
Technical Report
CMU/SEI-89-TR-21

ESD-TR-89-029

Carnegie-Mellon University

Software Engineering Institute

1989 SEI Report on Graduate
Software Engineering Education

Mark Ardls, Gary Ford

June 1989

Technical Report
CMU/SEI-89-TR-21

ESD-TR-89-029

June 1989

1989 SEI Report on Graduate
Software Engineering Education

Mark Ardis
Video Dissemination Project

Gary Ford
Software Engineering Curriculum Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler ^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce. Springfield, VA 22161

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1

2. The SEI Curriculum Design Workshop 3
2.1. Workshop Organization and Procedures 3
2.2 Discussion 6

3. Curriculum for a Master of Software Engineering Degree 8
3.1. Objectives 8
3.2. Prerequisites 10
3.3. Core Curriculum Content 12
3.4. Curriculum Design 20

3.4.1. Software Systems Engineering 21
3.4.2. Specification of Software Systems 24
3.4.3. Principles and Applications of Software Design 27
3.4.4. Software Generation and Maintenance 30
3.4.5. Software Verification and Validation 35
3.4.6. Software Project Management 38

3.5. Project Experience Component 42
3.6. Electives 44
3.7. Pedagogical Considerations 45
3.8. The Structure of the MSE Curriculum 46

4. Survey of Graduate Degree Programs in Software Engineering 48

5. SEI Graduate Curriculum Test Sites 66

6. Summary and a Look Ahead 67

Appendix 1. An Organizational Structure for Curriculum Content 68

Appendix 2. Bloom's Taxonomy of Educational Objectives 74

Appendix 3. SEI Curriculum Modules and Other Publications 75

Appendix 4. Cumulative Acknowledgements 82

Bibliography 83

CMU/SEI-89-TR-21

1989 SEI Report on
Graduate Software Engineering Education

Abstract
This annual report on graduate software engineering education describes recent
SEI educational activities, including the 1988 SEI Curriculum Design Workshop.
A model curriculum for a professional Master of Software Engineering degree is
presented, including detailed descriptions of six core courses. Fifteen university
graduate programs in software engineering are surveyed.

1. Introduction

An ongoing activity of the SEI Education Program is the development and support of a model
graduate curriculum in software engineering. In such a rapidly changing discipline, it is
important that such a curriculum be reevaluated and revised frequently in order to ensure
that it reflects the state of the art. This report describes our recent efforts toward that end.

To put our recent curriculum efforts in perspective, it is helpful to review the history of SEI
curriculum recommendations. In 1985, the staff of the Graduate Curriculum Project devel-
oped a strawman description of the important subject areas and possible courses for a profes-
sional Master of Software Engineering (MSE) degree. This document was reviewed by the
participants at the February 1986 SEI Software Engineering Education Workshop [Gibbs87],
who offered numerous suggestions for improvement.

We then wrote a revised version of the document, which was widely circulated for additional
comments (see Appendix 4). Those comments were analyzed over the winter of 1986-87, and
in May 1987 the SEI published Software Engineering Education: An Interim Report from the
Software Engineering Institute [Ford87]. This report was our first publication of curriculum
recommendations, and it addressed not only curriculum content but also the related curricu-
lum issues of educational objectives, prerequisites, student project work, electives, and
resources needed to support the curriculum.

The interim report came to be regarded as a specification for an MSE curriculum, because it
concentrated on the content of the curriculum rather than how that content might be orga-
nized into courses or how those courses might be taught. We expected future work to include
curriculum design (the organization of that content into meaningful courses), implementation
(the detailed description of each course by instructors of the course), and execution, the pro-
cess of teaching each course. (We have not yet planned a validation effort, though we see the
need to do so.)

Two events in 1987 made it clear that a curriculum design was needed immediately. First,
the SEI established a new project, the Video Dissemination Project, which would work with

CMU/SEI-89-TR-21

cooperating universities to offer graduate-level software engineering courses on videotape.
Second, Carnegie Mellon University made a commitment to establish an MSE program
within its newly proposed School of Computer Science. Both of these efforts needed a cur-
riculum, including detailed designs for courses.

In February 1988, the SEI sponsored the Curriculum Design Workshop, whose goal was to
design an MSE curriculum that was consistent with the specification in the interim report.
The workshop produced designs for six core courses.

During 1988, prototype implementations of two of the core courses were taught by the staff of
the Video Dissemination Project. Two additional core courses are being taught in 1989. In
addition, two universities, which have been designated as SEI graduate curriculum test sites,
are teaching courses based on the recommendations of the workshop. The experiences of
instructors and students are being collected and will be used to improve the next release of
the curriculum recommendations.

Section 2 of this report describes the Curriculum Design Workshop. A summary of our cur-
rent MSE recommendations, including the six core courses, appears in Section 3. For com-
parison, the graduate software engineering programs of fifteen universities are surveyed in
Section 4. Additional information on the graduate curriculum test sites is presented in
Section 5.

Additional background material is presented in the appendices. Appendices 1 and 2 are
taken from [Ford87]; they present, respectively, an organizational structure for discussing
software engineering curriculum content and a summary of Bloom's taxonomy of educational
objectives. Appendix 3 provides short descriptions of SEI publications that support graduate
education, and Appendix 4 acknowledges the numerous contributors to the recommendations
in this report.

CMU/SEI-89-TR-21

2. The SEI Curriculum Design Workshop

In February 1988 we invited several software engineering educators to an MSE curriculum
design workshop. The participants were:

Mark Ardis, SEI
Jim Collofello, Arizona State University
Lionel Deimel, SEI
Dick Fairley, George Mason University
Gary Ford, SEI
Norm Gibbs, SEI
Bob Glass, SEI
Harvey Hallman, SEI
Tom Kraly, IBM
Jeff Lasky, Rochester Institute of Technology

Larry Morell, College of William and Mary
Tom Piatkowski, State University of New York at Binghamton

Scott Stevens, SEI
Jim Tomayko, The Wichita State University

The stated objective of the workshop was to create descriptions of courses in "sufficient
detail." Since the main task was to partition the topics (as defined in the interim report) into
courses, enough detail was needed for each course to allow independent implementation of
the courses. That is, instructors should be able to prepare and teach their courses in relative
isolation, just as software implementors are able to produce their modules independently. Of
course, awareness of and cooperation with others is important in both activities. But indi-
viduals (instructors or software developers) should feel free to make decisions about every
aspect of their product that is not already specified in the design.

2.1. Workshop Organization and Procedures

Since we viewed the previous curriculum description as a specification, we viewed its recom-
mendations as constraints that we must satisfy in our design. Therefore, our first step was
to review the specification. Some participants noted that other degree programs were worthy
of consideration, but all agreed that the specification was a good starting point for our work.

A major constraint in the interim report was the duration of the program: 30 to 36 semester
hours, or about 10 to 12 courses. Of these courses, workshop participants suggested that six
or seven would constitute the core material and that three or four would be advanced elec-
tives. The remainder of the program would be project work. Because of the limited time
available during the workshop (two days), we decided to concentrate exclusively on the
design of the core courses.

CMU/SEI-89-TR-21

Other constraints included the assumed prerequisite knowledge of entering students (a BS in
computer science, or equivalent knowledge and ability), the expected number of faculty (5
full-time for a program of 20 graduates per year), computing resources, and support staff.
We assumed that the resource constraints would be met, and they rarely influenced our
design decisions. Instead, we made note of these requirements when elaborating our peda-
gogical concerns for each course.

Our next step was to examine the 20 content units in the specification to try to identify
appropriate subject areas. (The content units are summarized in Section 3.3 below.) In
addition, we attempted to determine the approximate size of each unit, measured by weeks of
class time. A relatively coarse scale was used, having only three points: small (1-2 weeks),
medium (3-6 weeks), and large (more than 6 weeks).

We found five natural subject areas of content units, whose working titles were Systems
Engineering; Software Design and Specification; Implementation; Verification and
Validation; and Control and Management. Although these subject areas resemble the phases
of the traditional waterfall life cycle model, we did not intend to advocate any specific model
for software development. We do believe, however, that the activities of requirements analy-
sis and specification, design, implementation, verification and validation, and project man-
agement are probably elements of any reasonable model. Therefore we believe that these
five subject areas are legitimate as well as convenient partitions of the curriculum content.

The five subject areas, the content units in each (numbered as in Section 3.3), and the esti-
mated size of each unit are presented below. Notice that one unit, Software Quality
Assurance, appears in two subject areas, making it necessary to divide its material accord-
ingly.

Systems Engineering
11. Software Operational Issues small
12. Requirements Analysis medium
14. System Design small
18. System Integration small
20. Human Interfaces small

Software Design and Specification
13. Specification large
15. Software Design large
19. Embedded Real-Time Systems medium

Implementation
3. Software Generation small
4. Software Maintenance medium

16. Software Implementation medium

CMU/SEI-89-TR-21

Verification and Validation
7. Software Quality Issues medium
8. Software Quality Assurance medium

17. Software Testing medium

Control and Management
1. The Software Engineering Process small
2. Software Evolution small

5. Technical Communication medium
6. Software Configuration Management small
8. Software Quality Assurance small
9. Software Project Organizational and Management Issues medium

10. Software Project Economics small

Four of the five subject areas had an estimated size of 12 to 15 weeks each, which caused us
to try to design a single core course for each. The Software Design and Specification subject
area appeared to have almost 25 weeks of material, so we thought two courses were war-
ranted.

The workshop then broke into three working groups. The first was charged with designing
courses for Systems Engineering and for Software Design and Specification; the second con-
centrated on Implementation and Verification and Validation, and the third worked on
Control and Management. Each group met for two to three hours, and then we all reported
our progress in a combined session. This process was iterated twice more in the hope that
the boundaries between courses could be clearly drawn, without overlaps or gaps.

The product of the working groups was a set of core courses:

• Software Systems Engineering

• Specification of Software Systems

• Principles and Applications of Software Design

• Software Generation and Maintenance

• Software Verification and Validation

• Software Project Management

For each course we tried to describe the prerequisites, the major and minor topics, the rela-
tive duration of topics in the course, the educational objective for each major topic (based on
an adaptation of Bloom's taxonomy of educational objectives; see Appendix 2), principal ref-
erences, and other pedagogical concerns. In some cases, we were able to produce relatively
detailed descriptions in the first working group session. For other courses, we barely man-
aged to complete a description after all three sessions. This may reflect the differences in
maturity of topics within software engineering. Those topics that have been taught success-

CMU/SEI-89-TR-21

fully for several years were easy to package into courses. Newer topics were more difficult to
package.

After the workshop, a subset of the participants prepared more detailed draft descriptions of
the courses. Each of the courses was reviewed for internal consistency and for its contribu-
tion to the overall integrity of the curriculum. The current versions of these course descrip-
tions appear in Section 3.4. Although the participants were given an opportunity to review
intermediate forms of this report, the current authors take responsibility for any errors
introduced during its preparation.

2.2 Discussion

At first glance, the required courses appear to follow a traditional waterfall life cycle model:
requirements, specification, design, implementation, and testing (with project management
added to complete the set of courses). However, the courses are not based on that assump-
tion. Instead, the division of topics into courses emphasizes different skills required of
students. For example, requirements analysis depends on communication skills (needed for
interviewing users) that are not used in implementation. Software engineers may have to
perform requirements analysis concurrently with implementation (e.g., as a prototyping
activity), but they can best learn the skills independently.

There are no prerequisite relationships among the required courses. On the other hand, some
courses depend critically on courses outside of the curriculum. For example, the Software
Specification course and the Verification and Validation course require knowledge of discrete
mathematics.

The unit on technical communication does not appear in the six core courses. We recommend
that it be integrated into all the courses at appropriate places. For example, oral presenta-
tion skills can be taught along with software technical reviews, and writing skills can be
taught in the first course where significant documents are required. These skills should be
reinforced throughout the curriculum by requiring the students to produce written docu-
ments and to make oral presentations. In the past, many instructors in the sciences and
engineering have shown a reluctance to make technical communication a factor in student
evaluations and grades. Because of its importance in software engineering, we strongly urge
instructors to make it an integral part of all appropriate courses.

We spent very little time discussing project work, though we assumed that it would be part of
the curriculum. The interim report specification recommended that 30% of the program be
devoted to this kind of activity. We noted that some of the required courses include a
semester-long project and that the equivalent of two additional semester-long project courses
were appropriate. Project work might be done in conjunction with required or elective
courses, or as independent coursework.

Very little time was spent discussing elective courses. We assumed that a variety of appro-
priate courses would be offered and that students would take three of them. In some cases
we limited the amount of time allocated to a topic in a required course (in order to allow more
time for other, equally important topics), noting that more advanced coverage could be given

6 CMU/SEI-89-TR-21

in an elective course in that area. We did, however, make some recommendations for the
types of electives that should be offered:

• Electives in software engineering subjects, such as software development environ-
ments, are clearly appropriate.

• Electives in computer science topics, such as database systems, are probably
appropriate, especially if they emphasize application and evaluation.

• Electives in systems engineering are probably appropriate.

CMU/SEI-89-TR-21

3. Curriculum for a Master of Software Engineering
Degree

The academic community distinguishes two master's level technical degrees. The Master of
Science in Discipline is a research-oriented degree, and often leads to doctoral study. The
Master of Discipline is a terminal professional degree intended for a practitioner who will be
able to rapidly assume a position of substantial responsibility in an organization. The former
degree often requires a thesis, while the latter requires a project or practicum as a demon-
stration of the level of knowledge acquired. The Master of Business Administration (MBA)
degree is perhaps the most widely recognized example of a terminal professional degree.

The SEI was chartered partly in response to the perceived need for a greatly increased num-
ber of highly skilled software engineers. It is our belief that this need can be best addressed
by encouraging and helping academic institutions to offer a Master of Software Engineering
(MSE) degree.

In this section we present our current recommendations for a model MSE curriculum. The
curriculum is described in six parts: program objectives, prerequisites, core curriculum con-
tent, curriculum design for six core courses, the project experience component, and electives.
These are followed by short discussions of pedagogical concerns and the overall structure of
the curriculum. These recommendations continue to evolve, and we expect to publish
updated versions annually.

3.1. Objectives

The goal of the MSE degree program is to produce a software engineer who can rapidly
assume a position of substantial responsibility within an organization. To achieve this goal,
we propose a curriculum designed to give the student a body of knowledge that includes
balanced coverage of the software engineering process activities, their aspects, and the prod-
ucts they produce (see Appendix 1 for definitions of the terms activity, aspect, and product as
used here), along with sufficient experience to bridge the gap between undergraduate pro-
gramming and professional software engineering.

Specific educational objectives are summarized below; they appear in greater detail in the
descriptions of individual curriculum units in the core curriculum content section (Section
3.3). We describe them using a taxonomy adapted from [Bloom56], which has six levels of
objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. (See
Appendix 2 for a brief description of this taxonomy.)

Knowledge: In addition to knowledge about all the material described in the subsequent
paragraphs, students should be aware of the existence of models, representations, methods,
and tools other than those they learn to use in their own studies. Students should be aware
that there is always more to learn, and that they will encounter more in their professional
careers, whatever they may have learned in school.

CMU/SEI-89-TR-21

Comprehension: The students should understand the software engineering process, both
in the sense of abstract models and in the various instances of the process as practiced in
industry. They should understand the activities and aspects of the process. They should
understand the issues (sometimes called the software crisis) that are motivating the growth
and evolution of the software engineering discipline. They should understand the differences
between academic or personal programming and software engineering; in particular, they
should understand that software engineering involves the production of software systems
under the constraints of the control and management activities. They should understand a
reasonable set of principles, models, representations, methods, and tools, and the role of
analysis and evaluation in software engineering. They should understand the existing
design paradigms for well-understood systems, such as compilers. They should know of the
existence and comprehend the content of appropriate standards. They should understand
the fundamental economic, legal, and ethical issues of software engineering.

Application: The students should be able to apply fundamental principles in the perfor-
mance of the various activities. They should be able to apply appropriate formal methods to
achieve results. They should be able to use appropriate tools covering all activities of the
software process. They should be able to collect appropriate data for project management
purposes, and for analysis and evaluation of both the process and the product. They should
be able to execute a plan, such as a test plan, a quality assurance plan, or a configuration
management plan; this includes the performance of various kinds of software tests. They
should be able to apply documentation standards in the production of all kinds of documents.

Analysis: The students should be able to participate in technical reviews and inspections of
various software work products, including documents, plans, designs, and code. They should
be able to analyze the needs of customers.

Synthesis: The students should be able to perform the activities leading to various software
work products, including requirements specifications, designs, code, and documentation.
They should be able to develop plans, such as project plans, quality assurance plans, test
plans, and configuration management plans. They should be able to design data for and
structures of software tests. They should be able to prepare oral presentations, and to plan
and lead software technical reviews and inspections.

Evaluation: The students should be able to evaluate software work products for confor-
mance tc standards. They should know appropriate qualitative and quantitative measures of
software products, and be able to use those measures in evaluation of products, as in the
evaluation of requirements specifications for consistency and completeness, or the measure-
ment of performance. They should be able to perform verification and validation of software.
These activities should consider all system requirements, not just functional and perfor-
mance requirements. They should be able to apply and validate predictive models, such as
those for software reliability or project cost estimation. They should be able to evaluate new
technologies and tools to determine which are applicable to their own work.

