In such
cases, the FF value for each variable indi-
cates its statistical significance in the dis-
crimination between groups; that is, FF is a

Recruiting Software Practitioners: The Importance of Self-Efficacy

May/June 2010 www.stsc.hill.af.mil 9

Table 1: Summary of Canonical Discriminant Functions and Standardized Canonical Discriminant
Function Coefficients

Agile Culture Perceptions

Cooperation

Morale

Intimacy

Manager Supportiveness

Achievement

Dominance

Affiliation

Difference

Attitudes Toward Change

Wilks’ Lambda5 (1,133) = .52 Eigenvalue6 = .91 Canonical Correlation7 = .69

Chi Square (10) = 83.02, p <_        .001

**p < .01; ***p < .001 SD=Standard Deviation

Mean SD
Wilks’

Lambda Beta4 FMean SD

LOW Self-
Efficacy
(<_ 3.75)
(N = 55)

HIGH Self-
Efficacy
(>_ 4.75)
(N = 80)

LOW (<_ 3.75)

HIGH (>_ 4.75)

47 (85.5%)

11 (13.7%)

LOW
(<_ 3.75)

8 (14.5%)

69 (86.3%)

HIGH
(>_ 4.75)

Predicted Level

80 (100%)

Total

55 (100%)

3.20 .45 3.51 .62 .93 .33 10.34**

3.17 .51 3.47 .62 .94 .14 8.33**

3.40 .66 3.86 .73 .91 -.07 13.84***

3.24 .54 3.66 .65 .90 .09 15.42***

3.54 .44 3.88 .69 .93 .22 10.38**

3.89 .45 4.48 .39 .67 .37 65.21***

3.10 .51 3.71 .55 .76 .45 42.84***

3.95 .34 4.36 .42 .79 -.01 35.26***

3.93 .42 4.18 .56 .95 .16 7.66**

3.80 .61 4.39 .51 .78 .40 37.17**

Agile Culture Perceptions

Cooperation

Morale

Intimacy

Manager Supportiveness

Achievement

Dominance

Affiliation

Difference

Attitudes Toward Change

Wilks’ Lambda5 (1,133) = .52 Eigenvalue6 = .91 Canonical Correlation7 = .69

Chi Square (10) = 83.02, p <_        .001

**p < .01; ***p < .001 SD=Standard Deviation

Mean SD
Wilks’

Lambda Beta4 FMean SD

LOW Self-
Efficacy
(<_ 3.75)
(N = 55)

HIGH Self-
Efficacy
(>_ 4.75)
(N = 80)

LOW (<_ 3.75)

HIGH (>_ 4.75)

47 (85.5%)

11 (13.7%)

LOW
(<_ 3.75)

8 (14.5%)

69 (86.3%)

HIGH
(>_ 4.75)

Predicted Level

80 (100%)

Total

55 (100%)

3.20 .45 3.51 .62 .93 .33 10.34**

3.17 .51 3.47 .62 .94 .14 8.33**

3.40 .66 3.86 .73 .91 -.07 13.84***

3.24 .54 3.66 .65 .90 .09 15.42***

3.54 .44 3.88 .69 .93 .22 10.38**

3.89 .45 4.48 .39 .67 .37 65.21***

3.10 .51 3.71 .55 .76 .45 42.84***

3.95 .34 4.36 .42 .79 -.01 35.26***

3.93 .42 4.18 .56 .95 .16 7.66**

3.80 .61 4.39 .51 .78 .40 37.17**

Table 2: Classification Results for Self-Efficacy Levels



measure of the extent to which a variable
makes a unique contribution to the pre-
diction of group membership.

To strengthen the results of this
research approach, a sub-sample of the
376 practitioners was examined. It includ-
ed only those practitioners who could be
clearly characterized with either low levels
of self-efficacy (lower than 3.75, 55 prac-
titioners) or high levels of self-efficacy
(higher than 4.75, 80 practitioners). Figure
1 presents the means of the research vari-
ables for these practitioners.

Table 1 (see previous page) presents the
FF values of our research variables, calculat-
ed to distinguish between software practi-
tioners with high or low levels of self-effi-
cacy. It also shows that all research vari-
ables used in Phase I are included in this set
of variables; in other words, they all con-
tribute to the discrimination between the
two groups of software practitioners.
Figure 1 reflects this claim by illustrating
that for each research variable, its mean for
participants with low self-efficacy is lower
from its means for participants with high
self-efficacy. The logical conclusion from
this data is that all these variables con-
tribute to the discrimination between the
two groups.

Specifically, as Figure 1 shows, practi-
tioners with high self-efficacy tend to have
a greater Agile orientation than do low
self-efficacy practitioners; in addition,
high self-efficacy practitioners are:
• More cooperative.
• Have a greater sense of morale work-

ing with their team members.
• Feel that their personal relationships

with co-workers are closer.
• Get better managerial support.
• Report higher needs in achievement,

dominance, affiliation, and difference.
• Have better attitudes towards change.
A close examination of each of these vari-
ables clearly justifies their relative value

with respect to practitioners with low and
high levels of self-efficacy.

Table 2 (see previous page) shows that
the canonical discriminant function, con-
structed by the discriminant function
analysis by using the other research vari-
ables, classifies correctly high-percentage
of the practitioners 85.9 percent8 accord-
ing to their level of self-efficacy.
Specifically, the function classifies 85.5

percent  of the low self-efficacy partici-
pants and 86.3 percent of the practition-
ers with high level of self-efficacy.
Visually, the numbers in bold print indi-
cate correct classification of 47 out of the
55 practitioners with low self-efficacy and
of 69 out of the 80 practitioners with a
high level of self-efficacy.

Based on the integration of the pre-

sented results, we suggest that since the
research variables both help in distinguish-
ing between practitioners with high and
low levels of self-efficacy and are relevant
for software development environments,
it is appropriate to use self-efficacy as an
indicator for an individual’s perception of
his or her development environment.

Recommendations
We recommend using self-efficacy beyond
its current role as an indicator of practi-
tioners’ performance. Specifically, our
research indicates that self-efficacy can
also be used as an indicator of whether or
not a practitioner perceives his or her
environment as being supportive—a per-
ception that is positively correlated with
development environments that encour-
age teamwork and cooperation, such as
Agile software development. Based on
this finding we can suggest, for example,
that recruiting practitioners with high lev-
els of self-efficacy may contribute to the
organization on the individual level by
recruiting practitioners with high achieve-
ments and strong beliefs in their perfor-
mance, but also on the team and organiza-
tional level. Accordingly, we propose that
recruiting software practitioners with high
levels of self-efficacy—an easy-to-mea-
sure individual characteristic utilizing
available questionnaires—may foster the
formation of a supportive work climate.
Needless to say that when making such
decisions, each company should check
very carefully its full set of considerations
and characteristics and decide on the
importance attributed to each factor in its
recruitment processes.u

References
1. Bandura, Albert. Self Efficacy: The

Exercise of Control. New York: W.H.
Freeman, 1997.

2. Seger, Tali, Orit Hazzan, and Ronen
Bar-Nahor. Agile Orientation and Psycho-
logical Needs, Self-Efficacy, and Perceived
Support: A Two Job-Level Comparison.
Proc. of the Agile 2008 Conference.
Toronto, Canada. 4-8 Aug. 2008: 3-14.

3. Hazzan, Orit, and Yael Dubinsky.
Clashes between culture and software develop-
ment methods: The case of the Israeli hi-tech
industry and Extreme Programming. Proc.
of the Agile 2005 Conference. Denver.
24-29 July 2005: 59-69.

4. Chen, Gilad, Stanley M. Gully, and
Dov Eden. “General self-efficacy and
self-esteem: toward theoretical and
empirical distinction between correlat-
ed self-evaluations.” Journal of Organi-
zational Behavior 25.3 (2004): 375-395.

5. McClelland, David C. 1961. The

Software Human Capital

10 CROSSTALK The Journal of Defense Software Engineering May/June 2010

Figure 1: Means of Research Variables for Practitioners with High and Low Levels of Self-Efficacy

“... self-efficacy can also
be used as an indicator

of whether or not a
practitioner perceives his
or her environment as
being supportive—a
perception that is

positively correlated with
development

environments that
encourage teamwork
and cooperation.”



Achieving Society. Princeton, N.J.: D. Van
Nostrand, 1961.

6. McClelland, David C. Human
Motivation. New York: Cambridge
University Press, 1987.

7. Halpin, Andrew W., and Don B. Croft.
1963. The Organizational Climate of
Schools. Chicago: Midwest Administra-
tion Center of the University of
Chicago, 1963.

8. Kline, Rex B. Principles and Practice of
Structural Equation Modeling. New York:
The Guilford Press, 1998.

9. Mueller, Ralph O. Basic Principles of
Structural Equation Modeling. New York:
Springer-Verlag, 1996.

10. Chen, Gilad, and  Paul D. Bliese. “The
Role of Different Levels of
Leadership in Predicting Self and
Collective Efficacy: Evidence for
Discontinuity.” Journal of Applied
Psychology 87.3 (2002): 549-556.

11. Saks, Alan M. “Longitudinal field
investigation of the moderating and
mediating effects of self-efficacy on
the relationship between training and
newcomer adjustment.” Journal of
Applied Psychology 80.2 (1995): 211-225.

12. Martocchio, Joseph J., and Timothy A.
Judge. “Relationship between consci-
entiousness and learning in employee
training: mediating influences of self-
deception and self-efficacy.” Journal of
Applied Psychology 82.5 (1997): 764-73.

13. Stajkovic, Alexander D., and Fred
Luthans. “Self-efficacy and work-relat-
ed performance: A meta-analysis.”
Psychological Bulletin 124.2 (1998): 240-
261.

14. Jex, Steve M., and Paul D. Bliese.
“Efficacy beliefs as a moderator of the
impact of work-related stressors: A
multi-level study.” Journal of Applied
Psychology 84 (1999): 349-361.

15. Ambrose, Paul J. “Metacognition and
software developer competency: con-
struct development and empirical vali-
dation.” Issues in Information Systems 6.2
(2003): 273-279.

16. Endres, Megan L., et al. “Tacit knowl-
edge sharing, self-efficacy theory, and
application to the Open Source com-
munity.” Journal of Knowledge Manage-
ment 11.3 (2007): 92-103.

17. Mellarkod, Vidhya, et al. “A multi-level
analysis of factors affecting software
developers’ intention to reuse software
assets: An empirical investigation.”
Information & Management 44.7 (2007):
613-625.

Notes
1. In addition, two background vari-

ables—years of experience and age—
were collected; they were not, howev-
er, included in this analysis.

2. Our description of the discriminant
function analysis is partially based on
<www.statsoft.com/textbook/dis
criminant-function-analysis>.

3. For more on Mann–Whitney and chi-
square testing, see <http://en.wiki
pedia.org/wiki/Mann-whitney> and
<http://en.wikipedia.org/wiki/Chi
-square_test>, respectively.

4. The betas are the coefficients of the
unstandardized discriminant function.
Each subject’s discriminant score is
computed by entering his or her vari-
able values (raw data) for each of the
variables in the equation. The betas are
used to construct the actual prediction
equation, which can then be used to
classify new cases. In our case, see
Table 2.

5. Wilks’ Lambda is the proportion of
total variance in the discriminant

scores not explained by differences
among groups. A lambda of 1.00
occurs when observed group means
are equal. A small lambda indicates
that group means appear to differ.
Here, the Lambda of 0.52 has a signif-
icant value (Sig. < 0.001); thus, the
group means appear to differ.

6. Eigenvalue: A large eigenvalue, as pre-
sent in our case, indicates a high pro-
portion of explained variance in the
predicted variable (in our case, level of
self-efficacy).

7. The canonical correlation is the multi-
ple correlation between the discrimi-
nant scores and the levels of the
dependent variable. A high correlation
indicates a function that discriminates
well. The present correlation of 0.69 is
not very high (1.00 is perfect).

8. Determined by adding the number of
employees at high and low levels
(47+69) divided by total practitioners
(55+80).

Recruiting Software Practitioners: The Importance of Self-Efficacy

May/June 2010 www.stsc.hill.af.mil 11

About the Authors

Tali Seger, Ph.D., is a senior lecturer in
the Ruppin Academic Center and the
head of Human Resource and Organiza-
tional Development in their MBA pro-
gram. From 1998-2004, Seger was an
organizational consultant and worked as
a human resources manager at several
Israeli companies. She received her doc-
torate in business administration from
Haifa University in 2006.

Ruppin Academic Center
Department of Business 
Administration
Emek Hefer 40250
Israel
E-mail: talis@ruppin.ac.il 

Orit Hazzan, Ph.D., is
an associate professor at
the Department of Edu-
cation in Technology and
Science of the Technion
– Israel Institute of
Technology. In 2004, she

co-authored “Human Aspects of
Software Engineering” with the late Jim
Tomayko. Her second book (co-
authored with Yael Dubinsky), “Agile
Software Engineering,” was published in
2008. Hazzan is a consultant for several
software projects in the Israeli software
industry.

Technion
Israel Institute of  Technology
Department of Education in 
Technology and Science 
Haifa 32000
Israel
E-mail: oritha@tx.technion.ac.il

There has been the long-held idea that individual success increases from self-efficacy:
one’s belief in their ability to complete a project. Success in any project and in any
organization—including in the DoD—can be buoyed by high levels of self-efficacy.
Though one can argue that self-efficacy by itself is sufficient for the creation of a suc-
cessful team, our findings emphasize that the way in which the environment is per-
ceived by individuals should be considered as well. Through understanding these dif-
ferent perceptions, and recruiting practitioners who have high levels of self-efficacy,
individuals, teams, organizations, and their products, all improve.