The word appropriate occurs several times in the objectives above. The software engineering
discipline is new and changing, and there is not a consensus on the best set of representa-
tions, methods, or tools to use. Each implementation of the MSE curriculum must be struc-
tured to match the goals and resources of the school and its students. In subsequent reports,

CMU/SEI-89-TR-21

the SEI will offer recommendations on the most promising methods and technologies for
many of the software engineering activities.

3.2. Prerequisites

Although an undergraduate degree in computer science is the "obvious" prerequisite for the
MSE degree, we cannot adopt such a simplistic approach to defining essential prerequisites.
We do not want to exclude those experienced practitioners who do not have such a degree but
still wish to pursue the MSE degree. Furthermore, students with bachelor's degrees in
computer science from different schools, or from the same school but five years apart, are
likely to have substantially different knowledge. Thus the prerequisites for the MSE degree
must be defined carefully, and must be enforceable and enforced.

The primary prerequisite, therefore, is substantial knowledge of programming-in-the-small.
This includes a working knowledge of at least one modern, high-level language (for example,
Pascal, Modula-2, Ada) and at least one assembly language. Also important is a knowledge
of fundamental concepts of programming, including control and data structures, modularity,
data abstraction and information hiding, and language implementations (runtime environ-
ments, procedure linkage, and memory management). Students should also be familiar with
the tools of the trade, meaning a user's knowledge (not a designer's knowledge) of computer
organization and architecture, operating systems, and typical software tools (such as an edi-
tor, assembler, compiler, and linking loader). A basic knowledge of formal methods and
models (and their application) is also essential, including analysis of algorithms and the fun-
damentals of computability, automata, and formal languages. Most or all of this material is
likely to be found in the first three years of an undergraduate computer science degree
program.

Knowledge of one or more other major areas of computer science is highly desirable, but not
absolutely necessary. Examples are: functional and declarative languages, numerical meth-
ods, database systems, compiler construction, computer graphics, or artificial intelligence.
This material is usually found in senior-level electives in a computer science degree program.
Some schools may choose to allow advanced computer science courses as electives in the MSE
program. Knowledge of major applications areas in the sciences and engineering may also be
useful.

The mathematics prerequisites are those commonly required in an undergraduate computer
science degree: discrete mathematics and some calculus. Some software engineering topics
may require additional mathematical prerequisites, such as probability and statistics. A
student planning a career in a particular application area may want additional mathematics,
such as linear algebra or differential equations, but these are not essential prerequisites for
any of the mainstream software engineering courses.

Enforcing the prerequisites can be difficult. A lesson may be learned from experience with
master's degree programs in computer science. In the 1960s and 1970s, these programs often
served almost exclusively as retraining programs for students with undergraduate degrees in
other fields (notably mathematics and engineering) rather than as advanced degree pro-
grams for students who already had an undergraduate computer science degree. In several

10 CMU/SEI-89-TR-21

schools, undergraduate computer science majors were not eligible for the master's program
because they had already taken all or nearly all of the courses as undergraduates.

These programs existed because there was a clearly visible need for more programmers and
computer scientists, and the applicants for these programs did not want a second bachelor's
degree. There were not enough applicants who already had a computer science degree to
permit enforcement of substantial prerequisites.

For the proposed MSE program to achieve its goals, it must take students a great distance
beyond the undergraduate computer science degree. This, in turn, requires that students
entering the program have approximately that level of knowledge. Because of the widely
varying backgrounds of potential students, their level of knowledge is very difficult to assess.
Standardized examinations, such as the Graduate Record Examination in Computer Science,
provide only part of the solution.

We recommend that schools wishing to establish the MSE program consider instituting a
leveling or immigration course to help establish prerequisite knowledge. Such a course
rarely fits into the normal school calendar. Rather, it is an intensive two to four week course
that is scheduled just before or just after the start of the school year. (However, Texas
Christian University has tried a full-semester leveling course; see [Comer86]). Students
receive up to 20 hours a week of lectures summarizing all of the prerequisite material. The
value of this course is not that the students become proficient in all the material, but that
they become aware of deficiencies in their own preparation. Self-study in parallel with the
first semester's courses can often remove most of these deficiencies.

Another important part of the immigration course is the introduction of the computing facili-
ties, especially the available software tools, to students with varying backgrounds. Ten to 20
hours each week can be devoted to demonstrations and practice sessions. Because profi-
ciency with tools can greatly increase the productivity of the students in later courses, the
time spent in the immigration course can be of enormous value.

Finally, the immigration course can be used to help motivate the study of software engineer-
ing. The faculty, and sometimes the students themselves, can present some of their own or
others' experiences that led to improved understanding of some of the significant problems of
software engineering.

Another kind of prerequisite has been adopted by some MSE programs (including the College
of St. Thomas, Seattle University, and Texas Christian University). All require the student
to have at least one year of professional experience as a software developer. This require-
ment has the benefit of giving the students increased motivation for studying software engi-
neering, since it exposes them to the problems of developing systems that are much larger
than those seen in the university, and makes them aware of economic and technical con-
straints on the software development process. On the negative side, schools cannot control
the quality of that experience, and students may acquire bad habits that must be unlearned.

We have not found the arguments for an experience prerequisite sufficiently compelling to
recommend it for all MSE programs. Other engineering disciplines have successful master's
level programs, and even undergraduate programs, without such a prerequisite. Most grad-
uate professional degrees in other disciplines do not require it.

CMU/SEI-89TR-21 11

As a discipline grows and evolves, it is a common phenomenon in education for new material
to be taught in courses that are simply added onto an existing curriculum. Over time, the
new material is assimilated into the curriculum in a process called curricular compression.
Obsolete material is taken out of the curriculum, but much of the compression is accom-
plished by reorganization of material to get the most value in the given amount of time.

In a rapidly growing and changing discipline, new material is added faster than curricular
compression can accommodate it. In some engineering disciplines, the problem is acute.
There is a growing sentiment that the educational requirement for an entry-level position in
engineering should be a master's degree or a five-year undergraduate degree [NRC85]. This
is especially true for a computer science/software engineering career.

If this level of education is needed for a meaningful entry-level position, then we question the
value of sending students out with a bachelor's degree, hoping they will return sometime
later for a software engineering degree. The professional experience achieved during that
time will not necessarily be significant. Also, the percentage of students intending to return
to school who actually do return declines rapidly as time since graduation increases.
Therefore, we believe that an MSE curriculum structured to follow immediately after a good
undergraduate curriculum offers the best chance of achieving the goals of rapid increases in
the quality and quantity of software engineers. Of course, such a program does not preclude
admission of students with professional experience.

We do recognize that work experience can be valuable. The experience component of the
MSE curriculum, which is discussed later in this report, might be structured to include
actual work experience. It may be that the overall educational experience is significantly
enhanced if the work component is a coordinated part of the program rather than an inter-
lude between undergraduate and graduate studies.

We also recognize that we must motivate many of the activities in the software engineering
process. We see a great need to raise the level of awareness on the part of both students and
educators of the differences between undergraduate programming and professional software
engineering. The SEI Education Program is working at the undergraduate level to help
accomplish this.

3.3. Core Curriculum Content

Software engineering is a broad and diverse discipline. To facilitate discussions of the con-
tent of software engineering curricula, we have found it helpful to develop an organizational
structure for the discipline; this is presented in Appendix 1. A brief look at this structure is
sufficient to conclude that all of software engineering cannot be covered in any curriculum.
Selecting a subset of that content appropriate for a particular program and student popula-
tion is the primary task of a curriculum designer.

We use a broad view of software engineering when choosing the content of the curriculum,
and we include several topics that are not part of a typical engineering curriculum. This

12 CMU/SEI-89-TR-21

statement of the National Research Council about engineering curricula reflects the views of
many engineers and educators [NRC85]:

Another element of the problem is that to make the transition from high school grad-
uate to a competent practicing engineer requires more than just the acquisition of
technical skills and knowledge. It also requires a complex set of communication,
group-interaction, management, and work-orientation skills.

... For example, education for management of the engineering function (as distinct
from MBA-style management) is notably lacking in most curricula. Essential non-
technical skills such as written and oral communication, planning, and technical
project management (including management of the individual's own work and career)
are not sufficiently emphasized.

On the other hand, we have narrowed the curriculum by concentrating almost exclusively on
software engineering (but including some aspects of systems engineering) and omitting appli-
cations area knowledge. Two major reasons for this is are pragmatic: first, the body of
knowledge known as software engineering is sufficiently large to require all the available
time in a typical master's degree program (and then some); and second, students cannot
study all of the applications areas in which they might eventually work. We believe that a
student at the graduate level should have acquired the skills for self-education that will
allow acquisition of some knowledge in a needed application area.

More important, however, is our strong belief that the variety of applications areas and the
level of sophistication of hardware and software systems in each of those areas mandate a
development team with a substantial range of knowledge and skills among its members.
Some members of the team must understand the capabilities of hardware and software com-
ponents of a system in order to do the highest level specification, while other members must
have the skills to design and develop individual components. Software engineers will have
responsibility for software components just as electrical, mechanical, or aeronautical engi-
neers, for example, will have responsibility for the hardware components. Scientists, includ-
ing computer scientists, will also be needed on development teams, and all the scientists and
engineers must be able to work together toward a common goal.

The core content of the MSE curriculum is described in units, each covering a major topic
area, rather than in courses. There are three reasons for this. First, not every topic area
contains enough material for a typical university course. Second, combining units into
courses can be accomplished in different ways for different organizations. Third, this struc-
ture more easily allows each unit to evolve to reflect the changes in software engineering
knowledge and practice, while maintaining the stability of the overall curriculum structure.

Because of strong relationships among topics and subtopics, we were unable to find a consen-
sus on an appropriate order of topics. We do, however, recommend a top-down approach that
begins with focus on the software engineering process; this overall view is needed to put the
individual activities in context. Software management and control activities are presented
next, followed by the development activities and product view topics.

Social and ethical issues are also important to the education and development of a profes-
sional software engineer. Examples are privacy, data security, and software safety. We do
not recommend a course or unit specifically on these issues, but rather encourage instructors
to find opportunities to discuss them in appropriate contexts in all courses and to set an

CMU/SEI-89-TR-21 13

pie for students. (The SEI Education Program is currently investigating software engi-
ng ethics as a curriculum topic, and we expect to offer more specific recommendations in

The curriculum topics are described below in units of unspecified size. Nearly all have a
software engineering activity as the focus. For each, we provide a short description of the
subtopics to be covered, the aspects of the activity that are most important, and the educa-
tional objectives of the unit. (See Appendix 1 for definitions of the terms activity and aspect
as they are used here.)

1. The Software Engineering Process

Topics The software engineering process and software products. All of the software
engineering activities. The concepts of software process model and software
product life cycle model.

Aspects All aspects, as appropriate for the various activities.

Objectives Knowledge of activities and aspects. Some comprehension of the issues, espe-
cially the distinctions among the various classes of activities. The students
should begin to understand the substantial differences between the program-
ming they have done in an undergraduate program and software engineering
as it is practiced professionally.

2. Software Evolution

Topics The concept of a software product life cycle. The various forms of a software
product, from initial conception through development and operation to retire-
ment. Controlling activities and disciplines to support evolution. Planned and
unplanned events that affect software evolution. The role of changing technol-
ogy.

Aspects Models of software evolution, including development life cycle models such as
the waterfall, iterative enhancement, phased development, spiral.

Objectives Knowledge and comprehension of the models. Knowledge and comprehension
of the controlling activities.

3. Software Generation

Topics Various methods of software generation, including designing and coding from
scratch, use of program or application generators and very high level lan-
guages, use of reusable components (such as mathematical procedure libraries,
packages designed specifically for reuse, Ada generic program units, and pro-
gram concatenation, as with pipes). Role of prototyping. Factors affecting
choice of a software generation method. Effects of generation method on other
software development activities, such as testing and maintenance.

Aspects Models of software generation. Representations for software generation,
including design and implementation languages, very high level languages, and

14 CMU/SEI-89-TR-21

application generators. Tools to support generation methods, including appli-
cation generators.

Objectives Knowledge and comprehension of the various methods of software generation.
Ability to apply each method when supported by appropriate tools. Ability to
evaluate methods and choose the appropriate ones for each project.

4. Software Maintenance

Topics Maintenance as a part of software evolution. Reasons for maintenance. Kinds
of maintenance (perfective, adaptive, corrective). Comparison of development
activities during initial product development and during maintenance.
Controlling activities and disciplines that affect maintenance. Designing for
maintainability. Techniques for maintenance.

Aspects Models of maintenance. Current methods.

Objectives Knowledge and comprehension of the issues of software maintenance and cur-
rent maintenance practice.

5. Technical Communication

Topics Fundamentals of technical communication. Oral and written communication.
Preparing oral presentations and supporting materials. Software project docu-
mentation of all kinds.

Aspects Principles of communication. Document preparation tools. Standards for pre-
sentations and documents.

Objectives Knowledge of fundamentals of technical communication and of software docu-
mentation. Application of fundamentals to oral and written communications.
Ability to analyze, synthesize, and evaluate technical communications.

6. Software Configuration Management

Topics Concepts of configuration management. Its role in controlling software evolu-
tion. Maintaining product integrity. Change control and version control.
Organizational structures for configuration management.

Aspects Fundamental principles. Tools (such as sees or res). Documentation, including
configuration management plans.

Objectives Knowledge and comprehension of the issues. Ability to apply the knowledge to
develop a configuration management plan and to use appropriate tools.

7. Software Quality Issues

Topics Definitions of quality. Factors affecting software quality. Planning for quality.
Quality concerns in each phase of a software life cycle, with special emphasis on
the specification of the pervasive system attributes. Quality measurement and

CMU/SEI-89-TR-21 15

standards. Software correctness assessment principles and methods. The role
of formal verification and the role of testing.

Aspects Assessment of software quality, including identifying appropriate measure-
ments and metrics. Tools to help perform measurement. Correctness assess-
ment methods, including testing and formal verification. Formal models of
program verification.

Objectives Knowledge and comprehension of software quality issues and correctness
methods. Ability to apply proof of correctness methods.

8. Software Quality Assurance

Topics Software quality assurance as a controlling discipline. Organizational struc-
tures for quality assurance. Independent verification and validation teams.
Test and evaluation teams. Software technical reviews. Software quality
assurance plans.

Aspects Current industrial practice for quality assurance. Documents including quality
assurance plans, inspection reports, audits, and validation test reports.

Objectives Knowledge and comprehension of quality assurance planning. Ability to ana-
lyze and synthesize quality assurance plans. Ability to perform technical
reviews. Knowledge and comprehension of the fundamentals of program verifi-
cation and its role in quality assurance. Ability to apply concepts of quality
assurance as part of a quality assurance team.

9. Software Project Organizational and Management Issues

Topics Project planning: choice of process model, project scheduling and milestones.
Staffing: development team organizations, quality assurance teams. Resource
allocation.

Aspects Fundamental concepts and principles. Scheduling representations and tools.
Project documents.

Objectives Knowledge and comprehension of concepts and issues. It is not expected that a
student, after studying this material, will immediately be ready to manage a
software project.

10. Software Project Economics

Topics Factors that affect cost. Cost estimation, cost/benefit analysis, risk analysis for
software projects.

Aspects Models of cost estimation. Current techniques and tools for cost estimation.

Objectives Knowledge and comprehension of models and techniques. Ability to apply the
knowledge to tool use.

16 CMU/SEI-89-TR-21

11. Software Operational Issues

Topics Organizational issues related to the use of a software system in an organiza-
tion. Training, system installation, system transition, operation, retirement.
User documentation.

Aspects User documentation and training materials.

Objectives Knowledge and comprehension of the major issues.

12. Requirements Analysis

Topics The process of interacting with the customer to determine system require-
ments. Defining software requirements. Identifying functional, performance,
and other requirements: the pervasive system requirements. Techniques to
identify requirements, including prototyping, modeling, and simulation.

Aspects Principles and models of requirements. Techniques of requirement identifica-
tion. Tools to support these techniques, if available. Assessing requirements.
Communication with the customer.

Objectives Knowledge and comprehension of the concepts of requirements analysis and the
different classes of requirements. Knowledge of requirements analysis tech-
niques. Ability to apply techniques and analyze and synthesize requirements
for simple systems.

13. Specification

Topics Objectives of the specification process. Form, content, and users of specifica-
tions documents. Specifying functional, performance, reliability, and other
requirements of systems. Formal models and representations of specifications.
Specification standards.

Aspects Formal models and representations. Specification techniques and tools that
support them, if available. Assessment of a specification for attributes such as
consistency and completeness. Specification documents.

Objectives Knowledge and comprehension of the fundamental concepts of specification.
Knowledge of specification models, representations, and techniques, and the
ability to apply or use one or more. Ability to analyze and synthesize a specifi-
cation document for a simple system.

14. System Design

Topics The role of system design and software design. How design fits into a life cycle.
Software as a component of a system. Hardware versus, software tradeoffs for
system performance and flexibility. Subsystem definition and design. Design
of high-level interfaces, both hardware to software and software to software.

CMU/SEI-89-TR-21 17

Aspects System modeling techniques and representations. Methods for system design,
including object-oriented design, and tools to support those methods. Iterative
design techniques. Performance prediction.

Objectives Comprehension of the issues in system design, with emphasis on engineering
tradeoffs. Ability to use appropriate system design models, methods, and tools,
including those for specifying interfaces. Ability to analyze and synthesize
small systems.

15. Software Design

Topics Principles of design, including abstraction and information hiding, modularity,
reuse, prototyping. Levels of design. Design representations. Design practices
and techniques. Examples of design paradigms for well-understood systems.

Aspects Principles of software design. One or more design notations or languages. One
or more widely used design methods and supporting tools, if available.
Assessment of the quality of a design. Design documentation.

Objectives Knowledge and comprehension of one or more design representations, design
methods, and supporting tools, if available. Ability to analyze and synthesize
designs for software systems. Ability to apply methods and tools as part of a
design team.

16. Software Implementation

Topics Relationship of design and implementation. Features of modern procedural
languages related to design principles. Implementation issues, including
reusable components and application generators. Programming support envi-
ronment concepts.

Aspects One or more modern implementation languages and supporting tools.
Assessment of implementations: coding standards and metrics.

Objectives Ability to analyze, synthesize, and evaluate the implementation of small sys-
tems.

17. Software Testing

Topics The role of testing and its relationship to quality assurance. The nature of and
limitations of testing. Levels of testing: unit, integration, acceptance, etc.
Detailed study of testing at the unit level. Formal models of testing. Test
planning. Black box and white box testing. Building testing environments.
Test case generation. Test result analysis.

Aspects Testing principles and models. Tools to support specific kinds of tests.
Assessment of testing; testing standards. Test documentation.

18 CMU/SEI-89-TR-21

Objectives Knowledge and comprehension of the role and limitations of testing. Ability to
apply test tools and techniques. Ability to analyze test plans and test results.
Ability to synthesize a test plan.

18. System Integration

Topics Testing at the software system level. Integration of software and hardware
components of a system. Uses of simulation for missing hardware components.
Strategies for gradual integration and testing.

Aspects Methods and supporting tools for system testing and system integration.
Assessment of test results and diagnosing system faults. Documentation: inte-
gration plans, test results.

Objectives Comprehension of the issues and techniques of system integration. Ability to
apply the techniques to do system integration and testing. Ability to develop
system test and integration plans. Ability to interpret test results and diagnose
system faults.

19. Embedded Real-Time Systems

Topics Characteristics of embedded real-time systems. Existence of hard timing
requirements. Concurrency in systems; representing concurrency in require-
ments specifications, designs, and code. Issues related to complex interfaces
between devices and between software and devices. Criticality of embedded
systems and issues of robustness, reliability, and fault tolerance. Input and
output considerations, including unusual data representations required by
devices. Issues related to the cognizance of time. Issues related to the inability
to test systems adequately.

Objectives Comprehension of the significant problems in the analysis, design, and con-
struction of embedded real-time systems. Ability to produce small systems that
involve interrupt handling, low-level input and output, concurrency, and hard
timing requirements, preferably in a high-level language.

20. Human Interfaces

Topics Software engineering factors: applying design techniques to human interface
problems, including concepts of device independence and virtual terminals.
Human factors: definition and effects of screen clutter, assumptions about the
class of users of a system, robustness and handling of operator input errors,
uses of color in displays.

Objectives Comprehension of the major issues. Ability to apply design techniques to pro-
duce good human interfaces. Ability to design and conduct experiments with
interfaces, to analyze the results and use them to improve the design.

CMU/SEI-89-TR-21 19

3.4. Curriculum Design

The six core courses in the MSE curriculum are:
Software Systems Engineering
Specification of Software Systems

Principles and Applications of Software Design
Software Generation and Maintenance
Software Verification and Validation
Software Project Management

Detailed course descriptions are presented in Sections 3.4.1 to 3.4.6; each is organized into
eight parts:

Catalog Description

Course Objectives

Prerequisites

Syllabus

Relevant SEI
Curriculum Modules

Pedagogical
Concerns

Comments

Bibliography

A short description of the course, similar to that in a college
catalog.

A general statement of educational objectives.

Knowledge required of students prior to taking this course.

An outline of the topics to be covered in the course, with annota-
tions (in italics) and references. For each major topic, the num-
ber of weeks to be devoted to the topic and the educational ob-
jective (from Bloom's taxonomy) are noted.

A list of SEI curriculum modules whose content includes topics
from the course.

A short discussion of how the course should be taught, sugges-
tions for student projects or exercises, and other information of
interest to the instructor.

Information on the development or philosophy of the course,
usually derived from discussions at the curriculum design work-
shop.

References from the syllabus; usually these are background
reading for instructors.

A significant fact about these courses is that there is no prerequisite structure among them.
This is primarily a result of the overall program prerequisites. A modern undergraduate
curriculum in computer science includes significant coverage of programming-in-the-small,
including some simple models of software development. Therefore the MSE core courses con-
stitute a second, substantially more detailed, pass through much of this material. Elective
courses can provide a third, still more detailed study of some topics.

The primary consideration in scheduling the courses is that they and the student project
work (see Section 3.5) are mutually supportive. For many schools, it is likely that the
courses will be offered in "waterfall-model order" since the project proceeds in that order.

20 CMU/SEI-89-TR-21

3.4.1. Software Systems Engineering

Catalog Description

This course exposes students to the development of software systems at the very highest
level. It introduces the system aspect of development and the related tradeoffs required
when software and hardware are developed together, especially with respect to user inter-
faces. It exposes students to requirements analysis and techniques for developing a system
from those requirements. System integration and transition into use are also covered.

Course Objectives

After completing this course, students should comprehend the alternative techniques used to
specify and design systems of software and hardware components. They should be able to
find the data and create a requirements document and to develop a system specification.
They should understand the concepts of simulation, prototyping, and modeling. They should
know what is needed to prepare a system for delivery to the user and what makes a system
usable.

Prerequisites

Students should have knowledge of software life cycle models, computer architectures, and
basic statistics.

Syllabus

Wks Topics and Subtopics (Objective)

1 Introduction (Knowledge)

Students should see the "big picture" in this part of the course. The emphasis should
be on how software is only one component of a larger system.

Overview of topics

1 System Specification (Comprehension)

Contents

Standards

Global issues such as safety, reliability

2 System Design (Comprehension)

Simulation

Queuing theory

Tradeoffs

Methods (levels, object-oriented, function-oriented)

3 Interfaces (Comprehension)

CMU/SEI-89-TR-21 21

Both human interfaces and interfaces to hardware devices should be included. These
areas require different skills but are logically combined here to emphasize the notion
of encapsulation of software within larger systems.

Human factors

Guidelines

Experiments

Devices

1 System Integration (Comprehension)

Students should learn how to perform integration of entire systems, not just software.

Simulation of missing components

System build

5 Requirements Analysis (Synthesis)

This is the largest part of the course. Students should learn the interpersonal skills as
well as the technical skills necessary to elicit requirements from users. Expression and
analysis of requirements are often performed with CASE tools.

Objectives

Interview skills

Needs and task analysis

Prototypes

SADT, RSL (and other specific methods)

1 Operations Requirements (Comprehension)

Students should understand and know how to satisfy the other operations require-
ments of systems, such as training and documentation.

Training

Online help

User documentation

Relevant SEI Curriculum Modules

CM-6 Software Safety, Nancy G. Leveson
CM-11 Software Specification: A Framework, H. Dieter Rombach
CM-17 User Interface Development, Gary Perlman
CM-19 Software Requirements, John W. Brackett

Pedagogical Concerns

Case studies should be available as assigned readings. A requirements analysis project
should be assigned to students, with topics in the lectures sequenced to match the project

22 CMU/SEI-89-TR-21

schedule. A user interface prototype project should be assigned, including an exercise in user
documentation. The students should give a presentation on their requirements study. An
instructor of this course should have experience in requirements analysis and system design.

Comments

We had a great deal of difficulty naming this course. Much of the work that students will
perform as exercises and projects deals with requirements analysis. On the other hand, this
course attempts to place software in perspective with other elements of systems. The theme
of the course is not just requirements analysis, but total systems engineering. We noted that
universities often have courses titled "systems engineering" that cover the same topics from
an electrical engineering perspective.

An important goal of this course is that students achieve an understanding of the role of
software engineering within the larger context of systems engineering. They should under-
stand, for example, that while ensuring that a software system satisfies its specification is a
software problem, getting the right specification is a systems problem. If software does not
give the right system behavior, it must be determined whether the software fails to meet the
specification or whether the specification does not define the right system behavior. These
distinctions are critical as students leave the academic world, where the entire system is
often a personal computer, and enter the "real world" of embedded systems.

Bibliography

The bibliography for this course is still being developed. The bibliographies of the SEI cur-
riculum modules listed above will provide good references for much of the course.

CMU/SEI-89-TR-21 23

3.4.2. Specification of Software Systems

Catalog Description

Specification occurs at many levels in software engineering. High-level specifications often
attempt to capture user requirements, while detailed functional specifications often describe
implementation decisions. This course covers several different models of and languages for
specification of software systems. The role of documents and standards and the notion of
traceability between documents are also covered.

Course Objectives

After completing this course, students should be able to write specifications in at least one
formal language, analyze specifications for consistency and completeness, trace requirements
to parts of functional specifications, and be able to recognize and apply a number of standard
paradigms.

Prerequisites

Students should have a working knowledge of set theory, functions and relations, and predi-
cate calculus. They should also have basic knowledge of state machines. A course in discrete
mathematics usually satisfies this requirement.

The discussion of the role of specifications presumes some knowledge of the software life
cycle. For example, traceability presumes knowledge of requirements, at least at the concept
level.

Syllabus

Wks Topics and Subtopics (Objective)

1 Types of Specification (Comprehension)

Functional

Non-functional: performance, reliability, quality, usability, etc.

Non-functional specifications are notoriously hard to describe precisely. It is
important that students know about this topic, though the course will emphasize
functional specifications.

5.5 Models and Languages of Specification (Synthesis)

It is not possible to teach (or even categorize) all of the competing models and lan-
guages. Students should be exposed to several different ways of thinking by studying
perhaps four of the models listed below. Only one model and language can be mas-
tered well enough to use in a semester-long project.

Axiomatic [Guttag79, Guttag80, Guttag85]

State-machine [Parnas72, Bartussek78]

24 CMU/SEI-89-TR-21

Abstract model [Bj0rner78, Bj0rner82, Jones86]

Operational [Zave81, Zave82]

Concurrency [Hoare78, Harel87, Peterson77]

5.5 Paradigms (Application)

For each specification model there are application domains or solutions well suited to
that model. Disciplined use of specification languages, including use of domain-
specialized templates, is important. The list of paradigms below is meant to be
representative, not exhaustive.

Transformational: refinement of specifications into implementations [Agresti86]

Real-time systems: problems involving the notion of time, concurrency, reliability
and performance

Data processing: problems that have "batch" solutions

Expert systems: constraint-based problems

2 Role of Documentation (Comprehension)

The types of issues that should be addressed in this topic include: Where do specifica-
tions fit into the software life cycle? Who are the participants in the writing and read-
ing of specifications? What restrictions are placed on the format of specifications?

Document classes (e.g., the distinction between C-specs and D-specs)

Standards (e.g., Mil Std 2167A)

Traceability to requirements

Relevant SEI Curriculum Modules

CM-8 Formal Specification of Software, Alfs Berztiss
CM-11 Software Specification: A Framework, H. Dieter Rombach
CM-16 Software Development Using VDM, Jan Storbank Pedersen

The overview module by Rombach (CM-11) provides a good framework for concepts and ter-
minology. The modules by Berztiss (CM-8) and Pedersen (CM-16) each cover one formal
method in depth.

Pedagogical Concerns

Students should participate in a semester-long project in order to master at least one method
and language. Smaller assignments should be given to reinforce understanding of other lan-
guages and models. Case studies are an effective means to show practical examples. Since
the students will spend a lot of time with at least one language, tool support is important.

In teaching the paradigms topic, good examples are needed. It would be best to interleave
the appropriate paradigms with the models and languages most often used. For example, the
state-machine and concurrency models could be illustrated with real-time examples.

CMU/SEI-89-TR-21 25

Comments

Formal specification languages and methods require appropriate motivation within a soft-
ware engineering curriculum. We believe that the appropriate paradigms should be used to
illustrate the formalisms so that students will appreciate the relative merits of each. Most of
the formalisms also require significant investment in technology before they can be used
effectively. It is unlikely that students can master several languages and tools within one
semester. On the other hand, they need to master at least one technology in order to see its
benefits.

Bibliography

Agresti86 Agresti, W. W. "What Are the New Paradigms?" Tutorial: New
Paradigms for Software Development, William W. Agresti, ed. IEEE
Computer Society, 1986.

Bartussek78 Bartussek, W., and Parnas, D. L. "Using Assertions About Traces to
Write Abstract Specifications for Software Modules." Proc. of Second
Conf. of European Cooperation in Informatics, 1978.

Bj0rner78 Bj0rner, D. "Programming in the Meta-Language: A Tutorial." The
Vienna Development Method: The Meta-Language, Dines Bjorner, Cliff B.
Jones, eds. New York: Springer-Verlag, 1978, 24-217.

Bj0rner82 Bj0rner, D., and Jones, C. B. Formal Specification and Software
Development. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

Guttag79 Guttag, J. V. "Notes on Type Abstraction." Proc. SRS Conf, 1979.

Guttag80 Guttag, J. V., and Horning, J. J. "Formal Specification as a Design Tool."
Seventh Symp. Principles of Prog. Lang. ACM, 1980.

Guttag85 Guttag, J. V., Horning, J. J., and Wing, J. M. "The Larch Family of
Specification Languages." IEEE Software 2, 5 (Sept. 1985), 24-36.

Harel87 Harel, D. "Statecharts: A Visual Formalism for Complex Systems."
Science of Computer Programming 8 (1987), 231-274.

Hoare78 Hoare, C. A R. "Communicating Sequential Processes." Comm. ACM 21,
8 (Aug. 1978), 666-677.

Jones86 Jones, C. B. "Systematic Program Development." Proc. Symposium on
Mathematics and Computer Science, 1986.

Parnas72 Parnas, D. L. "A Technique for Software Module Specification with
Examples." Comm. ACM 15, 5 (May 1972), 330-336.

Peterson77 Peterson, J. L. "Petri Nets." Computing Surveys 9, 3 (Sept. 1977), 223-
252.

Zave81 Zave, P., and Yeh, R. T. "Executable Requirements for Embedded
Systems." Proc. Fifth Intl. Conf. Soft. Eng. New York: IEEE, 1981, 295-
304.

Zave82 Zave, P. "An Operational Approach to Requirements Specification for
Embedded Systems." Trans. Soft. Eng. SE-8, 3 (May 1982), 250-269.

26 CMU/SEI-89-TR-21

3.4.3. Principles and Applications of Software Design

Catalog Description

Design is a central activity of software development. This course covers several different
methods and languages for expressing designs. The process of design assessment is also
covered.

Course Objectives

After completing this course, students should be able to use at least one method to design
large systems. They should know how to choose the appropriate method and notation for a
problem class, be able to evaluate designs created by others, and comprehend several design
paradigms.

Prerequisites

Students should have a good working knowledge of programming-in-the-small. Experience in
designing small systems is helpful.

Syllabus

Wks Topics and Subtopics (Objective)

1 Design Principles and Attributes (Comprehension)

Students should learn the value of a good design and learn how to recognize one when
they see it.

Abstraction

Information hiding

Modularity

Cohesion and coupling

5 Design Methods (Evaluation)

The pedagogical objective for this topic is to reach the evaluation level for one method
and the comprehension level for the other methods. It is important that students be
exposed to several different models, perhaps four from the following list. At the mini-
mum, students should be exposed to both top-down (decomposition) and bottom-up
(composition) methods. Examples of top-down methods are iterative enhancement,
SCR, Jackson, and Mills. Examples of bottom-up methods are object-oriented and
data abstraction. Since dataflow methods will probably be covered in the Software
Systems Engineering course, they do not have to be covered here.

Object-oriented

Data abstraction [Liskov86]

Iterative enhancement [Wirth71, Dijkstra68]

CMU/SEI-89-TR-21 27

Dataflow [Yourdon79, Gane79]

Program design languages (PDLs)

Software Cost Reduction (SCR) [Parnas85]

Jackson (JSP and JSD) [Jackson75, Jackson83]

Mills [Mills86]

1 Design Verification (Application)

Designs should be checked for internal consistency and completeness, and for accuracy
in elaborating a functional specification. This is typically done by review.

7 Paradigms (Comprehension)

Some design methods work better with particular application domains or problem
types. For each method, the appropriate examples should be chosen to illustrate the
success of that method. Some examples of these paradigms are:

User interfaces

Examples are problems that require the specification and use of windows, icons,
devices, or user interface management systems (UIMS).

Real-time

Examples are problems that include timing constraints, concurrency, interrupts,
etc.

Distributed systems

Examples are problems that involve reliability, synchronization, and availability
of resources.

Embedded systems

Examples are problems that involve interfaces to hardware devices.

Relevant SEI Curriculum Modules

CM-2 Introduction to Software Design, David Budgen
CM-3 The Software Technical Review Process, James S. Collofello
CM-16 Software Development Using VDM, Jan Storbank Pedersen

Modules on concurrent programming and design of real-time systems are presently under
development.

Pedagogical Concerns

There is a need to compare specific methods (e.g., Jackson, Yourdon, Mills), without advocat-
ing the use of one method for all purposes. Students should work on a semester-long team
project using one method, but different teams might use different methods. The results of
the projects should be assessed by students. Paradigms should be interspersed with lectures
on specific methods. Case studies are an effective means to illustrate paradigms.