Software Defense Application



In October 2006, Lt. Gen. Michael
Hamel [1], the SMC’s Program

Executive Officer, briefed the SMC sys-
tem software growth trend to the National
Defense Industry Association Defense
Software Strategy Summit (see Figure 1).

In [2], Buettner and Arnheim
described the SMC-wide review of test
issues attributed to the TSPR-era acquisi-
tion reform policy changes and its impacts
on embedded flight software; also provid-
ed were space computer technology
improvement reasons for the observed
growth trend. While the legacy class of
vehicles (shown in Figure 1) appear to
have a manageable growth trend, the soft-
ware growth trend for the future space
systems (with envisioned systems greater
than one million SLOC) is beyond any-
thing our space defense establishment has
had to grapple with in the past.

Hamel’s presentation supported a
broad industry software strategy summit

report [3] containing the following recom-
mendations (among others):
• Review and analyze the software engi-

neering, acquisition, and life cycle
management initiatives, policies,
processes, and plans. This should
occur in service branches (Army, Navy,
and Air Force), defense agencies, and
in other organizations such as the
National Security Agency.

• Solicit service branch, major com-
mand, engineering center, and Pro-
gram Executive Office software life-
cycle management recommendations.

• Define and publish the DoD’s long-
term objectives and course of action
with associated priorities and resources
in a software life-cycle strategy.
In the face of increased software

demand, software project difficulties, lim-
ited experienced personnel availability,
varied standards and processes, and
declining budgets, the report recommends

that DoD management staff continue
aggressively focusing on “software engi-
neering, acquisition, management, and
human resource life-cycle challenges
through the application of resources and
focused action” [3].

Fundamentally, many of the problems
are a side effect of the DoD’s current
competitive bid acquisition strategy. It is
our belief that a number of the problems
could be minimized using a paradigm shift
away from competing for the software
engineering and development aspect of
these software-intensive contracts. Hence,
we provide supporting arguments and
information showing that a number of the
issues that we have faced on the SBIRS—
and those facing other software-intensive
system acquisitions—are side-effects
attributable to constraints imposed by the
competitive-bid acquisition process. These
constraints stress cost and schedule from
the onset, resulting in additional rework
cycles from the late discovery of quality
issues. Furthermore, we will explain how a
paradigm shift could minimize these
issues for the class of space system acqui-
sitions that are on the future systems soft-
ware growth trend. The current acquisi-
tion paradigm involves a competitive bid
(with software as a factor) between teams
of contractors in response to a request for
proposal (RFP).

The Problem With “Best
Value” Bidding 
In a Defense Acquisition University
(DAU) course class exercise (attended by
Millette), students assumed the roles of
contractors preparing a bid response to an
RFP for a software-intensive system.
Students are given three options for soft-
ware costs: a low-, medium-, and high-
cost figure. The evaluation criteria indicat-
ed that cost was not specifically a criterion,
but it is certainly always considered.

Having the development life-cycle

From Projects to People:
Shifting the Software Acquisition Paradigm

The amount of embedded flight software is growing at a tremendous rate in the National Security Space (NSS) systems under
development by the Space and Missile Systems Center (SMC). Problems with Total System Performance Responsibility
(TSPR)-era programs like the Space-Based Infrared System (SBIRS) have been aligned with opinions that the DoD has lost
the “recipe” for acquiring complex space systems. The software-intensive nature of next-generation space systems necessitates
consideration of a new software-intensive system acquisition paradigm to not only take full advantage of the best people that
defense contractors have to offer, but to ensure the ability to engineer and build these systems far into the future.

Lt. Col. Chad Millette
United States Air Force

Dr. Douglas J. Buettner
The Aerospace Corporation

12 CROSSTALK The Journal of Defense Software Engineering May/June 2010

1,000

900

800

700

600

500

400

300

200

100

0

1988

1,
00

0 
S

ou
rc

e 
Li

ne
s 

of
 C

od
e 

(K
S

LO
C

)

Launch Year

Milstar I
P/L+S/C GPS IIR

P/L+S/C

Milstar II
P/L+S/C

AEHF
P/L+S/C

SBIRS High
HEO P/L

WGS
S/C

NPOESS
1 P/L+S/C

GPS III
P/L+S/C

STSS
P/L

Legacy
Systems: 

< 100K SLOC

1992 1996 2000 2004 2008 2012

Future Systems:
Upwards of

1 Million SLOC

GPS IIF
P/L+S/C

SBIRS High
GEO

P/L+S/C

SR
P/L+S/C

P/L = Payload, S/C = Spacecraft, AEHF = Advanced Extreme High Frequency, GEO = Geosynchronous Earth Orbit, GPS = Global Positioning System,
HEO = Highly Elliptical Orbit, NPOESS = National Polar-Orbiting Operational Environment, STSS = Space Training and Surveillance System,
WGS = Wideband Global Satcomm

Figure 1: Software Growth Trend [1]



issues faced by the SBIRS in their back-
ground, the group selected the high soft-
ware cost as a way to mitigate the overall
software development risk. The students
believed that the high-cost figure would,
combined with staying under the life-cycle
and unit procurement cost thresholds:
reduce overall cost and schedule risk; help
inevitable requirements creep, rework, and
other typical software cost and schedule
drivers; and present a better risk-mitiga-
tion position. However, when the other
groups briefed their analysis of the pro-
posal—and specifically, why they did not
recommend selection—each cited the
high software cost as a negative aspect of
the proposal.

In the SMC, we learn this lesson often:
It is not in the contractor’s best interest to
bid the actual, expected, or risk-sensitive
cost, as the evaluators may not recognize
this as a positive and will only focus on the
bottom line. The contractors we work with
are not devious or intentionally trying to
underbid these efforts maliciously; they are
simply doing what they believe they have
to do in order to secure the work. If one
bidder of the group goes with the realistic
or conservative cost estimate, they run the
risk of being identified as not providing
the best value bid for the government.

From this experience—and some of
the observed strategies employed by the
bidders for the SBIRS program and oth-
ers—we conclude that contractors will
(and do) try to utilize cost-minimization
strategies to win contracts. If they are bid-
ding on multi-billion dollar systems, cut-
ting costs to save the government billions
of dollars has repeatedly been shown to
be a winning strategy. While shaving costs
in an attempt to provide the government
and the taxpayer with a system for a good
value is appreciated, it ultimately raises the
question of how such strategies could
impact the quality of the NSS mission’s
critical software component early in a pro-
gram’s life cycle.

In [4], seven different flight software
projects contained in an Aerospace
Corporation database are reviewed: Two
remarkably different software projects are
compared in detail using a system dynam-
ics model. Chapters focused on qualitative
research and game theory provide a num-
ber of insightful government schedule
and cost pressure strategy impacts on con-
tractor quality. Also included is a model
showing the deleterious schedule impacts
from the early life-cycle schedule-driven
behavior: minimizing effort in quality-
enhancing peer reviews and developer unit
testing (that is often perceived by these
individuals to be a waste of time).

Contrary to the near-term schedule-saving
efforts by engineers, the opposite schedule
effect occurs in the long-run due to the
increased time spent fixing errors that are
found later (e.g., during software integra-
tion testing).

The application of game theory con-
cepts (see sidebar) suggests how contracts
can get into the situation that TSPR poli-
cies seemed to accentuate. TSPR policies
both reduced government oversight lead-
ing to contractor decisions contrary to
government’s quality expectations, and
removed software development standards
from the contracts. Software standards are
essential on contracts: They result in
development and test practice compliance
that all contractors use to achieve a rigor-
ously engineered software product with a
demonstrated level of quality required by
space systems. Thus, when it comes to
software quality, strategies for bidding low
will inevitably lead to cost and schedule
overruns.

Reference [4] provides 26 specific rec-
ommendations for the government and
contractors, including controversial sub-
jects like mandating certifications for soft-
ware professionals. However, as long as we
continue to competitively bid software (as
an integral part of NSS systems), the cost
and schedule driven aspects faced by the
SBIRS program will persist—if not get
even worse—in the future. It is our belief
that these issues are founded in the gov-
ernment’s competitive bid approach, there-
fore making the current acquisition model
unsustainable—even using newer model-
based software development methods uti-
lized by the automotive industry pushing
cars into the 10 million and 100 million
LOC regime. The adoption of these devel-
opment methodologies into embedded
space systems will undoubtedly help; how-
ever, due to the nature of the bidding
process for these unique and extremely
costly systems, we contend that they do
not address the fundamental issues5.

From Projects to People: Shifting the Software Acquisition Paradigm

May/June 2010 www.stsc.hill.af.mil 13

Game theory can be used to analyze optimal strategies for action in competitive
situations with two or more players of the game1. Game theorists use a strategy
matrix to analyze each player’s strategies when they attempt to take into account
the action of their opponent in their decision-making process in order to maximize
their payoff 2. An example of a normal form game matrix with two distinct strate-
gies (A and B) has Player 1 payoffs of α1 for the A strategy and β1 for the B strat-
egy, while Player 2 payoffs are α2 for the A strategy and β2 for the B strategy:

The game is called a zero-sum game when one player’s payoff (win) is the other
player’s loss. However, the game is called a non-zero sum game if the payoff to the
winning player is not from the losing player3.

We now consider a case where an acquisition game for a very expensive billion-
dollar satellite system results in only two potential bidders, with the government
acquirer responsible for setting up the rules of the game. Both bidders have two
pure strategies: the A strategy results in providing a bid for non-recurring research
and engineering to build the system that incorporates more costly risk mitigation
techniques leading to a politically unacceptable cost plus a substantial fee if they
win; and a B strategy that results in an acceptable cost plus a substantial fee if they
win. If they lose, they simply get reimbursed for their effort to create a bid.
Mathematically we write:

(αα1 = C + f1) >> (c + f1 = ββ1) likewise 
(αα2 = C + f2) >> (c + f2 = ββ2).

In this situation, the A strategy with its higher cost risk mitigation activities is
considered a losing strategy. The highly desired B strategy solution (in this case) is
a Nash equilibrium4. Unless both bidders were required to include the cost for
those risk mitigation activities in their bids, the likely outcome is bids that removed
these engineering tasks.

Game Theory and the Bidder’s Billion-Dollar Dilemma



Software Human Capital

In addition to the TSPR policy
changes that directly impacted space sys-
tem software development and testing
standards previously mentioned, the cost
as an independent variable (CAIV) strate-
gy was envisioned as a method for gov-
ernment to control cost by making it a
constraint [14]. Consider the impact of
these constraints at the software engineer
level: Tough cost, schedule, and quality
tradeoff decisions need to be made when
trying to hire the people required to com-
plete the contractually obligated design
documents, write the software code, and
test the software. In addition, staffing is
required to adequately review the design,
code, and test products. Experience has
often shown that sound engineering judg-
ment becomes dominated by what is
believed to be good enough.

Hence, we propose an alternative soft-
ware acquisition paradigm that we believe
can work to effectively minimize a number
of these issues: Remove the competition
for low-cost from consideration for the
software component of the system acqui-
sition.

Causes of Project Success—
and Failure 
Ivar Jacobsen, Grady Booch, and James
Rumbaugh identify software success fac-
tors as dependent on people, process,
product, project, and tools [15]; it can also
be argued that process, product, project,
and tools are also fundamentally depen-
dent on people, and thus people are central
to the entire software problem. While
establishing an early version of COCO-
MO, Barry Boehm found that success—in
regards to lower costs and on-schedule
delivery—was highly dependent on the
software team [16]. Considering that con-
tractors are forced to manage and change
out the personnel they hire and retain to
build our systems (based on the contracts
they are able to win), we are faced with a
situation where we are dynamically depen-
dent on the number and quality of person-
nel available at any given time. Even true
A-teams under adverse cost and schedule
constraints have a high probability of sig-
nificantly overrunning cost and schedule in
order to maintain quality. However, pro-
jects driven by cost are not likely to get the
best people. The result is a mixed bag of
really good people trying to pull along a
cadre of less-capable performers that help
bring staffing numbers up to the appropri-
ate number the cost/schedule models sug-
gest. These models allow for dialing in the

capability of teams; our experience from a
number of programs, however, shows that
contractors always claim that they have the
A-team, that they are CMMI® Level (fill in
your favorite contractually obligated num-
ber here), and that their team can write the
software faster than the speed of light with
virtually no defects. When the project is
finally over (after either numerous cost
overruns or finally being cancelled), these
people are recycled onto the next project.
Hence, people—more specifically, the
assignment, organization, and overall man-
agement of people—are the Achilles’ heel
of software.

Oftentimes, projects are saddled with
the following problems, all leading to late
life-cycle schedule and cost overruns:
• Early life-cycle personnel lack the fun-

damental knowledge required to suc-
cessfully write requirements or to
design, build, and mathematically test
complex real-time satellite control
software.

• Management does not appreciate the
need for following documented engi-
neering processes.

• Cost- and schedule-driven decisions,
mandated by government action,
remove numerous prudent risk-mitiga-
tion steps.
Once upon a time, we could hide our

software foibles behind extremely visible
hardware issues, but not any longer.