28 CMU/SEI-89-TR-21

Comments

Although many design notations are currently taught in software engineering courses, the
creative process of design is often neglected. Participants in the curriculum design workshop
were unable to recommend an approach to teach this process, but they noted that the
instructor's experience and abilities play an important role.

Bibliography

Dijkstra68 Dijkstra, E. The Structure of the THE Multiprogramming System."
Comm. ACM 11, 5 (May 1968), 341-346.

Gane79 Gane, C, and Sarson, T. Structured Systems Analysis: Tools and
Techniques. Englewood Cliffs, N.J.: Prentice-Hall, 1979.

Jackson75 Jackson, M. Principles of Program Design. London: Academic Press,
1975.

Jackson83 Jackson, M. System Development. Englewood Cliffs, N.J.: Prentice-Hall,
1983.

Liskov86 Liskov, B., and Guttag, J. Abstraction and Specification in Program
Development. New York: McGraw-Hill, 1986.

Mills86 Mills, H. D., Linger, R. C, and Hevner, A R. Principles of Information
Systems Analysis and Design. Academic Press, 1986.

Pamas85 Parnas, D. L., and Weiss, D. M. "Active Design Reviews: Principles and
Practices." Proc. 8th Intl. Conf. Soft. Eng. IEEE Computer Society Press,
1985, 132-136.

Wirth71 Wirth, N. "Program Development by Stepwise Refinement." Comm.
ACM 14, 4 (Apr. 1971).

Yourdon79 Yourdon, E., and Constantine, L. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Englewood Cliffs,
N.J.: Prentice-Hall, 1979.

CMU/SEI-89-TR-21 29

3.4.4. Software Generation and Maintenance

Catalog Description

Software generation is the creation or reuse of software. Software maintenance is the revi-
sion of existing software. This course describes techniques for performing each of those activ-
ities. Topics include alternatives to coding, language concepts, the role of standards and
style, the role of tools, performance analysis, regression analysis, and other maintenance-
specific subjects.

Course Objectives

After completing this course, students should know several alternatives for generating code,
be able to identify good coding style and practices, and know what features of languages
assist or inhibit good coding practices. They should be able to improve the performance of
implemented software, be familiar with tools to help coding and maintenance, and under-
stand the tradeoffs in maintaining software from specifications or from code.

Prerequisites

Students taking this course should have created and tested simple programs. Having partici-
pated in the development or maintenance of a complex program would be valuable.

Syllabus

Wks Topics and Subtopics (Objective)

6 Implementation (Application)

Alternatives to conventional coding

This subtopic is intended to broaden the perspectives of students with respect to
implementation strategies. There are several ways to reuse existing code, such as
incorporating software packages or parts. Code can be generated through the use
of fourth generation languages or compilable specifications. Finally, templates or
macros can be used to reduce the cost of reproducing similar fragments of code.
Language concepts/constraints

Students need to understand the consequences of choosing a particular program-
ming language. For example, some languages support software engineering
principles (e.g., abstract data types), while others do not. If a language does not
support a desired practice, then style or discipline must be used to achieve that
practice. Some languages more easily support particular design paradigms (e.g.,
Prolog supports constraint-based designs better than Pascal).

Performance analysis [Bentley82, Bentley86]

Students should be exposed to a wide spectrum of techniques for measuring and
improving the performance of programs.

30 CMU/SEI-89-TR-21

Standards and style

Because there is not universal agreement on coding standards and style, instruc-
tors must choose the style to teach. There are several books on coding style.
Coding standards are more difficult to obtain, but they can be very valuable
teaching aids..

8 Maintenance (Comprehension)

Maintenance activities [GIass81]

Thin subtopic provides an overview of maintenance activities. Students should
appreciate the differences between maintaining and generating software.

Diagnosing and correcting problems
Introducing new functionality
Porting to a new environment
Reducing maintenance costs, modernizing software

Maintaining software engineered artifacts [Martin83, Clapp81, Parnas79]

There is a difference between maintaining a system for which the history of devel-
opment (and associated documentation) is available and maintaining a program
of unknown origin. This topic addresses the former, while the next topic deals
with the latter. Part of the effort of maintaining an engineered system includes
preserving the structure and integrity of the system.

Life cycle model for maintenance [Boehm88, Wegner84]
Top-down strategies for introducing change
Preserving design integrity
Code reading [Goldberg87]

Maintaining old code

When the original design is not present, it must be recreated from the code. This
process of reverse engineering requires skills of code understanding that are devel-
oped in the Software Verification and Validation course.

Life cycle model for maintenance [Lehman84, Lehman85]
Bottom-up strategies for introducing change

Reverse engineering [Linger79, Britcher86]
Code restructuring
Code reading
Recording abstractions
Analyzing interfaces/coupling [Wilde87a]

Creating information hiding modules
Reducing coupling

Bottom-up and top-down strategies for design creation

Management of software maintenance [Lientz80j, [Grady87]

Maintenance management and project management differ in that they often have
different objectives. However, there are some issues that are common to both, such
as configuration management.

Developing and preserving product data [Freeman87]
Specifications and designs
Change histories

CMU/SEI-89-TR-21 31

Design rationale
User's guide
Records of costs

Planning release cycles, configuration management
Making cost tradeoffs

Increasing complexity vs. restructuring
Evaluating user's cost of change vs. producer's cost of change
Identifying error-prone modules [Gremillion84]
Investing in tools [Shneiderman86]

Quality issues [Collofello87]

This topic overlaps with Software Verification and Validation, but provides a dif-
ferent perspective for the purpose of testing.

Reviews and inspections
Regression testing
Test cases for new function

Productivity issues [Holbrook87, Wilde87b]

Maintenance-specific tools typically support reverse engineering.
Code restructures
Code analyzers [Cleveland87, Ince85]
Data analyzers
Constructors

Relevant SEI Curriculum Modules

CM-3 The Software Technical Review Process, James S. Collofello
CM-4 Software Configuration Management, James E. Tomayko

CM-7 Assurance of Software Quality, Bradley J. Brown
CM-10 Models of Software Evolution: Life Cycle and Process, Walt Scacchi
CM-12 Software Metrics, Everald E. Mills

Pedagogical Concerns

An instructor in this course should have had experience in developing and maintaining soft-
ware of significant size. Assignments in this course should involve using pre-existing code at
least as much as creating new code. Software maintenance assignments should involve
working with a significant existing product and changing it according to specified require-
ments. A code artifact would be useful in this context [Engle89].

Because of the nature of code reading, software generation assignments may be small and
frequent, if desired. Because of the nature of code modification, software maintenance
assignments are likely to be large and may last for the full length of the maintenance portion
of the course.

32 CMU/SEI-89-TR-21

Comments

Although generation of new code and maintenance of old code are distinctly different activi-
ties, the skills required to analyze code are common to both. Also, it is best to discuss the
consequences of implementation (maintenance) soon after describing the implementation
process (code generation).

There are several competing philosophies about maintenance, how it is best characterized,
and how it might best be taught. Three of these philosophies are:

* Maintenance is a unique activity requiring special skills.

* Maintenance is not intrinsically different from software development activities, but
it has a different set of constraining factors (such as the existence of body of code).

* Maintenance activities should focus on the specification for the software rather
than the code, with other activities being derived as in development.

Each implementation of this course is likely to be different from the others because of these
philosophical differences. It is to be hoped that significant lessons can be learned from the
first few implementations.

Bibliography

Bentley82 Bentley, J. L. Writing Efficient Programs. Englewood Cliffs, N.J.:
Prentice-Hall, 1982.

Bentley86 Bentley, J. L. Programming Pearls. Reading, Mass.: Addison-Wesley,
1986.

Boehm88 Boehm, B. W. "A Spiral Model of Software Development and
Enhancement." Computer 21, 5 (May 1988), 61-72.

Britcher86 Britcher, R. N., and Craig, J. J. "Using Modern Design Practices to
Upgrade Aging Software Systems." IEEE Software 3, 3 (May 1986), 16-
24.

Clapp81 Clapp, J. A "Designing Software for Maintainability." Computer Design
20, 9 (Sept. 1981).

Cleveland87 Cleveland, L. An Environment for Understanding Programs. Tech. Rep.
12880, IBM, 1987.

Collofello87 Collofello, J. S., and Buck, J. J. "Software Quality Assurance for
Maintenance." IEEE Software 4, 5 (Sept. 1987), 46-51.

Engle89 Engle, C. B., Jr., Ford, G., and Korson, T. Software Maintenance
Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Feb. 1989.

Freeman87 Freeman, P. Software Perspectives: The System is the Message. Reading,
Mass.: Addison-Wesley, 1987.

Glass81 Glass, R., and Noiseux, R. A. Software Maintenance Guidebook.
Englewood Cliffs, N.J.: Prentice-Hall, 1981.

CMU/SEI-89-TR-21 33

Goldberg87

Grady87

Gremillion84

Holbrook87

Ince85

Lehman84

Lehman85

Lientz80

Linger79

Martin83

Parnas79

Shneiderman86

Wegner84

Wilde87a

Wilde87b

Goldberg, A. "Programmer as Reader." IEEE Software 4, 5 (Sept. 1987),
62-70. Reprinted from Information Processing 86, H. J. Kugler, ed.,
North-Holland, Amsterdam, 1986.

Grady, R. B. "Measuring and Managing Software Maintenance." IEEE
Software 4, 5 (Sept. 1987), 35-45.

Gremillion, L. L. "Determinants of Program Repair Maintenance
Requirements." Comm. ACM27,8 (Aug. 1984), 826-832.

Holbrook, H. B., and Thebaut, S. M. A Survey of Maintenance Tools that
Enhance Program Understanding. Tech. Rep. SERC-TR-9-F, Software
Engineering Research Center, Purdue Univ.-Univ. of Florida, Sept. 1987.

Ince, D. C. "A Program Design Language Based Software Maintenance
Tool." Software Practice and Experience 15, 6 (June 1985).

Lehman, M. M. "A Further Model of Coherent Programming Processes."
Proc. Software Process Workshop, Colin Potts, ed. IEEE Computer
Society Press, Feb. 1984, 27-34.

Lehman, M. M. Program Evolution: Processes of Software Change.
London: Academic Press, 1985.

Lientz, B. P., and Swanson, E. Software Maintenance Management.
Reading, Mass.: Addison-Wesley, 1980.

Linger, R. C, Mills, H. D., and Witt, B. I. Structured Programming:
Theory and Practice. Reading, Mass.: Addison-Wesley, 1979.

Martin, J., and McClure, C. Software Maintenance: The Problem and Its
Solutions. Englewood Cliffs, N.J.: Prentice-Hall, 1983.

Parnas, D. L. "Designing Software for Ease of Extension and
Contraction." Trans. Soft. Eng. SE-5, 2 (Mar. 1979).

Shneiderman, B., Shafer, P., Simon, R., and Weldon, L. "Display
Strategies for Program Browsing: Concept and Experiment." IEEE
Software 3, 3 (May 1986), 7-15.

Wegner, P. "Capital-intensive Software Technology." IEEE Software 1, 3
(July 1984), 7-45.

Wilde, N., and Nejmeh, B. Dependency Analysis: An Aid for Software
Maintenance. Tech. Rep. SERC-TR-13-F, Software Engineering Research
Center, Purdue Univ.-Univ. of Florida, Sept 1987.

Wilde, N., and Thebaut, S. M. The Maintenance Assistant: Work in
Progress. Tech. Rep. SERC-TR-10-F, Software Engineering Research
Center, Purdue Univ.-Univ. of Florida, Sept. 1987. To be published in
Journal of Systems and Software.

34 CMU/SEI-89-TR-21

3.4.5. Software Verification and Validation

Catalog Description

This course addresses the theory and practice of ensuring high-quality software products.
Topics covered include quality assessment, proof of correctness, testing, and limitations of
verification and validation methods.

Course Objectives

After completing this course, students should be able to prepare an effective test plan, ana-
lyze a test plan, apply systematic integration testing, prove a module correct, and plan and
conduct a technical review.

Prerequisites

A second-semester course in computer science (such as data structures) and a discrete math-
ematics course.

Syllabus

Wks Topics and Subtopics (Objective)

0.5 Verification and Validation Limitations (Knowledge)

Students should be made aware of the theoretical and practical limitations of testing
and program proving. Validation is limited by the informal nature of user require-
ments.

Review of concepts and terminology [Goodenough75]

0.5 Definition and Assessment of Product Quality (Knowledge)

Quality is difficult to define, but users claim that it is easy to recognize. One quantifi-
able measure is the number of errors reported. Configuration management typically
tracks this kind of data, providing a relationship between this course and the Software
Project Management course.

Product quality factors

Assessment of product quality

3.5 Proof of Correctness Methods (Application)

This topic ensures that students are familiar with the latest methods and problems in
this area. The skills they develop will help them read and analyze code for other pur-
poses, such as maintenance.

Functional correctness [Mills86]

Weakest precondition [Dijkstra76]

Procedures [Hoare71]

CMU/SEI-89-TR-21 35

Algebraic [Guttag78]

2.5 Technical Reviews (Analysis)

Early reviews have been the most cost-effective means of eliminating errors in soft-
ware. Students should learn how to plan, conduct, and participate in several different
forms of reviews (e.g., walkthroughs, inspections).

6 Testing (Comprehension)

Although the educational objective for this topic is comprehension, some of the
subtopics should achieve higher levels. For example, students should reach the appli-
cation level for some specific module-level testing methods. (They may only achieve
comprehension for other methods.) It is important to cover the entire life cycle,
especially those methods that apply to entire systems.

Module-level testing methods (functional, structural, error-oriented, hybrid)

Integration

Test plans and documentation

Transaction flow analysis

Stress analysis (failure, concurrency, performance)

1 Test Environments (Comprehension)

Students should recognize which tasks and aspects of testing are amenable to automa-
tion and which require human intervention. The goal should be to automate as many
tasks as feasible.

Tools

Environments for testing

Relevant SEI Curriculum Modules

CM-3 The Software Technical Review Process, James S. Collofello
CM-7 Assurance of Software Quality, Bradley J. Brown
CM-9 Unit Testing and Analysis, Larry J. Morell
CM-13 Introduction to Software Verification and Validation, James S. Collofello

Pedagogical Concerns

It is important to convey the applicability of the methods. For example, proof of correctness
is currently applicable only to modules, while testing is more suitable for systems.

Comments

It is assumed that students will have seen some proof of correctness methods in their under-
graduate program. For example, weakest preconditions are often taught in an early
programming course. However, most students will need to review these topics in this course.

36 CMU/SEI-89-TR-21

Bibliography

Dijkstra76 Dijkstra, E. A Discipline of Programming. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

Goodenough75 Goodenough, J. B., and Gerhart, S. L. Toward a Theory of Test Data
Selection." Trans. Soft. Eng. SE-1,2 (June 1975).

Guttag78 Guttag, J. V., Horowitz, E., and Musser, D. R. "Abstract Data Types and
Software Validation." Comm.ACM21,12 (Dec. 1978), 1048-1064.

Hoare71 Hoare, C. A. R "Procedures and Parameters - An Axiomatic Approach."
Symp. Semantics ofAlgor. Lang., E. Engeler, ed. 1971.

Mills86 Mills, H. D., Basili, V. R., Gannon, J. D., and Hamlet, R. G. Principles of
Computer Programming, A Mathematical Approach. Allyn and Bacon,
1986.

CMU/SEI-89-TR-21 37

3.4.6. Software Project Management

Catalog Description

This course addresses process considerations in software systems development. It provides
advanced material in software project planning, mechanisms for monitoring and controlling
projects, and leadership and team building.

Course Objectives

After completing this course, students should know how to develop a software project man-
agement plan; how to set up monitoring and controlling mechanisms for software projects;
how to allocate and reallocate project resources; and how to track schedule, budget, quality,
and productivity. In addition, students should understand the relationships among quality
assurance, configuration management, and project documentation. They should gain an
understanding of the key issues in motivating workers and leading project teams. They
should be aware of intellectual property issues, software contracting and licensing, and pro-
cess assessments.

Prerequisites

There are no specific prerequisites beyond admission to the MSE program.

Syllabus

Wks Topics and Subtopics (Objective)

4 Introduction (Comprehension)

Students need to see the tig picture" of software development. They also need to be
motivated to study the problems of management.

Software engineering process
Process models (waterfall, incremental, spiral, rapid prototype, domain)
Organizational structures (functional, matrix, individual roles)

Motivational case studies
Problematical projects (Project Foul, Medinet, Scientific American, OS/360,

Mul tics, Soul of a New Machine)
Successful projects (GE RC2000, NASA space shuttle, ESS #1, Olympics

message system)
Huge systems (air traffic control, Strategic Defense Initiative)

Project origins
Requests for proposals (RFP), statements of work (SOW), contracts, business

plans
System requirements
Software requirements

38 CMU/SEI-89-TR-21

Legal issues
Intellectual property rights
Contracts
Licensing
Liability
Post-employment agreements

4.5 Planning (Application)

Good planning is still considered an art rather than a science. However, students
should learn how to use the best methods available. It is important to stress the impor-
tance of tailoring any method to the problem and the environment.