Establishing a National
Systems Engineering
Laboratory 
Quality and schedule could be met (at least
within a consistent cost and schedule mar-
gin) if we fundamentally shift our acquisi-
tion paradigm: from program-by-program
cost and schedule management to a focus
on the quality of people used to feed our
engineering teams. This would be accom-
plished by establishing what we call a
National Systems Engineering Laboratory

(NSEL). In it, the private sector (the big
system integration and Systems Engi-
neering and Technical Assistance contrac-
tors) are initially reimbursed to provide
these facilities with their very best soft-
ware personnel (management and engi-
neers). The NSEL would also be coopera-
tively staffed with selected personnel from
our universities, federally funded research
and development centers (FFRDCs), and
government services.

As new systems are being competi-
tively designed by select senior private
sector staff (competing the hardware and
model-based software designs based on
system requirements), they are supple-
mented by NSEL personnel and high-
performing university students working
behind strict firewalls. NSEL and student
personnel would have the experience and
training to provide an initial set of docu-
mentation and prototypes to acquisition
staff. The winning contractors, supple-
mented with these NSEL (and now more
mature) student personnel, would build,
from the preliminary design and proto-
type, the final software.

Standard systems and software devel-
opment process tools—such as the Agile,
Spiral, or incremental models—are used
insomuch as they are tailored by the engi-
neers themselves to follow the best prac-
tices brought forth from industry and
academia, based on each system’s size and
type of effort. Personnel are trained and
incentivized to both follow these process-
es and also suggest process improvements
as lessons are learned and technology
advances. Overtime policy can be set to
maintain schedule, but never to the detri-
ment of quality. Incentives are provided to
ensure creation of only the end-products
necessary for designing the system and the
documents that must be handed off to the
next development phase or as required to
maintain the system.

Prestige combined with attractive pay
and high quality of life, NSEL site loca-
tions can be used to attract the best of
the best. Contractor payouts are used to
entice industry to bring to the table for
consideration their best processes, soft-
ware designs, and existing code used in
other systems. Once the final system
design has been selected, the pool of
available top-notch engineers can draw
from a wealth of software designs and
prototype code to build the final flight
code. Existing systems in use can draw
from the same pool of engineers to
maintain these systems, as needed.

Another consideration is utilizing uni-
versity students and fresh graduates as a
significant labor source. Software-inten-

14 CROSSTALK The Journal of Defense Software Engineering May/June 2010

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

“... a properly managed
labor pool could provide

cost advantages as
well as a method for

identifying and
retaining the best

engineering talent.”



sive systems are usually dependent on the
development and maintenance of signifi-
cant specialized software utilities and
tools to support the development effort.
Select students using an open-source
software paradigm could interact with the
top-notch NSEL engineers (as their cus-
tomers) to develop the required tool
suites. While open-source code in our
defense systems is usually fraught with
security concerns, a properly managed
labor pool could provide cost advantages
as well as a method for identifying and
retaining the best engineering talent.
Expanding this open-source tool suite
support effort to include actual system
code could be investigated once the para-
digm takes hold.

This alternative paradigm would alle-
viate the dilemmas facing prospective
bidders on software-intensive acquisition
efforts (exemplified in the DAU exam-
ple). Under the NSEL paradigm, under-
bidding the software development cost
would be unnecessary because it would
not be a direct labor charge to the con-
tractor. The late life-cycle software devel-
opment personnel would be supplied by
the NSEL, and could tap into prototypes
from our universities, the contractor
community, and the engineered design
for the target system. This would ulti-
mately lead to more predictability in the
cost and schedule of the software devel-
opment efforts, as the NSEL would
employ high-quality people using disci-
plined processes tailored for the specific
acquisition underway.

The paradigm—that funds an NSEL
as a national asset, and removes the soft-
ware cost consideration from the bidding
process—includes the following:
• There will be competition between

engineering teams.
• Early software activities will provide

risk mitigation for the construction
phase of the contract.

• Independent government and sup-
port staff will evaluate the engineer-
ing designs and estimated construc-
tion costs for the different systems.

• NSEL staff will be included on each
team, with the expectation of work-
ing in seclusion from NSEL members
on the other team.

• Teams will individually utilize the
pool of available sub-contractors—
with products and services deter-
mined by the systems and software
engineering each team requires to
build the system.

• The engineering and software proto-
typing staff is selected based on
merit, capability, and need.

• Software build and test staff is select-
ed in part from the NSEL staff on
the losing team and from engineer-
ing/software prototyping staff. They
will test the constructed software sys-
tem or augment the software develop-
ment and test phase, based on staffing
requirements.
The predicted end-result is a higher

quality software product that is staffed
with the best people available. However,
it should be mentioned that the number
of new software-intensive systems we
could build as a nation would be con-
strained by the number of NSEL staff.
Yet, we view this as an acceptable engi-
neering alternative to the CAIV-approved
approach under TSPR.

The NSEL is first and foremost
tasked with building and maintaining
quality systems, with a strong eye towards
successfully designing and building cost-
and schedule-acceptable solutions. Under
this premise, quality staff can, with time,
create their own training and competitive
hiring policies for their engineering posi-
tions. In this manner, the processes
developed and promulgated by these staff
tend (through generations of engineers)
towards a level that can keep up with
demand. While problems will undoubted-
ly arise, this self-contained, continual
learning environment will foster and lead
towards solutions for these issues.

We also propose that NSEL directors
for functional areas in engineering are
hand-selected for prestigious appoint-
ments from academia, the FFRDCs, and
private industry. Their hiring will be
based on current requirements for gov-
ernment positions—and will not be hired
via political appointment. The directors’
primary role will be to resolve technical
and management issues—with the
national need, which is always at the cen-
ter of their decision-making process.

Conclusions
An NSEL for defense acquisition strate-
gy is an alternative system acquisition
concept that is based on a grass-roots or
grounds-up negotiation between the
engineering disciplines. It has the poten-
tial to take the DoD boldly where no one
has gone before—allowing for acquisi-
tion, next-generation-embedded, soft-
ware-intensive systems. This grass-roots
process is designed to provide the best
quality-minded engineers needed to yield
engineered systems with a consistent cost
and schedule. We also believe that this
concept is required to mitigate the soft-
ware-intensive, system-driven people fac-

tors that have plagued a number of our
system acquisitions—leading some to
believe that we have lost our space acqui-
sition recipe for success. We acknowledge
that the concept must pass through the
normal gamut of politically driven nego-
tiations. Hopefully, during this process,
the concept for building a national capa-
bility consisting of the best of the best—
and a method to identify and retain our
university engineering talent—is not lost.
We’ve even heard of an even more dras-
tic strategy: using  a draft to nationalize
our software development and system
engineering talent. Short of this contro-
versial and unlikely option, creating a
prestigious system engineering research
and development laboratory—retaining
and nurturing the world’s best engineer-
ing talent—is a sound method, funda-
mentally based on the talent-retention
successes of our national laboratories.
Our national goal should be to attract the
best personnel to this field and we sug-
gest that subtleties such as funding
details, redundant locations, and other
issues can all be politically negotiated and
worked as this concept is matured.u

References
1. Hamel, Michael. Growth Trend in System

Software. Proc. of the Defense Soft-
ware Strategy Summit. Arlington, VA.
18-19 Oct. 2006 <www.ndia.org/
Divisions/Divisions/SystemsEngi
neering/Documents/Content/Content
Groups/Divisions1/Systems_Engi
neering/Hamel_10_18.pdf>.

2. Buettner, Douglas J., and Bruce L.
Arnheim. The Need for Advanced Space
Software Development Technologies. Proc.
of the 23rd Aerospace Testing
Seminar. Manhattan Beach, CA: 10-12
Oct. 2006.

3. Office of the Deputy Under Secretary
of Defense for Acquisition and
Technology Systems and Software
Engineering. Defense Software Summit
Report. Final Draft, Vers. 1.0.
Washington D.C.: Pentagon. Oct. 2006
<www.acq.osd.mil/sse/docs/NDIA
-Defense-Software-Summit-Report
-October-2006.pdf>.

4. Buettner, Douglas J. “Designing an
Optimal Software-Intensive System
Acquisition: A Game Theoretic
Approach.” Ph.D. Dissertation. Astro-
nautics and Space Technology Di-
vision, Viterbi School of Engineering,
University of Southern California,
Sept. 2008.

5. Schinasi, Katherine V. “Military Space
Operations: Common Problems and
Their Effects on Satellite and Related

From Projects to People: Shifting the Software Acquisition Paradigm

May/June 2010 www.stsc.hill.af.mil 15



Acquisitions.” Letter to The Honor-
able Jerry Lewis. U.S. General
Accounting Office. GAO-03-825R
Satellite Acquisition Programs. 2 June
2003 <www.gao.gov/new.items/d038
25r.pdf>.

6. GAO. Defense Acquisitions: Improvements
Needed in Space Systems Acquisition Man-
agement Policy. GAO-03-1073. 15 Sept.
2003 <www.gao.gov/new.items/d03
1073.pdf>.

7. GAO. Defense Acquisitions: Despite Re-
structuring, SBIRS High Program Remains
at Risk of Cost and Schedule Overruns.
GAO-04-48. 31 Oct. 2003 <www.
gao.gov/new.items/d0448.pdf>.

8. GAO. Space Acquisitions: Stronger Devel-
opment Practices and Investment Planning
Needed to Address Continuing Problems.
GAO-05-891T. 12 July 2005 <www.
gao.gov/new.items/d05891t.pdf>.

9. GAO. Space Acquisitions: DoD’s Goals for
Resolving Space-Based Infrared System
Software Problems Are Ambitious. GAO-
08-1073. 30 Sept. 2008 <www.gao.

gov/new.items/d081073.pdf>.
10. Singer, Jeremy. “SBIRS Report to

Include Update on Health of Defense
Support Program.” Space News. 8 Dec.
2004.

11. Lockheed Martin. First SBIRS Satellite
With New Flight Software Completes Key
Test at Lockheed Martin. 13 Jan. 2009
<www.lockheedmartin.com/news/
press_releases/2009/11309ss_sbirs.
html>.

12. Defense Industry Daily. “Despite
Problems, SBIRS High Moves Ahead.”
12 Sept. 2009 <www.defenseindustry
daily.com/Despite-Problems-SBIRS
-High-Moves-Ahead-With-3rd-Satel
lite-Award-05467/#more-5467>.

13. GAO – Applied Research and Meth-
ods. GAO Cost Estimating and Assess-
ment Guide: Best Practices for Developing
and Managing Capital Program Costs.
GAO-09-3SP. Mar. 2009 <www.gao.
gov/new.items/d093sp.pdf>.

14. Perry, William J. “Acquisition Reform.”
Annual Report to the President and the

Congress. Chapter 14. Mar. 1996 <www.
dod.mil/execsec/adr96/chapt_14.
html>.

15. Jacobson, Ivar, Grady Booch, and
James Rumbaugh. The Unified Software
Development Process. Reading, MA:
Addison-Wesley, 1999.

16. Boehm, Barry W. Software Engineering
Economics. Englewood Cliffs, N.J.:
Prentice-Hall, 1981.

Notes
1. See James O. Berger’s Statistical Decision

Theory and Bayesian Analysis (1980 edi-
tion, page 310).

2. See Harold W. Kuhn’s Lectures on the
Theory of Games (2003 edition, pages 5-
6).

3. See Philip D. Straffin’s Game Theory and
Strategy (1993 edition, pages 3-6).

4. See Straffin (pages 65-68) and Roger B.
Myerson’s Game Theory: Analysis of
Conflict (1997 edition, pages 97-98).

5. We do not believe that current meth-
ods will solve the well-documented
software development issues that have
plagued government acquisition. These
issues are documented in the popular
press and in numerous GAO reports;
see [5, 6, 7, 8, 9, 10, 11, and 12].
Furthermore, a recent GAO cost esti-
mation and assessment guide docu-
menting the best practices for develop-
ing and managing capital program
costs singled out the SBIRS as a case
study [13].

16 CROSSTALK The Journal of Defense Software Engineering May/June 2010

The article proposes a National Systems Engineering Laboratory that can help other
DoD entities with issues that the authors have observed in their National Security
Space software-intensive system acquisitions. This article first details the problem of
cost mitigation bidding strategies used by DoD contractors, and then recommends
solutions through an NSEL. Removing this competitive bid process for the software
engineering through the creation of a prestigious systems engineering lab—staffed by
our nation’s best engineers, created solely to provide quality design and engineering
services—is one possible solution.

Software Defense Application

Software Human Capital

COMING IN THE JULY/AUGUST ISSUE

Catching Up With PSP/TSP
PSP and TSP continue to prove their worth in software development. CrossTalk explores PSP/TSP’s

present and future capabilities with articles exploring their application, ROI, results,
exported use outside of software, teaming improvements, and usage in conjunction with

process improvement methodologies.

Including CrossTalk’s one-on-one interview with Watts S. Humphrey
as well as his article “Why Can’t We Manage Large Projects?”

Look for it in your mailbox in early July!

Issue sponsored by:

U.S. Naval Air Systems Command



May/June 2010 www.stsc.hill.af.mil 17

From Projects to People: Shifting the Software Acquisition Paradigm

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

ELECTRONIC COPY ONLY? YES NO

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

SEPT2008 o APPLICATION SECURITY

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SW AND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

MAY/JUNE09    o RAPID & RELIABLE DEV.

JULY/AUG09o PROCESS REPLICATION

NOV/DEC09 o 21STCENTURYDEFENSE

JAN/FEB10   o CMMI: PROCESS

MAR/APR10 o SYSTEMS ASSURANCE

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

About the Authors

Douglas J. Buettner,
Ph.D., is the systems
director of the Flight
Software Department in
the Aerospace Corpo-
ration’s Space-Based Sur-
veillance Division. Buett-

ner has more than 20 years of experience
including contracts from NASA’s comet
sample return mission, all phases of
defense industry software development,
and quality assurance management for
venture capital-backed startup compa-
nies. He has bachelor’s and master’s
degrees in physics from Oregon State
University and, as an aerospace fellow,
completed his doctorate in astronautical
engineering (with a focus on computer
science) from the University of Southern
California.

Phone: (310) 336-5658 
E-mail: douglas.j.buettner@

aero.org

Lt. Col. Chad Millette is
the Deputy, Operational
Requirements Branch,
HQ AFMC/A5C. His
previous assignment in
the SBIRS Wing included
responsibilities oversee-

ing the development of the embedded
flight software for the SBIRS program.
He has a bachelor’s degree in mathemat-
ics from the University of Arizona, a
master’s degree in software engineering
administration from Central Michigan
University, and a master’s degree in sys-
tems management from the Air Force
Institute of Technology. He is also a cer-
tified Project Management Professional
and a Software Development Certified
Professional.

4375 Chidlaw RD
Wright-Patterson AFB, OH 45433
Phone: (937) 656-3961
E-mail: chad.millette@

wpafb.af.mil



18 CROSSTALK The Journal of Defense Software Engineering May/June 2010

The past two decades have seen an
increase in the size and complexity of

DoD software implementation programs.
This has been accompanied by an expo-
nential growth in the number of multi-pro-
ject programs in program managers’ port-
folios. Yet the literature on program man-
agement has tended to be written with the
underlying assumption that the programs
managed are made up of single projects as
opposed to multi-project programs. In real-
ity, this is not the case. Most programs
involve the simultaneous management of
multiple projects or a portfolio of projects
managed to ensure the aggregate results at
the end of the program.

Multi-project programs further add to
the level of complexity of the resource
management equation. In managing large-
scale software implementations, the success
of any program is largely dependent on the
effective utilization of its resources across
multiple projects. Right from the initial
stages of program initiation to the final
stages of delivery, the program manager is
often faced with the complexities of
resource allocation and its negative impact
on performance results.

The Traditional Process for
Resource Allocation
In multiple-project programs, demand for
project resources typically exceeds its sup-
ply. This is usually the first lesson learned
by the fledgling manager involved in any
aspect of the resource allocation process.
This has given rise to one of the basic prin-
ciples of project portfolio management: By
defining the relative priority of projects
and by applying resource leveling and skill-
set capacity constraints, a method which
allocates resources in a manner that opti-
mizes their enterprise utilization can be
derived. While this theory has many propo-
nents—and the principle may, in fact, be
true—its practical implementation is usual-
ly very challenging.

A review of traditional methods of
resource allocation would illustrate how it

falls short in determining the true enter-
prise demand or in identifying the key
resource conflicts at the program level.
From a conceptual standpoint, there is a
great deal of commonality in the processes
utilized by organizations to allocate
resources across multiple projects. The
tools used for this purpose, be it cus-
tomized software, spreadsheets, tables, or
even roundtable discussions, are all differ-
ent. Yet all traditionally begin with an algo-
rithm for assessing and categorizing
demand, and creating the proposed book
of work. Considering that demand will
exceed supply—and that the pool of
resources will run dry long before the list
of initiatives are exhausted—the initial step
is to give relative rankings for the different
projects through a prioritization process.
The prioritization process is followed by
building the master project schedule,
capacity planning, and high-level resource
assignments.

The prioritization process doesn’t
require complexity, needing only an esti-
mate of expected benefits and initial costs
to be effective. For example, one small divi-
sion of an intelligence organization used
the very simplistic yet effective Is it process,
which sought answers for questions such as
Is it a project?, Is it a realistic estimate of bene-
fits?, and Is it a valid approach to solving a prob-
lem?. Also used are resource estimate
descriptions such as Small, Medium, and
Large to facilitate the definition of a pro-
ject’s cost/benefit. These resource esti-
mates—which would inevitably be tied to a
project’s initial priority—were developed
after a 15-minute roundtable review of the
proposed solutions by technology platform
managers. Whatever the method is, the net
results of a prioritization process are either
an ordinal ranking of projects or a group-
ing of projects into Critical, High, Medium,
and Low categories.

Once the initial prioritized list of pro-
jects is created, the next step is to build the
preliminary enterprise master program
schedule. The master schedule establishes
time boundaries for projects that are ready

to go and need to be staffed. It may also
create placeholders for those projects that
should remain in the queue until the next
round of prioritization occurs. Projects
that do not make the cut are sent to the pro-
ject graveyard where they wither away from
lack of attention or are resurrected for
another crack at prioritization. Within all
project portfolio management systems is
an embedded project evaluation process
used to assess the health of the projects at
various stages in their life cycle. It is critical
to ask whether the project is still relevant to
the program’s goals and objectives. If the
answer is no, then the project should be
stopped. This way, the program manager
ensures that all resources are deployed
where they will offer the best return to the
program as a whole. In practice, this is one
of the most difficult decisions program
managers have to make, as reshuffling a
project portfolio will likely displease the
managers of those projects. However, the
program manager must always seek to
globally optimize the program perfor-
mance—as opposed to trying to optimize
each project.

After the master program schedule is
created, the next step is to undertake capac-
ity planning. Capacity planning, normally
performed by the platform and skill set, is
what makes the master schedule believable.
Here, the total resource hours are deducted
from the overall capacity. Project managers
are given their projects and—with the staff
they believe is required to complete those
projects—go through their initiation
processes with management’s final instruc-
tions regarding the triple constraints: time,
budget, and quality.

High-level resource assignment follows
capacity planning. During the resource
assignment stage, the project managers
provide resources to the scheduling groups.
While doing this, the possibilities of over-
allocation and under-allocation arise. The
result of a specific resource shortfall means
that the team will be asked to do more to
either cover the deficit or be forced to get
by with less.

Allocating Resources in Multi-Project Programs:
Lessons Learned from the Trenches 

There have been significant strides in the use of project management methods for resource allocation in single-project programs
in the DoD environment. Unfortunately, when it comes multi-project programs, inter-project resource allocation techniques are
inadequate. The objective of this article is to shed light on some of the challenges program managers are confronted with when
allocating resources among multiple project programs, and to highlight some of the practical solutions that have been proven
useful in resolving these issues. 

Edward Lari, Dr. Jeffrey Beach, Dr. Thomas A. Mazzuchi, and Dr. Shahram Sarkani
George Washington University 



Allocating Resources in Multi-Project Programs: Lessons Learned from the Trenches

May/June 2010 www.stsc.hill.af.mil 19

High-level resource assignments are
analogous to a hotel reservation. In soft-
ware engineering, the department or plat-
form (e.g., Web development, AS/400,
testing) supplying the resource is the hotel.
The room and room type correspond to
position (i.e., developer) and attributes (e.g.,
manager, senior developer, etc.) of the
resource. Length of stay (duration of
assignment) is allocated from available
inventory, but the actual room number
(resource name) is not yet known. It will
not be determined until the guest (project
manager) arrives (kicks off their project).
The difference between the two compar-
isons is that in the field of IT, the project
manager can’t be upgraded to a better
room or compensated with a free meal for
any inconvenience. As mentioned, specific
resource shortfalls mean that the team will
be asked to do more to cover the deficit or
be forced to get by with less; hotel guests,
however, will never be asked to share a
room with others if the hotel over-books.

Challenges With the
Traditional Approach:
A Case Study
So if the resource allocation process—with
stages such as prioritization, scheduling,
capacity planning, and high-level resource
assignment—takes place under constant
scrutiny and monitoring, then why do so
many programs fail? And why do most
analyses of program and project failures1
list poor resource scheduling and planning
as primary causes? 

To plainly illustrate this point, we pre-
sent the following scenario from a case
study encountered by the authors in con-
sulting assignments.

A software requirements analyst (SRA)
was told that for the next five weeks their
time will be spent on a project. Assuming a
40-hour work-week, this equates to an ini-
tial resource request of 200 hours. At the
project kickoff meeting, the SRA is given a
high-level schedule that mapped out the
standard project management life-cycle
milestones. According to the project man-
ager, the SRA’s role on the project would be
limited to three weeks developing the func-
tional requirements and two weeks assist-
ing in the creation of the system design
document. The project manager assured
the analyst that none of these issues would
take more than 20 hours a week during that
time period. The analyst examined the pro-
ject schedule and reported back that the
SRA could make those dates. The SRA
then needed to meet with three different
business units to solicit their input into the
document: This required first arranging

times to meet with the units individually,
then finding a location for a comprehensive
meeting, and then using the knowledge to
prepare documentation on the existing
process. All of those activities can be done
in a week. The analyst estimated two weeks
for creating the functional requirements
document, including time for walkthroughs
(that need to be scheduled), revisions, and
signoffs seemed reasonable. As for the time
required for assisting system design, the
analyst wasn’t sure—but two weeks seemed
realistic.

Two days into the project, the SRA real-
ized the task estimates were off significant-
ly. There was no existing documentation
for the system: That meant two weeks of
sitting down with developers and creating
it. Scheduling the meetings turned into a
nightmare as well. There actually turned
out to be 10 business units that were stake-
holders in the process—and located
throughout the country. Including travel
time (even meeting face-to-face with half
the units and speaking to the others via
conference call), this made crafting an ini-
tial draft of the requirements much more
than a two-week job: four weeks if every-
thing went well, six weeks with coordina-
tion issues. To make matters worse, one of
the developers came up with a new idea on
how to implement the functionality. Even
though the SRA had to wait until the busi-
ness requirements were complete to make
sure, the developer confidently projected
that his time would drop from 12 weeks to
three. The project manager thought any
lost requirement time could be made up
during the development, and continued to
report the project’s overall status as green
(on schedule within an acceptable variance
of planned targets). Needless to say, the
project did not move on as per the previ-
ously planned project schedule. This exam-
ple clearly shows that in spite of thorough
planning, something had gone wrong
somewhere.

An analysis of this case study presents
the following questions:
• What numbers should be reflected in

capacity planning and the enterprise
project schedule? 

• While the aggregate hours for this pro-
ject may decrease, what will be the
impact to the SRA’s pool of resources
for the program? 

• Where are the extra analysis hours sup-
posed to come from?
The theme echoed in this scenario—

one repeatedly encountered by project and
program managers—is that the root cause
of failing to perform the resource alloca-
tion process properly can be traced back to
two specific issues:

1. The inability of program managers and
the systems that support them to deter-
mine true capacity.

2. The failure of project and program
managers to comprehend the impact of
the program’s critical path across multi-
ple projects.

Alternative Solution
Approaches
While these problems are solvable, the
solutions, like most management problems,
are neither linear nor discrete. Experience
indicates, however, that a combination of
approaches will go a long way in solving
the problem.

Determining True Capacity
A common error often made by programs
is failing to perform true program capacity
in the initial stages. For program capacity
planning to work, both the supply of and
demand for available resources must be
well-estimated. What may not be apparent
in performing this exercise is how to
account for the margin of error inherent in
both estimates. This margin of error may
or may not be factored in when performing
the initial resource assignments, but it has
to be accounted for while undertaking
capacity planning at both the project and
program levels. Not only do calculations
have to be performed at the project levels,
but also at program levels so as to ade-
quately estimate program-level risks. By
changing the way the future demand is cal-
culated and by using the magnitude of pro-
ject tasks as an additional input, managers
can perform resource allocation more
effectively and resolve these conflicts
before they become full-blown program
risks.

Efficient Program Time-Tracking
Assuming that the initial resource supply
has been calculated correctly, the real avail-
ability of personnel is determined by the
projects and program level. An employee
working on multiple projects should have
the ability to track their inter-project usage
statistics. Unfortunately, this is not often
the case, even though organizations have
deployed various resource tracking systems
and rigorously track hours at the project
and development life-cycle phase levels. A
typical employee only receives guidance on
the percentage of time allotted and the
overall number of hours the platform has
budgeted for the project in question; no
consideration is given to the inter-project
utilization. In order to perform program-
level time-tracking, systems and processes
that can track resource usage both at the



Software Human Capital

20 CROSSTALK The Journal of Defense Software Engineering May/June 2010

project and program-level must be imple-
mented. This may be as simple using a
spreadsheet or a more integrated enter-
prise-resource planning system.

Program-Level Task Tracking
A specific project can have many tasks.
Therefore, it is necessary to track the tasks
at the different levels, project and program
alike. Project managers typically conduct
task-level resource tracking, but others
involved with the program rarely get that
opportunity. The program manager is usu-
ally conditioned to report on the resource
pools at the summary level and does not
normally request information about them
on the task level. While the program man-

ager rarely has the need, both the project
and program managers should be equally
aware of the task requirements and tracking
to be undertaken (down to the task level) to
avoid unnecessary resource conflicts.

As for accounting for different types of
outcomes, program/project evaluation and
review technique (also known simply as
PERT) formulas can become an effective
tool to account for variances in resource
estimates at the program. For all resources
assigned to a task:
• Effort remaining on a task per project

= Σ Estimate of Hours to Completion 
= Σ (Pessimistic* + 4 x Most likely* +  
Optimistic*) ÷ 6

* Estimated remaining hours for any task.

• The total effort remaining for a project
resource at the program level = Σ
Effort remaining on all project tasks.

• The total remaining effort for a
resource = Σ Efforts on all projects in
the program.
It should be noted that calculating

remaining work estimates by resource, pro-
ject, and program is a continuous exercise
that should be included as a standard oper-
ating procedure whenever earned value
analysis is performed on an ad-hoc basis. It
may add some incremental effort to the
program, but creating a task-level feedback
loop ensures that both project and pro-
gram managers know the true working
capacity of their resource pools.