Standards
External (2167A, 2168, NASA, IEEE)
Internal (corporate, project)
Tailoring

Work breakdown

Scheduling
CPM, PERT, activity networks
Milestones and work products

Resources
Acquisition
Allocation
Tradeoffs

Risk analysis
Identification
Assessment
Contingency planning

Estimates
Expert judgment (individual, Delphi)
Size estimates
Models (driven by lines of code, by function point; time-sensitive models)

4.5 Monitoring and Controlling (Application)

Much of this topic deals with issues of product quality. There is an overlap here with
material from the Software Verification and Validation course. The subtopic on lead-
ership may be difficult to teach, but its inclusion in the course is important, if only to
stimulate awareness of the different kinds of problems found in this area.

Process metrics
Quality
Schedule
Budget
Productivity

Earned value tracking

Quality assurance

CMU/SEI-89-TR-21 39

Technical reviews (walkthroughs, inspections, acceptance testing)
Planning

Configuration management
Planning
Identification
Change control
Auditing
Tools

Risk management
Tracking
Crisis management

Leadership, training, and motivation
Work environment
Motivation and job satisfaction
Leadership styles
Team structures (hierarchical, chief programmer, democratic)
Productivity assessment
Performance reviews
Small group dynamics

1 Project Assessment (Application)

Students should assess one another's work. This is one of the best ways to synthesize
material from several topics of the course. For example, the combined effects of poor
planning and poor control are best seen through postmortem analysis. Students
should be given the opportunity to fail, since they will be less willing to try novel
approaches outside academia.

In-process assessment

Final assessment

Project formation
Postmortems and lessons learned
Summary data collection
Staff reassignments

Relevant SEI Curriculum Modules

CM-3 The Software Technical Review Process, James S. Collofello
CM-4 Software Configuration Management, James E. Tomayko
CM-7 Assurance of Software Quality, Bradley J. Brown
CM-10 Models of Software Evolution: Life Cycle and Process, Walt Scacchi
CM-14 Intellectual Property Protection for Software, Pamela Samuelson and

Kevin Deasy
CM-12 Software Metrics, Everald E. Mills
CM-21 Software Project Management, James E. Tomayko and Harvey K. Hall man

40 CMU/SEI-89-TR-21

Pedagogical Concerns

A project should be assigned; it should primarily involve planning-no implementation need
be done.

It is difficult to provide motivation for many of the topics in this course without experience
managing software development projects. Guest lecturers may be especially helpful for this.

Many aspects of software maintenance may be considered project management issues.
Instructors should coordinate the coverage of these topics between this course and the
Software Generation and Maintenance course.

Bibliography

The bibliography for this course is still being developed. The bibliography of curriculum
module CM-21 provides useful references for most of this course.

CMU/SEI-89-TR-21 41

3.5. Project Experience Component

In addition to coursework covering the units described above, the curriculum should incorpo-
rate a significant software engineering experience component representing at least 30% of
the student's work. Universities have tried a number of approaches to give students this
experience; examples are summarized in Figure 3.1.

School Approach Description

Seattle University,
Monmouth College,
Texas Christian
University

Capstone project
course

Students do a software development
project after completion of most
coursework

University of Southern
California

Continuing project Students participate in the Software
Factory, a project that continues from
year to year, building and enhancing
software engineering tools and
environments

Arizona State
University

Multiple course
coordinated project

A single project is carried through four
courses (on software analysis, design,
testing, and maintenance); students may
take the courses in any order

University of Stirling Industry cooperative
program

After one year of study, students spend
six months in industry on a professionally
managed software project, followed by a
semester of project or thesis work based
in part on the work experience

Imperial College Commercial software
company

Students participate in projects of a
commercial software company that has
been established by the college in
cooperation with local companies

Carnegie Mellon
University

Design studio Students work on a project under the
direction of an experienced software
designer, similar to a master-apprentice
relationship

Figure 3.1. Approaches to the experience component

One form of experience is a cooperative program with industry, which has been common in
undergraduate engineering curricula for many years. The University of Stirling uses this
form in their Master of Science in Software Engineering program [Budgen86]. Students
enter the program in the fall semester of a four-semester program. Between the first and
second semesters.they spend two or three weeks in industry to learn about that company.
They return to the company in July for a six-month stay, during which time they participate
in a professionally managed project. The fourth semester is devoted to a thesis or project
report, based in part on their industrial experience.

42 CMU/SEI-89-TR-21

Imperial College of Science and Technology has a similar industry experience as part of a
four-year program leading to a Bachelor of Science in Engineering degree [Lehman86j. For
this purpose, the College has set up Imperial Software Technology, Ltd. (1ST) in partnership
with the National Westminster Bank PLC, The Plessey Company PLC, and PA Inter-
national. 1ST is an independent, technically and commercially successful company that pro-
vides software technology products and services.

The more common form of experience, however, is one or more project courses as part of the
curriculum. Two forms are common: a project course as a capstone following all the lecture
courses, and a project that is integrated with one or more of the lecture courses.

The Wang Institute of Graduate Studies (before it closed in 1987), Texas Christian
University, and Seattle University have each offered a graduate software engineering degree
for several years, and the College of St. Thomas is in its fifth year of offering its degree
program. Each school incorporates a capstone project course into its curriculum. The Wang
Institute often chose projects related to software tools that could be useful to future students.
TCU takes the professional backgrounds of its students into consideration when choosing
projects. Seattle sometimes solicits real projects from outside the university. The College of
St. Thomas allows students to work on projects for their employers, other than their normal
work assignments.

It is worth noting that the project course descriptions for all four of these institutions do not
mention software maintenance. Educators and practitioners alike have long recognized that
maintenance requires the majority of resources in most large software systems. The lack of
coverage of maintenance in software engineering curricula may be attributed to several
factors. First, there does not appear to be a coherent, teachable body of knowledge on soft-
ware maintenance. Second, current thinking on improving the maintenance process is
primarily based on improving the development process; this includes the capturing of devel-
opment information for maintenance purposes. Finally, giving students maintenance experi-
ence requires that there already exists a significant software system with appropriate docu-
mentation and change requests, the preparation of which requires more time and effort than
an individual instructor can devote to course preparation. (The SEI has published some
materials to address this final problem [Engle89].)

The University of Southern California has built an infrastructure for student projects that
continue beyond the boundaries of semesters and groups of students. The System Factory
Project [Scacchi86] has created an experimental organizational environment for developing
large software systems that allows students to encounter many of the problems associated
with professional software engineering and to begin to find effective solutions to the prob-
lems. To date, more than 250 graduate students have worked on the project and have devel-
oped a large collection of software tools.

The University of Toronto has added the element of software economics to its project course
[Horning76, Wortman86]. The Software Hut (a small software house) approach requires stu-
dent teams to build modules of a larger system, to try to sell their module to other teams (in
competition with teams that have developed the same module), to evaluate and buy other
modules to complete the system, and to make changes in purchased modules. At the end of
the course, systems are "sold" to a "customer" at prices based on the system quality (as

CMU/SEI-89-TR-21 43

determined by the instructor's letter grade for the system). The instructor reports that this
course has a very different character from previous project courses. The students' attempts
to maximize their profits gave the course the flavor of a game and helped motivate students
to use many techniques for increasing software quality.

Arizona State University has built the project experience into a sequence of courses, combin-
ing lectures with practice [Collofello82]. The four courses were Software Analysis
(requirements and specifications), Software Design, Software Testing, and Software
Maintenance. The courses were offered in sequence so that a single project could be contin-
ued through all four. However, the students could take the courses in any order, and
although many students did take them in the normal (waterfall model) order, the turnover in
enrollment from one semester to the next gave a realistic experience.

Carnegie Mellon University has recently initiated an MSE degree program based in part on
the SEI curriculum described in this report. This program is experimenting with a year-long
design studio approach to the project experience component, in which students work closely
with faculty on software development; this is similar to the master-apprentice model.

We do not believe that there is only one correct way to provide software engineering experi-
ence. It can be argued that experience is the basis for understanding the abstractions of
processes that make up formal methods and that allow reasoning about processes.
Therefore, we should give the students experience first, with some guidance, and then show
them that the formalisms are abstractions of what they have been doing. It can also be
argued that we should teach "theory" and formalisms first, and then let the students try
them in capstone project courses.

No matter what form the experience component takes, it should provide as broad an experi-
ence as possible. It is especially important for the students to experience, if not perform, the
control activities and the management activities (as defined in Appendix 1). Without these,
the project can be little more than advanced programming.

3.6. Electives

Electives may make up 20% to 40% of a curriculum. Although it is a young discipline, soft-
ware engineering is already sufficiently broad that students can choose specializations (such
as project management, systems engineering, or real-time systems); there is no "one size fits
all" MSE curriculum. The electives provide the opportunity for that specialization.

In addition, there is a rather strong perception among industrial software engineers that
domain knowledge for their particular industry is essential to the development of effective
software systems. Therefore, we also suggest that an MSE curriculum permit students to
choose electives from the advanced courses in various application domains. Software engi-
neers with a basic knowledge of avionics, radar systems, or robotics, for example, are likely to
be in great demand. Furthermore, there is increasing evidence that better software project
management can significantly influence the cost of software, so electives in management
topics may be appropriate.

44 CMU/SEI-89-TR-21

To summarize, there are five recommended categories of electives:

1. Software engineering subjects, such as software development environments

2. Computer science topics, such as database systems or expert systems

3. Systems engineering topics, especially topics at the boundary between hardware
and software

4. Application domain topics

5. Engineering management topics

3.7. Pedagogical Considerations

Software engineering is difficult to teach for a variety of reasons. It is a relatively new and
rapidly changing discipline, and it has aspects of an art and a craft as well as a science and
an engineering discipline. As a result, educators must develop a variety of teaching tech-
niques and materials in order to provide effective education.

Psychologists distinguish declarative knowledge and procedural knowledge [Norman88]. The
former is easy to write down and easy to teach; the latter is nearly impossible to write down
and difficult to teach. It is largely subconscious, and it is best taught by demonstration and
best learned through practice. Many of the processes of software engineering depend on pro-
cedural knowledge. It is for this reason that we recommend such a significant amount of
project experience (see Section 3.5).

Another aspect of experience that can be built into the curriculum involves "tricks of the
trade." Software engineers, during the informal apprenticeship of their first several years in
the profession, are likely to be exposed to a large number of recurring problems for which
there are accepted solutions. These problems and solutions will vary considerably from one
application domain to another, but all software engineers seem to accumulate them in their
"bags of tricks."

We believe that students would receive some of the benefits of their "apprenticeship" period
while still in school if these problems and solutions were included in the curriculum. For this
reason, we have included large course segments titled "Paradigms" in the specification and
design courses (see the descriptions of these courses following this report).

The principal definition of the word paradigm is "EXAMPLE, PATTERN; esp : an outstandingly
clear or typical example or archetype" [Webster83]. The word archetype is defined in the
same source as "the original pattern or model of which all things of the same type are repre-
sentations or copies: PROTOTYPE; also : a perfect example." We believe that these definitions
capture the notion of a widely accepted or demonstrably superior solution to a recurring
problem.

Unfortunately, there is no ready source of appropriate paradigms. The paradigms sections of
the specification and design courses only hint at the kinds of material to be presented.
Therefore the SEI Education Program has begun efforts to identify and document paradigms

CMU/SEI-89-TR-21 45

in a number of software application domains. We hope to report initial success in this
endeavor in our next curriculum report.

3.8. The Structure of the MSE Curriculum

A typical master's degree curriculum requires 30 to 36 semester hours^ credit The courses
described in Section 3.4 require three hours each, totaling 18 semester hours. This allows
time for the project experience component and for some electives.

Because of the wide range of choices for electives, students can be well served by creative
course design. For example, several small units of material (roughly one semester hour each)
might be prepared by several different instructors. Three of these could then be offered
sequentially in one semester under the title Topics in Software Engineering," with different
units offered in different semesters.

Figure 3.2 shows the structure of a curriculum based on the six core courses. This structure
reflects the familiar spiral approach to education, in which material is presented several
times in increasing depth. This approach is essential for a discipline such as software engi-
neering, with many complex interrelationships among topics; no simple linear ordering of the
material is possible.

Students learn the basics of computer science and programming-in-the-small in the under-
graduate curriculum. The six core courses build on these basics by adding depth, formal
methods, and the programming-in-the-large concepts associated with systems engineering
and the control and management activities. The electives and the project experience compo-
nent provide further depth and an opportunity for specialization.

^Note for readers not familiar with United States universities: A semester hour represents one contact
hour (usually lecture) and two to three hours of outside work by the student per week for a semester of
about fifteen weeks. A course covers a single subject area of a discipline, and typically meets three
hours per week, for which the student earns three semester hours of credit. A graduate student with
teaching or research responsibilities might take three courses (nine semester hours) each semester; a
student without such duties might take five courses.

46 CMU/SEI-89-TR-21

r MSE Degree "N
Project Experience

Component

(prerequisites may vary)

Elective Elective

s

Elective

s

Specification
of Software

Systems

Software
Verification

and
Validation

TT-*

Software
Generation

and
Maintenance

Principles,
Applications
of Software

Design

Software
Systems

Engineering

5^

Software
Project

Management

/—c^ s: SLZTN
Discrete

Mathematics

Prog rammino-in-the-Sm all

)(
Programming I Data Structures Algorithms

Communi-
cation
Skills

Undergraduate Degree

Figure 3.2. MSE curriculum structure

CMU/SEI-89-TR-21 47

4. Survey of Graduate Degree Programs in Software
Engineering

Graduate degree programs first appeared in the late 1970s at Texas Christian University,
Seattle University, and the Wang Institute of Graduate Studies. All three programs
responded to significant needs from local industry in the Dallas/Fort Worth, Seattle, and
Boston areas, respectively. In 1985, three additional programs were started: at the College
of St. Thomas in St. Paul, Minnesota, at Imperial College of Science and Technology in
London, and at the University of Stirling in Scotland. The last four years have seen a signifi-
cant increase in the development of and interest in such programs. We know of at least a
dozen programs that either have been initiated or are under development.

In this section, we survey the programs in the United States and Europe for which we were
able to obtain information. Readers will note substantial variation among the programs.
This can be attributed to a number of factors:

• Most of the programs were developed in the absence of any recognized model
curriculum.

• Each school had a number of existing courses, mostly in computer science, that
were incorporated into the new programs, and these courses differed greatly among
schools.

• Software engineering is a new discipline, and the developers of these programs had
differing perceptions of the scope of the discipline, and its principles and practices.

• Each school was responding to perceived needs that varied greatly from one
community to another.

Another notable point of variation among these programs is the program title (see Figure
4.1). Many of the programs were unable to use the word engineering in their titles because of
legal or administrative restrictions. In one way, it is unfortunate that the term software
engineering is so nearly universally accepted as an informal name for the discipline, because
it has caused an inordinate amount of time and energy to be devoted to arguing semantic
issues of whether software engineering is really engineering.

We believe it is valuable for a school considering the development of a graduate program in
software engineering to examine not only the SEI recommendations but also these existing
programs. Therefore we have sketched the requirements for each program below.

48 CMU/SEI-89-TR-21

Program Title University

Master of Software Engineering Carnegie Mellon University
Seattle University
"Wang Institute of Graduate Studies (former)

Master of Science in Software Engineering Andrews University
Monmouth College
University of Houston-Clear Lake (proposed)
University of Stirling
The Wichita State University

Master of Computer Science in Software
Engineering

The Wichita State University

Master of Science in Software Systems
Engineering

Boston University
George Mason University

Master of Software Design and Development College of St. Thomas
Texas Christian University

Master of Science in Software Development
and Management

Rochester Institute of Technology

Master of Engineering Imperial College of Science and Technology

Software Engineering Curriculum Master Polytechnic University of Madrid

Figure 4.1. Software engineering degree program titles

CMU/SEI-89-TR-21 49

Andrews University

Location Berrien Springs, Michigan

Program title Master of Science in Software Engineering

Degree requirements 48 quarter credits (typically 4 credits per course): 8 credits of
projects, 16 credits core courses, 0-20 credits foundation courses, 4-
24 credits electives.

Foundation courses Data Structures
Data Base Systems
Systems Analysis I
Systems Analysis II
Operating Systems

Core courses Computer Architecture
Software Engineering I
Software Engineering II
Programming Project Management

Program initiation (unknown)

Source This information was reported to the SEI by Andrews University in
April 1989.

50 CMU/SEI-89-TR-21

Boston University

Location Boston, Massachusetts

Program title Master of Science in Software Systems Engineering

Degree requirements Nine courses of four credits each: seven required courses including
a project course, and two electives. Two of the required courses
differ depending on whether the student's background is in
hardware or software.

Required courses Applications of Formal Methods
Software Project Management
Software System Design
Computer as System Component
Software Engineering Project
Advanced Data Structures (hardware background)
Operating Systems (hardware background)
Switching Theory and Logic Design (software background)
Computer Architecture (software background)

Program initiation Fall 1989 (The program has existed as a software engineering
option in the Master of Science in Systems Engineering since
spring 1980; the current curriculum was adopted in January 1988.)

Source This information was taken from [Brackett88].

Boston University absorbed the Wang Institute's facilities in 1987 and was the beneficiary of
some of the experience of the Wang Institute. This program incorporates the best features of
the MSE curriculum of Wang and the MS in Systems Engineering from Boston University.
The program emphasizes the understanding of both hardware and software issues in the
design and implementation of software systems. Special emphasis is placed on the software
engineering of two important classes of computer systems: embedded systems and net-
worked systems.

Both full-time and part-time programs are available, and most of the program is available
through the Boston University Corporate Classroom interactive television system. The pro-
gram can be completed in twelve months by full-time students.