Program Resource Critical Path
Analysis (CPA)
The classic definition for a critical path is
the sequence of project network activities
that add up to the longest overall duration
in a project. CPA is a powerful tool that
uses mathematical algorithms to schedule
complex project activities. It is designed to
provide visibility into potential project
resource issues so as to develop risk-miti-
gation strategies.

Extending the critical path concept to a
set of related projects is problematic to a
lot of programs. This is because while the
application of CPA in a single project is
well understood, the ability to extend this
concept to multi-project programs is chal-
lenging. This is because performing a CPA
over multiple projects is not a simple activ-
ity to complete. It requires the ability to
identify the critical path for each project at
a low enough task level, a willingness to cal-
culate the true effort for each resource
assigned on the critical task, and the coor-
dination of resources for critical path tasks
across the program.

The coordination of resources for crit-
ical path tasks across the program is para-
mount to the success of program CPA. A
minor oversight in coordination could lead
to cascading resource risks across the entire
program. One simple yet effective method
is the frequency litmus test approach to
assessing risks across a program’s critical
path. It states that a resource cannot be
assigned to more than two critical path
tasks in the same program. Our empirical
observations confirm that most technical
resources begin to lose focus when dealing
with more than two crises at the same time.
And, since tasks on the critical path have
the highest probability of generating a true
crisis, every effort must be made to avoid
situations where a key resource—on critical
path tasks—faces multiple crises simultane-
ously.

DoD program managers are increasingly being tasked with managing complex software
programs. As such, the number of multi-project programs in the manager’s portfolio is
not only increasing but constantly changing—a challenge accompanied by a set of
unique resource allocation problems not typically encountered in single-project pro-
grams. Unfortunately, the program management literature has tended to treat programs
as if they are all composed of a single project, thus ignoring these challenges. The
objective of this article is to address the challenges faced by program managers in DoD
software development programs as they allocate resources across multiple projects.
This article will be especially useful to DoD program managers who manage portfolios
of projects, project managers who work in multi-project programs, and software engi-
neers and analysts who support programs in the DoD software community.

Software Defense Application



Allocating Resources in Multi-Project Programs: Lessons Learned from the Trenches

May/June 2010 www.stsc.hill.af.mil 21

Conclusion
The blinding pace of IT innovation and the
growing complexity of DoD requirements
has led to more challenging multi-project
programs. Program managers are charged
with managing programs that are more
complex, thus requiring intra-project and
inter-project resource utilization manage-
ment. The ability to track and effectively
utilize these resources, however, requires
effective resource allocation methods.

While the field of project management
has successfully developed techniques for
managing intra-project resource allocation,
its application in multi-project programs is
still inadequate. It requires diligent project
and program management skills and prac-
tices beyond those traditionally required in
single-project environments. In addition, it
requires the adaptation of best practices—
including determining program-level true
capacity, efficient program time tracking,
program-level task tracking, and program
resource-critical CPA. Finally, a concerted
effort is required to integrate enterprise-
level resource allocation and management
tools for program management so as to
enable the intra-project and inter-project
resource allocation. Without this, effective
program management is likely to fail.u

Note
1. There has been significant analysis and

discussion of program and project
failures, including the Standish
Group’s Chaos Report (see the 1995
incarnation here: <www.projectsmart.
co.uk/docs/chaos-report.pdf>), the
Bull Report (1998), and the KPMG
Canada Study (1997).

Additional Resources
1. Bainey, Kenneth R. Integrated IT Project

Management: A Model-Centric Approach.
Norwood, MA: Artech House, 2004.

2. Chin, Gary. Agile Project Management:
How to Succeed in the Face of Changing
Project Requirements. New York: AMA-
COM/American Management Asso-
ciation, 2003.

3. Gray, Clifford, and Erik Larson. Project
Management: The Managerial Process. 2nd
ed. New York: McGraw-Hill/Irwin,
2002.

4. Hill, Gerard M. The Complete Project
Management Office Handbook. 2nd ed.
Boca Raton, FL: Auerbach Publica-
tions, 2007.

5. Schwindt, Christopher. Resource Allo-
cation in Project Management. Berlin/
Heidelberg: Springer-Verlag, 2005.

About the Authors

Jeffrey Beach, D.Sc., is
the head of the Struc-
tures and Composites
Department at the Car-
derock Division of the
Naval Surface Warfare
Center, where he has

worked since 1969. He earned his bache-
lor’s and master’s degrees in aerospace
engineering from the University of
Maryland, and his doctorate in engineer-
ing management and systems engineer-
ing from GWU.

School of Engineering and
Applied Science
The George Washington University
Dept. of Engineering Management  
and Systems Engineering
20101 Academic WY
STE 227-A
Ashburn,VA 20147
Phone: (202) 994-5450  
E-mail: beachje@gwu.edu

Edward B. Lari is a
senior principal systems
engineer at General Dy-
namics, where his profes-
sional experience in-
cludes the application of
operations research mod-

els in support of large-scale DoD
resource allocation problems. He is a
doctoral candidate in systems engineer-
ing at George Washington University
(GWU), has a master’s degree in manu-
facturing systems engineering from the
Rensselaer Polytechnic Institute, and a
bachelor’s degree in manufacturing engi-
neering from Central State University
(Ohio).

5311-D Columbia RD
Columbia, MD 21044
Phone: (301) 537-7652
E-mail: laried@gwu.edu

Shahram Sarkani, Ph.D.,
is faculty adviser and
head of GWU’s engi-
neering management and
systems engineering off-
campus programs office.
He has served as a pro-

fessor of engineering management and
systems engineering since 1999, and is
the founder and director (since 1993) of
GWU’s Laboratory for Infrastructure
Safety and Reliability. Sarkani earned his
doctorate in civil engineering from Rice
University, and his master’s and bache-
lor’s degrees in civil engineering from
Louisiana State University.

School of Engineering and
Applied Science
The George Washington University
Dept. of Engineering Management 
and Systems Engineering
2600 Michelson DR
STE 750
Irvine, CA 92612
Phone: (949) 724-9695
E-mail: sarkani@gwu.edu

Thomas A. Mazzuchi,
D.Sc., is chair of the
Department of Engi-
neering Management and
Systems Engineering at
GWU, where he is also
professor of both opera-

tions research and engineering manage-
ment. Mazzuchi earned his doctoral and
master’s degrees in operations research at
GWU, and a bachelor’s degree in mathe-
matics at Gettysburg College.

School of Engineering and
Applied Science
The George Washington University
Dept. of Engineering Management 
and Systems Engineering
1776 G ST NW
STE 101
Washington, D.C. 20052
Phone: (202) 994-7424
E-mail: mazzu@gwu.edu



22 CROSSTALK The Journal of Defense Software Engineering May/June 2010

Optimizing Myers-Briggs Type Indicator Training:
Practical Applications

While many in the DoD systems development community have been exposed to the Myers-Briggs Type Indicator (MBTI)®

assessment, many acknowledge not actively applying its insights to their work. Ultimately, because every system begins and
ends with the human mind, the cognitive theory that underlies the MBTI is directly applicable to development work and man-
agement. This article summarizes practical ways to apply the MBTI to project and systems management. 

Dr. Jennifer Tucker
Otto Kroeger Associates

Most experienced hands in the DoD
system development community

have encountered the MBTI assessment.
A common tool for better understanding
communication, leadership, and teams, the
MBTI has been administered to millions
of people over more than three decades.
That means a lot of workshops, a lot of
money, and a lot of hours.

Despite this, trainers frequently find
themselves leading MBTI workshops
where most participants have taken the
assessment before, but where few remem-
ber the preference scales or their personal
type preferences. Even fewer are able to
describe how they have used type to better
manage themselves, others, and the pro-
jects they lead. A recent participant at a
Defense Acquisition University workshop
I facilitated captured it best: “DoD imple-
mentation of the MBTI has historically
been, at best, suboptimal.”

This article reviews practical and con-
crete methods for applying the MBTI
assessment and its underlying theory of
psychological type. An applied under-
standing of psychological type to solve
problems helps build better systems and
can improve the optimization and ROI on
MBTI training programs.

Psychological Type 
The MBTI assessment is based on the
work of Carl Jung, a Swiss psychiatrist
who developed psychological type, one
of the most comprehensive theories
explaining human personality. The psy-
chological type model proposes that we
each have in-born preferences for how
we get our energy, go about gathering
information and making decisions, and
generally orient ourselves to our world.
The theory is captured in the four scales
of MBTI assessment. Each scale repre-
sents a dichotomy of preferences. Just as
you have a preference for writing with
your right or left hand, type theory
asserts that you have a preference for

one of two sides of each of the four
scales. Figure 1 summarizes the scales
and the preferences, with the center
items being the dichotomies, also known
as preference pairs.

Too often, MBTI workshops explain
the scales and help people identify their
preferences on the scales, but then reach
the end of the time allotted. This leaves
little to no time to explicitly relate the

principles of psychological type to the
actual problems of project management
and systems development. Another com-
mon occurrence is a workshop that focus-
es purely on relationship issues, but with-
out an explicit connection between those
relationships and the achievement of pro-
ject goals.

From Individual Preferences
to Project Performance
The links between psychological type and
project performance are strong. The way
our brains function drives how we engage
with projects. When people come togeth-
er on a systems project, their preferences
play out together at the project level. In
fact, psychological type preferences can
often be detected as specific project-level
patterns that are either actively supporting
or threatening success. As described in [2],

projects are often at the most basic level:
• Externally facing or internally facing

(aligned with either Extraversion or
Introversion)

• Fact driven or possibilities driven
(aligned with either Sensing or
Intuition)

• Product focused or customer focused
(aligned with either Thinking or
Feeling)

• Structured or emergent (aligned with
either Judging or Perceiving)
What follows is an example of how

individual psychological preferences play
out at a systems level.

At a personal level, Judging or
Perceiving relates to whether we prefer
showing the world our decisions or our
data gathering. Judgers tend to prefer clo-
sure, structure, and decisiveness in public,
and keep their data gathering internal.
Perceivers tend to prefer openness, flexi-
bility, and adaptability—and keep their
decisions internal. At a systems level, this
is often reflected in how project teams
manage changing requirements and the
systems development process itself. Teams
that emphasize Judging tend to work to
minimize uncertainty, often attempting to
lock in requirements early, consistent with
a Waterfall development world view.
Teams that emphasize Perceiving tend to
take a more emergent adaptive approach
to development, evolving designs based on
the learning done over time.

The best systems development ap-
proaches blend closure and adaptation,
characteristics of Judging and Perceiving.
Examining the processes followed in well-
constructed iterative, adaptive, and Spiral
software development methodologies
reveal this balance. These processes reflect
fluidity in moving between activities that
gather information (eliciting requirements,
storyboarding), focus on decisions (deliv-
erables sign-off, product releases), and
those that blend the two (prototyping to
both expose new needs and determine
desired directions; testing to both expose
bugs and resolve them).

At the individual level, the goal is to

® MBTI, Myers-Briggs, and the Myers-Briggs Type
Indicator are registered trademarks of the MBTI Trust,
Inc.

“An applied
understanding of

psychological type to
solve problems helps

build better systems and
can improve the

optimization and ROI
on MBTI training

programs.”



Optimizing Myers-Briggs Type Indicator Training: Practical Applications

May/June 2010 www.stsc.hill.af.mil 23

identify preferences to arrive at one’s four-
letter personality type: ESTJ for
Extraversion, Sensing, Thinking, Judg-
ment and INFP for Introversion, In-
tuition, Feeling, Perception. A personality
type is made up of the four letters that
reflect the aggregation of a person’s pref-
erences on each scale: For example, I pre-
fer Introversion (I), Intuition (N), Feeling
(F), and Judging (J), so my type is INFJ.
Understanding my type allows me to bet-
ter manage my personal strengths and
blind spots, on a project or in any other
environment. At the project level, the goal
is to balance all the preferences and their
contributions across the project; this is
because in the end, each of the eight pref-
erences provides a benefit to a project. By
learning to balance each pair of prefer-
ences, we can realize the contribution of
each and mitigate the risk of over-empha-
sizing one at the expense of the other.

Table 1 summarizes the patterns I have
seen on projects over the course of the
past decade, where the overemphasis of
one preference at the detriment of the
other has translated into concrete risks on
real projects. More examples of these are
covered in both [2] and [3].

Type as a Problem Solving
and Decision-Making Model 
Much of what leaders and teams do each
day, including the tasks that support sys-
tems development, consist of two prima-
ry activities: taking in information and
making decisions based on that data. As
such, data gathering and decision-making
are key components of planning and
problem solving.

The second and third scales of the
psychological type model, Sensing and
Intuition and Thinking and Feeling, were
identified as the mental functions by Carl
Jung. Sensing and Intuition are the prefer-
ences that make up the perceiving func-
tion, or how we prefer to gather informa-
tion. Thinking and Feeling are the prefer-
ences that make up the judging function,
or how we prefer to make decisions.
Together, these four preferences create a
practical and easy-to-apply decision-mak-
ing and problem solving model.

Table 2 (see the following page) repre-
sents the components of an all-function
model for problem solving and decision-
making. There are three steps to using this
model:
1. Explicitly state the specific problem

being faced, need to be filled, or the
decision to be made. This can be hard-
er than it sounds. Sensing groups tend
to dive into the history and the details,

and must integrate these into a single
statement that captures the building
blocks. Intuitive groups tend to see
everything as related, and must work
to develop a statement that is concrete
and specific enough to work with in a
meaningful way.