The university also has a doctoral program leading to the PhD in Engineering, with research
specialization in software engineering.

CMU/SEI-89-TR-21 51

Carnegie Mellon University

Location Pittsburgh, Pennsylvania

Program title Master of Software Engineering

Degree requirements (This information is tentative.)
Sixteen courses: six required courses and two Category I electives
in the first year; a theory course, a business course, two Category II
electives, two software engineering seminars, and a two-semester
master's project in the second year.

Required courses Software Systems Engineering
Formal Methods in Software Engineering
Advanced System Design Principles
Software Creation and Maintenance
Analysis of Software
Software Project Management

Electives Category I: computer science courses at the senior undergraduate
level

Category II: advanced graduate courses in computer science

Prerequisite note Prospective students must have at least two years of experience
working in a sizable software project.

Program initiation September 1989

Source This information was reported to the SEI by CMU in June 1989.

The objective of Carnegie Mellon University's MSE program is to produce a small number of
highly skilled experts in software system development. It is designed to elevate the expertise
of practicing professional software designers. The emphasis is on practical application of
technical results from computer science; the nature of these technical results dictates a rigor-
ous, often formal, orientation. The engineering setting requires responsiveness to the needs
of end users in a variety of application settings, so the program will cover resolution of con-
flicting requirements, careful analysis of tradeoffs, and evaluation of the resulting products.
Since most software is now produced by teams in a competitive setting, the program will also
cover project organization, scheduling and estimation, and the legal and economic issues of
software products.

52 CMU/SEI-89-TR-21

College of St. Thomas

Location St. Paul, Minnesota

Program title Master of Software Design and Development

Degree requirements Ten required courses, including a two-semester project course
sequence, and four elective courses. All courses are three semester
credits.

Required courses Technical Communications
Programming Methodologies
DBMS and Design
Systems Analysis and Design I
Software Productivity Tools I
Software Project Management
Software Quality Assurance/Quality Control
Legal Issues in Technology

Program initiation February 1985

Source This information was reported to the SEI by the College of St.
Thomas in June 1989.

This program was developed through an advisory committee made up of technical managers
from Twin Cities companies such as Honeywell, IBM, Sperry, 3M, NCR-Comten, and Control
Data. Elective courses are added to the curriculum on the basis of need as expressed by
technical managers in local industry or by students in the program.

The program is applied rather than research-oriented. Most instructors are from industry
(14 of 23 in the spring 1989 semester). Instead of a thesis, students complete a two semester
software project in a local company; in many cases this company is their employer, but the
project must not be part of their normal work responsibilities.

Classes are offered evenings, and 98% of students work full-time in addition to their studies.
Students normally require three years to complete the degree. The program enrolled 252
students in spring 1989.

CMU/SEI-89-TR-21 53

George Mason University

Location Fairfax, Virginia

Program title Master of Science in Software Systems Engineering

Degree requirements 30 hours of course work in the School of Information Technology
and Engineering, including five required courses.

Required courses Introduction to Software Engineering
Formal Methods in Software Engineering
Software Requirements, Prototyping, and Design
Software Project Management
Software Project Laboratory

Electives Five courses, including a second semester of Software Project
Laboratory, or three courses and 6 semester hours of master's
thesis.

Program initiation Fall 1989 (core courses offered beginning Fall 1988)

Source This information was reported to the SEI by George Mason
University in April 1989.

The program for the degree of Master of Science in Software Systems Engineering is con-
cerned with engineering technology for developing and modifying software components in
systems that incorporate digital computers. The program is concerned with both technical
and managerial issues, but primary emphasis is placed on the technical aspects of building
and modifying software systems.

In addition to the degree program, the university offers a graduate certificate program in
software systems engineering. The program is designed to provide knowledge, tools, and
techniques to those who are working in, or plan to work in, the field of software systems
engineering, but do not desire to complete all of the requirements for a master's degree.
Students in the certificate program must already hold or be pursuing a master's degree in a
science or engineering discipline. The requirements for the certificate are completion of the
five required courses listed above.

54 CMU/SEI-89-TR-21

Imperial College of Science and Technology

Location London, England

Program title Master of Engineering

University structure British universities normally have three-year bachelor's degree
programs; the master of engineering is a four-year first degree
program. In its first two years the program is the same as the
(three-year) bachelor of science program in computer science.

Degree requirements Third and fourth year coursework includes compulsory courses
totaling three modules and optional courses totaling six modules
(each module represents 22 hours of lecture). During the third
year, students spend approximately six months in industry; during
the fourth year they must complete an individual project.

Compulsory courses (these courses total six modules)
Software Engineering Process
Calculus of Software Development
Database Technology
Introduction to Macro Economics and Financial Management
Introduction to Management
Methodology of Software Development
Language Definition and Design
Programming Support Environments
Standards, Ethical and Legal Considerations

Optional courses
(third year)

(one module each)
Functional Programming Technology I
Artificial Intelligence Technology
Compiler Technology
Computer Networks
Object Oriented Architecture
Interface and Microprocessor Technology
Performance Analysis of Computer Systems
Graphics
Silicon Compilation
Applied Mathematics
Industrial Sociology
Government Law and Industry
Humanities

CMU/SEI-89-TR-21 55

Optional courses
(fourth year)

(one module each)
Advanced Logic
Theorem Proving
Concurrent Computation
Human-Computer Interaction
Expert Systems Technology
Functional Programming Technology II
Advanced Operation Systems
Parallel Architecture
Distributed Systems
VLSI
Robotics
Computing in Engineering
Natural Language Processing
Micro-Economic Concepts
Industrial Relations
Innovation and Technical Change
Humanities

Program initiation Fall 1985

Source This information was taken from [Lehman86].

Since British students normally must commit to either a three-year (bachelor's degree) or a
four-year (master's degree) program at the end of secondary school (the student cannot com-
plete the bachelor's degree and then decide to continue for the master's), the latter programs
tend to attract the better students. Entrance requirements are generally more stringent for
the master's programs and the graduates are expected to advance rapidly once they enter
industry.

The industry component of this program has been described earlier in this report (Section
3.5). This component is perceived to be somewhat analogous to the role of teaching hospitals
in the education of medical students.

56 CMU/SEI-89-TR-21

Monmouth College

Location West Long Branch, New Jersey

Program title Master of Science in Software Engineering

Degree requirements 30 credit hours, consisting of 6 core and 4 elective courses.

Core courses Mathematical Foundations of Software Engineering I
Programming-in-the-Large
Project Management
Computer Networks
Software Engineering I
System Project Implementation (Laboratory Practicum)

Elective courses Mathematical Foundations of Computer Science II
Programming-in-the-Small
Protocol Engineering
Selected Topics in Software Engineering
Programming Languages
Computer Architecture
Operating System Implementation
Database Management
(additional electives are under development)

Program initiation 1986

Source This information was taken from [Amoroso88] and from informa-
tion reported to the SEI by Monmouth College in April 1989.

The program is offered through the departments of computer science and electrical engineer-
ing. The current enrollment is more than 100, and to date 50 students have completed the
degree requirements.

CMU/SEI-89-TR-21 57

Polytechnic University of Madrid

Location Madrid, Spain

Program title Software Engineering Curriculum Master

University structure The Spanish university system organizes its programs differently
from United States universities, so this program cannot be
described in terms of courses. For each of the subject areas
described below, the amount of time devoted to the area is given in
units. Each unit represents a 75 minute class meeting. The
program totals approximately 500 units.

Degree requirements Introduction to Software Engineering (3)
Models of Computation (76)
Computing Machinery (6)
Software Production Technology and Methodology

Information Systems
Introduction to Requirements Analysis (15)
Formal Specification Techniques (25)
Design (55)
Implementation (85)
Tools Evaluation (2)
Software Engineering and Artificial Intelligence (11)

Product and Process Control
System Construction Management (20)
Quality Control
Project Management (20)
Documentation Process (25)

Software Product (8)
Information Protection (14)
Software Safety (8)
Legal Aspects (6)
Case Study (12)

Program initiation 1988

Source This information was reported to the SEI by Polytechnic
University in May 1989.

The Polytechnic University of Madrid is the largest (well over 100,000 students) and most
prestigious of the Spanish technical universities. It has large, well-established schools of
engineering and informatics (computer science). The university is an academic affiliate of
the SEI and has incorporated a number of SEI recommendations into its initial curriculum.

58 CMU/SEI-89-TR-21

Rochester Institute of Technology

Location Rochester, New York

Program title Master of Science in Software Development and Management

Degree requirements 48 credits (quarter system; typical course is 4 credits)

Required courses Principles of Software Design
Principles of Distributed Systems
Principles of Data Management
Software and System Engineering
Project Management
Organizational Behavior
Analysis and Design Techniques, or
Analysis & Design of Embedded Systems
Software Verification and Validation
Software Project Management
Technology Management
Software Tools Laboratory
Software Engineering Project

Program initiation Fall 1987

Source This information was reported to the SEI by RIT in April 1989.

The program has approximately 100 students at the RIT campus and 15 students at Griffiss
Air Force Base in Rome, New York. Approximately 90% of the students attend part-time.

CMU/SEI-89-TR-21 59

Seattle University

Location Seattle, Washington

Program title Master of Software Engineering

Degree requirements 45 credits (quarter system), including eight required core courses,
four elective courses, and a three quarter project sequence.

Required courses Technical Communication
Software Systems Analysis
System Design Methodology
Programming Methodology
Software Quality Assurance
Software Metrics
Software Project Management
Formal Methods

Elective courses System Procurement Contract Acquisition and Administration
Database Systems
Distributed Computing
Artificial Intelligence
Human Factors in Computing
Data Security and Privacy
Computer Graphics
Real Time Systems
Organization Behavior
Organization Structure and Theory
Decision Theory
(other electives may be selected from the MBA program)

Prerequisite note Prospective students must have at least two years of professional
software experience.

Program initiation 1978

Source This information was taken from [Mills86].

Seattle University is an independent urban university committed to the concept of providing
rigorous professional educational programs within a sound liberal arts background. In 1977
the university initiated a series of discussions with representatives from local business and
industry, during which software engineering emerged as a critical area of need for special-
ized educational programs. Leading software professionals were invited to assist in the
development of such a program, which was initiated the following year.

Normally, classes are held in the evenings and students are employed full-time in addition to
their studies. The first students in the program graduated in 1982.

60 CMU/SEI-89-TR-21

Texas Christian University

Location Fort Worth, Texas

Program title Master of Software Design and Development

Degree requirements 36 semester hours, including nine required courses and three
electives; submission of a technical paper to a'journal for
publication.

Required courses Introduction to Software Design and Development
Modern Software Requirements and Design Techniques
Applied Design, Programming, and Testing Techniques
Management of Software Development
Economics of Software Development
Computer Systems Architecture
Database and Information Management Systems
Software Implementation Project I
Software Implementation Project II

Program initiation Fall 1978

Source This information was taken from [Comer86].

The university established a graduate degree program in software engineering in 1978. Due
to external pressure, prompted by the absence of an engineering college at TCU, the program
was given its current name in 1980.

The program offers most of its courses in the evening, and all 50 students in the program are
employed full-time in the Dallas/Fort Worth area.

CMU/SEI-89-TR-21 61

University of Houston-Clear Lake

Location Houston, Texas

Program title Master of Science in Software Engineering

Degree requirements 36 credit hours, including 30 hours of required courses and 6 hours
of electives.

Required courses Specification of Software Systems
Principles and Applications of Software Design
Software Generation and Maintenance
Software Validation and Verification
Software Project Management
Master's Thesis Research
Advanced Operating Systems
Theory of Information and Coding
Synthesis of Computer Networks

Elective courses Must be chosen from courses in software engineering, computer
science, compute systems design, or mathematical sciences.

Program initiation awaiting approval

Source This information was reported to the SEI by the University of
Houston-Clear Lake in March 1989.

The university has submitted a proposal to the Texas Coordinating Board for Higher
Education to offer the MSSE degree; it has not yet been approved.

Five of the required courses in this degree program are based on the SEI recommendations in
this report.

62 CMU/SEI-89-TR-21

University of Stirling

Location Stirling, Scotland

Program title Master of Science in Software Engineering

Degree requirements Semester 1 (September-December)
Programming Methods
Language Concepts
Introduction to Software Engineering
Computing Science Structures and Techniques

Initial industrial placement visits (January)
Semester 2 (February-July)

Methods for Formal Specification
Concurrency (half semester)
Databases (half semester)
Networks and Communications
Elective: Expert Systems or Language Implementation

Industrial project (July-December)
Dissertation (January-March)

Program initiation 1985

Source This information was reported to the SEI by the University of
Stirling in April 1989.

The MSc in Software Engineering is a "specialist conversion course" intended to train gradu-
ates with a scientific background in the methods of software engineering. The students
spend twelve months at the University of Stirling and six months at an industrial research
and development center. Through this approach students are given an understanding of
both the current engineering technology and its application in an industrial context.

The six-month placement in industry enables each candidate to participate in a project and
be responsible for a particular investigation. Where practical, this may form the basis of the
individual project that is undertaken during a final three-month period and then written up
in the dissertation.

CMU/SEI-89-TR-21 63

Wang Institute of Graduate Studies

Location Tyngsboro, Massachusetts

Program title Master of Software Engineering

Degree requirements Eleven courses: eight required courses including two project
courses, and three elective courses.

Required courses Formal Methods
Programming Methods
Management Concepts
Computing Systems Architecture or Operating Systems
Software Project Management
Software Engineering Methods
Project I
Project II

Elective courses Database Management Systems
User Interface Design, Implementation and Evaluation
Survey of Programming Languages
Expert System Technology
Translator Implementation
Computing Systems Architecture
Operating Systems
Principles of Computer Networks
Programming Environments

Prerequisite notes Admission requirements included at least one year of full-time
software development work experience. Also required was
submission of a three to four page essay on a software development
or maintenance project in which the applicant had participated, an
expository survey of a technical subject, or a report on a particular
software tool or method.

Program initiation 1979

Source This information was taken from [Wang86].

The Wang Institute of Graduate Studies closed in the summer of 1987. Its facilities were
donated to Boston University, and its last few students were permitted to complete their
degrees at BU. During its existence, the Wang program was generally considered to be the
premier program of its kind. Schools considering development of an MSE program would be
well advised to examine the Wang program as a model.

Wang Institute was also a pioneer in the development of a very high quality faculty with
renewable fixed-term contracts rather than a tenure system. For a rapidly evolving disci-
pline such as software engineering, where the faculty's professional experience may be at
least as valuable as its academic credentials, this model for faculty evaluation and retention
may be worthy of consideration by other schools as well.

64 CMU/SEI-89-TR-21

The Wichita State University

Location Wichita, Kansas

Program title Master of Science in Software Engineering;
Master of Computer Science in Software Engineering

Degree requirements 30 credit hours total: two required courses, six credit hours of
software engineering electives, additional electives in software
engineering or computer science, and practicum (3 hours) or thesis
(6 hours) on a software engineering topic.

Required courses Software Requirements, Specification and Design
Software Testing and Validation

Elective courses Software Project Management
Ada and Software Engineering
Systems Analysis
Topics in Software Engineering (recent offerings have included
Configuration Management, Formal Methods, Quality Assurance,
Software Metrics, and Formal Verification of Software)

Program initiation Spring 1989

Source This information was reported to the SEI by Wichita State in June
1989.

The Wichita State University Department of Computer Science has created a set of courses
than can lead to a specialization in software engineering within the existing Master of
Science and Master of Computer Science degree programs. These courses are taught in coop-
eration with the Software Engineering Institute's Software Engineering Curriculum Project
and Video Dissemination Project.

CMU/SEI-89-TR-21 65

5. SEI Graduate Curriculum Test Sites

Readers of the core course descriptions in this report undoubtedly found sections in which the
ordering of topics or the emphasis seemed wrong. All of the participants in the 1988 SEI
Curriculum Design Workshop (where those courses were designed) expressed similar opin-
ions. The final course descriptions incorporated a number of compromises on the ordering of
topics and on the division of topics between courses. The descriptions also include several
"place holder" topic headings that require further work to identify the appropriate content.
We believe that continued development of these courses will be most effective if it is based on
the experience gained by teaching them.

To help educators gain this experience, the SEI has established a program by which universi-
ties and other educational organizations are designated graduate curriculum test sites.
These schools receive substantial help from the SEI in developing both courses and degree
programs in software engineering. In return, the schools agree to structure their courses and
programs according to SEI recommendations (to the extent appropriate for the individual
school), to provide detailed reports on the level of success they achieve, and to share their
teaching materials with the SEI.

The Wichita State University was designated a graduate curriculum test site in 1986. In
1989, they received state approval for a graduate curriculum in software engineering (see
Section 4 of this report). They have adopted a particularly innovative and helpful approach
by offering several SEI curriculum modules under the course title Topics in Software
Engineering. This permits rapid incorporation of new material into the curriculum.

East Tennessee State University became a test site in 1989. They will pursue the establish-
ment of an MSE degree program based on the core courses offered by the SEI Video
Dissemination Project, which in turn are based on the recommendations in this report.

Carnegie Mellon University is currently developing an MSE degree program within its
School of Computer Science. It is expected that some members of the SEI Education
Program staff will have teaching appointments in that program. This will allow for almost
immediate testing of course designs and teaching materials.

Additional graduate curriculum test sites are needed. Schools with a significant interest in
the development of a graduate degree program in software engineering are invited to contact
the SEI Director of Education for more information.

66 CMU/SEI-89-TR-21

6. Summary and a Look Ahead

In this report, we have described our recent activities in the development of a model curricu-
lum for a graduate professional degree in software engineering; foremost among these was
the 1988 SEI Curriculum Design Workshop. The report has provided descriptions of six core
courses for an MSE curriculum and a less detailed discussion of the overall curriculum,
including prerequisites, electives, and project experience. The report has also surveyed 15
university graduate degree programs in software engineering.

In the coming months, the SEI Education Program will begin addressing undergraduate
software engineering education. This will include sponsoring the SEI Workshop on an
Undergraduate Software Engineering Curriculum. A report of our efforts is scheduled for
release late in 1989. Those interested in this area should see the preliminary report on
undergraduate software engineering curricula released by the British Computer Society and
the Institution of Electrical Engineers [BCS89].

Software engineering continues to evolve rapidly, and software engineering education must
keep pace. In the coming year we plan to identify some of the paradigms of software engi-
neering and incorporate them into the model curriculum. We also hope to expand our efforts
to help universities establish software engineering degree programs. Our progress in all
these areas will be described in our next report, scheduled for release in spring 1990.

CMU/SEI-89-TR-21 67

Appendix 1. An Organizational Structure for
Curriculum Content

The body of knowledge called software engineering consists of a large number of interrelated
topics. We thought it impractical to attempt to capture this knowledge as an undifferenti-
ated mass, so an organizational structure was needed. The structure described below is not
intended to be a taxonomy of software engineering. Rather, it is a guide that helps the SEI to
collect and document software engineering knowledge and practice, and to describe the
content of some recommended courses for a graduate curriculum.

Discussions of software engineering frequently describe the discipline in terms of a software
life cycle: requirements analysis, specification, design, implementation, testing, and mainte-
nance. Although these life cycle phases are worthy of presentation in a curriculum, we found
this one-dimensional structure inadequate for organizing all the topics in software engineer-
ing and for describing the curriculum.

A good course, whether a semester course in a university or a one-day training course in
industry, must have a central thread or idea around which the presentation is focused. Not
every course can or should focus on one life cycle phase. In an engineering course (including
software engineering), we can look at either the engineering process or the product that is the
result of the process. Therefore, we have chosen these two views as the highest level parti-
tion of the curriculum content. Each is elaborated below.

The Process View

The process of software engineering includes several activities that are performed by soft-
ware engineers. The range of activities is broad, but there are many aspects of each activity
that are similar across that range. Thus, we organize those topics whose central thread is
the process in two dimensions: activity and aspect.

The Activity Dimension

Activities are divided into four groups: development, control, management, and operations.
Each is defined and discussed below.

Development activities are those that create or produce the artifacts of a software system.
These include requirements analysis, specification, design, implementation, and testing.
Because a software system is usually part of a larger system, we sometimes distinguish sys-
tem activities from software activities; for example, system design from software design. We
expect that many large projects will include both systems engineers and software engineers,
but an appreciation of the systems aspects of the project is important for software engineers,
and it should be included in a curriculum.

Control activities are those that exercise restraining, constraining, or directing influence over
software development. These activities are more concerned with controlling the way in

68 CMU/SEI-89-TR-21

which the development activities are performed than with producing artifacts. Two major
kinds of control activities are those related to software evolution and those related to soft-
ware quality.

A software product evolves in the sense that it exists in many different forms as it moves
through its life cycle, from initial concept, through development and use, to eventual retire-
ment. Change control and configuration management are activities related to evolution. We
also consider software maintenance to be in this category, rather than as a separate devel-
opment activity, because the difference between development and maintenance is not in the
activities performed (both involve requirements analysis, specification, design, implementa-
tion, and testing), but in the way those activities are constrained and controlled. For exam-
ple, the fundamental constraint in software maintenance is the pre-existence of a software
system coupled with the belief that it is more cost-effective to modify that system than to
build an entirely new one.

Software quality activities include quality assurance, test and evaluation, and independent
verification and validation. These activities, in turn, incorporate such tasks as software
technical reviews and performance evaluation.

Management activities are those involving executive, administrative, and supervisory direc-
tion of a software project, including technical activities that support the executive decision
process. Typical management activities are project planning (schedules, establishment of
milestones), resource allocation (staffing, budget), development team organization, cost esti-
mation, and handling legal concerns (contracting, licensing). This is an appropriate part of a
software engineering curriculum for several reasons: there is a body of knowledge about
managing software projects that is different from that about managing other kinds of pro-
jects, many software engineers are likely to assume software management positions at some
point in their careers, and knowledge of this material by all software engineers improves
their ability to work together as a team on large projects.

Operations activities are those related to the use of a software system by an organization.
These include training personnel to use the system, planning for the delivery and installation
of the system, transition from the old (manual or automated) system to the new, operation of
the software, and retirement of the system. Although software engineers may not have
primary responsibility for any of these activities, they are often participants on teams that
perform these activities. Moreover, an awareness of these activities will often affect the
choices they make during the development of a software system.

The operation of software engineering support tools provides a case of special interest These
tools are software systems, and the users are the software engineers themselves. Operations
activities for these systems can be observed and experienced directly. An awareness of the
issues related to the use of software tools can help software engineers not only develop sys-
tems for others but also adopt and use new tools for their own activities.

The Aspect Dimension

Engineering activities traditionally have been partitioned into two categories: analytic and
synthetic. We have chosen instead to consider an axis orthogonal to activities that captures

CMU/SEI-89-TR-21 69

some of this kind of distinction, but that recognizes six aspects of these activities:
abstractions, representations, methods, tools, assessment, and communication.

Abstractions include fundamental principles and formal models. For example, software
development process models (waterfall, iterative enhancement, etc.) are models of software
evolution. Finite state machines and Petri nets are models of sequential and concurrent
computation, respectively. COCOMO is a software cost estimation model. Modularity and
information hiding are principles of software design.

Representations include notations and languages. The Ada programming language thus fits
into the organization as an implementation language, while decision tables and data flow
diagrams are design notations. PERT charts are a notation useful for planning projects.

Methods include formal methods, current practices, and methodologies. Proofs of correctness
are examples of formal methods for verification. Object-oriented design is a design method,
and structured programming can be considered a current practice of implementation.

Tools include individual software tools as well as integrated tool sets (and, implicitly, the
hardware systems on which they run). Examples are general-purpose tools (such as elec-
tronic mail and word processing), tools related to design and implementation (such as
compilers and syntax-directed editors), and project management tools. Other types of soft-
ware support for process activities are also included; these are sometimes described by such
terms as infrastructure, scaffolding, or harnesses.

Sometimes the term environment is used to describe a set of tools, but we prefer to reserve
this term to mean a collection of related representations, tools, methods, and objects.
Software objects are abstract, so we can only manipulate representations of them. Tools to
perform manipulations are usually designed to help automate a particular method or way of
accomplishing a task. Typical tasks involve many objects (code modules, requirements speci-
fication, test data sets, etc.), so those objects must be available to the tools. Thus, we believe
all four-representations, tools, methods, and objects-are necessary for an environment.

Assessment aspects include measurement, analysis, and evaluation of both software products
and software processes, and of the impact of software on organizations. Metrics and stan-
dards are also placed in this category. This is an area we believe should be emphasized in
the curriculum. Software engineers, like engineers in more traditional fields, need to know
what to measure, how to measure it, and how to use the results to analyze, evaluate, and
ultimately improve processes and products.

Communication is the final aspect. All software engineering activities include written and
oral communication. Most produce documentation. A software engineer must have good
general technical communication skills, as well as an understanding of forms of documenta-
tion appropriate for each activity.

By considering the activity dimension and the aspect dimension as orthogonal, we have a
matrix of ideas that might serve as the central thread in a course (Figure Al.l). It is likely
that individual cells in the matrix represent too specialized a topic for a full semester course.
Therefore, we recommend that courses be designed around part or all of a horizontal or verti-
cal slice through that matrix.

70 CMU/SEI-89-TR-21

•

Activities

Development
(requirements analysis, specification,
design, implementation, testing,...)

Control
(quality assurance, configuration
management, independent V&V,...)

Management
(project planning, resource allocation,
cost estimation, contracting,...)

Operations

(training, system transition, operation,

retirement,...)

-rfffTvV^*^"""'"-

•~—

Wmmm?, - "'< ^<;<r^^::: '* M

© © ®

®
©

®
0

®

\ \ \ x
\ X

%

Aspects

Examples

1. Ada
2. Object-Oriented Design
3. COCOMO Model
4. Path Coverage Testing
5. Interactive Video

6. Performance Evaluation
7. Configuration Management Plan
8. Waterfall Model
9. Code Inspection

10. PERT Chart

Figure A1.1. The process view: examples of activities and aspects

The Product View

Often it is appropriate to discuss many activities and aspects in the context of a particular
kind of software system. For example, concurrent programming has a variety of notations
for specification, design, and implementation that are not needed in sequential
programming. Instead of inserting one segment or lecture on concurrent programming in
each of several courses, it is probably better to gather all the appropriate information on
concurrent programming into one course. A similar argument can be made for information
related to various system requirements; for example, achieving system robustness involves
aspects of requirements definition, specification, design, and testing.

Therefore we have added two additional categories to the curriculum content organizational
structure: software system classes and pervasive system requirements. Although these may

CMU/SEI-89-TR-21 71

be viewed as being dimensions orthogonal to the activity and aspect dimensions, it is not
necessarily the case that every point in the resulting four-dimensional space represents a
topic for which there exists a body of knowledge, or for which a course should be taught.
Figure A1.2 shows an example of a point for which there is probably a very small but
nonempty body of knowledge.

Aspects

o

o
<

,*

Methods for
Specification
of Real-Time
Systems

Methods
Methods for Specification
of Fault Tolerance in
Real-Time Systems

Figure A1.2. Organizational structure for curriculum content

Any of the various system classes or pervasive requirements described below might be the
central thread in a course in a software engineering curriculum. We emphasize that the
material taught might also be taught in courses whose central thread is one of the activities
mentioned earlier. For example, techniques for designing real-time systems could be taught
in a design course or in a real-time systems course. Testing methods to achieve system
robustness could be taught in a testing course or in a robustness course. The purpose of
adding these two new dimensions to the structure is to allow better descriptions of possible
courses.

Software System Classes

Several different classes can be considered. One group of classes is defined in terms of a
system's relationship to its environment, and has members described by terms such as batch,

72 CMU/SEI-89-TR-21

interactive, reactive, real-time, and embedded. Another group has members described by
terms such as distributed, concurrent, or network. Another is defined in terms of internal
characteristics, such as table-driven, process-driven, or knowledge-based. We also include
generic or specific applications areas, such as avionics systems, communications systems,
operating systems, or database systems.

Clearly, these classes are not disjoint. Each class is composed of members that have certain
common characteristics, and there is or may be a body of knowledge that directly addresses
the development of systems with those characteristics. Thus each class may be the central
theme in a software engineering course.

Pervasive System Requirements

Discussions of system requirements generally focus on functional requirements. There are
many other categories of requirements that also deserve attention. Identifying and then
meeting those requirements is the result of many activities performed throughout the soft-
ware engineering process. As with system classes, it may be appropriate to choose one of
these requirement categories as the central thread for a course, and then to examine those
activities and aspects that affect it.

Examples of pervasive system requirements are accessibility, adaptability, availability,
compatibility, correctness, efficiency, fault tolerance, integrity, interoperability, maintainabil-
ity, performance, portability, protection, reliability, reusability, robustness, safety, security,
testability, and usability. Definitions of these terms may be found in the ANSI/IEEE
Glossary of Software Engineering Terminology [IEEE83].

CMU/SEI-89-TR-21 73

Appendix 2. Bloom's Taxonomy of Educational
Objectives

Bloom [Bloom56] has defined a taxonomy of educational objectives that describes several
levels of knowledge, intellectual abilities, and skills that a student might derive from educa-
tion (Figure A2.1). This taxonomy can be used to help describe the objectives, and thus the
style and depth of presentation, of a software engineering curriculum.

Evaluation: The student is able to make qualitative and quantitative
judgments about the value of methods, processes, or artifacts. This
includes the ability to evaluate conformance to a standard, and the
ability to develop evaluation criteria as well as apply given criteria.
The student can also recognize improvements that might be made to
a method or process, and to suggest new tools or methods.

Synthesis: The student is able to combine elements or parts in
such a way as to produce a pattern or structure that was not
clearly there before. This includes the ability to produce a plan
to accomplish a task such that the plan satisfies the require-
ments of the task, as well as the ability to construct an artifact.
It also includes the ability to develop a set of abstract relations
either to classify or to explain particular phenomena, and to
deduce new propositions from a set of basic propositions or
symbolic representations.

Analysis: The student can identify the constituent elements
of a communication, artifact, or process, and can identify the
hierarchies or other relationships among those elements.
General organizational structures can be identified.
Unstated assumptions can be recognized.

Application: The student is able to apply abstractions
in particular and concrete situations. Technical princi-
ples, techniques, and methods can be remembered and
applied. The mechanics of the use of appropriate tools
have been mastered.

Comprehension: This is the lowest level of under-
standing. The student can make use of material or
ideas without necessarily relating them to others or
seeing the fullest implications. Comprehension can
be demonstrated by rephrasing or translating infor-
mation from one form of communication to another,
by explaining or summarizing information, or by
being able to extrapolate beyond the given situa-
tion.

Knowledge: The student learns terminology and
facts. This can include knowledge of the existence
and names of methods, classifications, abstrac-
tions, generalizations, and theories, but does not
include any deep understanding of them. The
student demonstrates this knowledge only by
recalling information.

Figure A2.1. Bloom's taxonomy of educational objectives

74 CMU/SEI-89-TR-21

Appendix 3. SEI Curriculum Modules and Other
Publications

The SEI Education Program has produced a variety of educational materials to support soft-
ware engineering education. The documents listed below (excluding conference proceedings)
are available from the SEI; please address written requests, accompanied by a mailing label,
to the Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
Attn.: Donna Mahoney.

Most of the materials described here were written by experienced computer scientists, soft-
ware engineers, and educators. Because of their expertise, they were invited to spend a
period of time at the SEI, where they worked with the Education Program staff to document
their special knowledge. The authors of the curriculum modules illustrate the diversity of
these contributors over the last four years.

SEI Curriculum Modules and Support Materials

Acurriculum module documents and explicates a body of knowledge within a relatively small
and focused topic area of software engineering. Its major components are a detailed, anno-
tated outline of the topic area, an annotated bibliography of the important literature in the
area, and suggestions for teaching the material. It is primarily intended to be used by an
instructor in designing and teaching part or all of a course.

A support materials package includes a variety of materials helpful in teaching a course, such
as examples, exercises, or project ideas. A goal of the SEI Education Program is to provide
such a package for each curriculum module. Contributions from software engineering educa-
tors are solicited.

The currently available modules and support materials packages are listed belowt. For each
module, a capsule description, which is similar to a college catalog description or the abstract
of a technical paper, is included.

'CM-1 and CM-15 do not appear in this list. CM-1 has been superseded by CM-19, and CM-15 is still
under development.

CMU/SEI-89-TR-21 75

Introduction to Software Design
David Budgen, This curriculum module provides an introduction to the principles
University of Stirling an^ concepts relevant to the design of large programs and systems.

It examines the role and context of the design activity as a form of
SEI-CM-2-2.1 problem-solving process, describes how this is supported by current

design methods, and considers the strategies, strengths, limita-
tions, and main domains of application of these methods.

The Software Technical Review Process
James Collofello, This curriculum module consists of a comprehensive examination of
Arizona State University tfte technical review process in the software development and main-

tenance life cycle. Formal review methodologies are analyzed in
SEI-CM-3-1.5 detail from the perspective of the review participants, project man-

agement and software quality assurance. Sample review agendas
are also presented for common types of reviews. The objective of
the module is to provide the student with the information necessary
to plan and execute highly efficient and cost effective technical
reviews.

Support Materials for The Software Technical Review Process
Edited by John Cross, This support materials package includes materials helpful in teach-
Indiana University of in§>a course on the software technical review process.
Pennsylvania

SEI-SM-3-1.0

Software Configuration Management
James Tomayko, Software configuration management encompasses the disciplines
The Wichita State University an<^ techniques of initiating, evaluating, and controlling change to

software products during and after the development process. It
SEI-CM-4-1.3 emphasizes the importance of configuration control in managing

software production.

Support Materials for Software Configuration Management
Edited by James E. Tomayko, This support materials package includes materials helpful in teach-
The Wichita State University in8 a course on configuration management

SEI-SM-4-1.0

Information Protection
Fred Cohen, This curriculum module is a broad based introduction to informa-
University of Cincinnati *i°n protection techniques. Topics include the history and present

state of cryptography, operating system protection, network protec-
SEI-CM-5-1.2 tion, data base protection, physical security techniques, cost benefit

tradeoffs, social issues, and current research trends. The successful
student in this course will be prepared for an in-depth course in any
of these topics.

76 CMU/SEI-89-TR-21

Software Safety

Nancy Leveson,
University of California,
Irvine

SEI-CM-6-1.1

Software safety involves ensuring that software will execute within
a system context without resulting in unacceptable risk. Building
safety-critical software requires special procedures to be used in all
phases of the software development process. This module intro-
duces the problems involved in building such software along with
the procedures that can be used to enhance the safety of the result-
ing software product.