2. Next, for that need or problem state-
ment or decision to be made, ask the
questions in Table 2. Most teams find
it helpful to work through the ques-
tions in order. Block the time so that
the group reserves an even amount of
time for each of the four preferences.

3. Finally, identify the decisions, action
items, and next steps that are suggest-
ed by the discussion, and craft a plan
for implementing and communicating
these.
I have seen groups effectively self-facil-

itate this process in a one- to two-hour

meeting. With some focus, these groups
start to solve problems and make decisions
that can have a genuine impact on project
success. Through this process, the team
also generally discovers which of the pref-
erences come more easily to the group.
Answering the questions linked to prefer-
ences that are on the radar will generally
yield more familiar conversations (i.e., the
content will likely already be on the group’s
view screen). For the preferences that
come less easily to the group, the questions
are likely to reveal new and fresh informa-
tion that has not yet been previously con-
sidered. This is content that may have pre-
viously fallen under the radar; the associat-
ed type preference, therefore, might bene-
fit from some additional attention.

Type and Project Planning  
This same all-function model can be

  
  

MBTI Preference Result of Overemphasis

Extraversion Scope creep, if too much discussion leads to more action items, and
possibilities spoken aloud are interpreted as directions and decisions.

Introversion A lack of scope clarity and alignment, if people assume that others know
the decisions and direction when (in fact) they do not.

Sensing More time tracking than doing, if the team focuses too heavily on the
granularity and specifics of schedule and task elements.

Intuition Slipping timelines, if the concrete realities of task performance take
longer than the big-picture visioning anticipated.

Thinking Lack of user involvement and stakeholder buy-in, if technology-focused
specifications overcome people-oriented interests.

Feeling Lack of tough trade-offs and risk management, if the team works to
keep all stakeholders happy and avoid necessary constructive conflict.

Judging Project completion without project success, if the drive for closure
overcomes the benefits of needed discoveries along the way.

Perceiving Interim success without actual completion, if the pursuit of options leads
to exhaustion of time and budget without a final product.

Table 1: Preferences Out of Balance Lead to Risks

Sensing
First perceives the immediate, practical,

real facts of experience. Collects
here-and-now sensory information.

Extraversion
Gains energy from an outer world

of people, action, and things.

Thinking
Objective decision-making. Seeks clarity
by detaching themselves from problem;

cause-effect oriented. 

Judging
Prefers to live in a decisive, planned

way, with the goal of reaching closure in
the external world.

Intuition
First perceives possibilities, patterns
and meanings, and of experience.

Collects information through impressions.

Introversion
Gains energy from an inner world

of concepts and ideas.

Feeling
Subjective decision-making. Seeks

harmony with inner values by placing
themselves within problem. 

Perceiving
Prefers to live in a spontaneous, flexible

way, preferring to stay open to new
information in the external world.

Extraversion and Introversion
Energy Source

Sensing and Intuition
Data Gathering

Thinking and Feeling
Decision-Making

Judging and Perceiving
Outer-World Orientation

The Psychological Type Model
Preference Pairs

Figure 1: MBTI Assessment Preference Scales [1]



Software Human Capital

24 CROSSTALK The Journal of Defense Software Engineering May/June 2010

applied to project planning. It is widely
accepted that project planning done well
can save time later, particularly when it is
done with an eye to how uncertainty and
change will be handled downstream.
Given the importance of project planning,
it is an attractive activity to consider
through the lens of psychological type.

From a psychological type perspective,
early planning—because it is by definition
future focused—is often positioned under

the Intuition preference, with common
references to visioning and thinking outside
the box. Later, when work breakdown
structures are underway, the more present
and detail-focused Sensing preference may
take center stage. When balanced well, all
four preferences support effective plan-
ning:
• Sensing: Provides experience-based

data and best practices that can help
bridge the present to future vision.

• Intuition: Provides future possibili-
ties, patterns, and conceptual models
for the future.

• Thinking: Provides objective evalua-
tion criteria for decisions and trade-off
analysis.

• Feeling: Considers how directions
and decisions will be perceived by and
impact different groups and people.
Table 3 summarizes what project plans

can struggle with when the Perceiving and
Judging preferences are out of balance,
and some steps that can be taken to re-bal-
ance each pair.

Balancing Preference Pairs at
the Project Level 
The discussion now turns to the imple-
mentation and communication phases,
and how to balance issues like Extraver-
sion and Introversion, as well as Perceiv-
ing and Judging, at the project level.

For example, Extraversion and
Introversion are useful in understanding
one’s source of energy at the individual
level. At the project level, the preference
pair can be useful for determining and
monitoring stakeholder and team involve-
ment and communication.

Projects that are out of balance
towards Extraversion (too much external
focus) can struggle from an over-involve-
ment of stakeholders, leading to difficul-
ties with expectations management and  in
keeping sensitive or incomplete ideas
from being widely released. Projects that
are out of balance towards Introversion
(too much internal focus) can struggle
with a lack of communication, and may fly
so far under the radar that they lose upper
leadership support.

For balancing Extraversion and
Introversion, ask the following questions:
• Who should be involved in what kinds

of project decisions and how will they
be engaged?  

• What is the needed breadth and depth
of engagement with different stake-
holder groups? 

• How will we communicate and main-
tain connections with team members,
senior leaders, and customers?    
Judging and Perceiving—which relate

to preferences for closure and openness—
are invaluable tools at the project level for
balancing both attentiveness to meeting
milestones and openness to opportunities
and contingencies.

Projects that are out of balance with
Judging can struggle with coming to clo-
sure too early, with concerns about meet-
ing milestones trumping considerations of
new information. In these cases, contin-

  
  Action When Either Side is Overemphasized Ways to

Balance

Data
Gathering

Sensing. Plans become
an overly detailed
compilation of people’s
anticipated daily
activities, and are too
specific and all-
encompassing to reveal
the big-picture and
general decision-making
criteria.

Intuition. Plans
become too abstract
to be useful, miss 
the realities that
are required to craft
schedules and
budgets, and are
not grounded in
concrete data to
support daily
decision-making.

•  For each element of the vision,
   take the time to break it down into
   the concrete action and steps that
   will bring that element to fruition.
•  Once the details are in place,
   regularly recheck to affirm alignment
   with the big picture.
•  If the project gets too in the weeds,
   take the time to identify root causes,
   patterns, and brainstorm possibilities.
•  If the project gets lost in theory, work
   to identify specific tactical steps that
   can be taken immediately to head
   in the right direction.

Decision-
Making

Thinking. Plans leave out
the customer’s
perspective and fail to
spend adequate time on
change management and
communication.

Feeling. Plans omit
the decision criteria
and performance
measures that will
drive tradeoff
decisions and
objective measures
of progress.

•  Develop objective criteria for
   alternative analysis and trade-off
   decision-making.
•  Assign both roles and specific
   times in the project schedule for
   stakeholder and customer outreach.
•  If the project overemphasizes
   products and problems, stop and
   take time to focus on how
   stakeholders are being consulted
   and included.
•  If the project is overemphasizing
   people concerns, ask what needs to
   be done to refocus on objective
   decisions.

Table 3: Equalizing Unbalanced Functions

  
  Preference Effective Questions:

“In Making This Decision or Solving This Problem ...”

Sensing •  What is the current situation, as it is? What facts and details describe
 where we are?

•  What past experience can we learn from?
•  What are the important details on which to focus?
•  What should we keep that works?

Intuition •  What are the patterns or themes across the details and past experience?
•  What is the big-picture view? What is the vision we want to achieve?
•  Are there relevant models or concepts to help frame the issue?
•  What are the possibilities or options? What could we do? 

Thinking •  What are the criteria that will determine the best approach? How will
   we decide?
•  What are our best alternatives with their respective pros and cons?
•  What are the most logical solutions?
•  How will we objectively assess success?

Feeling •  With whom do we need to collaborate and in what ways?
•  How will the proposed options and goals impact the various people
   involved or impacted in the situation?
•  Which approaches will promote maximum acceptance and ownership?
•  How will we communicate our plan to others?

Table 2: All-Function Problem-Solving and Decision-Making Model [1]



Optimizing Myers-Briggs Type Indicator Training: Practical Applications

May/June 2010 www.stsc.hill.af.mil 25

gency planning is often left off the list, as
the project team works to eliminate uncer-
tainty rather than plan for it. Projects that
are out of balance with Perceiving strug-
gle with staying open too long, running
out of time and resources as different
alternatives are explored.

For balancing Judging and Perceiving,
ask the following questions:
• What milestones will be set as check-in

points, and how will these check-ins
occur?

• How do we plan to be flexible? How
will we know when a goal or objective
no longer makes sense, and how will
we regroup when that happens?

• What are some of the contingencies
that would trigger a review of the pro-
ject plan, processes, and proposed
products?  

Maximizing the Return on
Investment 
Once they learn about the benefits of
applying type to project and systems man-
agement, many managers ask whether
they should be selecting team members
based on preferences. It is tempting to
want to take this route; however, because
it evaluates preferences—but not skills,
knowledge, or abilities—the MBTI assess-
ment is not a valid tool for hiring, team
selection, or promotion.

Instead, managers should construct a
list of the behaviors and experiences that
would ideally be reflected across a project
team, or in a specific role that needs filling.
The ideas explained in this article can be
used to inform that list to select a diverse
set of people for the team, or to identify
individuals that would bring behaviors,
skills, and experiences that are underrepre-
sented. For example, systematically look-
ing across the preferences may highlight
skills that are needed, but that may not
have been previously valued. The goal is
to recruit a group of people that can deliv-
er on those skills, regardless of their actu-
al preferences.

It is never too late to integrate type or
the MBTI assessment as a tool in project
planning or execution. For example, a
mid-point project review utilizing the all-
function problem solving model may
help reveal patterns in the project’s risks
that had not been detected, or actions
that had not been previously considered
to correct course. It can even be used at
the end of a development project as the
mission changes from development to
longer-term operations or deployment.
Wherever the project might be in its life,
reviewing the benefits of each preference

is a great step for continuous improve-
ment. Start with this exercise, which asks
some basic questions:
• When considering all eight type prefer-

ences, what are we doing well?
• What are we not doing so well?
• What do we need to do differently

based on this?
Often, the answers will point to opportu-
nities for greater balance across the pref-
erences, to both maximize strengths and
fill holes.

Systems development and IT profes-
sionals are frequently criticized for focus-
ing on the benefits of a specific software
or process tool, rather than focusing on
the customer’s functional need or prob-
lem. Too often, professionals marketing
the MBTI assessment do the same thing:
They market and deploy the tool without
making the direct link to a problem or
need that the customer actually has. This
results in fun workshops and enhanced
self-awareness for those who connect with
the tool, but may not be the optimal out-
come for the system as a whole, given the
cultural investment in the MBTI across
the DoD.

The reality is that the theory underly-
ing the MBTI is a remarkably flexible one,
and can be used as a diagnostic assessment
and intervention tool at multiple levels:
individual, team, project, and organiza-
tion. Now that many DoD programs and
projects have experience with the MBTI, it
is time to take the next step, expanding its
application to more deeply understand
and address all the thorny challenges of
project performance. Doing so will lead to
better conversations, better teams, and
better systems—one program at a time.u

References 
1. Rutledge, Hile. MBTI Introduction

Workbook. Fairfax, VA: Otto Kroeger
Associates (OKA), 2006.

2. Tucker, Jennifer. Introduction to Type and
Project Management. Mountain View,
CA: CPP, Inc., 2008.

3. Culp, Gordon L., and Anne Smith. The
Lead Dog Has the Best View. Reston, VA:
ASCE Press, 2005.

About the Author

Jennifer Tucker, Ph.D.,
is the consulting director
of OKA, where she facil-
itates technical and scien-
tific work groups, con-
ducts leadership and
team development work-

shops, and leads organizational assess-
ments. Her work focuses on applying
both personality models and social theo-
ries to help practically reframe and navi-
gate the complexities of scientific and
technological systems and teams. Tucker
holds a bachelor’s degree in environmen-
tal science, a master’s degree in manage-
ment, and a doctorate in science and
technology studies. She is the author of
the booklet “Introduction to Type and
Project Management” and has been a
certified Project Management Profes-
sional since 2005.

OKA
3605 Chain Bridge RD 
Fairfax,VA 22030 
Phone: (703) 591-6284
E-mail: jtucker@typetalk.com

This article strives to connect relationship management with software development
through a tool that many in the DoD are familiar with—but have not yet optimized in
project delivery. It provides concrete examples of how the MBTI can be applied to bet-
ter understand common software development challenges, building on MBTI knowl-
edge that many DoD personnel already have, but are not yet clear on how to apply.

Software Defense Application

Feeling environmentally friendly?

Start a new subscription or update an existing one to get
CrossTalk delivered by e-mail instead of snail mail.

sshhaannaaee..hheeaaddlleeyy@@hhiillll..aaff..mmiill



Departments

26 CROSSTALK The Journal of Defense Software Engineering May/June 2010

The 2010 Software Best Practices
Webinar Series  
www.itmpi.org/webinars
The IT Metrics and Productivity Institute sponsors a series
of Webinars dedicated to improving the practice and man-
agement of software development and maintenance world-
wide. All live Webinars are free, have been accredited by the
Project Management Institute, and earn participants profes-
sional development units. Each features an expert speaker
who has extensively researched and successfully applied best
practice principles to the development and maintenance of
software. CrossTalk mainstay Capers Jones—along with
other past authors Christof Ebert, Donald J. Reifer, Herb
Krasner, Ian Brown, Robert Charette, David Herron, Dan
Galorath, Arlene Minkiewicz, David Garmus, and Neil
Potter—are scheduled to hold Webinars this year. 

DoD Acquisition Workforce Career
Management 
www.dau.mil/workforce
After reading Influencing Software Competencies Across the
DoD Acquisition Workforce, why not go to the Web site
focused on that group?  You can read about the Defense
Acquisition Workforce Improvement Act and its latest
changes, view a detailed catalog of the DAU’s classroom and
online learning  opportunities, and learn about what specif-

ic entities (Army, Navy, Air Force, and civilian employee
services) are doing in regards to acquisition workforce sup-
port. Also available are the latest memos from DoD leader-
ship regarding strategic goals, education, career advance-
ment, and certification strategies. 

How Did the Originators of the Agile
Manifesto Turn from Technology
Leaders to Leaders of a Cultural
Change? 
www.infoq.com/articles/manifesto-originators
If you liked Dr. Orit Hazzan and Dr. Tali Seger’s article on
self-efficacy in software, CrossTalk recommends their
InfoQueue exploration of the Agile Manifesto—and its cre-
ators. This time with co-author Gil Luria, Hazzan and Seger
share in-depth interviews with 12 of the 17 originators of
the Agile Manifesto, searching for influences and exploring
how technology-driven forces led to the cultural change
introduced by the Agile approach. Interviews with the
framers go back as far as childhood in search of influences,
explore their early professional lives in technology and soft-
ware, gain differing perspectives from that famed February
2001 meeting, and explore how their professional roles have
changed in the nine years since. 

WEB SITES



May/June 2010 www.stsc.hill.af.mil 27

Open Forum

Adam Smith was both influential and
controversial in his inclusion of

humans, or labor, as a major contribution
to the wealth of a nation. Then again,
Smith was not the only visionary in 18th
century Scotland to acknowledge the
human contribution to business and eco-
nomics. With the Industrial Revolution in
full flow, the common worker was per-
ceived by industrialists as a replaceable cog
in a machine, there to turn a profit and to
be exploited. Cotton mill owner and social
reformer Robert Owen would break that
mold. On the banks of the River Clyde
(near Glasgow) stands the one-time cot-
ton mill town of New Lanark [1]. As tes-
timony to its achievements, the mill oper-
ated from 1786 until 1968 and is now pre-
served as a World Heritage site. What dis-
tinguished the mill-owner from others at
that time was the manner in which he nur-
tured the workforce: Having decent
homes for workers, schools for their chil-
dren, and cooperative shops delivering
goods at a reasonable value contributed to
the town’s financial and communal suc-
cess. For Owen, this was not philanthropy;
it was the self-interest of capitalism,
spiked with a social conscience. As clearly
as the River Clyde was needed to turn the
wheels of the mill machines, Owen recog-
nized that people were needed to work the
looms that weave the cloth. The end-result
was employees who worked harder and
better—and created a higher-quality final
product.

Human Assets
Adam Smith and I share more than
nationality; we both believe that humans
are key assets in the pursuit of economi-
cally favorable results. For more years than
I care to admit to, I have held a strong
conviction that substantial and sustainable
advances in industrial-scale software engi-
neering will not come from new tools or
programming languages; they will not
emerge from the hyperbole surrounding
heavyweight or lightweight processes; they
will not come from accruing quality

badges or collecting metrics; and they will
not arrive via a modeling notation (such as
the Unified Modeling Language). The
potential for improvement is the most that
various software tools, techniques, and ini-
tiatives can ever deliver. Substantive
progress has been—and will continue to
be—a direct consequence of employing
software professionals and providing
them with a suitable environment in
which to operate. Competent personnel
are an organization’s pivotal assets.

Having an appropriately trained soft-
ware workforce has a double-edged effect.
Educated teams focus on productive
work; shared knowledge and experience
give them the cohesion with which to
address the intellectual tasks that comprise
engineering. Equally significant is that
teams spend less time evaluating and cor-
recting substandard software artifacts sim-
ply because these are produced in negligi-
ble quantities by competent engineers.

While there is a widespread fallacy
that technical issues are the primary
source of project woes, people aspects
seem to dominate the most expensive
project disasters. Without a doubt, the
majority of perceived difficulties are sim-
ply symptomatic of intrinsic people fac-
tors (politics is a popular euphemism for
these). To quote from the influential
book, “Peopleware”:

For the overwhelming majority of
the bankrupt projects we studied,
there was not a single technological
issue to explain the failure ... The
major problems of our work are

not so much technological as soci-
ological in nature. [2]

Particularly in knowledge economies,
the success or failure of technology pro-
grams hinges on assessing capabilities and
recognizing the needs of the engineering
teams. To this end, I have generated seven
human-centric rules for software develop-
ment organizations to adhere to:
• Rule 1: The main causal factors of

project success, mediocrity, or failure
should be recognized as human and
organizational, not technological.

• Rule 2: Professionalism and software
engineering competence should be
assessed objectively and encouraged
proactively by senior management.

• Rule 3: The number and seniority of
software professionals employed with-
in an organization should be commen-
surate with the magnitude and critical-
ity of the required software systems.

• Rule 4: Organizations should provide
an environment conducive to the intel-
lectual task.

• Rule 5:Management should recognize
its primary functions are to attract,
motivate, facilitate, and retain talent.
Teams should be given an identity, a
vision, and quality goals.

• Rule 6: Teams should be organized
with respect to member strengths and
competencies.

• Rule 7: Dependable sources of knowl-
edge should be provided in the form of
textbooks and training materials.
Readers familiar with my May/June

2009 CrossTalk article will recognize
two of these rules. Attention was also
drawn to three essential ingredients of
software development called the 3Ps: peo-
ple, products, and processes [3].

Human Asset Evaluation
Not all assets are of equal value; so too
can be said of human assets. The process
of evaluation for most assets is based fun-
damentally on attributes and objective cri-
teria, with a variable dash of subjectivity

Human Asset Management

Widely recognized as the “father of modern economics,” Adam Smith’s seminal book, “The Wealth of Nations,” included
both tangible assets (machines, buildings, and land) and humans as essential wealth-generating resources. Our present high-
technology industries are eager to invest in and protect their tangible assets (such as computer networks), but the modern
accountancy paradigm forces the view of an employee as merely a cost. Humans are indeed primary assets, and this article
provides guidance in assessing, utilizing, and enhancing their value. 

Martin Allen
Independent Software Consultant

“... people aspects
seem to dominate the
most expensive project

disasters.”



Open Forum

28 CROSSTALK The Journal of Defense Software Engineering May/June 2010

on top. Houses with identical specifica-
tions and locations (objective) can have
different valuations due to the varying
attraction of the décor (subjective).
Likewise, diamonds of the same number
of carats (objective) can have different
valuations due to their luster (subjective).
When assessing the value of human
assets, we can follow a similar scheme.

The main objective criteria for evaluat-
ing professional (software) engineers are:
• Qualifications/education.
• Formal training.
• Experience.

If necessary, qualifiers can be used to
turn these into quantitative criteria—con-
sider the applicability, duration, and timeli-
ness of each criterion. For example, a rele-
vant degree is very valuable; if my experi-
ence is typical, this has shaped an engineer’s
aptitude from an early age.

Subjective criteria, sometimes referred
to as soft skills, may include:
• Communication ability.
• Attitude/commitment.
• Adaptability.
• Assertiveness.
Decent soft skills are particularly relevant
where team interaction and influence are
important.

One may expect the formality of an
employee evaluation scheme to vary with
respect to the industry and the criticality of
the application. With safety-related soft-
ware systems in Europe, the range of indi-
vidual and team competence is unaccept-
ably wide. In recent years, I have had the
pleasure of working alongside competent
professionals with the requisite qualifica-
tions, training, and experience. I have also
worked in critical environments where,

clearly, the engineers lacked even basic
skills. Some years ago, I was involved in an
initiative to introduce a competence assess-
ment scheme into a safety-related industry
sector. A significant number of managers
and engineers were unwilling to take part in
the scheme until the objective criteria had
been replaced by subjective criteria. Those
same people would probably balk at the
idea of being passengers on an airplane
flown by a pilot who was not trained, but
who had a pleasant voice over the speaker.
Unfortunate as it seems, adopting formal
employee evaluation or competence assess-
ment schemes is like diet and exercise—we
need it to stay fit and healthy, but doing the
things that are best for us is not always easy.
For safety-related systems, the British
Health and Safety Executive has published
guidelines for introducing a competence
management system [4].

Could the certification of software
engineering professionals be the answer (or
part of the answer) in establishing compe-
tence? As is often the case when challenged
to answer a software engineering question,
we rely on respected sources of knowledge
such as CrossTalk. Perhaps, surprising-
ly, there is a lack of information on profes-
sional certification; the obvious conclusion
is that certification is at least an unpopular
subject, or even taboo. Without a doubt,
there are leading academics and practicing
professionals who are concerned about the
efficacy of certification programs. The
core of the IEEE’s Certified Software
Development Associate and Professional
efforts [5], the Software Engineering Body
of Knowledge, has been criticized; for
example, its ability to encompass all appli-
cation domains is questionable. However,

my own experiences (in various industry
sectors in Europe) show a multitude of
people, particularly in technical leadership
roles, who would be fearful of successful
certification initiatives that could expose
their shallow grasp of a deep discipline.

Perhaps there are less formal and more
palatable ways of assessing an engineer’s
competence. For instance, I have assem-
bled a portfolio from the many projects I
have worked on. This collection includes
samples of requirements specifications,
architectural designs, test specifications,
process definitions, presentations, lists of
technical books read and owned, etc. This
gives me the ability to show someone the
level of my experience and ability; yet, hav-
ing a portfolio is far from common in our
industries and it receives very mixed reac-
tions. As DeMarco and Lister suggest, “It
would be ludicrous to think of hiring a jug-
gler without first seeing him perform” [2].

On the topic of hiring competent staff,
professionals must be dismayed at the high
proportion of job advertisements, over a
substantial period, focused on low-caliber
skills. For instance, experiences with a spe-
cific programming language or a particular
requirements management or design tool
are often cited as essential skills. With
regard to requirements, the major skill is
always in the specification: Tool proficien-
cy can inject quality into requirements
management, not the specification thereof.
A skilled engineer will be trained to specify
atomic, consistent, structured, and testable
requirements; Wilson provides a synopsis
on requirements specification in [6].
Similarly with design tools, and to quote
Grady Booch, “CASE [Computer Assisted
Software Engineering] tools have allowed
merely bad designers to produce bad
designs more quickly” [7]. The absolute fix-
ation by whole industry sectors on pro-
gramming language experience is a contin-
uing embarrassment. There is an ever-pre-
sent concern in our profession that the
wrong categories of skills are encouraged
and valued.

Judging from the feedback I received
from my previous article, the most con-
tentious areas were the rules and the sec-
tion dealing with people—specifically, the
contrasting behavior between profession-
als and amateurs. For a comparison, see
Table 1.

We can take one of the divergences
between these groups of people and ana-
lyze it further. Consider a sliding scale with
art at one end and science at the other. If,
by a process of task analysis, we conclude
that the creative nature of software engi-
neering and its resilience to practical math-
ematical proof places it nearer art than sci-

  
  

The Professional Practitioner The Amateur or Hobbyist

Views the overall task as an engineering
discipline.

Describes the overall task as an art or craft.

Promotes a holistic, life-cycle view. Holds an implementation, coding bias.

Places emphasis on the application or problem
domain, and presents architectural solutions.

Places emphasis on the technical detail of
the solution domain to the detriment of the
customer or user.

Learns principally from published engineering
literature.

Learns principally by emulating colleagues.

Encourages compliance with industry
standards.

Prefers improvised, local procedures.

Employs quality criteria to manage projects. Manages projects via schedule alone.

Conveys an outward, discipline focus. Conveys an inward, project focus.

Exhibits a balanced approach to risk. Adopts a naïve approach to risk.

Table 1: Characteristics of Software Professionals versus Amateurs



Human Asset Management

May/June 2010 www.stsc.hill.af.mil 29

ence, we must pause for thought. Good lit-
erature is founded on the discipline of
strict linguistic standards (e.g., punctuation,
spelling, and grammar), whereas music is
founded on structures for tone, rhythm,
and notation. History has proven, there-
fore, that discipline has released creativity,
not stifled it: Discipline is as elemental to
an artist, writer, or musician as it is to an
engineer.

When a student receives a classical edu-
cation in software engineering, this indoc-
trinates a view of, and an approach to, the
discipline that is not just different from
common practices, perceptions, and
mythology—it is diametrically opposed.
The gap between professional and amateur
is not a gap, it is a chasm. Therefore, in
comparative arithmetic terms, it is ludi-
crous to assume that 10 untrained person-
nel can perform even the work of a solitary
professional. Perhaps this accounts for the
10 to 1 productivity ratio recorded as long
ago as 1975 by Frederick P. Brooks in
“The Mythical Man-Month” [8].

In 1980, I was a new graduate working
in the British defense industry. I was
approached by a concerned manager who
observed, “You appear to be faltering and
are not producing code as quickly as your
peers.” No one amongst this large office
of software developers had ever witnessed
a qualified and trained softie ratifying and
specifying requirements, devising software
architecture, designing the software, defin-
ing test cases and recording test results, as
well as generating robust code. Wind the
clock forward almost three decades and, in
a high-dependability environment, our
team was tasked to review multiple soft-
ware requirements specifications pro-
duced by untrained personnel. Even with
the availability of practical guidelines, the
authors had produced worthless specifica-
tions. Combined with the worst that a bot-
tom-up, functional software architecture
has to offer, the project was in an undesir-
able state. The real problem in such a sce-
nario is that, again, a group of untrained
people cannot match the actual productiv-
ity of one professional. Equally, the
majority will dominate proceedings and a
solitary professional will toil to correct the
substantial but substandard output of 10
untrained employees.

Lean Engineering is a populist topic,
although it is well-documented that pro-
duction-oriented techniques do not trans-
fer readily into a (software) development
environment—also known as the make a
cheeseburger, sell a cheeseburger mentality dis-
cussed in [2]. Nonetheless, one of the
principles of Lean is the reduction of
waste in a production line. In terms of

waste, having non-professional software
personnel producing substandard artifacts
is analogous to having an untrained team
preparing and then selling raw, frozen
burgers on a bun, with or without the
cheese. In order to rectify this and similar
waste issues, an organization may choose
to assess the capabilities and training
needs of project personnel—or choose to
assess the competence of the manage-
ment team that appointed and tasked
untrained personnel in the first instance.

If the economic aspects of the soft-
ware engineering life cycle were ever to be
modeled, the most significant variables in
the equation would reflect the human
knowledge and experience. Then again,
the life cycle has been modeled and the
people capability attributes are the most
significant. Barry Boehm identified this
truism as early as the 1980s, and it is cap-
tured in COCOMO [9].

There are already significant clues here
as to how to assess the value or compe-
tence of software engineering personnel.
However, if your organization is still
searching for a magical productivity
enhancer, then look to laetrile1 for the
futility of searching for wonder cures, or
“easy technological non-solutions” as
described fully in chapter 6 of [2] and
again in Brooks’ “No Silver Bullet” chap-
ter in [8].

Human Asset Enhancement
As we know, many assets (like cars) depre-
ciate in value, while others (like real estate)
increase in value—so we maintain, build
on, and insure against loss those appreci-
ating investments. Humans increase in
worth through enhanced knowledge or
experience and, likewise, an organization
is prudent to invest time and money on its
most precious people assets as well as to
guard against the mishap of their loss. In
our competitive technology-driven mar-
kets, companies striving to be the best
have to attract, nurture, and retain high-
caliber engineers.

I remember an organization that pur-
chased each member of its administrative
personnel a top-of-the-line PC and smart
laser printer. What happened? The engi-
neers stopped squabbling over their rent-

ed, one-between-five, basic machines—
and looked on enviously. In this case, the
organization showed a blatant disregard
for its engineers. After this, many resumes
were typed into those rented computers,
including my own. When an organization
equips all of its people adequately, pro-
vides an environment conducive to the
intellectual task of technological develop-
ment, and supports personnel growth, it
in turn maintains, enhances, and protects
human asset value. Engineers are people,
and people need to feel their contributions
are valued.

As indicated earlier, staff competence
assessment schemes are often viewed neg-
atively—but suppose such assessments
were shown to link directly to an organi-
zation’s development of, and investment
in, its people. Therefore, the most effec-
tive teams can be organized on the objec-
tive basis of competence rather than on
arbitrary and subjective opinions. As initial
reluctance gives way to synergy, people
will gel into strong teams.

Having assembled a strong team of
competent professionals, how should it be
organized? Brooks gives sound advice in
his “The Surgical Team” [8] chapter. A
surgeon and his surgical assistant perform
an operation, while supported by nurses,
an anesthesiologist, and administrative
staff. This arrangement compares favor-
ably with the roles of software architect,
software manager, programmers, testers,
and an administrator2. Consider the differ-
ence in the structure and formalism with-
in different groups of musicians. A ran-
dom collection of musicians can meet for
a jam session; without proper direction or
sheet music, the small group can still pro-
duce some decent, improvised sounds.
Similarly, a small band of jazz musicians
can, given reasonable levels of compe-
tence and practice, entertain an apprecia-
tive audience. However, to reach the excel-
lence of a large professional orchestra is a
monumental challenge in systematic coor-
dination—the conductor on the rostrum
and the sheet music are not just for show.
For technical teams developing software-
intensive systems of systems, the analogy
is clear: Systematic and formal coordina-
tion is essential.

Readers will benefit from this defense software industry insider’s focus on the proven,
primary influence on software project success or failure: the combined capabilities of
development team members. As for return on investment, enhancing team capability
is unique in offering potential productivity gain factors of up to 10 times. Increasing
team capability has the dual effect of improving the quality of software artifacts and
reducing waste.

Software Defense Application



Open Forum

30 CROSSTALK The Journal of Defense Software Engineering May/June 2010

Having assembled a strong team of
competent professionals, how should it be
managed? Consider an environment
where managers (verbally) whip teams to
meet implausible milestones; where engi-
neers are forced to cut corners and under-
mine basic quality criteria; where training
is regarded as an unnecessary expense,
and reading a book is considered a waste
of company time; where professional
opinions are most unwelcome and people
are expected to just get on with the job;
where political mendacity is a substitute
for competence; where knowledge is
wielded like a bludgeon with people herd-
ed into pens like cattle; in an office where
it is too hot, cold, or noisy for anyone to
function efficiently. In contrast, imagine
an environment where people are encour-
aged to design outstanding products;
where teams and individuals are chal-
lenged to excel; an office with shelves
groaning from the weight of books by
software gurus; where training is viewed as
a necessity; where professionalism is a
given; where diverse opinions are seen as
the balance in an open political culture;
where personnel are provided with ade-
quate tools and comfort; and a place
where the organization and staff have
mutual goals and aspirations. In summary,
it is as easy to obtain the least value from

your human assets as it is to obtain the
most value.

Conclusion
The legacies of Adam Smith and Robert
Owen are an important reminder to us that
people are at the heart of commercial and
social success. In our rapidly changing tech-
nological world, it is worth considering
their centuries-old wisdom. Perhaps there
is an opportunity for our organizations to
look again at the value, rather than the cost,
of their people assets. When people are
viewed truly as vital assets, then investment
in them is sure to deliver a mutually benefi-
cial corporate future. This will, in turn, lead
to greater customer satisfaction.u

References
1. “New Lanark – World Heritage Site.”

<www.newlanark.org>.
2. DeMarco, Tom, and Timothy Lister.

Peopleware: Productive Projects and Teams.
New York: Dorset House, 1999.

3. Allen, Martin. “From Substandard to
Successful Software.” CrossTalk
May/June 2009 <www.stsc.hill.af.mil/
crosstalk/2009/05/0905Allen.pdf>.

4. Health and Safety Executive, The
Institution of Electrical Engineers,
and The British Computer Society.

Managing Competence for Safety-Related
Systems. 2007 <www.hse.gov.uk/human
factors/topics/mancomppt1.pdf>.

5. IEEE Computer Society. “Certifi-
cation and Training for Software
Professionals.” 2009 <www.computer.
org/portal/web/certification>.

6. Wilson, William M. “Writing Effective
Natural Language Requirements
Specifications.” CrossTalk Feb.
1999 <www.stsc.hill.af.mil/crosstalk/
1999/02/wilson.pdf>.

7. Booch, Grady. Object-Oriented Analysis
and Design with Applications. Menlo
Park, CA: Addison Wesley, 1994.

8. Brooks, Frederick P. The Mythical Man-
Month: Essays on Software Engineering.
20th Anniversary Edition. Reading,
MA: Addison-Wesley, 1995.

9. Boehm, Barry W. Software Engineering
Economics. Upper Saddle River, NJ:
Prentice Hall PTR, 1981.

Notes
1. Laetrile is an extract from apricot

stones, sold in Mexico as a (fraudulent)
cure for cancer.

2. The role of software manager here is
one of a facilitator, rather than a tech-
nical lead. Team composition should
also vary with the magnitude and criti-
cality of the task.

About the Author

Martin Allen is a soft-
ware engineering profes-
sional with 30 years expe-
rience, mostly in the
defense industry in the
United Kingdom. He has
worked on many success-

ful software-intensive systems for the
British Royal Air Force and the Royal
Navy. Allen has always had a strong
interest in industry standards for the
engineering of dependable systems. His
other professional interests include risk
management, software cost economics,
requirements analysis, design methods,
and software testing. Allen and his col-
leagues work on the boundary between
the academic research of computer sci-
ence and the practical application of
software engineering.

1 Belfry Walk
Titchfield Common
Hampshire, United Kingdom
PO14 4QD
E-mail: mjallen60@yahoo.co.uk



BACKTALK

May/June 2010 www.stsc.hill.af.mil 31

During my 15-plus years of writing BackTalk columns, I
have often found myself working a column while traveling.

I am usually in one of three conditions: 1) bored, stuck in my
hotel, not much to watch on TV; 2) bored, on yet another flight
with no movie and a bad book that doesn’t hold my attention; or
3) frustrated and bored, sitting in an airport, waiting for a late
flight.

This week, I had the pleasure to attend the SIGCSE—Special
Interest Group on Computer Science Education—in Milwaukee.
Great conference, but, unfortunately, on my way
home, the third condition applied. You see, I
planned this conference around my spring break.
Once I landed in Houston, I was driving to
Orlando with my family to visit my parents. We
were leaving as soon as I touched down in
Houston, so I was in a hurry.

The weather in Milwaukee has been mixed all
week, so I watched the weather closely—and on
this morning we had fog, rain, and 20 mph winds.
However, the airline assured me that the incom-
ing and outgoing flights were on time. When I
got to the airport, my departing aircraft was 15
minutes early—it was quickly deplaned, cleaned,
the old-for-new luggage exchanged, and the
boarding door was opened. All was right with the
world.

One problem: There was no flight crew. I
found out that while the plane itself had come in from decent
Midwest weather, our flight crew was coming in from Newark
where, apparently, Noah was floating down the main runway,
picking up small animals left and right.

So unfortunately, while all the “hardware” was ready, some-
thing critical was missing—the human components.

At one of the SIGCSE workshops, we discussed Massive
Parallelism: The analogy was that if one person can complete a
jigsaw puzzle in two hours, two people could possibly do it in
one. Maybe three could do it in 40 minutes. However, if you put
the entire class of 20 students to work on it, it would probably
take three or four hours. Human beings do not parallelize well.
One of the instructors made a comment that Moore’s Law
applies to hardware only—and while one could argue that it takes
1.8 years to double software capacity, it takes 18 years to double
software engineering capabilities. It’s hard to significantly
increase human capabilities. My feeling is that as newer and
newer skills and languages and technologies come, older knowl-
edge and associated skills decrease. And, given that most of us
support the DoD in some way, we are sometimes working with
technology that was developed and fielded many years ago. Face
it: We need “legacy” skills to keep older systems up and running.

I have been involved in education and training for more than
30 years. I have taught all the latest trends and methodologies
and processes as they develop and evolve. However, I find myself
having to make a deep, dark confession: I am still teaching
COBOL. In fact, I am teaching it in college this very semester.
Why?  Because there is still a real need for it in the “real world.”
In fact, there is a growing need! Mature and experienced devel-
opers (that’s a nice way of saying “the old folks”) are retiring, and
large companies that have heavy investments in older languages

over the years need new developers that can maintain and even
expand this older code.

What happens when the current (and aging) pool of devel-
opers of legacy code dwindles, and fewer and fewer newly grad-
uated developers know how to maintain older systems? Well,
those who know (or are willing to learn) the older and more “tra-
ditional” languages will be in demand. Like that old Broadway
song says, “everything old is new again”.

While working on this column, I was buying an online ticket.
The Web site kept rejecting my data for “unspec-
ified reasons.” Eventually, I was connected to one
of their “application specialists” (short for devel-
opers) who said that the problem was that my
house address contains the fraction “1/2”, and
their application could not handle the “/”. I jok-
ingly told the developer “Oh, storing the number
in a PIC 9, not a PIC X, huh?” He laughed—and
asked if I was available for some contract work.
Seems they have a hard time hiring knowledgeable
COBOL developers. If this anecdote—or, for
that matter, the name Grace Murray Hopper1—
doesn’t register with you, maybe it’s time to look
again at those “legacy” languages.

Remember, there are no old languages—just
job opportunities.

—David A. Cook, Ph.D.
Stephen F. Austin State University

cookda@sfasu.edu

Note
1. To learn more about RADM Hopper (1906-1992)—including

her role in COBOL—visit <www.chips.navy.mil/links/
grace_hopper/womn.htm>. As stated in a December 1999
CrossTalk feature called Influential Men and Women of
Software, she was:

... creator of Common Business Oriented
Language (COBOL). She was an officer in the
Navy who became an Admiral. COBOL came
about in the 1950s when the need for higher order
languages was seen as a way to increase the pro-
ductivity of programming computer applications.

Grace Murray Hopper:
We Still Need You!

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

RADMGrace Murray Hopper



CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.


	Front Cover

	Table Of Contents

	From the Sponsor

	Software Human Capital
	Influencing Software CompetenciesAcross the DoD Acquisition Workforce
	Recruiting Software Practitioners:The Importance of Self-Efficacy
	From Projects to People:Shifting the Software Acquisition Paradigm
	Allocating Resources in Multi-Project Programs:Lessons Learned from the Trenches
	Optimizing Myers-Briggs Type Indicator Training:Practical Applications

	Open Forum
	Human Asset Management

	Coming Events

	INCOSE Ad

	Web Sites

	BackTalk

	Back Cover