Assurance of Software Quality

Brad Brown,
Boeing Military Airplanes

SEI-CM-7-1.1

This module presents the underlying philosophy and associated
principles and practices related to the assurance of software qual-
ity. It includes a description of the assurance activities associated
with the phases of the software development life-cycle (.e.g.,
requirements, design, test, etc.).

Formal Specification of Software

Alfs Berztiss,
University of Pittsburgh

SEI-CM-8-1.0

This module introduces methods for the formal specification of pro-
grams and large software systems, and reviews the domains of
application of these methods. Its emphasis is on the functional
properties of software. It does not deal with the specification of
programming languages, the specification of user-computer inter-
faces, or the verification of programs. Neither does it attempt to
cover the specification of distributed systems.

Support Materials for Formal Specification of Software

Edited by Alfs Berztiss,
University of Pittsburgh

SEI-SM-8-1.0

This support materials package includes materials helpful in teach-
ing a course on formal specification of software.

Unit Testing and Analysis
Larry Morell,
College of William and Mary

SEI-CM-9-1.2

This module examines the techniques, assessment, and manage-
ment of unit testing and analysis. Testing and analysis strategies
are categorized according to whether their coverage goal is func-
tional, structural, error-oriented, or a combination of these.
Mastery of the material in this module allows the software engineer
to define, conduct, and evaluate unit tests and analyses and to
assess new techniques proposed in the literature.

CMU/SEI-89-TR-21 77

Models of Software Evolution: Life Cycle and Process

Walt Scacchi,
University of Southern
California

SEI-CM-10-1.0

This module presents an introduction to models of software system
evolution and their role in structuring software development. It
includes a review of traditional software life-cycle models as well as
software process models that have been recently proposed. It iden-
tifies three kinds of alternative models of software evolution that
focus attention to either the products, production processes, or pro-
duction settings as the major source of influence. It examines how
different software engineering tools and techniques can support
life-cycle or process approaches. It also identifies techniques for
evaluating the practical utility of a given model of software evolu-
tion for development projects in different kinds of organizational
settings.

Software Specification: A Framework
Dieter Rombach,
University of Maryland

SEI-CM-11-1.0

This module provides a framework for specifying software processes
and products. The specification of a software product type describes
how the corresponding products should look. The specification of a
software process type describes how the corresponding processes
should be performed.

Software Metrics

Everald Mills,
Seattle University

SEI-CM-12-1.1

Effective management of any process requires quantification,
measurement, and modeling. Software metrics provide a quantita-
tive basis for the development and validation of models of the
software development process. Metrics can be used to improve
software productivity and quality. This module introduces the most
commonly used software metrics and reviews their use in construct-
ing models of the software development process. Although current
metrics and models are certainly inadequate, a number of organi-
zations are achieving promising results through their use. Results
should improve further as we gain additional experience with
various metrics and models.

Introduction to Software Verification and Validation
James Collofello,
Arizona State University

SEI-CM-13-1.1

Software verification and validation techniques are introduced and
their applicability discussed. Approaches to integrating these
techniques into comprehensive verification and validation plans are
also addressed. This curriculum module provides an overview
needed to understand in-depth curriculum modules in the verifica-
tion and validation area.

78 CMU/SEI-89TR-21

Intellectual Property Protection for Software
Pamela Samuelson and This module provides an overview of the U.S. intellectual property
Kevin Deasy 'aw8 'hat form the framework within which legal rights in software
University of Pittsburgh are CTeate<li allocated, and enforced. The primary forms of intellec-
School of Law tua* ProPertv protection that are likely to apply to software are

copyright, patent, and trade secret laws, which are discussed with
SEI-CM-14-2.1 particular emphasis on the controversial issues arising in their

application to software. A brief introduction is also provided to
government software acquisition regulations, trademark, trade
dress, and related unfair competition issues that may affect soft-
ware engineering decisions, and to the Semiconductor Chip
Protection Act.

Software Development Using VDM
Jan Storbank Pedersen, This module introduces the Vienna Development Method (VDM)
Dansk Datamatik Center approach to software development. The method is oriented toward

a formal model view of the software to be developed. The emphasis
SEI-CM-16-1.0 of the module is on formal specification and systematic development

of programs using VDM. A major part of the module deals with the
particular specification language (and abstraction mechanisms)
used in VDM.

User Interface Development
Gary Perlman, This module covers the issues, information sources, and methods
Ohio State University used in the design, implementation, and evaluation of user inter-

faces, the parts of software systems designed to interact with
SEI-CM-17-1.0 people. User interface design draws on the experiences of designers,

current trends in input/output technology, cognitive psychology,
human factors (ergonomics) research, guidelines and standards,
and on the feedback from evaluating working systems. User inter-
face implementation applies modern software development tech-
niques to building user interfaces. User interface evaluation can be
based on empirical evaluation of working systems or on the
predictive evaluation of system design specifications.

Support Materials for User Interface Development
Edited by Gary Perlman, This support materials package includes materials helpful in teach-
Ohio State University in8 a course on user interface development.

SEI-SM-17-1.0

An Overview of Technical Communication for the Software Engineer
Robert Glass, This module presents the fundamentals of technical communication
Computing Trends, Inc. that might be most useful to the software engineer. It discusses

both written and oral communication.
SEI-CM-18-1.0

CMU/SEI-89-TR-21 79

Software Requirements

John Brackett,
Boston University

SEI-CM-19-1.0

This curriculum module is concerned with the definition of software
requirements-the software engineering process of determining
what is to be produced-and the products generated in that defini-
tion. The process involves: (1) requirements identification, (2) re-
quirements analysis, (3) requirements representation, (4) require-
ments communication, and (5) development of acceptance criteria
and procedures. The outcome of requirements definition is a
precursor of software design.

Formal Verification of Programs

Alfs Berztiss,
University of Pittsburgh;
Mark Ardis, SEI

SEI-CM-20-1.0

This module introduces formal verification of programs. It deals
primarily with proofs of sequential programs, but also with consis-
tency proofs for data types and deduction of particular behaviors of
programs from their specifications. Two approaches are considered:
verification after implementation that a program is consistent with
its specification, and parallel development of a program and its
specification. An assessment of formal verification is provided.

Software Project Management

James E. Tomayko,
The Wichita State University;
Harvey K. Hallman, SEI

SEI-CM-21-1.0

Software project management encompasses the knowledge, tech-
niques, and tools necessary to manage the development of software
products. This curriculum module discusses material that man-
agers need to create a plan for software development, using effec-
tive estimation of size and effort, and to execute that plan with
attention to productivity and quality. Within this context, topics
such as risk management, alternative life-cycle models, develop-
ment team organization, and management of technical people are
also discussed.

Selected SEI Educational Support Materials

Teaching a Project-Intensive Introduction to Software Engineering
James E. Tomayko This report is meant as a guide to the teacher of the introductory
ri-K T/CC o course in software engineering. It contains a case study of a course
CMU/SEI-87-TR-20 based on a large project. Other models of course organization are

also discussed. Appendices A-Z of this report contain materials used
in teaching the course and the complete set of student-produced
project documentation. These are available for $55.00 ($20.00 for
the first copy sent to an Academic Affiliate institution).

80 CMU/SEI-89-TR-21

Software Maintenance Exercises for a Software Engineering Project Course
Charles B. Engle, Jr., This report provides an operational software system of 10,000 lines
Gary Ford, Tim Korson of Ada and several exercises based on that system. Concepts such

as configuration management, regression testing, code reviews, and
CMU/SEI-89-EM-1 stepwise abstraction can be taught with these exercises. Diskettes

containing code and documentation may be ordered for $10.00.
(Please request either IBM PC or Macintosh disk format.)

Conference Proceedings

The conference and workshop records below are available directly from Springer-Verlag.
Prices are indicated. Please send orders directly to the publisher: Book Order Fulfillment,
Springer-Verlag New York, Inc., Service Center Secaucus, 44 Hartz Way, Secaucus, NJ
07094. The numbers shown are ISBNs. Please specify these when ordering.

Software Engineering Education: The Educational Needs of the Software
Community
Norman E. Gibbs and This volume contains the extended proceedings of the 1986
Richard E. Fairley, editors Software Engineering Education Workshop, held at the SEI and

sponsored by the SEI and the Wang Institute of Graduate Studies.
ISBN 0-387-96469-X This workshop of invited software engineering educators focused on

master's level education in software engineering, with some discus-
sion of undergraduate and doctoral level issues. Hardback, $32.00.

Issues in Software Engineering Education: Proceedings of the 1987 SEI
Conference
Richard Fairley and Proceedings of the 1987 SEI Conference on Software Engineering
Peter Freeman, editors Education, held in Monroeville, Pa. Hardback, $45.00.

ISBN 3-540-96840-7

Software Engineering Education: SEI Conference 1988
Gary Ford, editor Proceedings of the 1988 SEI Conference on Software Engineering
 ._ Education, held in Fairfax, Va. (Lecture Notes in Computer Science
ISBN 3-540-96854-7 No. 327.) Paperback, $20.60.

CMU/SEI-89-TR-21 81

Appendix 4. Cumulative Acknowledgements

The curriculum recommendations in this report have benefitted from the efforts of many
people. We had valuable discussions with many members of the SEI technical staff, includ-
ing Mario Barbacci, Maribeth Carpenter, Clyde Chittister, Lionel Deimel, Larry Druffel,
Peter Feiler, Priscilla Fowler, Dick Martin, John Nestor, Joe Newcomer, Mary Shaw, Nelson
Weiderman, Chuck Weinstock, and Bill Wood, and with visiting staff members Bob Aiken,
Alfs Berztiss, John Brackett, Brad Brown, David Budgen, Fred Cohen, Jim Collofello, Chuck
Engle, Bob Glass, Paul Jorgensen, Nancy Leveson, Ev Mills, Larry Morell, Dieter Rombach,
Rich Sincovec, Joe Turner, and Peggy Wright.

Earlier versions of the MSE recommendations were written by Jim Collofello and Jim
Tomayko, and reviewed by Evans Adams, David Barnard, Dan Burton, Phil D'Angelo, David
Gries, Ralph Johnson, David Lamb, Manny Lehman, John Manley, John McAlpin, Richard
Nance, Roger Pressman, Dieter Rombach, George Rowland, Viswa Santhanam, Walt Scacchi,
Roger Smeaton, Joe Touch, and K. C. Wong.

An early version of the MSE curriculum was the subject of discussion at the Software
Engineering Education Workshop, which was held at the SEI in February 1986 [Gibbs87]. In
addition to several of the people mentioned above, the following participants at the workshop
contributed ideas to the current curriculum recommendations: Bruce Barnes, Victor Basili,
Jon Bentley, Gordon Bradley, Fred Brooks, James Comer, Dick Fairley, Peter Freeman,
Susan Gerhart, Nico Habermann, Bill McKeeman, Al Pietrasanta, Bill Richardson, Bill
Riddle, Walter Seward, Ed Smith, Dick Thayer, David Wortman, and Bill Wulf.

The six MSE core courses were developed by Mark Ardis, Jim Collofello, Lionel Deimel, Dick
Fairley, Gary Ford, Norm Gibbs, Bob Glass, Harvey Hallman, Tom Kraly, Jeff Lasky, Larry
Morell, Tom Piatkowski, Scott Stevens, and Jim Tomayko.

82 CMU/SEI-89-TR-21

Bibliography

Amoroso88 Amoroso, S., Kuntz, R., Wheeler, T., and Graff, B. "Revised Graduate
Software Engineering Curriculum at Monmouth College." Software
Engineering Education; SEI Conference 1988, Gary A. Ford, ed. New
York: Springer-Verlag, 1988, 70-80.

BCS89 Undergraduate Software Engineering Curricula. British Computer
Society and the Institution of Electrical Engineers, Feb. 1989.

Bloom56 Bloom, B. Taxonomy of Educational Objectives: Handbook I: Cognitive
Domain. New York: David McKay, 1956.

Brackett88 Brackett, J., Kincaid, T., and Vidale, R. "The Software Engineering
Graduate Program at the Boston University College of Engineering."
Software Engineering Education; SEI Conference 1988, Gary A. Ford, ed.
New York: Springer-Verlag, 1988, 56-63.

Budgen86 Budgen, D., Henderson, P., and Rattray, C. "Academic/Industrial
Collaboration in a postgraduate MSc course in Software Engineering."
Software Engineering Education: The Educational Needs of the Software
Community, Norman E. Gibbs and Richard E. Fairley, eds. New York:
Springer-Verlag, 1986, 201-211.

Collofello82 Collofello, J. S. "A Project-Unified Software Engineering Course
Sequence." Proc. Thirteenth SIGCSE Technical Symposium on Computer
Science Education. 1982, 13-19.

Comer86 Comer, J. R., and Rodjak, D. J. "Adapting to Changing Needs: A New
Perspective on Software Engineering Education at Texas Christian
University." Software Engineering Education: The Educational Needs of
the Software Community, Norman E. Gibbs and Richard E. Fairley, eds.
New York: Springer-Verlag, 1986,149-171.

Engle89 Engle, C. B., Jr., Ford, G, and Korson, T. Software Maintenance
Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Feb. 1989.

Ford87 Ford, G, Gibbs, N., and Tomayko, J. Software Engineering Education:
An Interim Report from the Software Engineering Institute. Tech. Rep.
CMU/SEI-87-TR-8, DTIC: ADA 182003, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., May 1987.

Gibbs87 Software Engineering Education: The Educational Needs of the Software
Community. Norman E. Gibbs and Richard E. Fairley, eds. New York:
Springer-Verlag, 1987.

Horning76 Horning, J. J. "The Software Project as a Serious Game." Software
Engineering Education: Needs and Objectives: Proceedings of an Interface
Workshop, Anthony Wasserman and Peter Freeman, eds. New York:
Springer-Verlag, 1976, 71-75.

IEEE83 IEEE Standard Glossary of Software Engineering Terminology.
ANSI/IEEE Std 729-1983, IEEE , 1983.

CMU/SEI-89-TR-21 83

Lehman86

Mills86

Norman88

NRC85

Scacchi86

Wang86

Webster83

Wortman86

Lehman, M. M. The Software Engineering Undergraduate Degree at
Imperial College, London." Software Engineering Education: The
Educational Needs of the Software Community, Norman E. Gibbs and
Richard E. Fairley, eds. New York: Springer-Verlag, 1986, 172-181.

Mills, E. The Master of Software Engineering [MSE] Program At Seattle
University After Six Years." Software Engineering Education: The
Educational Needs of the Software Community, Norman E. Gibbs and
Richard E. Fairley, eds. New York: Springer-Verlag, 1986,182-200.

Norman, D. A The Psychology of Everyday Things.
Books, Inc., 1988.

New York: Basic

National Research Council, Commission on Engineering and Technical
Systems. Engineering Education and Practice in the United States:
Foundations of Our Techno-Economic Future. Washington, D.C.:
National Academy Press, 1985.

Scacchi, W. The Software Engineering Environment for the System
Factory Project." Proc. Nineteenth Hawaii Intl. Conf. Systems Sciences,
1986, 822-831.

Bulletin, School of Information Technology 1986-1987. Wang Institute of
Graduate Studies, July 1986.

Webster's Ninth New Collegiate Dictionary. Springfield, Mass.: Merriam-
Webster Inc., 1983.

Wortman, D. B. "Software Projects in an Academic Environment."
Software Engineering Education: The Educational Needs of the Software
Community, Norman E. Gibbs and Richard E. Fairley, eds. New York:
Springer-Verlag, 1986, 292-305.

84 CMU/SEI-89-TR-21

SECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSlFlCATION/OOWNGRAOING SCHEDULE

N/A
A PERFORMING ORGANIZATION REPORT NUMBERtSf

CMU/SEI-89-TR-21

6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

6b. OFFICE SYMBOL
(If applicable)
SEI

lb. RESTRICTIVE MARKINGS

NONE
3. OlSTRIBUTION/AVAILAQILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-89-029

7». NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c AOORESS (City. Slat* and ZIP Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

a. NAME OF FUNOING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

7b. AOORESS (City. State and ZIP Code)

ESD/XRS1
HANSCOM AIR FORCE BASE
HANSr.DM. MA 017 71

8b. OFFICE SYMBOL
III applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003
8c. AOORESS (City. State and ZIP Cod*)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNOING NOS.

11. TITLE (Include Security Classification)

1989 SEI REPORT ON GRADUATE SOFTWARE

PROGRAM
ELEMENT NO.

63752F

ENGINEERING EDUCATION

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)
Mark Ardis and Gary Ford

13*. TYPE OF REPORT

FTNAT.

13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr., Mo.. Day)

June 1989
15. PAGE COUNT

86
16. SUPPLEMENTARY NOTATION

17 COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number;

education
Master of Software Engineering
graduate curriculum

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This annual report on graduate software engineering education describes recent SEI
educational activities, including the 1988 SEI Curriculum Design Workshop.
A model curriculum for a professional Master of Software Engineering degree is
presented, including detailed descriptions of six core courses. Fifteen
university graduate programs in software engineering are surveyed.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED jj] SAME AS RPT. D OTIC USERS Q

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION
22*. NAME OF RESPONSIBLE INOIVIDUAL

KARL H. SHINGLER
22b TELEPHONE NUMBER

(Include Area Code)

412 268-7630

22c. OFFICE SYMBOL

SEI JPO
DO FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGc

