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Abstract 

The concept of simulation-based engineering has been embraced by virtually 

every research and industry sector (Sinha, Liang et al. 2001; Mocko and Fenves 2003).  

Engineering and science communities have become increasingly aware that computer 

simulation is an indispensable tool for resolving a multitude of scientific and 

technological problems.  It is clearly desirable to gain a reliable perspective on the 

behaviour of a system early in the design stage, long before building costly prototypes 

(Chul and Ro 2002; Letherwood, Gunter et al. 2004; Makarand Datar 2007; Ersal, Fathy 

et al. 2008; Mueller, Ferris et al. 2009).  Simulation tools have become a critical part of 

the automotive industry due to their ability to reduce the time and money spent in the 

development process.   
Terrain is the principle source of vertical excitation to the vehicle and must be 

accurately represented in order to correctly predict the vehicle response in simulation.  In 

this dissertation, non-deformable terrain surfaces are defined as a sequence of vectors, 

where each vector comprises terrain heights at locations oriented perpendicular to the 

direction of travel.  The evolution and implications of terrain surface measurement 

techniques and existing methods for correcting INS drift are reviewed as a framework for 

a new compensation method for INS drift in terrain surface measurements.  Each 

measurement is considered a combination of the true surface and the error surface, 

defined on a Hilbert vector space, in which the error is decomposed into drift (global 

error) and noise (local error).  It is also desirable to develop a compact, path-specific, 

terrain surface representation that exploits the inherent anisotropicity in terrain over 

which vehicles traverse.  In order to obtain this, a set of analytic basis vectors is formed 



 iii 

 

from Gegenbauer polynomials, parameterized to approximate the empirical basis vectors 

of the true terrain surface.  It is also desirable to evaluate vehicle models and tire models 

over a wide range of terrain types, but it is computationally impractical to store long 

distances of every terrain surface variation.  This dissertation examines the terrain 

surface, rather than the terrain profile, to maximize the information available to the tire 

model (i.e. wheel path data).  A method to decompose the terrain surface as a 

combination of deterministic and stochastic components is also developed.       
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1. Introduction 

This dissertation is focused on formulating a method to define a compact yet 

accurate representation of terrain surfaces that can be universally applied to various 

terrain measurement systems and types of terrain.  This work begins by identifying and 

removing a primary source of error inherent to all terrain measurement systems equipped 

with an Inertial Navigation system (INS), known as INS drift.  By removing the effect of 

this drift, the precision of the terrain measurement is improved by an order of magnitude 

and the true terrain surface is estimated.  Next, the terrain surface is decomposed into 

principle characteristics, such as elevation, bank angle and rutting, which are identified 

by basis vectors.  The empirical basis vectors are approximated by analytic basis vectors 

through a Galerkin approach, which is demonstrated on several samples of typical US 

highway data.  In this way, the set of analytic basis vectors are developed such that they 

can be used to characterize all terrain of a particular type.  The analytic basis vectors are 

formed from the discretization of a set of generating analytic functions.  The 

discretization of these functions is based on the capabilities of the particular terrain 

measurement system used to sample the terrain.  This method eliminates the necessity to 

calculate empirical basis vectors for each set of data by implementing the analytical basis 

vectors corresponding to that type of terrain (e.g., US Highways).  The projection of the 

terrain data onto the analytic basis vectors can be used to characterize the terrain data in 

terms of its principle components.  This method allows this characterization to be 

independent of the means by which the terrain system discretely samples the terrain 

surface.  The Vehicle Terrain Performance Laboratory (VTPL) Vehicle Terrain 

Measurement System (VTMS) is used to acquire the data on a sample of US Highways as 

a proof of concept for this research.  US Highways were selected as a terrain type 

because of their extensive use by the driving community, offering approximately 

75,000km (46,000 mi) of paved surfaces.  In this way, the principle components of the 

terrain surface are developed and can be combined to form an increasingly accurate 

representation of the terrain surface.  Lastly, using this method of decomposing the 
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terrain, each principle component of the terrain surface can be classified as deterministic 

or stochastic.  If the terrain component can be classified as stochastic, then it can be 

modeled using the same approach by which a terrain profile can be modeled, resulting in 

a more compact statistical representation. 

The remainder of this chapter provides motivation for this research on developing 

a compact representation of terrain surfaces, especially for terrain profiler development 

and tire and vehicle simulations, as presented in Section 1.1.  The problems that this 

research seeks to address are identified in Section 1.2.  The thesis statement and scope of 

work are introduced in Section 1.3, followed by main contributions in Section 1.4.  

Lastly, a brief outline of the dissertation is presented in Section 1.5. 

1.1  Motivation 

Throughout a vehicle development program, it is necessary to possess chassis 

load data representing severe customer usage to ensure that the vehicle will perform as 

required.  Unfortunately, actual loads are only available at the conclusion of the program.   

The design engineer is challenged with using predicted chassis loads early in the design 

process to design the ‘best’ components with the currently available knowledge.  It is in 

these early stages that changes are relatively easy and inexpensive to make.  However, 

measured chassis loads representing true loading conditions are not available until late in 

the program when changes to the design are extremely costly, if allowed to be 

implemented at all.  More knowledge about a vehicle’s true loading conditions early in 

the design process would reduce cost and timing for a new vehicle.  Similar difficulties 

are faced by tire engineers since tractive efforts are largely dictated by the tire-terrain 

interaction (Shoop 2001).  It is advantageous, therefore, to accurately predict these target 

chassis loads early in the program and to maintain a consistent process for predicting 

chassis loads as the design develops throughout the program.  

In order to predict these target chassis loads, a set of terrain that will be 

consistently used to excite the vehicle must be determined at the beginning of a vehicle 

development program (Ferris and Larsen 2002).  It is clear that the terrain is the main 

excitation to the vehicle (Aurell and Edlund 1989).  Non-deformable terrain topology 

imposes a unilateral contact constraint on rolling tires to which the tires respond by 
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generating forces and moments.  The terrain remains a consistent excitation to the 

vehicle, even as the vehicle design changes.  Knowledge of this excitation, when applied 

in conjunction with high-fidelity tire and vehicle models, would allow chassis loads to be 

accurately predicted in vehicle simulations.  Therefore, throughout the design process the 

system response to this consistent excitation can be calculated and compared for each 

vehicle design considered.  Accurate terrain models would then provide the vehicle 

designer with a powerful tool to make informed design decisions early in the design 

process while changes are relatively inexpensive to implement.  This will, in turn, shorten 

vehicle development time and reduce overall development costs. 

The current practice for vehicle and tire simulations is to use terrain profile data 

as the input to these models.  The terrain profile is an indexed set of terrain heights 

extending longitudinally along each wheel path.  These profiles can be considered signals 

and in many cases can be modeled as a stochastic process, thus creating a compact 

representation of the terrain profile.  The ability to capture these signals in a compact 

form is a major advantage of this simple representation of terrain.  Although 

computationally efficient, this compact representation limits the available fidelity of data 

to excite tire models.  It would be advantageous to the design engineer to implement 

terrain surface data as the input to tire and vehicle models since terrain surfaces are 

capable of capturing more detailed information about the tire contact patch. 

The terrain surface can be represented as an indexed set of transverse vectors of 

terrain height, represented in matrix form.  That is, each vector of the matrix comprises a 

set of terrain heights located perpendicular to the direction of travel of the vehicle.  

Although terrain surface data are more computationally expensive to use in simulation, 

they typically provide better estimates of the tire-road interaction.  Toward this end, this 

work proposes a method to compactly represent terrain surfaces through representation 

by analytic functions.   

1.2 Problem Statement 

Terrain profiles, whether measured or modeled, are a useful tool for many groups.  

For example, civil engineers use terrain profiles of highways for pavement health 

monitoring to determine when a highway needs to be resurfaced.  Vehicle engineers use 



 

terrai

An en

simul

the c

use te

is, the

profil

paral

paper

the te

traver

and c

meter

profil

in profiles fo

ngineer wor

lation to test

ommon prac

errain surfac

erefore, vita

The Ame

le as the pe

lel to the la

r also includ

erm terrain w

rse.  Terrain

correspondin

rs and the v

le characteri

or physical s

rking in mod

t a proposed

ctice, it wou

ces.  Terrain

l to understa

erican Societ

erpendicular

ane direction

des surfaces t

will be used t

n profiles, as

ng vertical h

vertical axis

istics).    

Figure

simulations 

deling and si

d vehicle des

uld be advan

n is the cons

and when de

ty of Testin

r deviations

n, usually th

that are not p

to represent 

s shown in F

height.  Note

s is the heig

e 1. Sample l

4

on shaker ri

imulation us

sign before 

ntageous to 

istent input 

signing or an

ng and Mate

of the pav

he wheel tra

paved, there

on-road and

Figure 1, con

e that the ho

ght in millim

longitudinal 

igs to test th

ses terrain p

it is built.  W

expand eac

into ground

nalyzing any

erials (ASTM

vement surf

acks (ASTM

efore, throug

d off-road su

nsist of long

orizontal ax

meters (this 

terrain profi

he durability

profiles to cr

While terrai

ch group’s c

d vehicle sus

y ground veh

M) defines a

face from an

M 1989).  H

ghout the res

urfaces that a

gitudinal dist

xis is distanc

is to accen

file. 

y of a vehicle

reate a virtua

n profiles ar

capabilities t

spensions an

hicle. 

a longitudina

n establishe

However, th

t of this wor

a vehicle ma

tance travele

ce traveled i

ntuate vertica

 

e.  

al 

re 

to 

nd 

al 

ed 

is 

rk 

ay 

ed 

in 

al 



 5

Recent optical and computational advances have produced terrain measurement 

systems (Herr 1996) that can discretely sample the terrain at 941 points across a 4.2 meter 

wide transverse path, resulting in four-millimeter resolution of the terrain surface 

measurement.  A sample of a measured cobblestone terrain surface, rendered as a contour 

plot, is shown in Figure 2.  If desired, terrain profiles can be identified from the terrain 

surface measurements for analysis, but as it can be seen from Figure 2, there is more 

information captured in the surface measurement as compared with the profile 

measurement in Figure 1.  These three-dimensional (3D) scanners are capable of 

differentiating between small localized disturbances and disturbances that will excite the 

vehicle chassis due to the fact that the scanner measures the entire width of the lane, 

instead of a single line down the road.  This is particularly important for properly 

characterizing the envelopment property of the tire for accurate vehicle simulations, such 

that vehicle responses will not be affected by narrow dips and small stones in the terrain 

mapping (Karamihas 2005).  Thus, the problem with using a single longitudinal profile is 

that it assumes that the profile represents the entire width of the tire contact patch that the 

tire is traversing, when the profile may actually contain a rock or a crack that produces a 

non-representative response.  This is merely one problem that can be solved by providing 

more detailed knowledge of the terrain. 
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individually, such as identifying the roughness contributed by each component.  The 

overall contribution to the terrain surface could also be studied, as in the degree of 

elevation change or the degree of rutting is exhibited by this section of road.  In this way, 

terrain surfaces can be grouped into meaningful sets with similar physical characteristics 

based on similarities of terrain components from which sets of surfaces can be selected to 

satisfy the needs of given applications.   

Additionally, difficulties arise when two adjacent lanes have been measured and 

need to be concatenated to form one continuous terrain mapping.  Accurate and 

representative concatenation of the two lanes is critical if a lane change maneuver is to be 

performed on the data set.  A solution to this problem is developed in Chapter 3 in which 

the true surface is estimated from measured sets of terrain data.   

 

1.3 Thesis Statement and Scope of Work 

Thesis Statement: A high-fidelity yet compact representation of terrain surface types can 

be developed that are insensitive to the particular measurement system being used and 

allows for the study of principle terrain characteristics. 

The primary goal of this research is to develop a technique to develop a compact 

representation of a terrain surface while improving the fidelity of the estimated terrain 

surface.  This work focuses on non-deformable terrain, defined herein as terrain whose 

surface deformation due to a single vehicle traversing the surface is negligible, such as 

paved roads (both asphalt and concrete), gravel roads, and typical off-road trails; 

deformable terrain such as sand and snow are beyond the scope of this work.  The focus 

of this work is further restricted to terrain surfaces that are anisotropic in nature, defined 

herein as having an inherent path defined over which vehicles travel and where that 

travel, over time, has defined obvious paths or lanes.  Specifically this work pertains to 

nearly 6.3 million kilometers (DOT 2008) of non-deformable anisotropic terrain over 

which nearly 254.4 million vehicles travel each day (DOT 2006).  The results of this 

study are intended for application in the accurate prediction of tire loads based on full-

knowledge of the tire patch: lateral, longitudinal, and radial tire forces and the 

overturning, rolling resistance and self-aligning tire moments acting on the contact patch.  
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Better modeling of the contact patch will yield more representative tire loading, which 

will lead to better estimates of chassis loading scenarios and will inevitably result in 

better ground vehicle reliability predictions.  Current application of this work is limited to 

the analysis of U.S. Highways, comprised of both asphalt and concrete, but the methods 

developed in this dissertation are applicable to any non-deformable anisotropic terrain.  

1.4 Main Contributions 

This research focuses on the development of a high-fidelity and compact 

representation of terrain surfaces that are insensitive to the terrain measurement system 

used to acquire the data.  Nevertheless, the methodology developed in this work is not 

limited to the example cases.  For example, any discretized polynomial or series can be 

used to approximate the empirical basis vectors, as long as it provides the smallest root 

mean square error solution.  Additionally, these methods apply for any non-deformable 

terrain surfaces, but additional research will be needed to determine if they apply for 

deformable terrain.  The main contributions of this research are: 

1) The first representation of terrain surfaces as elements of a Hilbert Space, H 

a. Terrain surfaces are explicitly defined as a sequence of vectors 

b. Each vector comprises terrain heights at locations oriented 

perpendicular to the direction of travel. 

c. A vector space is defined by the span of these vectors 

d. A weighted inner-product is defined and the norm is defined as the 

induced norm  

2) A novel method to remove INS drift: 

a. The Hilbert space is decomposed into a Global subspace, G, and the 

complementary local subspace, Gc. 

b. A sequence of error vectors are defined such that each error vector is 

the difference between the measured terrain surface vector and the true 

surface vector. 

c. The three vectors comprising the measurement, error, and true surface 

at each longitudinal location have components in both the Global and 

Local subspaces. 
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d. The Global subspace is defined such that the component of the error 

vectors in the Global subspace can be modelled as a random-walk 

process and the elements of the error vectors in the Local subspace are 

elements of a zero-mean uncorrelated noise process. 

e. The Global error, arising from Inertial Navigation System (INS) drift, 

is identified and removed from the measurements such that the 

standard deviation of the residual noise process (Local error) is within 

the resolution of the measurement system (+/-1mm)  

f. The true surface is computed from the drift-free measurements using a 

non-linear expectation estimator. 

3) The first rigorous definition of principle terrain characteristics: 

a. Although principle terrain characteristics, such as elevation, bank 

angle, crowning, and rutting have been subjectively described and 

techniques for ad hoc measurement of these characteristics have been 

defined (AASHTO 2009), this research develops sets of empirical 

basis vectors for US Highways that are consistent between asphalt and 

concrete roads 

b. The principle terrain characteristics are defined with analytic basis 

vectors that closely approximate these consistent empirical basis 

vectors by minimizing the root mean square error between the 

empirical and analytic basis vectors. 

4) It is the first method that has been developed that can define terrain surfaces 

without sensitivity to the measurement system used to acquire the terrain data 

a. Analytic basis vectors can be discretized based on terrain measurement 

system capabilities to sample the terrain  

5) A novel method to stochastically represent a terrain surface 

a. Components of terrain (known as σi,l) capture the magnitude of the 

principle terrain characteristics along the length of the terrain surface 

b. Components of terrain are classified as deterministic or stochastic 

c. Stochastic components of terrain can be modelled in the same manner 

as terrain profiles 
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d. Truncated terrain surface is synthesized based on stochastically 

modelled components of terrain 

1.5 Dissertation Outline 

This work is organized as follows.  Chapter 1 motivates the research and presents 

the scope of work, research objectives and main contributions.  In the second chapter, 

recent literature pertaining to terrain measurement techniques and sources of error, such 

as drift contributed by the Inertial Navigation System (INS) are presented, followed by 

the definition of the coordinate system used throughout the developments in this work.  

The second chapter concludes with background on current methods used to study the 

roughness of the terrain and the latest terrain modeling techniques.  A novel technique for 

removing the drift components of error from terrain measurements is developed in the 

third chapter.  The fourth chapter develops a terrain surface representation that retains 

sufficiently high-fidelity information while possessing the simplicity of terrain profiles, 

as well as being insensitive to the choice of the terrain measurement system from which 

the data were acquired.  A novel method to represent a stochastic terrain surface is 

developed in the fifth chapter.  Applications of this research, conclusions that can be 

drawn for this dissertation and areas for future work are presented in chapter six. 
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2. Background 

Terrain can typically be grouped into two major categories, the first is defined as 

empirical terrain, based on physical measurements of the terrain surface, and the second 

is based on mathematical models aimed at characterizing the physical measurements, 

defined here as analytical terrain.  It is further important to distinguish between the 

concept of continuous and discrete, or analog and digital.  There exists a continuous 

empirical terrain surface, known as the true surface.  This surface has infinite bandwidth 

and maintains every detail of the terrain (Sayers and Karamihas 1998).  Due to 

limitations of technology, it is only achievable to sample the true terrain surface at 

discrete locations, resulting in discrete empirical terrain surfaces, or digital terrain 

surfaces.  Furthermore, there exist continuous analytical functions that are used to 

approximate continuous terrain surfaces.  Additionally, synthetic terrain can be generated 

by the continuous analytical functions, and then discretized to match the same sampling 

rate of the empirical data for appropriate analysis of the two segments.  With this 

differentiation, several areas of research that will be reviewed in this chapter under the 

empirical terrain classification are terrain measurement systems, including terrestrial 

terrain measurement systems and digital terrain measurement (DTM) systems, the 

coordinate system used for empirical terrain data, and roughness indices used to classify 

the components of terrain.  Under the analytical terrain classification, state-of-the-art 

methods used to approximate empirical terrain data with mathematical models, including 

statistical analysis, terrain characterization, and approximation techniques will be 

reviewed.  This chapter concludes with a concise summary of the state-of-the-art in 

terrain studies.  

2.1 Empirical Terrain 

2.1.1 Terrestrial Terrain Measurement Systems 

The technological developments in the area of terrain measurement has 

progressed from vehicle-response systems (Hveem 1960; Gillespie, Sayers et al. 1980) to 

the measurement of various types of terrain using vehicle-independent systems 
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(Dembski, Rizzoni et al. 2006; Dembski, Rizzoni et al. 2006; Kern and Ferris 2007; 

Wagner, Kern et al. 2007; Liu, Dembski et al. 2008).  As a result of these technologies, 

terrain measurement systems have been developed with various capabilities and can be 

classified as one of the four types of systems (Perera and Kohn 2002; Wang 2006): 

1) Manual Devices 

2) Profilographs 

3) Response type road roughness measuring systems (RTRRMs) 

4) High-speed inertial profilers 

Manual devices are typically used as reference devices for measuring terrain 

because the measurements are taken statically and do not contain the same error 

associated with dynamic systems.  The standard test method for measuring road 

roughness with a manual device is described in ASTM Standard E1364 (ASTM 1996).  

The most common types of manual devices are the rod and level and the dipstick (Sayers 

and Karamihas 1998).  The rod and level are most commonly used in surveying.  The 

level provides the elevation reference, and the rod measures the height of the terrain 

relative to the level.  The Dipstick is a type of walking profiler that is more automated 

than the rod and level system as it is equipped with an onboard computer for recording 

elevation height and an inclinometer to measure the angle of the surface.  Despite the role 

of these devices as reference terrain measurement systems, they are time consuming and 

do not allow for a high sampling rate of the vertical elevation of the road.   
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appropriately measure the wavelengths present on the road- some wavelengths have been 

amplified or attenuated as compared with the reference device.  When comparing 

roughness index values between these systems and the reference device, it has been found 

that the measurements resulting from profilographs can totally miss the wavelength 

which affects ride quality and roughness indices.  The misreading may result in a 

“smooth” roughness rating, when in actuality the pavement needs to be rehabilitated.  

More detail on roughness indices can be found later in this Chapter.  

RTRRMs estimate the terrain surface by measuring and summing the vertical 

motion of the axle or road following wheel relative to the body of the host vehicle or 

trailer, with respect to horizontal distance traveled by the host vehicle or trailer.  The 

measurement units are of average rectified slope (ARS) or more commonly known as 

mm/km or in/mi (Gillespie, Sayers et al. 1980; Sayers and Paterson 1986; Gillespie 1992; 

Wang 2006).  The accuracy of the resulting effective terrain profile relies on the fidelity 

of the physical condition of the tire and vehicle, since they act as a mechanical filter to 

the terrain, as well as the operating speed of the host unit.  Several examples of these 

RTRRMs include the Bureau of Public Roads (BPR) Roughometer, the CHLOE, Mays 

Meter and the PCA Meter to name a few.  The BPR Roughometer, as seen in Figure 4A, 

consisted of a single-wheel trailer in which the mass, tire properties (i.e. temperature and 

pressure) and suspension system were standardized to minimize the effect of varying 

parameters on the roughness measurement (Hveem 1960; Gillespie 1992).  The CHLOE, 

as seen in Figure 4B,  featured a trailer equipped with two small wheels, located nine 

inches apart to measure the local road slope as the system was towed at low speeds along 

the road (Gillespie 1992).  The Mays Meter, as seen in Figure 4C, was equipped with 

transducers on the host vehicle body and axle to measure the vehicle’s suspension travel 

(1973; Perera and Kohn 2002).  The PCA Meter was very similar to the Mays Meter in 

that it measured accumulated axle displacement, but this system gave a greater weight to 

larger displacements (Gillespie 1992).  All of these systems are subject to being affected 

by the dynamics of the vehicle, particularly instability with time (a measurement 

completed in present day is not comparable to measurements made several years ago) and 

the roughness measurements are not transportable with measurements taken from 

different systems (Sayers and Karamihas 1998).  In addition to these flaws, there are 
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2.1.2 Digital Terrain Measurement Systems 

Digital Terrain Modeling originated in the 1950’s with the original purpose to 

aide in highway routing and design, with terrain data acquired photogrammetrically 

(Miller and Laflamme 1958).  Photogrammetry is the practice of determining the 

geometric properties of an object from photos.  A Digital Terrain Model (DTM) is 

defined as “an ordered array of numbers that represents the spatial distribution of terrain 

characteristics.  The spatial distribution is represented by an XY horizontal coordinate 

system and the terrain characteristic which is recorded is the terrain elevation, Z (Doyle 

1978).”  Similar to DTMs, Digital Elevation Models DEM) are defined differently from 

DTMs because they capture different terrain characteristics. These models are defined by 

latitude φ and longitude coordinates λ, with the terrain elevation, h.  The data from both 

models are organized either in matrix form by XY coordinates and the corresponding Z 

elevation or by equations of the surface defined by polynomials or Fourier series (Doyle 

1978).   

The coordinate system used in this early work was based on the State Plane 

Coordinate System.  In the 1930s, the United States was divided into specific regions and 

a specific Cartesian coordinate system was assigned to each region.  In the 1950’s the 

coordinate system transitioned to the Universal Transverse Mercator coordinate system, 

which is commonly known as the WGS84 ellipsoid used in GPS presently (Doyle 1978).  

For the purpose of highway design, an XY horizontal coordinate system was established 

with the X-axis in the general direction of the proposed highway alignment.  As is 

described in section 2.1.4 of this work, the global coordinate for terrestrial terrain 

measurement systems is oriented with Y in the direction of vehicle travel, and X 

perpendicular to vehicle travel.   

DTM data can be acquired from existing topographical maps, photogrammetric 

stereomodels, or more recently, airborne laser scanners.  Before computers were common 

place, review of topographical maps was popular, but time consuming, and did not offer 

the same resolution that is available from airborne laser scanners of today.  A better 

method used in the 1950’s was photogrammetric stereomodels, where elevation data was 

formatted in numerous ways, such as contour lines, profiles with elevations recorded at 

regular intervals, or at geographic points along major terrain features (Doyle 1978).  
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Photogrammetric systems are limited by good lighting, where elevation points can be 

affected by shadows from trees.  A notable photogrammetric system, the Gestalt 

Photomapping System, was capable of outputting an array of digital elevation data at a 

spacing of 182mm at photographic scale, corresponding to approximately 14.3m on the 

ground scale when using photographs at 1:80,000 scale (Kelly, McConnell et al. 1977; 

Rose 2001).  Similar to terrestrial terrain measurement systems, as technology advanced, 

the area of digital terrain measurement systems moved from manual methods and 

photogrammetrics to airborne laser scanners.  Airborne laser scanner data offers detailed 

3D digital terrain mappings with approximately one elevation point per square meter over 

a 1000x1000 km area. 

Airborne laser scanners, also known as light detection and ranging (Lidar), are 

used for the derivation of topographic data and the generation of DTMs.  Most airborne 

digital terrain measurement systems are mounted on an aircraft or helicopter, with data 

taken in a strip-wise manner.  The laser, operating near infra-red (IR) frequency ranges, 

acquires data at frequencies ranging from 1-83kHz resulting in elevation accuracy of a 

few centimeters (Briese and Pfeifer 2001).  The scanning lasers used on these systems are 

insensitive to shadows, unlike the photogrammetric systems, however the aperture size 

on the laser is about half as small as that as the photogrammetric systems and requires 

more laser scans to be taken to cover the same area of terrain (Kraus and Pfeifer 1998).  

One version of an airborne laser scanner is the TopEye which is suspended from a 

helicopter.  It is equipped with a vertical scanning direct detection laser radar operating at 

a wavelength of 1.06μm and pulse rate between 2 and 7kHz (Elmqvist, Jungert et al. 

2001).  The operational altitude is between 60-900m and is able to produce point 

position, intensity of reflection as well as multiple return or double echo data.  When 

flying between 10-25m/s at altitudes of 120-375m, the point density of the acquired data 

varies from 2-16 points per square meter (Elmqvist, Jungert et al. 2001).  These systems 

along with terrestrial systems that are equipped with GPS and INS are inherently plagued 

by systematic errors.  These systematic errors are discussed in the next Section. 

2.1.3 GPS and INS Error Sources 

Typically, an INS is capable of establishing a geodetic position with two 

centimeter accuracy (Smith 2009). It is clear that large localized disturbances in the 
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measured terrain surface will cause erroneous vehicle simulation results.  In addition, 

slowly varying height changes that are artifacts of the INS drift will skew the absolute 

height of the terrain surfaces in the global reference frame (Fritsch and Kilian 1994; 

Kraus and Pfeifer 1998).  For independent lane scans, this problem may not affect the 

application of the terrain data, since the absolute height of the terrain may not be of 

interest.  If a measurement, for instance, is taken over perfectly level terrain for one mile, 

a slowly varying height change of several centimeters will not hinder simulation 

effectiveness.  However, if data were recorded along the first lane of a two lane highway 

early in the day and a few hours later the second lane was measured, then any vertical 

misalignment of the two lanes resulting from the INS drift would produce an artificial 

vertical shift between lanes.  The misalignment between the two lanes would cause 

undesired excitations into a model undergoing a lane change maneuver.  Similar to a 

method developed by Smith, Kraus suggested identifying terrain data that exist in two 

sets of data and compare those points to known survey data, and adjust the surface 

accordingly (Kraus 1997; Smith 2009). 

Airborne laser scanners are plagued with the same systematic errors as the 

terrestrial systems, as both systems are equipped with an INS and a GPS.  The difference 

is the magnitude of the INS drift.  Experimentation has shown the root mean square 

(R.M.S.) error of airborne systems to be 10.7cm or more in vertical elevation accuracy as 

compared with survey data (Pfeifer, Stadler et al. 2001).  This is a full order of magnitude 

greater than that seen by terrestrial applications, where terrestrial measurement systems 

may see a +/-10mm deviation due to INS drift (Chemistruck, Binns et al. 2010).  Many 

different errors and uncertainties arise when working with airborne laser scanner data due 

to the amount of filtering that needs to be completed to reduce the acquired data to terrain 

data only (Li 1994; Lopez 1997; Kraus and Pfeifer 1998; Briese and Pfeifer 2001; 

Pfeifer, Stadler et al. 2001; Kraus, Briese et al. 2004).  Focusing on the contributions of 

error from the GPS and INS alone, studies have shown three major results.  The first is 

that the mean square error in determining the height of an elevation point as referenced 

by the GPS is worse than the accuracy of the laser scanner measurement.  Second, the 

GPS phase ambiguities based on on-the-fly initialization for fast moving objects results in 

+/-10cm error in identifying the origin of the polar coordinates.  All airborne laser 
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scanners use polar coordinates for data acquisition.  Lastly, the INS orientation has an 

error of up to 0.01 degrees, corresponding to a terrain point accuracy of +/-1cm for a 

flying height of 1000m (Kraus and Pfeifer 1998).  Data acquired from airborne laser 

scanners have also shown discrepancies in height when trying to stitch two sets of data 

together.   

The accuracy of the INS is dependent on instrumental biases and environmental 

biases, such as the number of satellites used by the receiver, the satellite-receiver 

distance, atmospheric effects, satellite and receiver clock offsets, phase ambiguities, and 

others (Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Sarma 2008).  To decipher the 

systematic errors based on the INS and GPS as compared with the measurement sensor, 

Smith developed an excitation event and calibration surface to identify and isolate the 

error of the measurement sensor, in this case a scanning laser (Smith and Ferris 2009; 

Smith 2009).  He also developed an ad hoc method to compensate for error contributed 

by INS drift, but this method fails to retain the absolute height (Smith and Ferris 2008).  

According to Fritsch, “the INS drift can be estimated from the long term stability of the 

GPS observations and on the other hand the larger observation noise of the GPS 

observations could be compensated by the short term stability of the INS (Fritsch and 

Kilian 1994).” 

A strong effort has been made to characterize the GPS and INS errors by 

categorizing the errors based on the error origin.  Specifically, several techniques have 

been used to estimate instrumental biases.  One of the first proposed techniques, from 

preoperational GPS systems in the 1990’s, applies the least squares method to estimate 

the coefficients of a two-dimensional quadratic model for vertical Total Electron Count 

(TEC) from a single GPS receiver.  TEC is defined as the number of electrons in a 

column 1 m2 square extending from the base station to the satellite with unites of e/m2 

(Coco, Coker et al. 1991).  Coco et al. applied Lanyi and Roth’s technique to study the 

variability of the GPS instrumental biases (Coco, Coker et al. 1991).  As technology 

advanced, ionospheric delay was investigated through the development of ionospheric 

maps.  The ionosphere acts as a dispersive medium to GPS signals, thus ionospheric 

propagation delays can be removed by the use of two frequencies- L1 and L2 (Coco, 

Coker et al. 1991).  The bias for the two GPS frequencies (L1=1575.42 MHz and 
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L2=1227.60 MHz) and their difference, is referred to as differential instrumental bias and 

will produce systematic errors in the estimates of the ionospheric delays (Sardon and 

Zarraoa 1997).  Ionospheric delays are vertical delay estimates at specified Ionospheric 

Grid Points (IGPs).  Estimation of the IGP delay is limited by instrumental biases.  

Instrumental biases are the difference of the propagation paths of L1 and L2 signals and 

is directly due to the circuitry in the GPS satellite and receiver hardware (Sarma 2008).  

Wilson and Mannucci applied two techniques based on surface harmonics and 

triangular interpolation for the development of global/regional ionospheric maps 

(Mannucci, Hajj et al. 2004).  When GPS systems became completely operational in the 

mid-1990’s, regional and global TEC maps were developed to improve the overall 

accuracy of the GPS system.  These operational systems implement the dual frequencies, 

L1 and L2, which were previously introduced.  A better technique for estimating 

instrumental biases and TEC was proposed by Sardon through modeling stochastic 

parameters of the GPS errors with a Kalman filter (Sardon, Rius et al. 1994).  Sardon 

does not explicitly identify noise, multipath, differential delay between L1 and L2 

antenna phase centers or selective availability in his stochastic model, rather he lumps the 

errors into one term.  More recently, Sarma et al. applies singular value decomposition 

(SVD) algorithm to estimate the instrumental biases from data for several dual frequency 

GPS receivers (Sarma 2008).  A complete investigation of the accuracy of these systems 

has been conducted by Binns, Smith and Wang (Wang 2006; Smith and Ferris 2008; 

Smith and Ferris 2009; Smith 2009; Smith 2009; Binns 2010).  A method for removing 

the error contributions from the GPS and IMU is developed in Chapter 3, without 

requiring the identification of each error source, such that the effects of INS drift in the 

measured surface are removed.  The next section defines the terrain coordinate system 

used for theoretical development in this dissertation. 

2.1.4 Defining the Coordinate System 

The coordinate system for non-deformable, anisotropic terrain topology is defined 

in this Section.  Terrain surfaces in this work will be defined using a curved regular grid 

(CRG) format; however it is important to note that other gridding methods exist.  DTMs 

are typically organized in three types of data structures, square-regular grid, triangulated 

irregular network (TIN) and contour-based networks.  Square-regular grids are most 
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computationally efficient, but fail to handle abrupt changes in the terrain surface.  TINs 

are typically constructed with Delaunay triangulation and are most suitable for 

identifying rough terrain features (Petrie and Kennie 1987; Yoon 2003).  Contour-based 

networks are best for identifying general trends in the terrain surface, and are particularly 

good for hydrological applications.  Other gridding techniques exist, but the techniques 

briefly discussed here are most common for terrain applications (Wilson and Gallant 

2000).  The CRG format is discussed in detail next as it is the basis for the theoretical 

discussion in this work. 

The result of data acquisition and signal processing from the VTMS is a point 

cloud of terrain height data, located in non-uniform locations in the horizontal plane, as 

shown in Figure 7a (Kern and Ferris 2007; Wagner and Ferris 2007).  Airborne terrain 

measurement systems also acquire data in a non-uniform grid-spacing, but these systems 

are faced with additional post-processing issues to remove vegetation and buildings from 

the data set (Kraus and Pfeifer 1998; Kraus, Briese et al. 2004).  Once the data from the 

scanning laser(s) and the INS are translated to a common, body-fixed coordinate system, 

synchronized in time, and nominally corrected for host-vehicle motion, the data are 

transformed to a global coordinate system (x, y, z).  The result is a point cloud of terrain 

height data, located in the horizontal plane as shown in Figure 7a (Kern and Ferris 2007; 

Wagner and Ferris 2007).  A path coordinate, u, and a perpendicular coordinate, v, are 

introduced to form a curved regular grid (CRG) in the horizontal plane, as shown in 

Figure 7b (Gimmler, Ammon et al. 2005; Rauh and Mossner-Beigel 2008; VIRES 

October 2008).   Discrete longitudinal locations along coordinate u are defined as vector 

u and are indexed by i; discrete transverse locations are defined as vector v and are 

indexed by j.  The terrain height corresponding to each discrete horizontal grid point (u, 

v) is determined by examining the vertical heights in the localized area around that 

horizontal location.  The spatial interpolation method (e.g., mean, median, inverse-

distance-to-a-power, and kriging) must be carefully chosen based on the application 

(Stein 1999; Stein, Meer et al. 2002; Detweiler and Ferris 2008; Detweiler and Ferris 

2009; Wackernagel 2010), the accuracy of the measurement system (Pfeifer, Kostli et al. 

1998; Pfeifer, Stadler et al. 2001; Detweiler and Ferris 2008; Smith and Ferris 2008; 

Smith 2009), and the local homogeneity and isotropic nature of the terrain..  In this way, 
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drainage” (ASTM 2006).  It is vital to consider the road and travelling vehicle as 

inseparable parts of a unique complex system affecting the dynamics and loading of both.  

Roughness indices are measures of unevenness of the pavement in relation to vehicle 

response and, as such, are used as metrics to judge the ability of stochastic models to 

characterize the terrain.   

Clearly, two roads that share a single roughness index need not have the same 

characteristics, but they share some general measure of roughness.  The use of a single 

number to describe the overall condition of a road has been questioned, and other 

approaches for classifying terrain roughness using newly proposed indices or a 

combination of indices have been proposed (Sayers and Karamihas 1996; Papagiannakis 

and Raveendran 1998; Liu and Herman 1999; Ahlin, Granlund et al. 2004; Rouillard 

2004; Capuruço, Hegazy et al. 2005; Kropáč and Múčka 2005; Kropáč 2008).  Since 

roughness indices statistically describe the unevenness of the terrain, a major application 

is to judge the quality of the synthetic terrain produced from the terrain models.  The 

index values for the synthetic terrain and the measured terrain can be computed and the 

distributions of the index for the synthetic and measured terrain then compared.  

Similarities in the distributions indicate how well the model captures the terrain 

unevenness in the synthesized data set, insofar as a single roughness index is able to 

characterize terrain unevenness.  Discrepancies in the distributions would suggest that the 

terrain model is incapable of sufficiently modeling a particular terrain and a different 

terrain model should be used.  In this work, the roughness indices will be used to analyze 

the principle components of terrain and compare the results with the roughness index of a 

longitudinal profile taken from the terrain surface and draw conclusions.   

2.1.3.1 Quarter-Car Roughness Indices 

The indices presented in this Section calculate the terrain roughness with some 

mathematical operation on the accumulated suspension stroke over the total distance 

traveled as determined by a quarter car model, as shown in Figure 9.  The sprung mass, 

Ms, is the portion of the vehicle body mass supported by one wheel.  The unsprung mass, 

Mu, is the mass of the wheel, tire and half of the axle/suspension at one corner of the 

vehicle.  The tire spring rate is depicted by Kt, and the suspension spring rate is depicted 
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construction practices to develop the smoothest roads possible.  It is considered an 

indicator of pavement serviceability, independent of the particular equipment used to 

measure it, internationally and geographically transferable, and time invariant (Hajek, 

Kazmierowski et al. 1998).  The IRI is computed from a single longitudinal profile with a 

measurement resolution of 0.5mm to sufficiently capture the characteristics of the terrain 

of interest.  The terrain profile is assumed to have a constant slope between sampled 

elevation points and is smoothed with a moving average having a base length of 250mm.  

The smoothed profile is then filtered using a quarter car model at a simulated speed of 80 

km/hr.  The accumulated suspension motion is linearly accumulated and divided by the 

profile length to yield the IRI, having units of elevation per distance (mm/km or in/mi), 

as shown in Equation 1, with detailed calculations provided in Sayers (Sayers 1989; 

Sayers 1995).   In Equation 1, ݖ௦ሶ  is the motion of the sprung mass [m/s], ݖ௨ሶ  is the motion 

of the unsprung mass [m/s], L is the length of the profile [m], and V is the velocity at 

which the simulation was executed [m/s].  This index will be used for analyzing the 

principle components of terrain in Chapter 4 of this dissertation. 

ܫܴܫ ൌ
1
ܮ
න ௦ሶݖ| െ ௨ሶݖ ݐ݀|
௅/௏

଴
 

Equation 1

Ride Number (RN) 

The algorithm developed to calculate the Ride Number (RN) is very similar to 

that of the IRI, with different coefficients, initialization and averaging.  The main 

difference is that the accumulated suspension travel is calculated with the Root Mean 

Square (RMS) for the RN rather than the mean absolute since the RN decomposes the 

profile into three wavebands, represented by three profile index (PI) statistics.  

Specifically, the PI is calculated for each waveband, and for each wheel path, 

implementing the same quarter car simulation with different parameters; see Appendix B 

for the parameter values.  The result is a single PI for the terrain set, determined by the 

RMS of the wavebands for each wheel path.  Further details of the calculations of the RN 

can be found in Sayers (Sayers and Karamihas 1996).  While the IRI and RN are very 

similar, it is suggested that the RN does a better job at identifying pavement conditions as 

compared with the IRI despite using a similar algorithm due to the waveband approach.  
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The computational effort is equivalent for both indices with the main equation for the RN 

presented in Equation 2.  RN is an exponential transform of the RMS slope statistic PI 

with dimensionless units of slope [m/m] (Sayers and Karamihas 1996).   

ܴܰ ൌ 5݁ିଵ଺଴ሺ௉ூሻ Equation 2

Roughness Index for Driving Expenditure (RIDE) 

The Roughness Index for Driving Expenditure (RIDE) is based on the sprung 

mass acceleration response of a reference vehicle to the pavement profile.  Similar to IRI, 

the index is based on results from a quarter car (QC) model where a transfer function 

(TF) is developed which relates the QC response to that of the reference vehicle.  By 

using a QC model, the roughness index is insensitive to specific mechanical faults of a 

reference vehicle.  RIDE is calculated from the power spectral density (PSD) of the 

sprung mass acceleration of the reference vehicle, as depicted in Equation 3, with full 

details of the calculations provided in Papagiannakis (Papagiannakis and Raveendran 

1998).   

ܧܦܫܴ ൌ
1
ܮ
ඨන ሺ݂ሻ݂݀ܦܵܲ

ஶ

ିஶ
 Equation 3

The index is purported to have several advantages: it is directly related to riding 

comfort; it is related to the dynamic axle loads and reflects heavy vehicle ride, damage, 

and pavement damage; it is fully compatible with ISO standard 2631 (ISO 2004); and it 

is sensitive to pavement roughness excitation frequencies that are close to resonant 

frequencies of the sprung mass and is suited for identifying pavements that need 

rehabilitation (Papagiannakis and Raveendran 1998).   

2.1.3.2 Five DOF Model Based Index 

The index presented in this Section only considers vertical translations of a 

simplified full vehicle model, as shown in Figure 10.  Roll, pitch and yaw are neglected 

for simplification of the analysis.  The motivation for this index is that it better reflects 

the ride quality of a particular vehicle as compared with a QC model.  This index also 
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is assumed that the center of mass of the vehicle is at the centroid of the rectangular 

frame instead of closer to the powertrain location.  Of course, when a specific vehicle is 

identified for simulation, a more representative result would be derived from a properly 

parameterized, higher fidelity, vehicle model (Capuruço, Hegazy et al. 2005).  The FRI 

involves more computational effort, but results in higher repeatability of calculating the 

index over similar terrains, making it more useful than the IRI for higher fidelity 

simulations. 

2.1.3.3 Sprung Mass Acceleration Roughness Indices 

The indices presented in this section are based on the calculation of roughness 

indices using response-type measurement responses.  Response-type profilers are 

typically equipped with an accelerometer located on the sprung mass of a vehicle or 

trailer.  The measured responses are system specific (not transferrable) and temporal- the 

mechanical systems change with usage and time (Hajek, Kazmierowski et al. 1998).  

These types of systems are very limited in their capabilities of describing universal 

roughness, but are useful in understanding how a particular vehicle is affected by the 

terrain it is traversing.  This method is a better for ride quality evaluations, rather than 

calculating a roughness index. 
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Root Mean Square of Terrain Height (RMSH ) 

The Root Mean Square of Terrain Height, RMSH, analyzes the importance of 

short, medium and long road unevenness of the vehicle vibration (Kropáč and Múčka 

2004; Kropáč 2008).   RMSH is defined in Equation 4, where DH is a single measure of 

the combined variance of the random component of the road profile with the harmonic 

component of the road profile (Kropáč 2008).  More information on the specifics of 

calculating RMSH can be found in the article by Kropáč and Múčka (Kropáč and Múčka 

2005).   

ுܵܯܴ ൌ ඥܦு Equation 4

It is important to decompose the analysis of road unevenness to different 

wavelengths because the vehicle responds differently to certain frequencies.  The vehicle 

response to road unevenness indicated that some of the tested roads yielded a much 

higher vertical acceleration than others, so much so that the allowable exposure to 

vibration for people in the vehicle would be reduced by several hours (ISO 2004).  This 

study found that the IRI was insensitive to roughness caused by unevenness in certain 

wavebands.  From these findings, Kropáč and Múčka proposed the use of RMSH, as an 

alternative to IRI (Kropáč 2008).   

Perceived Vehicle Roughness 

Ahlin focused his studies on vertical vibration for a single wheel track to 

understand how well a synthesized terrain profile matches perceived vehicle wheel 

roughness, or more commonly known as vertical vibrations.  For this test, vertical 

vibrations were measured on the right wheel of the front axle of a Volvo FL12 heavy 

truck using an accelerometer (Ahlin, Granlund et al. 2004).  Through quarter car 

simulations, Ahlin compared measured vibrations to simulated vibrations to determine 

the correlation between models.  He found that the higher fidelity measurement of the 

terrain used for simulated vibrations, the QC model yielded better correlation results as 

compared with the lower fidelity measurements.  Specifically, Ahlin used three single-

point lasers that were setup across the wheel path of the host vehicle to show that the 

accuracy of the data in representing vertical wheel vibration is better than a single, single-

point laser placed in the wheel path (Ahlin, Granlund et al. 2004).  With the increased 
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data set from the three-single-point lasers, the perceived vehicle wheel roughness of the 

synthesized terrain was found to be more representative of the measured terrain.  To 

further Ahlin’s study, roughness indices could be applied to the measured and 

synthesized terrain to determine how well the synthesized data truly captures the terrain 

characteristics.  Ahlin’s approach will be implemented as a ‘check’ to determine how 

well the synthesized terrain surface compares to the measured data in this project in 

Chapter 5 of this dissertation.  The next section of this Chapter leverages empirical 

terrain measurements to develop analytical terrain. 

2.2 Analytical Terrain 

Analytical terrain can be separated into two categories, those based on a more 

global approach such as approximating large areas of land with surface fitting by contour 

lines (~ 1000km X 1000km) and those based on a more local approach by characterizing 

terrain profiles (~1 km).  Both categories use parameter identification to parameterize the 

mathematical model chosen to characterize the terrain of interest where the key 

differences lie in what the mathematical models are characterizing.  In the first category, 

global elevation is characterized based on surface estimation via elevation contour line 

measurements, typically represented by sets of polynomials or Fourier series.  The 

purposes of such characterizations are typically for data compression and global terrain 

analysis, such as hydrological flow or erosion analysis (Moore, Grayson et al. 1991; 

Quinn, Beven et al. 1991).  The second category is geared towards modeling segments of 

longitudinal profiles over relatively short distances.  The purposes of these 

characterizations are to synthesize road segments based off the original terrain of any 

desired length, and also for data compression. 

2.2.1 Global Terrain Approximation 

Global terrain approximation starts with discretely measured terrain surface data 

and uses polynomials or power series to approximate the surface.  In this way, a 

continuous curve is developed to represent the area of terrain.  Most terrain surface 

approximation techniques originated in DTM.  Two major drawbacks of the methods 

described are the coarse resolution and large amount of filtering which yield a basic 
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description of the surface, with flaws occurring in the representation of ‘sharp’ terrain 

features such as curbs, cliffs, rocks and others.  Three terrain surface approximation 

techniques are described next. 

Active Contour 

 Active contour mapping is used when modeling ground surface contours for 

creating DTM from airborne scanning data.  Active contours have roots in the area of 

image processing.  The shape of an active contour to a particular ground surface is the 

contour which minimizes an energy function.  The energy function is typically 

parameterized by internal energy as described by the physical characteristics associated 

with the contour (material properties) and a potential energy field as described by the 

terrain height (Elmqvist 2001; Elmqvist, Jungert et al. 2001).  One issue that may arise is 

that the solution may solve for a local minimum and not a global minimum.  Another 

issue is properly identifying the material properties of the terrain surface in question.  

Interestingly, different terrain features can be identified or removed from the data 

depending on the requirements of the application.  For example, for rocky terrain, it may 

be desired to estimate the underlying terrain and not the rocks, or it may be desired to 

include the rocks in the true terrain surface.  This method can be adapted for either case 

such that the resulting terrain surface representation will be a continuous model of the 

desired true terrain surface.  However, due to the nature of this method, it is prone to 

over-smoothing sharp-edged features such as rocks. 

  Linear Prediction 

 Pfeifer and Kraus developed an iterative robust interpolation algorithm based on 

linear prediction to estimate the digital terrain surface.  This algorithm is comprised of 

two components, a stochastic model to define the weighting function and a functional 

model to describe the interpolation scheme, both of which will be described in the next 

paragraphs.  As identified previously in this Chapter, measurements acquired from 

airborne laser scanners contain information about vegetation, buildings and the terrain.  

The ultimate goal of this approach is to remove vegetation and buildings from the data set 

and be left with the original terrain surface.   
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The first component of this algorithm determines the weighting function of each 

elevation point.  Each point is assigned a weight from zero to one based on the 

classification of the point as a ground point or a vegetation point.  For example, if the 

point is located on or near the ground plane, then a weighting close to one is assigned, 

and if a point is considered vegetation, or very far from the ground plane, then a weight 

of zero is assigned.  The specific weighting function used in this work is shown in 

equation form in Equation 5 and in graphic form in Figure 12.    The weight function, pi, 

for robust estimation is presented in Equation 5, where the parameters a and b determine 

the steepness of the weight function, g is a shift value, and w is a ‘ceiling’ elevation value 

and is user defined, such that any value above g+w is set to zero (Kraus and Pfeifer 1998; 

Pfeifer, Kostli et al. 1998).  An average is computed on the surface to calculate the 

residuals, vi between each height measurement and the average surface.  The shift value, 

g forces the left branch of the weighting function equal to one with details on how to 

calculate the shift value, g, explained in Kraus and Pfeifer (1998) and Pfeifer et al. (1998) 

(Kraus and Pfeifer 1998; Pfeifer, Kostli et al. 1998).  If the residuals are less than a shift 

value, g, they are typically negative and classified as terrain points with weighting set 

equal to one.  If the residuals are between the shift value g and the shift value plus some 

offset, g+w, they are typically small negative or positive and are classified as lower lying 

vegetation or rocks, with a weighting value occurring between zero and one.  If the 

residuals are greater than the shift value plus some offset, then the points are classified as 

vegetation or buildings and the weighting value is set equal to zero.  Furthermore, the 

parameters presented in Pfeifer’s work can be tuned to keep or eliminate specific terrain 

features.   

 

௜݌ ൌ ൞

1
1

1 ൅ ሺܽሺݒ௜ െ ݃ሻ௕ሻ
0

௜ݒ ൑ ݃
݃ ൏ ௜ݒ ൑ ݃ ൅ ݓ
݃ ൅ ݓ ൏ ௜ݒ

 

 

Equation 5

 



 

accur

least 

covar

much

proce

The e

trench

it doe

Fixed

 

limita

at dif

The p

contin

based

In the sec

racy value fo

squares.  T

riance functi

h two variab

ess or field.  

end result is

hes and curb

es provide an

d Grid Polyno

True terr

ations are di

fferent samp

problem Seg

nuous polyn

d on specific

Figu

cond compon

for each elev

This interpo

ion (Pfeifer, 

bles change 

In this case

s not a perfe

bs are smoot

n accurate re

omials 

rain surface

iscretized by

ling rates an

gu sought to 

nomials base

c terrain fea

ure 12.  Resid

nent of the a

vation grid p

olation meth

Stadler et a

together an

, the two var

ect terrain re

thed out and

epresentation

es are conti

y measureme

nd resolution

solve was to

ed on discret

atures (Segu

38

dual weighti

algorithm, li

point in a sim

hod is based

l. 2001).  Th

nd describes

riables are th

epresentation

d buildings o

n of the terra

inuous func

ent systems.

ns, as describ

o regenerate 

tized measur

u 1985).  Th

ing function

inear predict

milar metho

d on descri

he covarianc

s the varian

he X and Y 

n, as ‘sharp

or trees are n

ain for a larg

ctions, whic

.  Measurem

bed in the ea

the continuo

red terrain d

he first step 

n. 

tion is used t

od to kriging

ibing the su

ce function m

ce of a ran

elevation po

’ terrain fea

not always el

ge land base.

ch due to 

ment systems

arlier part of

ous terrain fu

data that has 

 is to take t

 

to identify a

g and movin

urface with 

measures how

dom variabl

oint location

atures such a

liminated, bu

 

technologica

s acquire dat

f this chapte

functions wit

been gridde

the measure

an 

ng 

a 

w 

le 

ns.  

as 

ut 

al 

ta 

er.  

th 

ed 

ed 



 39

surface data and grid it based on terrain features.  For example, if an area of the surface is 

rough, then the gridding will need to have more nodes than if the surface is relatively flat 

and uneventful.  Then the discretized terrain height can be approximated as of function of 

x and y location as shown in Equation 6, where ar are coefficients.  Equation 6 can be 

abbreviated in power series form as shown in Equation 7.  The importance of this 

representation is that Equation 7 takes on the same form as a double Chebyshev 

polynomial, which provides a least squares solution for surface fitting.  The coefficients 

of double Chebyshev polynomial are determined from the measured data, and continuous 

contour lines describing the surface are developed.  Of course the methods presented by 

Segu only considered the implementation of Chebyshev polynomials, but that is not to 

say that cubic splines, linear interpolation, or other polynomials or power series could not 

be used instead.  Loucks suggests that instead of being concerned with the least squared 

solution only, grid spacing and desired resolution need to be taken into account.  He 

suggests using cubic splines for finer resolution data to make a greater effort in capturing 

more abrupt terrain features such as cliffs and other drop offs and linear interpolation or 

Chebyshev polynomials for coarse resolution applications where an exact fit to the terrain 

data is not required (Loucks 1996).  Regardless of the approximation tool used, the 

methods developed in Segu’s work are used as a baseline for the definition of 3D terrain 

surfaces presented in Chapter 4 of this dissertation.  The key differences are that this 

method is used for developing contour elevation lines, whereas the methods presented in 

Chapter 4 decompose the terrain surface to its principle components and then 

approximate the components with sets of polynomials.  The next section presents 

different methods to characterize the terrain with mathematical models, that when 

synthesized, capture the inherent statistical properties of the host terrain. 

ݖ ൌ ܽ଴ ൅ ܽଵݔ ൅ ܽଶݕ ൅ ܽଷݔଶ ൅ ܽସݕݔ ൅ ܽହݕଶ ൅ ⋯ Equation 6

ݖ ൌ෍෍ܽ௥ݔ௜ି௝ݕ௝, ݎ ∈ 0,1,2, … ,݉′

௜

௝ୀ଴

௞

௜ୀ଴

 Equation 7

2.2.2 Local Terrain Characterization 

If the terrain is considered to be a particular realization of an underlying 

stochastic process, then measured terrain profiles can be used to develop the form and the 
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order of the mathematical description of the stochastic process.  A large set of terrain 

profiles is then represented by a single stochastic process that has the same properties 

(e.g., stationarity) as the measured terrain.  A measured terrain profile is used to 

parameterize the model, and the parameters are then defined as the terrain 

characterization.  Once the model is properly parameterized, realizations of any length 

can be generated, and vehicle responses can be simulated that are accurate for the given 

application.  Equation 8 defines the stochastic process Zn as a family of random variables 

defined over a common probability space. 

ሼܼ௡, ݊ ൌ 0,1,2,… ሽ Equation 8 

These random variables correspond to discrete locations along a prescribed path in the 

horizontal plane and are indexed by a real parameter n ≥ 0.  Let S denote the state space 

so that realizations of the process at index n, Zn, are elements of S. 

Several methods have been examined for characterizing terrain profiles in this 

dissertation.  Extensive work has been conducted in using the Power Spectral Density 

(PSD) of road profiles (Andren 2006; Kutay, Weaver et al. 2007) and road roughness 

metrics (Gorsich, Gunter et al. 2003).  Rouillard, Bruscella, and Sek suggested a method 

based on PSD analysis and spatial acceleration to characterize and classify road 

profiles (Bruscella and Rouillard 1999; Rouillard, Bruscella et al. 2000; Rouillard, Sek et 

al. 2001).  They used spatial acceleration to separate the stationary terrain profile 

characteristics from non-stationary transient events.  Later, Ferris examined the viability 

of characterizing roads as an nth order Markov chain (Kuchar 2001; Ferris 2004).  

Recently, Kern, Wagner and Ferris demonstrated that an Autoregressive Integrated 

Moving Average (ARIMA) model could be used for modeling road data and generating 

synthetic road profiles that have similar statistical properties to those of measured roads 

by defining a linear (AR) model excited by a stationary non-Gaussian process (Kern and 

Ferris 2006; Kern and Ferris 2006; Kern and Ferris 2007; Li and Sandu 2007; Wagner 

and Ferris 2007; Khashei, Bijari et al. 2008; Wagner and Ferris 2008).  These models, in 

addition to several others, have expanded the applicability of computational simulation in 

the ground vehicle design and development process.  In the remainder of this section, 
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typical model properties are explained, and then several models of interest are 

investigated. 

2.1.3.4 Model Properties 

Terrain models are formulated based the statistical properties of the terrain, 

including one or more of the following: stationary, isotropic, homogenous, or Gaussian.  

Chaika states that rigorous statistical tests must be performed before a statistical model is 

created, but first, the properties must be defined (Chaika, Gorsich et al. 2004).  When 

examining these common model properties on measured terrain, these results were found. 

1. Long sections of terrain profiles are not stationary, 

2. Short sections of terrain profiles may not be stationary depending on their 

content and characteristics. 

3. Generally smooth roads are stationary, but rough roads are not. 

Understanding the properties of measured terrain is essential for accurate terrain 

modeling.    

Stationary and Homogeneity  

Stationarity of a time series implies that all joint probability density functions are 

time invariant.  For example, the variance of stationary signals will be time invariant.  

(Bruscella and Rouillard 1999).  However, the term stationary is commonplace for time 

series analysis whereas terrain does not vary in time, rather location.  The confusion 

arises in the fact that time series analysis techniques are applied to terrain analysis.  The 

appropriate term to use in terrain analysis is homogeneous.  A terrain profile is 

homogeneous if the joint probability density functions are invariant with horizontal 

translations in the coordinate frame (Bendat and Piersol 2000).  This is analogous to 

being stationary in time, but it is in the spatial domain.  Many studies have shown that 

smooth roads may be homogenous, but rough roads are not due to localized disturbances 

(Bruscella and Rouillard 1999; Chaika, Gorsich et al. 2004; Andren 2006). 

Isotropic 

A terrain profile is isotropic if the joint probability density functions are invariant 

with changes in direction or orientation of the coordinate frame (Frederick and Chang 
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1965).  Therefore, this property examines the terrain in all directions.  For example, a 

terrain surface with wheel rutting would not be considered isotropic, but rather 

anisotropic. 

Gaussian 

A Gaussian distribution is a normal distribution with the mean, μ, and variance, σ2 
(Bendat and Piersol 2000).  Equation 9 and Figure 13 demonstrates a Gaussian 
distribution. 

ܲሺݖሻ ൌ ൫ߪ௭√2ߨ൯
ିଵ
݌ݔ݁ ቂെ

ሺ௭ିఓ೥ሻమ

ଶఙ೥
మ ቃ Equation 9

 

 

Figure 13: Gaussian Probability Distribution Function. 

The Gaussian distribution is a commonly used assumption in terrain 

characterization and realization; however, this assumption may not be valid in all cases.  

If localized disturbances (e.g., potholes) are removed from terrain profiles, the residual 

profile may be nearly Gaussian (Andren 2006).  Some studies have transformed the 

actual, non-Gaussian distribution to a Gaussian distribution, then performed the statistical 
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to the original data set (Bogsjo and Forsan 2004).   
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2.1.3.5 Terrain Models 

Several terrain models are presented for discussion of the implementation and 

pros and cons of each.  Ultimately, one model will be selected as a proof of concept for 

modeling the principle components of terrain in Chapter 5 of this dissertation. 

Power Spectral Density (PSD) 

One of the more popular models is the Power Spectral Density (PSD) 

approximation of terrain profiles.  The PSD identifies the frequency content of a 

stochastic process or a deterministic function of time to identify frequencies of interest 

and periodicities.  Andren presents a literature survey of PSD approximations which 

implement the basic equation of this model, as shown in Equation 10, where ܩௗ is the 

roughness level of the displacement PSD, C is the general roughness parameter with units 

of meters3, λ is the wavelength with units of meters, and w is a dimensionless parameter 

called waviness, ranging from 1-5 on measured roads, and is related to the wavelength of 

the road (Andren 2006).  Traditionally, w is approximately equal to 2 and C varies from 

road to road. 

ௗሺ݊ሻܩ ൌ ௪ିߣܥ Equation 10

This approximation represents a terrain profile by two numbers, C and w, the 

resulting PSD approximation is a straight line.  This simple concept can be expanded by 

decomposing the spectrum into wavebands (commonly two or three).  In this way, a 

common value for the roughness parameter C is assumed to remain constant and different 

values for w can be fit to each waveband.   

Equation 11 is an example of a three waveband approximation. 

ௗሺ݊ሻܩ ൌ ቐ
௪ଵିߣܥ 0 ൑ ߣ ൑ ଵߣ
௪ଶିߣܥ ଵߣ ൑ ߣ ൑ ଶߣ
௪ଷିߣܥ ଶߣ ൑ ߣ ൑ ∞

Equation 11

For a spectral analysis estimate to be valid, the road should be a member of a stationary 

random process.  When terrain is homogeneous and isotropic, a complete terrain surface 

can be modeled with a single terrain profile PSD.  Several variations of the PSD are 

presented next.  The data used in the analysis of the following PSDS were filtered such 

that long-wavelength disturbances (such as hills) were removed by applying a high-pass 
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filter to keep wavelengths between 0.1m and 100m (ISO8608 1995).  It is important to 

note that the majority of terrain analysis using PSDs is completed incorrectly as it 

validates the stationary requirement. 

Parametric Road Spectrum (PRS) 

Bogsjo presented four different models to parameterize road spectra following a 

Gaussian distribution: parametric road spectrum, shifted spatial range spectrum, direct 

spectrum estimation, and transformed direct spectrum estimation.  The Parametric Road 

Spectrum (PRS) model is a straight line fit in the log-log scale of a power spectrum.  

Equation 12 describes the PRS approach, where ݊ை is 0.1m-1, C indicates the degree of 

road unevenness, varying around 10-5 and the exponential value w varies from 2-3.  The 

parameter values were determined by a least-square fit over the spatial frequency range 

of 0.011-2.83m-1  (Bogsjo and Forsan 2004). 

ܴ௉ோௌሺ݊ሻ ൌ ቊ
஼∗൬ ೙

೙ೀ
൰
షೢ

଴.଴ଵழ௡ஸଵ଴

଴ ௢௧௛௘௥௪௜௦௘
 

Equation 12

Shifted Spatial Range Spectrum (SSR) 

The Shifted Spatial Range spectrum (SSR) model focuses on correctly 

approximating the low resonance frequency range of the vehicle, i.e. 1-2Hz.  The SSR is 

defined over the least square fit of the range corresponding to the spatial frequency range 

for a vehicle traveling at constant velocity, defined as: 1 ൗݒ ൏ ݊ ൑ 2 ൗݒ  .  The SSR 

spectrum is then defined over this range, in Equation 13, where ݊ை is 0.1m-1, C indicates 

the degree of road unevenness, varying around 10-5 and the exponential value w varies 

from 2-3.  The lower frequency limit of the spectrum is adjusted to preserve the variance 

of the measured profile as defined in Equation 14 (Bogsjo and Forsan 2004). 

ܴௌௌோሺ݊ሻ ൌ ቊ
஼∗൬ ೙

೙ೀ
൰
షೢ

௡ೞ೟ೌೝ೟ழ௡ஸଵ଴

଴ ௢௧௛௘௥௪௜௦௘
 

Equation 13

݊௦௧௔௥௧ ൌ ݔܽ݉ ቊ
ሺଵ଴భషೢି భషೢ

಴೙బೢ
ఙమሻ

భ
భషೢ

଴.଴ଵ
 

Equation 14
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Direct Spectrum Estimation (DSE) & Transformed Direct Spectrum Estimation (TrDSE) 

The Direct Spectrum Estimation (DSE) model smooths the power spectrum of the 

actual road; the smoothed road spectrum is then used in the model to develop synthetic 

road profiles. A slight variation of the DSE is the Transformed Direct Spectrum 

Estimation (TrDSE), which applies an empirical transformation function to the road 

profile, and the resulting transformed road spectrum is determined by the DSE model.  

This transformation procedure assumes strictly stationary data (Bogsjo and Forsan 2004).   

 When applied to a QC simulation model to analyze pseudo-damage, the PRS and 

DSE models underestimated the fatigue damage in all cases, the SSR model performed 

better at velocities that were not near vehicle resonance, and the non-Guassian TrDSE 

model overestimated the fatigue damage, resulting in very conservative fatigue estimates.  

From these studies, it was found that traditional stochastic analysis using Gaussian 

distributions is insufficient in characterizing the spectra of the terrain that is critical in 

predicting fatigue damage.  This is likely due to the fact that fatigue is sensitive to 

random, localized disturbances (Bogsjo and Forsan 2004).  The conclusions identified in 

this report will be considered for future ground vehicle reliability studies but in the case 

of this situation, PSDs will not be applied as a stochastic modeling technique.   

Markov Chains 

Measured road profiles can be considered a realization of a discrete-time, finite-

state, closed, irreducible and aperiodic process (Ferris 2004).  The Markov Property is 

written in Equation 15. 

ܲሺܼ௡ାଵ ൌ ௡ାଵ|ܼ௡ݖ ൌ ,௡ݖ ܼ௡ିଵ ൌ ,௡ିଵݖ … , ܼ଴ ൌ ଴ሻݖ ൌ ܲሺܼ௡ାଵ

ൌ ௡ାଵ|ܼ௡ݖ ൌ  ௡ሻݖ

Equation 15

That is, conditioned on the present, the future and the past are independent.  The Markov 

Chain has stationary transition probabilities when Equation 8 holds for all values of n. 

The process defined in Equation 15 forms a Markov Chain when these random variables, 

Xn, satisfy the Markov Property and they have stationary transition probabilities. The 

transition function of the chain is defined in Equation 16. 

ܲሺݏଵ, ଶሻݏ ൌ ܲሺܼ௡ାଵ ൌ ଶ|ܼ௡ݏ ൌ ,ଵሻݏ ,ଵݏ ଶݏ ߳ ܵ, ݊ ൒ 0  Equation 16
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The Markov Property implies that regardless of how the process arrived at state 

s1, it has probability P (s1, s2) of being in state s2 at the next measurement point.  The n-

step transition function, Pn (s1, s2) is the probability of going from state s2 to state s2 in n-

steps.  A transition matrix arises from the transition function, where each transition 

matrix represents a large set of road profiles that share the same characteristics (Ferris 

2004).  The Markov Chain representation of terrain will not be investigated in this work 

but may be applied to future work for its capabilities of modeling a time-invariant 

process. 

Hilbert-Huang Transform and Empirical Mode Decomposition 

 The Hilbert-Huang Transform (HHT) is capable of analyzing and classifying 

nonstationary and nonlinear terrain data.  The HHT consists of two steps, the Empirical 

Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA).  The EMD is a 

multi-resolution, local decomposition method which decomposes the terrain data into 

basis functions specific to the data.  These basis functions are known as Intrinsic Mode 

Functions (IMF).  IMFs have the following properties: they have instantaneous frequency 

defined at every point; they are almost orthogonal; they form a complete basis set 

(Ayenu-Prah and Attoh-Okine 2009).  These basis functions are used to decompose a 

single longitudinal profile whereas the methods developed in this work decompose the 

entire terrain surface into characteristic basis vectors.  Futhermore, the IMFs exist in the 

frequency domain, whereas the basis vectors in this work exist in the spatial domain.  The 

EMD of the terrain data is completed when the residual process is a monotonic function, 

or a constant.  Specific details of the EMD can be found in works by Ayenu-Prah and 

Attoh-Okine (Attoh-Okine, Ayenu-Prah Jr et al. 2006; Ayenu-Prah and Attoh-Okine 

2009).  It is important to note that during this decomposition, all information of the 

original signal is retained such that the summation of the IMF and the residuals return the 

original signal.   The next step in the HHT is a Hilbert transform applied to each of the 

IMFs to identify instantaneous frequencies and amplitudes for use in plotting the Hilbert 

amplitude spectra (Attoh-Okine, Ayenu-Prah Jr et al. 2006; Ayenu-Prah and Attoh-Okine 

2009).  Identification of the instantaneous frequencies and amplitudes of each IMF allows 

for the analysis of the energy content of each IMF; the higher the energy content, the 
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greater effect that IMF has on the original signal.  The impact of the energy associated 

with each IMF is not completely understood and remains under investigation.  The HHT 

is similar to the method presented in Chapter 4 of this dissertation, in that the terrain 

surface is decomposed into a set of basis vectors, of which each basis vector is studied for 

its contribution to the overall terrain surface. 

Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average (ARIMA) models can be used to 

characterize road profiles through parameter identification of the Autoregressive 

coefficients.  Uncertainty is captured in the resulting residual process, which, under 

certain circumstances, may be represented by a single probability density function.  This 

stochastic residual process can be used to drive the creation of a distribution of synthetic 

terrain topology profiles.  This distribution is then dependent on the probability 

distribution of the residuals as well as the ARIMA coefficients.  ARIMA models are one 

method for characterizing road profiles which incorporates the uncertainty of terrain 

characteristics into the model structure.  The ARIMA parameters are identified as p, d 

and q, where p is the order of the autoregressive model, d is the number of times the data 

was differenced and q is the order of the moving average model.  It has been shown 

previously that terrain topology does not generally exhibit moving average 

characteristics, so the general form of the model becomes Equation 17, where φ is the 

autoregressive coefficient, a୧ is the distribution of the residuals which is assumed to be 

independently and identically distributed for all time, and ୢ׏	is the backward difference 

operator. 

z୧ୢ׏ ൌ φଵ׏
ୢz୧ିଵ ൅ φଶ׏

ୢz୧ିଶ ൅ ⋯൅ a୧  Equation 17

The autoregressive coefficients traditionally are constants encompassing the 

correlation of the current profile point to the previous profile points (Wagner and Ferris 

2008).  This model will be investigated further for its capabilities to model road profiles. 

2.3 Literature Review Summary 

Two major categories of terrain measuring and modeling have been reviewed: 

terrestrial applications and airborne applications.  A clear distinction should be made that 
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this work focuses on terrestrially acquired measurements and focuses on modeling terrain 

that is anisotropic (path specific).  DTMs are concerned with modeling a large area at a 

lower resolution (elevation points every 3-15m (Maxwell 1970; Pfeifer, Kostli et al. 

1998)) than what is captured with the terrestrial systems (elevation points every 4-

25.4mm (Kern and Ferris 2007; Wagner, Kern et al. 2007)) due to the intended 

application and current limitations of airborne technology.   

Furthermore, when processing airborne laser scanner data, it has been assumed 

that the data are sufficiently isotropically distributed (Pfeifer, Stadler et al. 2001).  This is 

the key difference between the methods used in DTMs and the methods presented in this 

dissertation.  The terrain measurement system used to acquire data for this research, the 

VTMS, directly samples the area of interest.  Airborne laser scanning systems scan a 

broad area, and then require filtering techniques to remove unwanted vegetation or 

buildings before the data can be used.  This filtering often results in over-smoothing of 

‘sharp’ terrain features such as rocks, curbs, drop-offs, etc.  All of these sharp, distinct 

terrain features are vital for vehicle durability and reliability analysis and cannot be 

ignored or filtered out.  Additionally, the data acquired in this work is sufficiently 

anisotropic on the global scale so that vehicle paths are identifiable (e.g., >100mm), but 

on the local scale (e.g. <10mm), the data are assumed to be isotropic for grid node 

elevation identification.   

Many terrain modeling discussions, in both the terrestrial and airborne 

applications, culminate in the need to model terrain on different scales (e.g., millimeter, 

centimeter, meter…).  The methods proposed in this work propose decomposing the 

terrain surface into its principle characteristics, and then modeling each characteristic 

before reconstructing the surface, a method similar to empirical mode decomposition 

(EMD) (Attoh-Okine, Ayenu-Prah Jr et al. 2006).  In this way terrain features such as 

elevation, banking and crowning can be modeled individually as opposed to directly 

modeling different scales of the terrain.  In the limiting case, when the road is so rough 

that there is no clear path, then this method decomposes into DTM techniques used for 

forests and other unstructured environments: a very large number of basis vectors are 

required to represent the terrain. 
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Many roughness indices and terrain modeling methods have been discussed.  At 

this time, there is no ‘best’ method for identifying the roughness of the road or modeling 

the terrain.  The International Roughness Index (IRI) is the standard practice for 

identifying road roughness, but as can be seen by this literature review, many other 

methods exist and seek to change the standard.  This work suggests a different 

implementation of the IRI from terrain profiles to evaluating the elevation component of 

terrain.  Similarly, there is no ‘best’ method or suggested model for modeling specific 

types of terrain, as can be seen from the models presented in this literature review.  This 

work makes use of the Autoregressive model due the capabilities of adding randomness 

to the synthesized profile from the residual process.     

In summary, the methods developed in this work are based on data acquired from 

a terrestrial terrain measurement system, the VTMS.  Modern terrain measurement 

systems use an Inertial Navigation System (INS) to measure and remove vehicle 

movement from laser measurements of the terrain surface.  Instrumental and 

environmental errors inherent in the INS produce noise and drift errors in the resulting 

estimates of vehicle position and orientation.  Chapter 3 develops a method to remove 

INS drift in terrain measurements.  This method employs a principle component analysis 

through singular value decomposition (SVD) to define the ‘global’ and ‘local subspaces.  

SVD of the terrain surface identifies the principle terrain characteristics (basis vectors), 

such as elevation, bank angle, and crowning and corresponding singular values.  Next, 

the empirical basis vectors are approximated with a set of analytic polynomials by a 

Galerkin method in Chapter 4.  Each set of empirical basis vectors corresponds to a 

specific type of terrain, and therefore a specific set of analytic polynomials are chosen to 

represent each terrain type.  The types of terrain are identified by computing International 

Roughness Index (IR), the universally employed terrain roughness index values for the 

elevation component of terrain, which is defined as the projection of the terrain surface 

onto each basis vector.  It is important to note that this cross-section representation of 

principle terrain components does not hinder the knowledge of the terrain as it had been 

considered to do in the past (Maxwell 1970).  Previous methods assumed that the cross-

section was an appropriate representation for data acquired with photogrammetrics, when 

it had been shown that the resolution of the data was too low to accurately describe the 



 50

surface in question.  In Maxwell’s work, cross-sections were taken every 3-15m.  In this 

work, the basis vectors are projected onto the terrain surface to develop specific 

components of terrain which describe the magnitude of each basis vector along the length 

of the terrain surface at a much higher resolution, specifically every 0.0254m along the 

length of the terrain segment.  Lastly, in Chapter 5, an Autoregressive model is employed 

on the components of terrain to model these components in the same manner as a terrain 

profile.  This is one realization of a stochastic terrain surface, but as seen in this Chapter, 

many other modeling techniques exist.  The next Chapter presents the methodology for 

removing INS drift in terrain measurements. 
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3. Correcting INS Drift in Terrain Surface 

Measurements 

3.1 Chapter 3 Introduction 

 Modern terrain surface measurement systems incorporate a scanning laser (Herr 

1996) that is rigidly mounted to the body of a host vehicle (Kern and Ferris 2007; 

Wagner, Kern et al. 2007; Liu, Dembski et al. 2008).  This vehicle traverses the terrain 

while simultaneously acquiring terrain measurements.  When the vehicle encounters a 

disturbance, the laser translates and rotates with the body of the host vehicle.  To obtain 

accurate terrain measurements, the motion of the vehicle must be accurately measured so 

that it can be removed from the laser measurement.  Modern systems use an Inertial 

Navigation System (INS) to measure the vehicle movement (Kennedy, Hamilton et al. 

2006).  The accuracy of the INS depends on the alignment of the Inertial Measurement 

Unit (IMU) to the laser and satellite coverage of the Global Positioning System (GPS).  

Typically, an INS is capable of establishing a geodetic position with two centimeter 

accuracy (Smith 2009).  Much of the error is due to drift in both the position and 

orientation estimates of the INS.  These artifacts of the INS drift skew the estimated 

height and orientation of the terrain surfaces in the global reference frame.  The accuracy 

of the INS is dependent on instrumental biases and environmental biases, such as the 

number of satellites used by the receiver, the satellite-receiver distance, atmospheric 

effects, satellite and receiver clock offsets, phase ambiguities, and others (Doyle 1978; 

Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Pfeifer, Kostli et al. 1998; Briese and 

Pfeifer 2001; Pfeifer, Stadler et al. 2001; Kraus, Briese et al. 2004; Sarma 2008).  This 

work does not seek to identify the origins of the error, but an overall technique to remove 

the INS drift error from the system as a whole.   

INS drift error manifests itself in vehicle simulations when multiple lanes must be 

concatenated to form a surface.  For example, if two adjacent lanes of a highway are 

measured at different times during the day, then any vertical misalignment of the two 

lanes resulting from the INS drift would produce an artificial vertical shift between lanes.  
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The misalignment between the two lanes would cause undesired excitations into a model 

undergoing a lane change maneuver.  An example of INS drift in ellipsoidal height is 

shown in Figure 14A.  Ellipsoidal height is the height above or below the WGS84 

reference ellipsoid.  The host vehicle was parked away from buildings, such that the 

antenna had a clear view of the sky.  In this static position, several two-minute samples of 

INS data were collected over the course of five consecutive days where the curves in 

Figure 14A depict these samples of data.  In a dynamic experiment, a section of road was 

measured 10 times at different times throughout the day.  The height variation of the road 

can be seen in Figure 14B.  It can be seen that the drift is consistent between static and 

dynamic experiments.  These findings exemplify the results of several studies indicating 

that INS drift can be modeled as a random walk, zero mean stochastic process (Favey, 

Cerniar et al. 1999; Giremus, Doucet et al. 2004; Kim and Sukkarieh 2004; Sun, Fu et al. 

2008).  This model is used in the development of a new method to define, identify, and 

remove the INS drift to improve the accuracy of terrain surface measurements. 
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and the drift components of the surface are defined as the projection of the error vectors 

onto the basis vectors that span the global vector space.  INS drift is then modeled as a 

random walk process.  The true surface is developed by estimating the expectation of the 

sequence of measured vectors in the global vector space and the local vector space 

separately.  The method is applied to experimental data to demonstrate the concept and to 

form a basis for discussion.  A model order study and residual analysis is conducted on 

the set of terrain to support the assumptions presented in this paper, and to show that the 

fidelity of the resulting representation is retained to within the resolution of the 

measurement system.  Further application of this concept is discussed in the context of 

INS errors, followed by concluding remarks. 

3.2 Chapter 3 Background 

Terrain measurement systems have evolved considerably from the early vehicle-

response systems (Spangler 1962; Spangler and Kelly 1966; Gillespie, Sayers et al. 1980) 

to vehicle-independent measurement systems (Dembski, Rizzoni et al. 2006; Kern and 

Ferris 2007; Wagner, Kern et al. 2007).  Early vehicle-independent measurement systems 

relied on accelerometer data to remove unwanted body motion from post-processed data 

files.  The reliability of these traditional accelerometer-based systems suffers when 

vehicle speed falls below 5 m/s (Walker and Becker 2006) and in other low frequency 

environments.  More recent vehicle-independent measurement systems rely on some 

combination of an INS, accelerometers, a distance measurement instrument, and 

inclinometers to remove the host vehicle’s body motion from the laser data.  Small 

misalignment between the scanning laser and the IMU will compound the error that can 

be anticipated from any DGPS (Smith and Ferris 2008).  Recent advances have produced 

3D terrain measurement systems that are capable of scanning a wide transverse path with 

millimeter resolution.  A more detailed description of terrain measurement systems can 

be found in Chapter 2, Section 2.1.1 of this dissertation.  The VTMS (Kern and Ferris 

2007; Wagner, Kern et al. 2007), was used to acquire the data for this work.   

The VTMS is equipped with a scanning laser and an INS.  The scanning laser, 

affixed at the rear of the vehicle, acquires 941 data samples, at millimeter resolution.  The 

data are collected transversely across a 4.2 meter wide path each millisecond, which 
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results in approximately one-million data points each second.  The INS consists of a GPS 

receiver mounted to the host vehicle (rover GPS), an IMU rigidly mounted to the same 

platform as the laser, and a GPS remote receiver that is fixed to a stationary point near the 

section of terrain being measured (base station) (Wagner, Kern et al. 2007). The rover 

GPS estimates the location of the vehicle in time and space, with some error due to the 

distortion of the satellite signal from the Earth’s atmosphere (Lanyi and Roth 1988; 

Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Mannucci, Hajj et al. 2004; Sarma 

2008).  The rover estimate of the vehicle location in time can be considered an estimate 

of the true vehicle position plus some error vector.  On the contrary, due to the fixed 

position of the GPS base station, the true location can be determined accurately.  

Combining the solutions from the rover and base station GPS solutions results in a 

differential GPS (DGPS), which is more effective at minimizing the error in the vehicle 

position.  The IMU is comprised of a three-axis gyroscope to measure the roll, pitch and 

yaw of the vehicle to estimate the orientation of the vehicle in space and three-axis 

accelerometers to measure the translational accelerations of the vehicle.  Once the raw 

data have been collected, the measurements from the subsystems of the INS are 

combined using proprietary post-processing software to obtain an accurate inertial 

navigation solution.  The information defining the position and orientation of the vehicle 

is denoted as the number 1 in the schematic of Figure 15 with the information defining 

the laser measurement denoted as the number 2 in the schematic.  Coordinate 

transformations convert the INS-centered data to laser-centered data, and then both 

signals are transformed to ground-centered coordinates, known as the global (X,Y) 

coordinate system.  As described in Chapter 2, Section 2.1.4, the global coordinate 

system with non-uniform spacing of the data is converted to a uniform grid in CRG 

format.  Additional details of the system and data processing can be found in Appendix 

A, or other work by Kern and Wagner (Kern and Ferris 2007; Wagner, Kern et al. 2007). 
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3.3 Developing the INS Drift Compensation Technique 

3.3.1 Defining the Coordinate System 

The terrain coordinate system used to develop this method is described in Chapter 

2, Section 2.1.4 of this dissertation. 

3.3.2 Defining the Vector Space 

 Each realization of the terrain surface comprises a sequence of vectors, zi,k.  Each 

vector in this realization has two components: the true surface vector, ࢏࢙, and the error 

surface vector, ei,k.  Since there is exactly one true surface, ࢏࢙, for any set of realizations, 

it is not indexed by k.  Each of these sets of vectors, {࢑,࢏ࢠሽ, ሼ࢏࢙ሽ, ሼ࢑,࢏ࢋሽ , span the same 

Hilbert space H, such that   

࢑,࢏ࢠ ൌ ࢏࢙ ൅ ࢑,࢏ࢋ ݁ݎ݄݁ݓ ࢑,࢏ࢋ ∈ ۶ Equation 18 

where the Hilbert space, H, is defined as the span of the set of error vectors {ei,k}.  Then 

the difference in any two vectors in the set {ei,k}, must also be elements of the space as 

shown in Equation 19. 

ሺ࢑,࢏ࢋ െ ሻࢎ,࢏ࢋ ∈ ۶				∀	݅		 ∈ ሾ1,2, … ,݉ሿ ܽ݊݀ ∀݇, ݄ ∈ ሾ1,2, … ሿ Equation 19ݎ

Rearranging Equation 18 and substituting into Equation 19 shows that a difference in any 

two realizations, ࢑,࢏ࢠ	and	ࢎ,࢏ࢠ, must also span H. 

࢑,࢏ࢋ െ ࢎ,࢏ࢋ ൌ ࢑,࢏ࢠ െ ࢎ,࢏ࢠ ∈ ۶  Equation 20

That is, the difference in the measured vectors and all linear combinations of the vector 

sets must also span H.  A Singular Value Decomposition (SVD) of differences between 

realizations {zi,k – zi,h}, is used to determine a set of orthonormal basis vectors {b୪} that 

span H (Sylvester ; Lenzen and Waller 1997).   

3.3.3 Decomposing the Vector Space 

In the general sense, terrain can be described in terms of global and local 

components.  Global components have a large and sustained effect on the surface such as 

hills and grades, bank angles, and ruts.  Local terrain components are considered to be 

small, localized disturbances such as pot holes, speed bumps, chatter bumps etc.  It is 



 60

important to establish the difference between the global and local concepts pertaining to 

terrain and the global and local subspaces pertaining to this work.  The space H is 

decomposed into two subspaces: the global subspace, G, and its complement, Gc which 

captures the local features of the space.  In this sense, the global subspace, G, pertains to 

the primary drift components, specifically the vectors that define the principle directions 

of H, and the local subspace, Gc, pertains to the noise, or residual of the drift 

components.  The global subspace, G, is defined by the span of a truncated set of these 

basis vectors, {b୪}.  The selection criteria for these basis vectors are developed in the 

Error Modeling Section of this Chapter. 

Vectors comprising the true surface, the realizations of each measured surface and 

the error surface all have components in both the global and local subspaces.  To 

illustrate this concept, these vectors are decomposed into global and local subspaces 

according to Equation 21, Equation 22, and Equation 23 respectively.  The first 

summation term in each Equation pertains to the contributions of the true surface, 

realization or error surface to the global subspace.  The terms in the parentheses in each 

Equation pertain to the contributions of the true surface, realization or error surface to the 

local subspace.  As can be seen by these Equations, the local subspace is defined as the 

residuals of the global subspace. 

࢏࢙ ൌ ሺ࢏࢙ሻீ ൅ ሺ࢏࢙ሻீ೎ ൌ෍〈࢒࢈, 〈࢏࢙

ࢗ

ୀ૚࢒

࢒࢈ ൅ ቌ࢏࢙ െ෍〈࢒࢈, 〈࢏࢙

ࢗ

ୀ૚࢒

ቍ Equation 21࢒࢈

࢑,࢏ࢠ ൌ ൫࢑,࢏ࢠ൯ீ ൅ ൫࢑,࢏ࢠ൯ீ೎ ൌ෍〈࢒࢈, 〈࢑,࢏ࢠ

ࢗ

ୀ૚࢒

࢒࢈ ൅ ቌ࢑,࢏ࢠ െ෍〈࢒࢈, 〈࢑,࢏ࢠ

ࢗ

ୀ૚࢒

ቍ Equation 22࢒࢈

࢑,࢏ࢋ ൌ ൫࢑,࢏ࢋ൯ீ ൅ ൫࢑,࢏ࢋ൯ீ೎ ൌ෍〈࢒࢈, 〈࢑,࢏ࢋ

ࢗ

ୀ૚࢒

࢒࢈ ൅ ቌ࢑,࢏ࢋ െ෍〈࢒࢈, 〈࢑,࢏ࢋ

ࢗ

ୀ૚࢒

ቍ Equation 23࢒࢈

3.3.4 Error Modeling 

This section focuses on the development of the INS error model.  Recall that the goal 

of this work is to remove the drift component of error, and thus, the primary focus of 

these developments occurs in the global subspace, G.  Again recall that the global 
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subspace, G, is defined by the span of the truncated set of basis vectors, {b୪}, arising 

from a SVD of the realizations zi,k.  The error surface in the global subspace, (ei,k)G,  is 

defined as the summation of the projection of the error vectors in the global subspace, as 

defined in Equation 24.   

൫࢑,࢏ࢋ൯ீ ൌ෍〈࢒࢈, 〈࢑,࢏ࢋ

ࢗ

ୀ૚࢒

Equation 24 ࢒࢈

The components of drift for each realization can occur in each of the q principle 

directions defined by the set of basis vectors {bl}, but not in the local subspace, Gc.  The 

component of the drift, ߜ௜,௞,௟, in each principle direction is the projection of the error 

vector in that direction as defined in Equation 25.   

௜,௞,௟ߜ ≜ ,࢒࢈〉 Equation 25 〈࢑,࢏ࢋ

The components of the error vectors that do not lie in the global subspace, G are defined 

as residual noise vectors, ࢑,࢏࢔, and span the local subspace, Gc.  The decomposition of the 

error surface, ࢑,࢏ࢋ, is developed in Equation 26, where each error vector is defined as the 

summation of the projection of the error vectors, ࢑,࢏ࢋ, in the global directions, ࢒࢈, and the 

residual noise vectors, ࢑,࢏࢔. 

࢑,࢏ࢋ ൌ ൫࢑,࢏ࢋ൯ீ ൅ ൫࢑,࢏ࢋ൯ீ೎ ൌ෍ߜ௜,௞,௟࢒࢈

௤

௟ୀଵ

൅ ࢑,࢏࢔ ∀ ݅ ∈ ሾ1,2, … ,݉ሿ ܽ݊݀ ∀݇	

∈ ሾ1,2, …  ሿݎ
Equation 26

The number of basis vectors defining the global subspace, q, is incremented until 

the residual noise vectors can be considered realizations of a zero-mean process.  The 

order in which basis vectors are added to the truncated set is determined by the 

magnitude of their corresponding singular value, in descending order.  Then, by 

construction, the expectation of the noise vectors, ࢑,࢏࢔, is zero, as shown in Equation 27.  

൧࢑,࢏࢔ൣܧ ൌ 0		∀	݅	 ∈ ሾ1,2, … ,݉ሿ ܽ݊݀ ∀݇ ∈ ሾ1,2, … ሿ Equation 27ݎ

Again, by construction, there is no noise component in the global subspace as shown in 

Equation 28.  
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,࢒࢈〉 〈࢑,࢏࢔ ൌ 0			∀	݈	 ∈ 	 ሾ1, 2, … , ,ሿݍ ∀݅ ሾ1,2, … ,݉ሿ ܽ݊݀ ∀݇ ∈ ሾ1,2, … ሿ Equation 28ݎ

The magnitude of drift, i,k,l, is defined for each direction in the global subspace, 

G.  The drift is modeled herein as a random walk process (Favey, Cerniar et al. 1999; 

Giremus, Doucet et al. 2004; Kim and Sukkarieh 2004; Sun, Fu et al. 2008) defined in 

Equation 29. 

௜,௞,௟ߜ ൌ ௜ିଵ,௞,௟ߜ ൅ ,௜,௞,௟ߦ ݁ݎ݄݁ݓ ௜,௞,௟ߦ ߳ ܽ ݋ݎ݁ݖ ݉݁ܽ݊ Equation 29 ݏݏ݁ܿ݋ݎ݌

Drift is further decomposed into two components,	α୧,୩,௟	 and	γ௟, as defined in Equation 30, 

where γ௟	is the average drift in each principle direction across all realizations and all 

locations and α୧,୩,௟	is the difference from γ௟ in the ith longitudinal location, for the kth 

realization.     

௜,௞,௟ߜ ≜ α୧,୩,௟ ൅ γ௟ Equation 30

Drift is modeled as a random walk process and presently it is shown that α୧,୩,௟ 

must be a zero mean process.  Consider differences in the expected drift between 

sequential longitudinal locations, developed from Equation 29 and Equation 30, as shown 

in Equation 31. 

௜,௞,௟൧ߜൣܧ െ ௜ିଵ,௞,௟൧ߜൣܧ ൌ Eൣα୧,୩,௟൧ െ Eൣα୧ିଵ,୩,௟൧ ൌ Eൣξ୧,୩,௟൧ ൌ 0 Equation 31

Since there can be no difference in the expected drift between sequential longitudinal 

locations, the expected drift,	Eൣߜ௜,௞,௟൧, and the expected difference from the average drift, 

Eൣߙ௜,௞,௟൧, must be constant for all longitudinal locations, i.  Now consider drift at a 

particular longitudinal location  

௜,௞,௟ߜ ൌ ෍ξ୮,୩,୪

୧

୮ୀଵ

൅ ଴,௞,௟ߜ ൌ ෍ξ୮,୩,୪

୧

୮ୀଵ

൅ α଴,୩,୪ ൅ γ୪ 
Equation 32

The expectation across all realizations is then 

௜,௞,௟൧ߜൣܧ ൌ ෍Eൣξ୮,୩,௟൧

୧

୮ୀଵ

൅ Eൣα଴,୩,௟൧ ൅ Eሾγ௟ሿ ൌ Eൣα଴,୩,௟൧ ൅ γ௟ 

 

Equation 33 

Define γ௟	to be the expectation of ߜ௜,௞,௟ (which must be constant for all i) so that 
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	γ௟ ≜ Eൣߜ௜,௞,୪൧ and therefore Eൣα଴,୩,௟൧ ൌ 0 Equation 34

Since the expected difference from the average drift, Eൣߙ௜,௞,௟൧, must be constant for all 

longitudinal locations and Eൣߙ଴,௞,௟൧ ൌ 0, then by induction 

Eൣα୧,୩,௟൧ ൌ 0 ∀ i, ݈  Equation 35

Substituting the decomposed model of drift as defined in Equation 30, into the definition 

of error, as defined in Equation 26, yields the total error model as shown in Equation 36.   

࢑,࢏ࢋ ൌ෍δ୧,୩,௟࢒࢈ ൅ ࢑,࢏࢔

୯

௟ୀଵ

ൌ෍൫α୧,୩,௟ ൅ γ௟൯࢒࢈ ൅ ࢑,࢏࢔

୯

௟ୀଵ

Equation 36

The expected error is then the summation of γ௟, the average drift in each principle 
direction across all realizations and all locations multiplied by each basis vector, as 
shown in Equation 37. 

Eൣ࢑,࢏ࢋ൧ ൌ෍γ௟࢒࢈

୯

௟ୀଵ

Equation 37

3.3.5 True Surface Estimation 

The true surface must be estimated from a set of realizations, or measured 

surfaces, that contain some components of error in the form of drift and noise.  The true 

surface is decomposed into the global and local subspaces according to Equation 38 and 

Equation 39. 

࢏࢙ ൌ ሺ࢏࢙ሻ۵ ൅ ሺ࢏࢙ሻ۵۱ ൌ ሺ࢑,࢏ࢠ െ ሻ۵࢑,࢏ࢋ ൅ ሺ࢑,࢏ࢠ െ ሻ۵۱ Equation 38࢑,࢏ࢋ

࢏࢙ ൌ ቌ෍β୧,୩,୪࢒࢈

୯

௟ୀଵ

െ෍δ୧,୩,௟࢒࢈

୯

௟ୀଵ

ቍ ൅ ቌܓ,ܑܢ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

െ ቍ Equation 39࢑,࢏࢔

The projection of each realization, ࢑,࢏ࢠ, in each global direction is defined as β୧,୩,௟.  

β୧,୩,௟ ≜ ,࢒࢈〉 Equation 40 〈࢑,࢏ࢠ

It should be clear that the expectation of the true surface is simply the true surface 

itself, and taking the expectation operator across Equation 39 yields the expectation of the 

contributions from the global and local subspaces. 
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࢏࢙ ൌ Eሾ࢏࢙ሿ ൌ ቌ෍Eሾβ୧,୩,௟ሿ࢒࢈

୯

௟ୀଵ

െ෍Eሾδ୧,୩,௟ሿ࢒࢈

୯

௟ୀଵ

ቍ

൅ ቌEሾ࢑,࢏ࢠሿ െ෍Eሾβ୧,୩,௟ሿ࢒࢈

୯

௟ୀଵ

െ Eሾ࢑,࢏࢔ሿቍ

ൌ E ቎෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ െ෍γ௟࢒܊

୯

௟ୀଵ

൅ E ቎࢑,࢏ࢠ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ 

 

Equation 41

Two issues arise with this definition of the true surface.  First, γ௟	is unknowable 

from the measured data.  It is the offset, or bias, in each of the principle directions for all 

of the measurements.  Second, in practice the true expectation cannot be known exactly, 

but must be estimated from a finite number of available measurements, as such the 

estimated expectation is introduced and the estimate of the true surface is defined by 

Equation 42.  Detweiler (Detweiler and Ferris 2009) showed that nonlinear estimators of 

expectation (e.g.,  median, mode, trimmed mean, inverse distance to a power, and 

kriging) are most appropriate due in part to their insensitivity to outliers in the data.  The 

50% trimmed mean is implemented in the remainder of this work as the estimator of 

location for the estimated expectation   

࢏ො࢙ ≜ E෡ ቎෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ ൅ E෡ ቎࢑,࢏ࢠ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ 
Equation 42

This estimation of the true surface is cast in terms of the true surface and the residual 

error terms that arise from the measurement offset, l, and the error in estimating the 

expectation operator in Equation 43.  Measurement techniques that mitigate the effects of 

l and estimation techniques for the expectation operator will be addressed in the 

Discussion section of this Chapter. 
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࢏ො࢙ ≜ ࢏࢙ ൅෍γ௟࢒࢈

୯

௟ୀଵ

൅ E෡ ቎෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ െ E ቎෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏

൅ E෡ ቎࢑,࢏ࢠ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ െ E ቎࢑,࢏ࢠ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏

ൌ ࢏࢙ ൅෍γ௟࢒࢈

୯

௟ୀଵ

൅ E෡ ቎෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏ ൅ E෡ ቎࢑,࢏ࢠ െ෍β୧,୩,௟࢒࢈

୯

௟ୀଵ

቏

െ Eൣ࢑,࢏ࢠ൧ 

Equation 43

 

Once the true surface has been estimated, it is possible, and instructive, to calculate the 

estimated error,  

࢑,࢏ොࢋ ൌ ࢑,࢏ࢠ െ  Equation 44 ࢏ො࢙

estimated drift, 

൫ࢋො࢑,࢏൯ீ ൌ መ௜,௞,௟ߜ ൌ ෍〈࢒࢈, 〈࢑,࢏ොࢋ

ࢗ

ୀ૚࢒

 ࢒࢈
Equation 45 

estimated noise, 

൫ࢋො࢑,࢏൯ீ೎ ൌ ࢑,࢏ෝ࢔ ൌ ࢑,࢏ොࢋ െ෍〈࢒࢈, 〈࢑,࢏ොࢋ

ࢗ

ୀ૚࢒

 ࢒࢈
Equation 46 

and the estimated drift-free measurement of the surface. 

࢑,࢏ࢠ െ ൫ࢋො࢑,࢏൯ீ ൌ ࢑,࢏ࢠ െ෍〈࢒࢈, 〈࢑,࢏ොࢋ

ࢗ

ୀ૚࢒

 ࢒࢈
Equation 47 

3.3.6 Model Order Study 

This section develops an error analysis on the residuals to prove the retention of 

high-fidelity information of the data set.  In this case, the residuals are the noise process 

associated with the local subspace.  Furthermore, the phrase “retaining high-fidelity 

information” is defined such that the noise floor of the residuals is at or below the system 

resolution and accuracy, specifically that the mean and standard deviation of the noise are 
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below 1mm.  Thus, the standard deviation and mean of the noise surface are computed 

after the implementation of each basis vector and compared to these desired values to 

determine if the criteria have been satisfied. 

For each horizontal grid location (i, j) consider r realizations (measurements) of 

the terrain surface and the corresponding estimate of noise ni,j,k.  These realizations 

represent a distribution of the estimated noise at that grid location from which the 

standard deviation and mean noise are calculated.  Together, these statistics form surfaces 

describing the noise for each added basis vector.  These surfaces indicate how the 

residuals change over the terrain surface as more basis vectors are added.  The mean is 

calculated to demonstrate that the assumption of a zero-mean process is valid for this 

example, as shown in Equation 48.  An estimation of the mean of the entire noise surface 

is calculated with Equation 49.  The standard deviation is computed with the Equation 50, 

where ݊௜,௝ is the sample mean at each grid location.  In order to estimate the standard 

deviation of the entire surface, the square root of the average of variances of each 

location is calculated, as shown in Equation 51, where m is the length of the terrain 

sample, and n is the width of the terrain sample.    These two measures representing the 

entire noise surface are used to perform a model order study and determine exactly how 

many basis vectors are required to satisfy the assumptions presented in the theory.  An 

example using the INS drift compensation method is presented next.  

݊௜,௝ ൌ
∑ ݊௜,௝,௞
௥
௞ୀଵ

ݎ
 

Equation 48 

݊ ൌ
∑ ∑ ݊௜,௝

௡
௝ୀଵ

௠
௜ୀଵ

ሺ݉ ∗ ݊ሻ
 

Equation 49 

௜,௝ߪ ൌ ඨ∑ ൫݊௜,௝,௞ െ ݊௜,௝൯
ଶ௥

௞ୀଵ

ݎ െ 1
 

Equation 50 

ߪ ൌ ඨ
∑ ∑ ௜,௝ߪ

ଶ௡
௝ୀଵ

௠
௜ୀଵ

ሺ݉ ∗ ݊ሻ
 

Equation 51 
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3.4 Chapter 3 Proof of Concept 

3.4.1 Design of Experiment 

 An example is presented to demonstrate the effectiveness of the INS drift 

compensation method developed in this work.  By identifying and eliminating the INS 

drift component of the surface, a large contribution of the system error can be removed 

and thus, improve the correlation between multiple measurements of a single terrain 

surface.  A single lane of longitudinally tined concrete road, approximately 151.1m long, 

was selected at the MnRoad testing facility in Albertville, Minnesota for this experiment.  

The pavement was measured ten times, providing ten realizations of the surface for 

analysis (r=10).  The lane was closed to traffic and the data were collected in alternating 

directions.  The data were acquired at a vehicle speed of approximately 10 m/s, so that a 

transverse scan was collected every 10mm longitudinally.  The measurements were 

nominally corrected for body motion (Wagner, Kern et al. 2007) and mapped to a 

regularly spaced grid as described in Section 2.1.4.  The longitudinal spacing of 10mm 

resulted in 15110 longitudinal locations and a transverse spacing of 25.4mm at 48 

transverse locations resulted in a 1.22 m wide terrain surface.   

3.4.2 Application of Theory 

SVD was performed on a set of ten realizations of longitudinally tined concrete 

terrain surfaces yielding a set of corresponding singular values and basis vectors.  The 

magnitude of the ordered set of singular values corresponding to each basis vector is 

represented graphically in Figure 17.  As indicated by the Figure, the first singular value 

has a magnitude of 6.63, the second singular value has a magnitude of 1.76, and 

subsequent singular values are negligible.  Additionally, the shapes of the first two basis 

vectors are plotted in Figure 18.   In general terms, it appears that the first basis vector 

accounts for a constant offset in elevation and the second basis vector describes the bank 

angle (i.e., ‘cross-slope’ or ‘road camber’).  This agrees with intuition that the primary 

changes in the road surface are in elevation and banking.  The results of the magnitude of 

the singular values suggest that the first two singular values will have the greatest effect 

on the terrain surface and may be classified as the global subspace, G.  However, in 

practice, the number of basis vectors, q, sufficient to define the global subspace, G, must 
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Implementing the second basis vector (i.e., q=2) of drift compensation results in 

the standard deviation surface shown in Figure 30A and the transverse standard deviation 

vectors in Figure 30B.  From Figure 30B, it can be seen that two basis vectors suffice to 

reduce the standard deviation of the noise surface to less than 1mm, except for a few 

isolated locations where the maximum standard deviation is on the order of 2mm.  These 

isolated locations can be attributed to discrepancies between the realizations at those 

locations.  In this case, the discrepancies can be attributed to cracks between the concrete 

slabs.  This exemplifies one of the limitations of high-speed terrain measurements 

systems in the fact that these systems have difficulties in accurately recording the depth 

of cracks in terrain segments.  One important feature of this method is that localized 

events (such as cracks) are identified through this noise analysis.  Without the ability to 

remove the drift component of the error, the error due to drift would dominate the error 

analysis, masking the presence of localized anisotropicities.  Once the method has been 

applied to the data, and the drift has been removed, these localized events produce 

deviations from the average standard deviation of the noise surface, in this case on the 

order of 2mm.  Since this deviation is greater than the resolution of the laser system, it 

can be used to identify the significance of the localized event.  It should be clear, 

however, that the method developed in this work is able to identify localized events and 

also produce a noise surface that is not so significant that it will hinder the vehicle 

response over this surface at this location.  Implementation of two basis vectors produces 

an average standard deviation of the noise that is less than half of the desired value of 

1mm.  Again,, the maximum standard deviation can be used to identify localized events 

(local anisotropicities).  The constant offset in elevation and the cross-slope are 

statistically insignificant (Refer to Figure 29B); the remaining vertical variation is within 

+/-0.2 mm, which is much less than the resolution of the scanning laser (1 mm).  These 

results are consistent with the qualitative analysis completed in the previous section 

where the effect of each basis vector on each realization was studied.   
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discussion on methods to mitigate the effects of γl is presented in the Discussion Section 

of this Chapter.   

3.5 Chapter 3 Discussion 

This work develops a method to address the INS errors occurring in the height 

measurements of terrain surface measurements.  It was assumed that the data being 

considered had been discretized along a path-centered coordinate, forming a curved 

regular grid (CRG).  Inherent in this transformation is the spatial interpolation required to 

estimate the height of the surface at each grid point.  Clearly the uncertainties in the pitch 

and yaw measurements will affect the accuracy of the measurement of the horizontal 

locations of the measured heights.  This uncertainty can affect the estimation of the 

height estimate at each grid location to varying degrees depending on the choice of 

spatial interpolation method.  For example, the height estimate will be highly sensitive to 

uncertainty in the horizontal location if a nearest-neighbor or inverse-distance-to-a-power 

method is implemented.  In every case, the search area around each grid point should 

exceed the uncertainty in horizontal location and this uncertainty should be minimized 

(Detweiler and Ferris 2008; Detweiler and Ferris 2009).  This concept is further discussed 

in Chapter 4 of this dissertation. 

The estimation of the true surface is affected by the offset, or bias, in each of the 

principle directions for all of the measurements, γl, and the error in estimating the 

expectation operator, as shown in Equation 43.  The measurement offset, γl, is 

unknowable from the measured data, but can be mitigated by prudent experimental 

design.  This was made evident in the example, where the data were collected in 

opposing directions.  In this way, the drift in the roll measurement was distinguishable 

from the cross-slope in the terrain surface.  If all the data were collected in the same 

direction, then drift in the roll direction would have been indistinguishable from actual 

cross-slope in the surface, and the resulting contribution of, 2ߛ, would have been 

significantly larger, yet unseen in the estimate of the true surface.  In contrast, the error 

contributable to the first drift direction, the vertical measurement offset γ1, cannot be 

mitigated by experimental design.  For example, one cannot drive on the surface of the 

terrain, then turn the vehicle upside-down and perform subterranean driving on the 
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bottom of the surface.  If this were possible, then the drift in the direction of vertical bias 

in the measurement could be distinguished from the actual height changes in the terrain.  

A suggestion to alleviate the unobservable component of γl would be to compare the 

measured data with surveyed data to identify the ‘true’ variations of height of the terrain 

at specific locations (landmarks).  It should be clear that if data can only be collected in 

one direction (as is the case when a road is not closed to traffic) that a static survey of the 

road bank angle at specific locations would be required to determine γ2.  The additional 

information provided by the surveyed landmarks is a collocation enhancement to the 

method developed in this section.  That is, the offset, or bias, that is unknowable from the 

measured scanning laser data can be identified using a collocation approach with 

additional survey data, reducing the error in the estimate of the true surface.  However, 

these survey data are not generally available and the effects of the bias can be identified 

and removed through careful experimental design and technique. 

With careful planning, γ2 can be mitigated by driving on each section of road in 

alternating directions.  In this way the drift component in the roll direction can be 

differentiated from the road banking.  Similarly, higher order effects such as road 

crowning and rutting can be identified by acquiring data at different lateral locations in 

each lane.  For example, road crowning could be differentiated by a parallax issue by 

acquiring terrain data with the vehicle centered on the lane, +0.5m of center of the lane 

and -0.5m of center of the lane.  In this way, the drift component due to parallax could be 

differentiated from true road crowning.  Similar data acquisition techniques could also 

identify and differentiate any drift components associated with road rutting.  

The methodology developed in this work examines one variable at a time, such 

that each component of drift is identified as decoupled from the next component due to 

the enforcement of orthogonality.  As a result, each drift component and the effect 

exhibited on the error surface are studied individually.  Another approach to error 

modeling is the implementation of response surface methodology.  Such an approach is 

aimed at modeling the response of the system based on the coupling of two or more 

variables and studying the response.  In the model presented in this Chapter, it seems 

logical that elevation is decoupled from bank angle, because the elevation does not 

change based on changes in bank angle.  However, bank angle could affect the amount of 
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crowning in the terrain, or asymmetry may affect and even skew the amount of rutting 

that exists in the terrain surface.  By implementing response surface methodology to 

further develop the INS drift error model, the results of each error model can be studied 

to identify better experimental methods to identify and remove error associated with 

coupled variables.  This is similar to the method described previously where acquiring 

data in opposing directions on the same section of road identifies the roll drift component 

of error to be removed from the measurement.  Similarly, coupled terms could be 

identified and removed from the realizations using response surface methodology.  Future 

work will focus on and study the effects of coupling certain variables to improve the 

overall error model.     

As identified in the theory development of this work, the true expectation cannot 

be known exactly, but must be estimated from a finite number of available 

measurements.  The interpolation scheme that is selected to estimate the expectation 

operator is consequential to computational efficiency, outlier sensitivity, location 

sensitivity, and trend sensitivity (Detweiler and Ferris 2009).  Recall the plot of the 

longitudinal data with no error compensation (i.e., q=0) shown in Figure 20.  The ten 

measured profiles show +/-10 mm of vertical drift, which is consistent with the static test 

results shown in Figure 14.  This may suggest that error contributions from the IMU can 

be considered negligible as it can be seen from Figure 20 that the DGPS is the primary 

contributor to the system drift as the drift error is identical in magnitude to the stationary 

test.  Additionally, one of the profiles follows a slightly different trend then the other nine 

profiles, demonstrating the importance of using an estimator that is robust with respect to 

outliers in the data.  Although the mean is the least squares estimator, it is based on the 

assumption that all realizations should be treated equally and therefore cannot be used to 

identify and mitigate the effects of outliers.  Therefore, the mean estimator of expectation 

was not used in this work since outliers would skew this estimate of the true surface.  

This choice of the proper interpolation method was addressed by Detweiler, Stein and 

Wackernagel (Stein 1999; Stein, Meer et al. 2002; Detweiler and Ferris 2008; Detweiler 

and Ferris 2009; Wackernagel 2010).  For this study, the trimmed mean interpolation 

method was selected: the mean of the inner two quartiles of data was used.    
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When a more comprehensive set of terrain surfaces have been studied, it may be 

possible to form an archetypal set of basis vectors for use in all terrain models.  The 

results of this study are promising; it appears that the first basis vector can be defined as a 

constant vertical offset and the second basis vector can be defined as a the ‘bank angle’.  

A third basis vector may be defined to describe the “crowning’ of the road.  Proper 

experimental technique, such as acquiring some measurements of the surface at varying 

lateral locations (e.g., to the left and to the right of the lane center), would then be used to 

differentiate the crowning of the road from any parallax issues in the measurement 

system.  Similarly, an additional basis vector may define “road rutting”.  The method 

developed in this work highlights the importance of understanding the interdependence of 

the analysis techniques applied to measured data and proper data acquisition techniques, 

and how this understanding allows the identification of instrumental drift and the ability 

to minimize the effect on the estimate of the true terrain surface. 

3.6 Chapter 3 Conclusions 

Terrain measurement systems equipped with an INS have drift that skew the 

estimated height and orientation of the terrain surfaces in the global reference frame.  A 

compensation method is developed to correct this INS drift in terrain measurements.  

Each terrain surface measurement is considered a combination of the true surface and the 

error surface in which the error is decomposed into drift (global error) and noise (local 

error).  The global and local subspaces are constructed such that the drift is modeled as a 

random walk process while the noise is a zero-mean process.  This theoretical 

development is coupled with careful experimental design to develop a method to identify 

the drift component of error and discriminate it from true terrain surface features, and 

correct for the INS drift.  It is shown through an example that this new compensation 

method dramatically reduces the variation in the measured surfaces from +/- 10mm to 

within the resolution of the measurement system itself: +/- 1mm.  This example required 

two basis vectors- elevation and bank angle, to establish the global subspace and reduce 

the noise to a zero-mean process with a standard deviation of 0.35mm.  The 

implementation of this method has implications for a wide range of applications in which 

accurate terrain surfaces are required.  In terms of ride quality, this method provides a 
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means to appropriately stitch multiple lanes of road together without the effects of 

unwanted discontinuities to perform various handling simulations.  For example, a 

simulated vehicle lane change, where the two lanes are concatenated from separate 

terrain surfaces, will provide a representative surface with negligible discontinuity.  An 

archetypal set of basis vectors is developed in the next Chapter for use in classifying 

terrain types for the development of terrain models, and of the development of models of 

the principle terrain surface features. 
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4. Using a Galerkin Approach to Define Terrain 

Surfaces 

4.1 Chapter 4 Introduction  

It is clear that the terrain is the main excitation to the vehicle (Aurell and Edlund 

1989).  Knowledge of this excitation, when applied in conjunction with high-fidelity tire 

and vehicle models, would allow chassis loads to be accurately predicted in vehicle 

simulations.  Therefore, throughout the design process the system response to this 

consistent excitation can be calculated and compared for each tire and chassis design 

considered.  Accurate terrain models would then provide the tire and chassis designers 

with a powerful tool to make informed design decisions early in the design process while 

changes are relatively inexpensive to implement.  This will result in shortened vehicle 

development time and reduced overall development costs. 

The current practice for vehicle and tire simulations is to use terrain profile data 

as the input to tire and vehicle models.  The terrain profile is an indexed set of terrain 

heights extending longitudinally along each wheel path.  These profiles can be considered 

signals and in many cases can be modeled as a stochastic process, thus creating a 

compact representation of the terrain profile.  Although computationally efficient, this 

compact representation limits the available fidelity of data for use in tire models.  It 

would be advantageous to the design engineer to implement terrain surface data as the 

input to tire and vehicle models since terrain surfaces capture more detailed information 

about the tire contact patch. 

The terrain surface can be represented as an indexed set of transverse vectors of 

terrain height, represented in matrix form.  That is, each vector of the matrix comprises a 

set of terrain heights located perpendicular to the direction of travel of the vehicle.  

Although terrain surface data are more computationally expensive to use in simulation, 

they typically provide better estimates of the tire-terrain interaction.  Toward this end, 

this Chapter proposes a method to compactly represent terrain surfaces through analytic 

functions. 
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The objective of this Chapter is to develop a terrain surface representation that 

retains sufficiently high-fidelity information for detailed vehicle simulation, possesses the 

simplicity of terrain profiles, and is being insensitive to the choice of the terrain 

measurement system from which the data were acquired.  The remainder of this work is 

developed as follows.  Background on several gridding techniques used across various 

areas of studies is introduced.  Then, the method by which currently available terrain 

measurement systems acquire data is provided to clarify the concept of terrain surfaces as 

a sequence of vectors.  A vector space is formed by the span of these vectors and a 

corresponding set of empirical basis vectors is defined.  This background is used as the 

foundation for the developments in this work.  A range of possible analytic basis vectors 

are then generated using known sets of polynomials.  The polynomial sets are 

parameterized to provide the minimized root mean square error (RMSE) fit between the 

resulting analytic basis vectors and the empirical basis vectors.  A weighted inner-product 

is defined to form a Hilbert space and is use to project the terrain surface vectors onto the 

set of analytic basis vectors.  The weighting matrix is developed such that these 

projections are insensitive to the number and placement of the discrete transverse 

locations at which the terrain heights are defined.  In this way, a single set of analytic 

basis vectors are determined for a general class of terrain (such as all U.S. Highways), 

thus eliminating the need to calculate empirical basis vectors for individual surfaces in 

this class.  This representation also allows less capable terrain topology measurement 

systems to estimate the main features of terrain surfaces.  The method is applied to 

experimental data to demonstrate the concept and to form a basis for discussion, followed 

by concluding remarks. 

4.2 Chapter 4 Background 

4.2.1 Terrain Measurement Approaches Classified as Collocation or Galerkin 

Methods 

Terrestrial terrain measurement systems sample the terrain surface based on the 

number and types of optical lasers implemented.  Refer to Chapter 2, Section 2.1.1 for a 

complete review of terrestrial terrain measurement systems.  Two main approaches exist 

to optically sample the terrain; the first is to use point lasers to measure longitudinal 
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Finite Element Analysis 

 Finite Element Analysis (FEA) is used to numerically solve field problems.  A 

field problem is classified as a differential equation that requires the formulation of finite 

elements to produce a solution in terms of a spatial distribution of one or more dependent 

variables (Cook, Malkus et al. 2002).  These finite elements are defined by grid nodes.  

Various elements exist to better solve different problems, the details of which are beyond 

the scope of this work.  The collection of elements and grid nodes is commonly referred 

to as a mesh.  The mesh can be adjusted to better fit the contours of the continuum being 

analyzed.  The main advantage of FEA is that this method represents and solves for the 

dependent variable of interest locally, (between nodes), to approximate how the 

continuum will respond to specific inputs and boundary conditions.  Consider the 

following example to demonstrate how the underlying principles of FEA work.  An 

element comprised of four nodes is presented in Figure 36, implementing the ξ-η 

coordinate system.  The shape functions, Ni, also known as basis functions, associated 

with each node are defined in Equation 52, where i corresponds to the node number.  The 

displacement field, u, corresponding to this example is presented in Equation 53.  

Referring to the example presented earlier in this section, if the FEA method was 

implemented on the surface in its current configuration, then there would be 800,000 

nodes and 800,000 shape functions required to define the displacement field of the 

sample terrain surface.  Of course the beauty of using FEA is the mesh can be refined 

(coarser or finer) to appropriately represent the continuum under study.  Furthermore, 

material properties are associated with the mesh so isotropic or anisotropic properties are 

defined prior to analysis.  This method is applicable to a large general class of problems, 

including capturing and characterizing the details of local terrain features such as 

potholes or bumps.  It is computationally expensive, however, when applied to 

anisotropic terrain surfaces that define the scope of applicability of the developments in 

this work.  Specifically, the scope is terrain having an inherent path defined over which 

vehicles travel and where that travel, over time, has defined obvious paths or lanes.   
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order and form of the polynomial is developed without a priori knowledge of the specific 

anisotropicity addressed in this work.  Similar in this way to the FEA method, the DTM 

method is applicable to a large general class of problems, but is computationally 

expensive when applied to anisotropic terrain having an inherent path defined over which 

vehicles travel and where that travel, over time, has defined obvious paths or lanes.  In 

general, the DTM method is appropriate for modeling terrain on the global scale where 

localized terrain features such as potholes and bumps are inconsequential. 

Principle Component Analysis 

The terrain studied in this work has well defined paths.  This specific 

anisotropicity is exploited, allowing the longitudinal and transverse directions to be 

decoupled and a single set of vectors (discretized polynomials) to be used to define the 

transverse direction at all longitudinal locations.  That is, the entire terrain surface can be 

represented by several basis vectors as opposed to thousands of shape functions as with 

the FEA method, or with high order polynomials as with the DTM method.  A Singular 

Value Decomposition (SVD) algorithm is used to develop these basis vectors since the 

SVD algorithm minimizes error based on the error type chosen, has high numerical 

precision (minimal round-off error), and controls linear dependence among the columns 

of the matrix by setting very small singular values approximated to zero (Haykin 2003).  

It can be applied to square or rectangular matrices.  As a result of implementing SVD on 

the terrain sets, the principle components, or basis vectors are identified.  In the case 

where the path is indistinguishable, more general methods of parameterizing the 

polynomials should be applied.  The method proposed in this work would require a large 

number of basis vectors to be developed and would simply converge to an uncoupled 

formulation of the DTMs in the limiting case.   

4.2.3 Defining the Hilbert Space and True Surface 

Each vector composing the terrain surface measurement, ࢑,࢏ࢠ,	 is considered a 

combination of the true surface, ࢏࢙,	 and a realization of a stochastic error process, ࢑,࢏ࢋ.  

The error is decomposed into drift (global error) and noise (local error); drift is modeled 

as a random walk process while the noise is a zero-mean process (Favey, Cerniar et al. 

1999; Sun, Fu et al. 2008).  Each measured surface is then a realization of a stochastic 
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process and is defined as a sequence of vectors that are elements of a Hilbert space, H.  

Since there is exactly one true surface for any number of realizations, ࢏࢙ is not indexed by 

k.  It is shown that the true surface must also span the Hilbert space H (Chemistruck, 

Binns et al. 2010).   

The Hilbert space is decomposed into principle directions.  A set of orthonormal, 

empirical basis vectors, bl, are constructed to span the space via Singular Value 

Decomposition (SVD) of the set of measured vectors.  Basis vectors are added to the 

composition of the true surface until the residual noise vectors have a mean that is not 

statistically different than zero; this number of basis vectors is defined as q.  The span of 

these q basis vectors defines the global subspace, G.  The order in which the basis vectors 

are added is determined by the magnitude of their corresponding singular value, in 

descending order.  Currently, the global subspace is defined by the span of the truncated 

set of empirical basis vectors.  In this Chapter, the global subspace is redefined by the 

span of a truncated set of analytic basis vectors. 

Due to the finite number of realizations (measurements), the true surface, ࢏࢙, is 

determined by considering the estimated expectation of the sequence of measured vectors 

projected in the global vector space, G, and the complementary vector space separately.  

The vector defining the estimated true terrain elevation at the longitudinal location 

indexed by i is then defined as ࢙ො࢏.  This estimation of the true surface must be coupled 

with careful experimental design.  Specifically, the drift component of error is identified 

and removed from the measured terrain and the expected value of this drift-free surface is 

the estimated true terrain surface, thus correcting for the INS drift (Chemistruck, Binns et 

al. 2010).  Note that  

Equation 54 would reduce to the expected height, E[zi,k], if the expectation were 

known exactly or a linear estimator were used.   

࢏ො࢙ ≜ E෡ ቎෍〈࢒࢈, ࢒࢈〈࢑,࢏ࢠ

୯

௟ୀଵ

቏ ൅ E෡ ቎࢑,࢏ࢠ െ෍〈࢒࢈, ࢒࢈〈࢑,࢏ࢠ

୯

௟ୀଵ

቏ Equation 54

Samples of paved U.S. Highway data present very similar trends in their resulting 

empirical basis vectors; a typical set of vectors is shown in Figure 37.  Generally, the first 
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basis vector accounts for a vertical offset in elevation and the second basis vector 

describes the ‘cross-slope’ or ‘bank angle’.  This agrees with intuition that the primary 

changes of a paved surface are in elevation and banking.  The fourth basis vector 

approximates the shape of ‘rutting,’ a condition that arises from road wear due to tire 

interaction.  Due to this consistency in road construction of paved surfaces and 

interaction with vehicles, the shapes of the empirical basis vectors are correspondingly 

similar for all terrain surfaces that have a distinct path.  This work develops a method to 

capture these characteristics with analytic functions.  The correlation between empirical 

basis vectors and analytic basis functions is exploited to develop a single set of analytic 

basis vectors that can be used for a specific type of terrain.  These analytic basis vectors 

are developed to provide a definition of terrain surfaces that is insensitive to the choice of 

terrain measurement system and can be applied to terrain that have similar topology.  In 

this way, new empirical basis vectors do not have to be developed and implemented in 

each characterization of terrain and direct comparison of terrain of the same terrain type 

can be performed.  To achieve this, the empirical basis vectors are approximated by a set 

of analytic functions for specific types of terrain; the analytic functions are sampled at 

discrete locations defined by measurement locations provided by the measurement 

system or the prescribed gridding locations. 
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principle direction along the length of the terrain surface is defined as σi,l, and is termed 

the component of terrain in the lth principle direction. 

࢏ො࢙ ≜ E෡ ቎෍〈࢒࢖, ࢒࢖ܟ〈࢑,࢏ࢠ

୯

௟ୀଵ

቏ ൅ E෡ ቎࢑,࢏ࢠ െ෍〈࢒࢖, ࢒࢖ܟ〈࢑,࢏ࢠ

୯

௟ୀଵ

቏ 
Equation 58

୧,௟ ≜ ,࢒࢖〉 Equation 59 ܟ〈࢏ො࢙

Several criteria are imposed in the development of the analytic basis vectors.  

Specifically, the analytical basis vectors must satisfy the properties enumerated below: 

1. Spanning the same n dimensional vector space as the empirical basis vectors. 

2. Orthogonal with respect to a weighted inner-product.  This is a fundamental 

requirement of the Galerkin approach, which enables simple mapping of the 

estimated true terrain surface onto the analytic basis function. 

3. Normalized with respect to a weighted inner-product, simplifying subsequent 

calculations. 

4. Closely correlated to the empirical basis vectors. 

5. Insensitive to the selection of the transverse locations composing v. 

The remainder of this section develops the method to determine the analytic basis 

vectors. 

It is clear that if the complete set of n analytic basis vectors is linearly 

independent, then they span the same space as the empirical basis vectors.  However, a 

different Hilbert space must be formed.  The redefined Hilbert space, H, has a weighted 

inner-product and induced norm.  The analytic functions are mapped on H through 

Galerkin discretization so that the discretization error is orthogonal to H.  When the 

continuous polynomials are discretized, the error associated with this discretization 

method is orthogonal to H, and no discretization error exists in H.  The global subspace 

G, is redefined as the span of the truncated set of analytic basis vectors,{࢒࢖}.  The drift is 

then the projection of the error vectors onto the global subspace and the noise is defined 

as the error projected onto the complement of the global subspace.  Again, basis vectors 

are added to the definition of the global subspace until the residual noise vectors have a 
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mean that is not statistically different than zero.  With the Hilbert space redefined, the 

parameterization of the polynomials can be determined. 

Recall v is the continuous coordinate (shown in Figure 7A) and note that any 

continuous polynomial can be written in the form presented in Equation 60.  The order of 

the polynomial is defined by (a-1). 

ܲሺݒሻ ൌ ܿ଴ ൅ ܿଵݒ ൅ ܿଶݒଶ ൅ ⋯൅ ܿ௡ݒ௔ିଵ Equation 60

Next the continuous coordinate v is sampled at a sequence of n discrete points to form a 

vector of monotonically increasing values, v.  This vector represents the transverse 

locations at which the terrain heights are defined either through measurement or spatial 

interpolation.  The transverse locations, v, are scaled and centered on zero so that they 

exist on the interval [-1, 1], corresponding to the domain of the continuous polynomials.  

In this way, each discrete polynomial vector, p, is represented in matrix form as shown in 

Equation 61.   The matrix of polynomial terms for discretized values of v is defined as V.  

The vector of polynomial coefficients, c, is determined by the choice of the generating 

polynomial (e.g., Gegenbauer, Fourier, Chebyshev, or others…).  The remainder of the 

theoretical developments in this Chapter are based on the set of Gegenbauer polynomials 

to avoid redundancy and without loss of generality.  The Gegenbauer polynomial is 

parameterized by  according to Equation 55. 
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௔ିଵ

⋮ ⋮ ⋮ … ⋮
1 ௡ݒ ௡ଶݒ … ے௡௔ିଵݒ

ۑ
ۑ
ې
൞

ܿଵ
ܿଶ
⋮
ܿ௔

ൢ ൌ ሻ Equation 61ߣሺࢉሻ࢜ሺࢂ

4.3.1 Vandermonde Matrix 

In general, the matrix V is an n x a matrix where the number of polynomial terms, 

a, will be larger than the number of transverse locations, n.  To formulate a Vandermonde 

matrix for V, consider a truncated polynomial of order n.  Since v is defined to be 

monotonically increasing (thereby having distinct values), then V-1 exists, V is positive 

definite, and the mapping from the polynomial coefficients to the solution of the 
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polynomial along v is a one-to-one correspondence (i.e., the polynomial interpolation 

problem is solvable with a unique solution). 

Consider the complete set of n analytic basis vectors, {pl} where l	∈ {1, 2, …, n}, 

defined by Equation 62.  The analytic basis vectors are linearly independent and span the 

same space as the empirical basis vectors.  Each vector in the set is a function of the 

particular measurement locations (defined by v) and a particular set of coefficients, cl().  

A concatenation of these coefficient vectors is defined as the coefficient matrix, C, as 

shown in Equation 63.  The Vandermonde matrix, V, and the coefficient matrix, C, are 

used to develop the weighted inner product and the resulting Hilbert space.  

,࢜ሺ࢒࢖ ሻߣ ൌ ሻ Equation 62ߣሺ࢒ࢉሻ࢜ሺࢂ

࡯ ൌ ሾ ૚ࢉ … ሿ Equation 63࢔ࢉ

A weighted inner product is developed to produce a set of analytic basis vectors 

that are orthonormal with respect to the weighting matrix, W, such that ࢑ࢉ
 is the ࢒ࢉࢂࢃࢀࢂࢀ

Kroenecker delta function, as shown in Equation 64.  Note that this definition satisfies the 

requirements that an inner product is positive definite since a Vandermonde matrix, V, is 

positive definite and its inverse must exist.  More detail on inner products is provided in 

Appendix G.  Furthermore, the coefficients of the polynomial are defined to be linearly 

independent due to the orthogonality of the polynmomials, and the inverse of the 

coefficient matrix, C, must exist.  The definition of the weighting matrix that produces 

this desired orthonormality is defined in Equation 65.    

,࢒࢖〉 ࢃ〈࢑࢖ ൌ ࢑࢖
࢒࢖ࢃࢀ ൌ ࢑ࢉ

࢒ࢉࢂࢃࢀࢂࢀ ൌ ࢾ Equation 64 ࢒࢑

ࢃ ≜ ሺࢀࢂሻି૚ሺࢀ࡯ሻି૚ሺ࡯ሻି૚ିࢂ૚ ൌ ሺࢀࡼሻି૚ିࡼ૚ Equation 65

Analytic basis vectors are defined as the orthonormal discrete basis vectors from 

the Gegenbauer polynomials.  Consider the first basis vector, p1, corresponding to the 

zero-th order Gegenbauer polynomial.  Since p1 is a vector of ones, the corresponding 

vector of coefficients, c1, is given by Equation 66.  The second basis vector, p2, is derived 

from the first order Gegenbauer polynomial and the corresponding vector of coefficients 

is given by Equation 67.  The coefficient matrix, C, has the form shown in Equation 68.  
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It is clear that all coefficient vectors except the first are functions of the parameter .  

This parameter is used to adjust the shape of the analytic basis vectors so that they are 

closely correlated to the empirical basis vectors (satisfying the fourth design criterion).  

This process is demonstrated for U.S. Highways in the Proof of Concept Section of this 

Chapter.  Next, the general formulation of this method is presented in terms of a weighted 

grammian. 

૚࢖ ൌ ሻ࢜ଵሺ݌ ൌ ૚ ൌ ૚ࢉࢂ ݁ݎ݄݁ݓ ૚ࢉ ൌ ൞

1
0
⋮
0

ൢ 
Equation 66

૛࢖ ൌ ሻ࢜ଶሺ݌ ൌ ࢜ ൌ ૛ࢉࢂ ݁ݎ݄݁ݓ ૛ࢉ ൌ
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 Equation 67

࡯ ൌ

ۏ
ێ
ێ
ێ
ۍ
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0 ߣ2 0
0 0 ሺ1ߣ2 ൅ ሻߣ ⋯
⋮ ⋮ 0
0 0 ⋮ ے

ۑ
ۑ
ۑ
ې

 Equation 68

 

4.3.2 Underdetermined Systems 

In general, the number of polynomial terms, a, will be larger than the number of 

transverse measurement locations n, such that a > n.  This results in an underdetermined 

system of equations, which, if there is any solution, then there are an infinite number of 

solutions which form an affine space.  It is desired to identify the “simplest” solution to 

this problem, which is of the form y=Ax.  The goal is to identify the least squared error 

solution in this affine space, that is, the solution that minimizes the norm of the error 

vector (Donoho, Kakavand et al. 2007).  Recall the formulation of the problem defined in 

matrix form in Equation 69.  In the general sense, V(v) is an n x a matrix of polynomial 

terms for discretized values of v and C is an a x n matrix of vectors of polynomial 

coefficients.  In the case of Gegenbauer polynomials, the matrix of coefficients is 

parameterized by  and written C(λ) 
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Equation 69

The weighted inner product is reformulated for the general case in which the 

polynomials are not truncated to n = a as in the case of the Vandermonde matrix.  A 

weighted grammian, R, is introduced to aide in the formulation of the reformulated 

weighted inner product in Equation 70.  Specifically, a weighting matrix is developed 

such that the weighted inner product of the element 〈࢒࢖,  is equal to the Kroenecker ࢃ〈࢑࢖

delta function.  A weighted inner product in matrix form is developed to produce a matrix 

of analytic basis vectors that are orthonormal with respect to the weighting matrix, W, 

such that the weighted grammian equals the identity matrix, as shown in Equation 71.  

Note that this definition satisfies the requirements that an inner product is positive 

definite since a grammian is always positive definite.  The definition of the weighting 

matrix that produces this desired orthonormality is defined in Equation 72, which is the 

same as Equation 65.  This more general formulation retains all of the higher order 

polynomial terms, and reduces to the Vandermonde formulation when the order of the 

polynomial is truncated to the number of measurement locations (i.e., when a=n).  Even 

without the truncation, the resulting P matrix is the same for this underdetermined system 

as it is for the Vandermonde formulation.  This can be attributed to the fact that V is an [n 

x a] matrix and C is an [a x n] matrix, so when multiplied, P becomes an [n x n] matrix.  

Next, the concept of components of terrain is introduced.   

ࡾ  ൌ ,࢜ሺࡾ ሻߣ ൌ ൦
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൏ ,૚࢖ ૛࢖ ൐ ൏ ,૛࢖ ૛࢖ ൐ ⋯ ൏ ,࢔࢖ ૛࢖ ൐

⋮ ⋮ ⋱ ⋮
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Equation 70

ࡾ ൌ ,ࡼ〉 ࢃ〈ࡼ ൌ ࡼࢃࢀࡼ ൌ ࡯ࢂࢃࢀࢂࢀ࡯ ൌ Equation 71 ࡵ

ࢃ ≜ ሺࢀࢂሻି૚ሺࢀ࡯ሻି૚ሺ࡯ሻି૚ିࢂ૚ ൌ ࢀࡼ
ି૚
૚ Equation 72ିࡼ
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4.3.3 Defining Components of Terrain in the lth Principle Direction 

The Hilbert space is developed such that the resulting projections onto the 

analytic basis vectors, ୧,௟, are insensitive to the selection of the transverse measurement 

locations composing vector v (and subsequently matrix V) and with respect to the 

parameterization of the coefficient vectors, cl, and matrix C.  This insensitivity is 

demonstrated through a heuristic example in which the estimated true surface, ࢙ො࢏, is 

simply a linear combination of the analytic basis vectors, given in Equation 73.  In this 

simplified case, the estimated true surface is constructed such that it lies completely in 

the global subspace.  The  ߠ௞ coefficients are defined, for this example only, as the 

magnitude of the contribution of each analytic basis vector to this artificial estimated true 

surface.  For this case, the choice of measurement locations (manifested in V) and 

parameterization of the analytic basis vectors (manifested in C) have no effect on the 

determination of the components of the terrain.  This is due to the definition of the 

weighting matrix, W, defined in Equation 65 and equivalently in Equation 72.  Also by 

definition in Equation 64, the weighted inner product is only equal to one when k is equal 

to l and is zero otherwise, which is used in Equation 74.  This is also consistent with the 

grammian formulation.  Consider, for example, if the road surface is perfectly flat and 

level, but vertically offset by a specific value, then according to Equation 73, ߠଵ must be 

proportional to this vertical offset and ߠ௞ for k > 1 must be zero.  In this case, the 

resulting first component of terrain  would be ߠଵ.  Similarly, if the road were flat but 

banked, then ߠଶ would be proportional to the surface’s bank angle and all values for ߠ௞ 

for k2 would be zero.  If the estimated true surface is any linear combination of the 

analytic basis vectors, then the resulting projection onto each analytic basis vector, ୧,௟, 

given in Equation 74, is completely insensitive to the choice of transverse locations, v, or 

the choice of the parameterization of the generating polynomial, λ.  

࢏ො࢙ ൌ ෍ߠ௞࢑࢖

௤

௞ୀଵ

 
Equation 73
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௜,௟ߪ ൌ ,࢏ො࢙〉 ࢝〈	࢒࢖ ൌ 〈෍ߠ௞࢑࢖

௤

௞ୀଵ

, ࢒࢖ ࢝〈 ൌ ෍ߠ௞

௤

௞ୀଵ

,࢑࢖〉 ࢒࢖ ࢝〈 ൌ  ௟ߠ
 

Equation 74 

Using this definition of components of terrain, ୧,௟ , a new representation is 

developed that captures the principle information about a terrain surface in a compact 

form, which is similar in structure to terrain profiles.  Each terrain component ୧,௟ ,  

represents the contributions of the true surface in each principle direction.  These terrain 

components are signals that are similar in form and simplicity to a terrain profile, except 

୧,௟ represents the magnitude of each basis vector to the terrain surface.  This concept is 

further developed in Chapter 5. 

4.4 Chapter 4 Proof of Concept 

4.4.1 Design of Experiment 

An example using measured data is presented to demonstrate the effectiveness of 

using analytic basis vectors in capturing the characteristic shapes of the empirical basis 

vectors.  Furthermore, the insensitivity to the discrete transverse locations at which the 

terrain heights are defined (either through measurement or spatial interpolation) is 

studied, showing the versatility of this approach in adapting to various profiler platforms.  

Four sections of U.S. Highway data (two concrete sections and two asphalt sections), 

each 151.1m long, were selected at the MnRoad testing facility in Albertville, Minnesota 

for this experiment.  The sections were closed to traffic and each surface was measured 

ten times, in alternating directions, at a vehicle speed of approximately 10 m/s.  The 

measurements were nominally corrected for body motion (Kern and Ferris 2007; Wagner, 

Kern et al. 2007) and mapped to a regularly spaced grid.  The longitudinal spacing of 

10mm resulted in 15110 longitudinal locations and a transverse spacing of 25.4mm at 51 

transverse locations resulted in a 1.3 m wide terrain surface.  The terrain heights at these 

uniform grid locations were captured in matrix form and a principle component analysis 

using an SVD algorithm was performed to identify the empirical basis vectors (refer to 

Figure 37).  The empirical basis vectors used in this example represent a small portion of 

U.S. Highway data and, although they are not comprehensive, they provide a very 
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encouraging degree of support for representing terrain surfaces with analytic basis 

vectors.   

4.4.2 Application of Theory 

 Before the analytic and empirical basis vectors are analyzed, the vector of 

transverse locations for the empirical data, v, is shifted horizontally 1.1375m to be 

centered on zero and scaled by a factor of 1.5 to exist on the same domain as the analytic 

basis vectors, [-1, 1].  The transverse locations defining v for the generation of the 

analytical basis vectors were evenly spaced among 51 points spanning [-1 ,1].  The 

magnitudes of the empirical basis vectors, bl, were scaled by a factor of four to aid in 

visualizing the correlation.  Clearly the correlation between the analytic basis vectors and 

the empirical basis vectors depends on the shifting and scaling of the measurement 

locations, v, but not on the scaling of the magnitude of the empirical basis vectors.  The 

end of this Section will compare the root mean square error (RMSE) of each proposed 

analytic basis vector with the corresponding empirical basis vectors to determine which 

set of polynomials best represent this set of U.S. Highway data.   

Gegenbauer Polynomials vs. Empirical Basis Vectors 

For the Gegenbauer polynomials, the value of  defines the relative scale of the 

tails of the polynomial; a value of 0.1 results in flat functions and a value of 1 

results in polynomials with extreme tails.  When 0.5, the Legendre polynomials are 

generated with the range bounded by [-1, 1].  The RMSE between the empirical and the 

analytic basis vectors corresponding to the Gegenbauer polynomials results when lies 

in the interval], suggesting that the Legendre polynomials are most 

appropriate form of the Gegenbauer polynomials to compare to the empirical basis 

vectors.  The Legendre polynomials will also be used to compare to the other two sets of 

polynomials to identify the most appropriate set of analytic polynomials to approximate 

the empirical data.  This comparison will be discussed at the end of this Section.  A 

comparison of the first four empirical basis vectors with the Legendre polynomials is 

shown in Figure 41.  The first empirical basis vector and the first analytic basis vector 

provide a means to describe the overall change in elevation, however there is an obvious 
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basis vector provide a means to describe the overall change in elevation; again there is an 

obvious offset between the empirical and analytic basis vectors.  It is important to note 

that the first analytic basis vectors are identical for the three sets of polynomials used in 

this analysis.  More importantly, the second empirical basis vector is not represented in 

the basis functions of the Fourier series and thus does not show any correlation with the 

second analytic basis vector.  The Fourier series could be summed to approximate the 

sloped line, but this negates the intention of this process and would require an infinite 

sum to obtain this.  The fact that the Fourier basis functions do not capture the bank angle 

basis vector, and that this basis vector pertains to one of the two dominant features in the 

terrain surface indicates that the Fourier series are not appropriate to model the empirical 

data.  Other differences will be seen in the third and fourth basis vectors.  The third 

empirical basis vector representing the asymmetry terrain characteristic is compared with 

the third analytic basis vector.  Similar to the third order Chebyshev polynomial, the local 

minimum and maximum are greater than that of the empirical data suggesting that the 

third order Fourier basis vector is not a good fit.  The fourth empirical basis vector 

representing the road rutting terrain characteristic does not appear to correlate well with 

the fifth analytic basis vector.  The local minimums do not line up with the minimums of 

the empirical data and the local maximum is too narrow as compared with the empirical 

data.   
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It should be noted that the correlation of the analytic basis vectors to the empirical basis 

vectors is highly dependent on the scaling and shifting of the transverse locations, v, and 

this must be examined when determining the appropriate parameterization. 

Expanding the database to include various terrain types may also suggest using a 

different set of generating functions to approximate the empirical basis vectors.  Such 

techniques that may prove to be promising include, but are not limited to, the 

polynomials previous described here, Laguerre polynomials, non-uniform rational basis 

splines (NURBS), and Maclaurin polynomials (Taylor series polynomials when a0=0).  

Once a more comprehensive set of data have been collected, each set of generating 

functions can be investigated using the method developed in this Chapter.  For example, 

different sets of generating functions may be more appropriate for different types of 

terrain.  Again, the appropriateness of each generating function would be determined by 

minimizing the RMSE between the resulting analytic basis vectors and the corresponding 

empirical basis vectors. 

Although curve fitting the empirical data directly may appear to be the most 

efficient representation of the terrain, it does not exploit the specific anisotropicity of this 

path-specific method.  Toward this end, a set of well-known generating polynomials 

describe a specific type of the terrain to maintain the portability of the method developed 

in this chapter.  In this way, this method could be applied to any terrestrial terrain 

measurement system to formulate an accurate description of the terrain surface that 

contains path information.  Additionally, these well-known sets of polynomials are 

commonly used in real-time data analysis.  In this case, the empirical basis vectors are 

replaced by a recurrence relationship, thus eliminating the need to retain the information 

describing the empirical basis vectors and reducing the total information needed to 

describe the terrain surface.  The next Chapter will further develop a method to represent 

terrestrial terrain measurement data in a more compact form. 

 

4.5.1 Segmenting the Terrain 

To reinforce the acceptability and appropriateness of the empirical basis vectors, 

the terrain sample was segmented into ten sections of approximately 1500 points in 

length.  A SVD was performed on each section and the empirical basis vectors were 
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Equation 75

Once more data have been collected from a variety of terrain types, and they have 

been properly decomposed into their principle components, ୧,௟, investigations can be 

made into the stochastic or deterministic nature of the principle components.  If 

components of the terrain surface, ୧,୪, can be considered realizations of an underlying 

stochastic process, then a stochastic model of these components can be developed.  

Terrain surfaces could then be represented by a combination of deterministic and 

stochastic processes.  If all of the surface components are included and classified as 

deterministic, then the synthesized terrain surface would reproduce the originally 

measured terrain surface.  As more components are classified as stochastic, more 

variation in the realizations will arise.  This variation can be useful in chassis loading 

predictions where vehicle simulations conducted over several realizations of the same 

terrain type would identify more realistic maximum and minimum load cases.  

Reconstructing the terrain surface with these models would yield a compact, stochastic 

terrain surface representation.  Since realizations of any length could be generated, 

vehicle responses could be simulated that are accurate for the given application, yet found 

quickly enough to make informed design decisions early in the design process.  

Synthesizing terrain surfaces in this manner will help shorten the development time to 

bring a new vehicle to market and provide a better fundamental understanding of how the 

vehicle is excited.  This concept is further developed in Chapter 5 of this dissertation. 

4.6 Chapter 4 Conclusions 

 Terrain surfaces capture a great deal more information about the terrain topology 

than simple terrain profiles.  A new representation has been developed that captures the 

principle information about a terrain surface in a compact form, similar in structure to 

terrain profiles.  Specifically, a Galerkin method was developed to define terrain surfaces 

as sequences of vectors in a Hilbert space composed of analytic basis vectors with a 

weighted inner-product and a weighted grammian.  The analytic basis vectors that best fit 

the U.S. Highway example are generated from Gegenbauer polynomials that are 

parameterized to closely match the empirical basis vectors.  Within the scope of U.S. 
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Highways, the proper parameterization of the generating polynomial results in a special 

case of the Gegenbauer polynomials: the Legendre polynomials.  The resulting analytic 

basis vectors successfully capture the characteristics of the first four empirical basis 

vectors.  A weighted inner-product was developed such that the resulting representation 

of the terrain surface is insensitive, within the limitations of the sampling density, to the 

measurement system used to acquire the terrain surface data.  The basis vectors are then 

projected back onto the true surface to formulate components of terrain corresponding to 

each principle direction.  These components of terrain describe the magnitude of each 

principle direction along the length of the road.  Possible applications of this new method 

include modeling the changes in projections of the analytical basis vectors as a stochastic 

process and quantifying physical characteristics of the terrain such as elevation, bank 

angle, crowning, and road rutting. 
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5. Compact Models of Terrain Surfaces 

5.1 Chapter 5 Introduction  

Throughout a chassis development program it is necessary to possess load data 

representing severe customer usage to ensure that the chassis will perform as required.   

Unfortunately, actual loads are only available at the conclusion of the program.   The 

design engineer is challenged with using predicted chassis loads early in the design 

process – when changes are relatively easy and inexpensive to make – and measured 

chassis loads late in the program – when changes to the design are extremely costly, if 

allowed to be implemented.  It is clear that the terrain is the main excitation to the vehicle 

(Aurell and Edlund 1989).  The non-deformable terrain imposes a unilateral geometric 

boundary constraint on rolling tires to which the chassis responds by generating loads, 

moments, motions, deformations, etc.  The terrain surface remains a consistent excitation 

to the chassis, even as the chassis design changes.  Knowledge of this excitation, when 

applied in conjunction with high fidelity tire and vehicle models, would allow chassis 

loads to be accurately predicted in vehicle simulations.  Therefore, throughout the design 

process the system response to this consistent excitation can be calculated and compared 

for each chassis design considered.  Accurate terrain models would then provide the 

chassis designer with a powerful tool to make informed design decisions early in the 

design process while changes are relatively inexpensive to implement.  This will, in turn, 

shorten vehicle development time and reduce overall development costs. 

High-fidelity terrain surfaces can be used as excitations to vehicle models in a 

virtual environment to accurately emulate the operation of a real vehicle.  For example, 

specific events on a vehicle manufacturer’s proving ground may be simulated and 

compared to measured data for model validation (Chaika, Gorsich et al. 2004).  Current 

terrain measurement systems acquire approximately one million data points per second 

(Brandenburg and Rudd 1974; Karamihas 2005; Kern and Ferris 2007; Wagner, Kern et 

al. 2007).  This data acquisition rate improves the available signal bandwidth and allows 

sharp disturbances to be detected in both the transverse and longitudinal directions.  

Capturing these disturbances is critical; the driver’s perception of  ride quality is largely 
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dictated by these events (Ferris 1999; Ahlin, Granlund et al.) and chassis durability is 

highly sensitive to transient loading (Lu and Lee 1996; Liu and Herman 1999; 

Stadterman, Connon et al. 2003; Bogsjo and Forsan 2004; Lei and Yang 2006; Duni, 

Toniato et al. 2008).  Most terrain measurement systems are equipped with an Inertial 

Navigation System (INS) and accelerometers to remove body motion from the measured 

surface.  INS systems are plagued with an inherent system drift, easily identified by 

taking multiple measurements of the same segment of road.  Previous work by the 

authors produced a method, as presented in Chapter 3 of this dissertation, to compensate 

for the INS drift error of the terrain measurement system (Chemistruck, Binns et al. 

2010).  

The objective of this work is to develop a stochastic terrain surface that leverages 

the terrain representation implemented in the INS drift removal technique and previous 

work on Autoregressive (AR) terrain models.  The remainder of this work is developed as 

follows.  Background on terrain measurement is provided to further clarify the concept of 

terrain surfaces as a sequence of vectors and the compensation technique for INS drift is 

reviewed.  A brief description of Autoregressive terrain models is also provided.  The 

contribution of this work is then developed.  The notion of global and local subspaces is 

generalized to a continuous scale in which the terms ‘global’ and local’ are subjective 

locations along a well-defined continuum of possible scales.  Specifically, the true 

surface is decomposed into a sequence of vectors; each vector represents the transverse 

heights of the terrain along a line perpendicular to the direction of vehicle travel.  A 

Hilbert space is defined from this collection of vectors and principle directions are 

determined.  These principle directions are cast as a set of orthonormal basis vectors, for 

both analytic and empirical basis vectors.  The projection in each of the principle 

directions is a series that can be considered either a deterministic or stochastic component 

of the true surface where each series is termed ‘a component of terrain in the lth principle 

direction’.  The method is applied to experimental data to demonstrate the concept and to 

form a basis for discussion.  Further application of this concept is discussed in the context 

of studying the partial autocorrelation of the stochastic components of the true surface to 

identify if it is appropriate to implement an AR model to characterize the process, 

followed by concluding remarks. 
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5.2 Chapter 5 Background 

5.2.1 Terrestrial Terrain Measurement and INS Drift Compensation 

Typically, terrestrial terrain surface measurement systems incorporate a scanning 

laser (Herr 1996) that is rigidly mounted to the body of a host vehicle.  This vehicle 

traverses the terrain while simultaneously acquiring terrain measurements.  When the 

vehicle encounters a disturbance, the laser translates and rotates with the body of the host 

vehicle.  To obtain accurate terrain measurements, the motion of the vehicle must be 

accurately measured so that it can be removed from the laser measurement.  Modern 

systems use INS to measure the vehicle movement (Kennedy, Hamilton et al. 2006).  The 

accuracy of the INS depends on the alignment of the Inertial Measurement Unit (IMU) to 

the laser and satellite coverage of the Global Positioning System (GPS).  The reduction of 

accuracy of the INS is contributed by many different error types (Lanyi and Roth 1988; 

Coco, Coker et al. 1991; Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Mannucci, 

Hajj et al. 2004; Sarma 2008).  A detailed discussion of terrain measurement systems is 

presented in Section 2.1.1 and a thorough discussion of INS and GPS error is presented in 

Section 2.1.3 of this dissertation.    

Recall the compensation method developed in Chapter 3 to correct INS drift in 

terrain measurements  in which each terrain surface is considered to be a combination of 

a true surface and an error surface.  The error is decomposed into drift (global error) and 

noise (local error).  The global and local subspaces are constructed such that the drift is 

modeled as a random walk process while the noise is a zero-mean process.  This 

theoretical development is coupled with careful experimental design to develop a method 

to identify the drift component of error and discriminate it from true terrain surface 

features, and correct for the INS drift (Gillespie, Sayers et al.).  This Chapter classifies 

global and local terrain surface features into deterministic or stochastic processes.  The 

number of basis vectors is incremented until the residual from the sum of the projections 

(i.e., the noise) becomes a zero-mean process.  Experimentation has shown that two basis 

vectors are required to satisfy this criterion for a set of U.S. Highway data (Chemistruck, 

Binns et al. 2010).  Experimental results have also shown that the first two basis vectors 

represent some vertical offset, defined as the principle characteristic of elevation and a 
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slope offset defined as the principle characteristic of bank angle.  This work expands 

upon the work presented in Chapters 3 and 4 by examining the projection of the true 

surface onto orthonormal basis vectors that define the principle directions to formulate 

components of terrain and a truncated terrain surface.   

5.2.2 Autoregressive Modeling 

An Autoregressive (AR) model is comprised of a small set of coefficients and a 

residual process which drives the model.  The AR model characterizes the current value 

of a profile as the linear combination of previous profile values and a residual process.  If 

the profile is known, then the AR coefficients can be derived (e.g. via the Yule-Walker 

method), and the realization of the residual process is calculated.  If the residual process 

is homogeneous, then the probability distribution can be represented as a Cumulative 

Probability Function (CPF).  The set of AR model parameters for the stable AR model 

and the residual probability parameters compose a final set of model parameters that 

completely capture the physical characteristics of the terrain profile (Kern and Ferris 

2006; Kern and Ferris 2006; Kern and Ferris 2007; Li and Sandu 2007; Wagner and 

Ferris 2007; Wagner and Ferris 2008; Wagner and Ferris 2010; Wagner and Ferris 2010).  

For this work, the AR model will be used to characterize suitable components of terrain 

and then synthesize a stochastic representation of the component for use in formulating a 

stochastic terrain surface. 

5.2.3 Defining the Coordinate System 

The terrain coordinate system used to develop the method presented in this 

chapter is described in Chapter 2, Section 2.1.4 of this dissertation. 

5.2.4 Defining the Hilbert Space 

A terrain surface measurement {࢑,࢏ࢠሽ,	 is considered a combination of the true 

surface, ሼ࢏࢙ሽ,	 and a realization of a stochastic error surface process (refer to Section 3.3.2 

for a detailed description).  Each measured surface is then a realization of a stochastic 

process and is defined as a sequence of vectors that are elements of a Hilbert space, H.  

Since there is exactly one true surface, ሼ࢏࢙ሽ, for any set of realizations, it is not indexed 
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by k.  It is shown that the true surface must also span the Hilbert space H (Chemistruck, 

Binns et al. 2010).   

The Hilbert space is decomposed into the principle directions of the terrain 

surface.  A set of orthonormal basis vectors, bl, are constructed to span the space via a 

Singular Value Decomposition (SVD) of the set of measured vectors.  SVD is used for 

principle component analysis (PCA) and was chosen for terrain surface analysis because 

paved roads share the same primary characteristics, such as elevation, bank angle, 

crowning, etc.  By implementing SVD, these primary characteristics can be studied as 

individual terrain features.  The order of the basis vectors is determined by the magnitude 

of their corresponding singular value, added in descending value.  Basis vectors are 

added to the composition of the true surface until the residual noise vectors can be 

considered realizations of a zero-mean process; this number of basis vectors is defined as 

q.  Recall that it was shown in Chapter 4 that the empirical basis vectors can be 

approximated by a set of analytic polynomials: the Legendre polynomials, in an effort to 

reduce the amount of information required to describe the terrain surfaces of similar types 

of terrain.  Both formulations of components of terrain and truncated surfaces pertaining 

to empirical basis vectors and analytic basis vectors will be studied in this Chapter to 

develop a compact, high-fidelity, mixed deterministic-stochastic representation of terrain.  

The user will then be able to decide which formulation is most appropriate depending on 

the application. 

Recall the following example from Chapter 4, Section 4.2.1, where the terrain 

surface is mapped to uniform grid spacing and the data have been acquired from a 

scanning laser.  Let si be the vector representing the true surface of the section of terrain 

at the longitudinal location indexed by i.  Let vector si contain elements indexed 1 to 80 

corresponding to transverse points in the v(j) direction, such that the terrain section has a 

width of 80 points, as shown in Figure 33.  Furthermore, let the set of vectors {si} span 

10,000 locations in the u(i) direction, such that the terrain section has a length of 10,000 

points.  Using this representation, {si} contains 800,000 elevation points to describe the 

section of terrain.  A method is developed in this Chapter that reduces the number of 

points required to describe the terrain surface to no more than the 20,000 points required 

to describe two wheel path profiles. 
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࢏ො࢙ ≜෍E෡ሾβ୧,୩,௟ሿ࢒࢖

୯

௟ୀଵ

൅෍E෡ሾ࢑,࢏ࢠ െ β୧,୩,௟ሿ࢒࢖

୯

௟ୀଵ

 
Equation 78

 

β୧,୩,௟ ≜ ,࢒࢖〉 Equation 79 〈࢑,࢏ࢠ

5.3 Classifying Terrain Surfaces 

The true surface is decomposed into contributions in the principle directions 

defined by the empirical orthonormal basis vectors, as shown in Equation 76 or by the 

analytic orthonormal basis vectors in Equation 86.  The projection of the estimated true 

surface is defined in each of the principle directions, ୧,௟, for the empirical basis vectors, 

as shown in Equation 88.  Similarly, the projection of the estimated true surface is 

defined in each of the principle directions, ୧,௟, for the analytic basis vectors, as shown in 

Equation 89. 

୧,௟ ൌ ,࢒࢈〉 〈࢏ො࢙ ൌ෍E෡ሾβ୧,୩,௟ሿ

୯

௟ୀଵ

൅෍E෡ሾ࢑,࢏ࢠ െ β୧,୩,௟ሿ

୯

௟ୀଵ

 
Equation 80

୧,௟ ൌ ,࢒࢖〉 Equation 81 ࢃ〈࢏ො࢙

Each component of terrain, ୧,௟, can be considered either a deterministic 

component of the true surface, or a stochastic component.  This concept will be discussed 

further in the following section.  A truncated surface can then be defined as the 

summation of the ୧,௟ multiplied by the truncated set of t empirical basis vectors (l = 1, 2, 

…, t) and is defined as Equation 82.  A truncated surface can also be defined in terms of 

the truncated set of t analytic basis vectors as defined in Equation 83.  It is important to 

note that the truncated set of basis vectors can be incremented to include all of the basis 

vectors defining the space, n or it can be reduced to some value less than n such as q basis 

vectors used to identify contributions to the global subspace from Chapter 3.   
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ሻ࢏ሺࢉ࢔࢛࢚࢘ො࢙ ൌ ෍୧,௟

௧ஸ௡

௟ୀଵ

 ࢒࢈
Equation 82

ሻ࢏ሺࢉ࢔࢛࢚࢘ො࢙ ൌ ෍୧,௟

௧ஸ௡

௟ୀଵ

 ࢒࢖
Equation 83

5.3.1 Hybrid deterministic-stochastic representation of terrain surfaces 

Features of the true surface can be recreated exactly if all of the components ୧,௟ 

are considered to be deterministic and are recorded for the entire longitudinal length of 

the surface.  This approach does not allow the surface to be represented in a more 

compact form, nor give additional insight into the fundamental characteristics of the 

terrain.  However, if some, or all, of the ୧,௟	are considered to be stochastic, then the 

sequence can be modeled as a stochastic process, and it may be possible to cast the 

process in a mathematical framework such as an AR model.  In this case, the coefficients 

of the model would characterize the manner in which the process behaves in that 

principle direction. 

The accuracy of the terrain surface representation is dependent on how each ୧,௟is 

classified.  If all of the terrain components, ୧,௟, are classified as deterministic, then the 

synthesized terrain surface would exactly resemble the true terrain surface.  However, if 

only the first ୧,௟ is classified as deterministic, and the remaining ୧,௟ are classified as 

stochastic, then some variation in the realization will arise.  The number of ୧,௟ that are 

modeled as stochastic is determined by the user and the application.  This variation can 

be useful in chassis loading predictions based on tire and vehicle models.  If it is desired 

to execute a vehicle simulation over several realizations of the same terrain type to 

identify maximum and minimum load cases, then the more ୧,௟ that are classified as 

stochastic will allow for more variation within that type of terrain.  The effects of 

identifying the number of components that are deterministic or stochastic will be 

determined by studying the autocorrelation and the partial autocorrelation of each ୧,௟ to 

identify the correlation length.  Examining the correlation length, will help to identify if 

that component should be modeled as a stochastic process and what model is most 



 146

appropriate.  The longitudinal jointly tined concrete example is considered in the Proof of 

Concept section of this Chapter. 

If some of the true surface components of the principle directions are modeled as 

an underlying stochastic process, then an Autoregressive (AR) technique can be 

employed.  This characterization could be used to model the stochastic true surface 

components (Kern and Ferris 2006; Kern and Ferris 2006; Kern and Ferris 2006; Kern, 

Ferris et al. 2007; Wagner and Ferris 2007; Wagner and Ferris 2008).  An example of the 

AR modeling capabilities is presented in the Proof of Concept section.   

5.4 Chapter 5 Proof of Concept 

An example is presented to demonstrate the decomposition of a terrain surface 

into components represented by the ୧,୪ and the implications of modeling these 

components as either deterministic or realizations of a stochastic process.  A single lane 

of transversely tined jointed concrete, approximately 151.1m long, was selected at the 

MnRoad testing facility in Albertville, Minnesota for this experiment.  A detailed 

description of the example of terrain and the data acquisition process are developed in 

Section 3.4.1.  A profile taken from the true terrain surface is shown in Figure 56.  The 

analysis is conducted in terms of longitudinal profiles to demonstrate the implications of 

this method.  The empirical basis vectors are employed first and then the analytic basis 

vectors are employed for a comparison and to show the feasibility of approximating the 

empirical basis vectors with the analytic basis vectors. 
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5.4.3 Implication of Surface Representation on Statistical Analyses 

This new formulation of a compact model improves the ability  to analyze the 

roughness of the terrain surface.  Currently, all roughness indices analyze longitudinal 

profiles.  A better representation of the terrain roughness is realized by analyzing each 

component of terrain.  For example, consider the first component of terrain, the elevation.  

The International Roughness Index (IRI) as described in Section 2.1.3.1 is the standard 

practice for calculating road roughness.  The calculations of the IRI are also described in 

Section 2.1.3.1.  The IRI of the elevation component of terrain, left and right wheel paths 

of the true surface and mean of the left and right wheel paths were calculated and 

presented in Table 2.  There are obvious differences between the IRI calculated for the 

left and right so the mean IRI between the wheel paths was calculated.  Comparing the 

IRI of the elevation component of terrain to the mean IRI of the left and right wheel paths 

produces a 0.138% difference.  Since the elevation component of terrain identifies the 

magnitude of the first basis vector along the length of the terrain section, it seems more 

appropriate than arbitrarily using the left and right wheel path longitudinal profiles as an 

analysis. 

Table 2. IRI comparison between components of terrain and longitudinal profiles. 

 International Roughness Index 

Elevation Component of Terrain 0.5756 

Left Wheel Path Longitudinal Profile 0.5680 

Right Wheel Path Longitudinal Profile 0.5848 

Mean of Wheel Paths 0.5764 

In addition to response surface modeling (discussed in Section 3.5), previous 

research with Empirical Mode Decomposition (EMD) showed that combining certain 

features from each level of decomposition produced an identifiable terrain feature (Attoh-

Okine, Ayenu-Prah Jr et al. 2006).  For example, if contributions from the first and third 

basis vectors are combined, it may be possible to identify a new surface characteristic, 

other than elevation, bank angle, crowning or rutting.  By construction, the basis vectors 

are orthonormal, however the projection of the terrain surface vectors onto these basis 
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vectors may not be independent.  It is likely that there is a relationship between the 

components of terrain, ୧,௟ , that can be used to further simplify the representation. 

5.5 Chapter 5 Discussion 

A detailed review of the effectiveness of this method via a specific example 

provides more insight into the usefulness of this method in developing a compact 

representation of terrain.  It was shown in the INS drift compensation example from 

Chapter 3 and discussed earlier in this Chapter (see Figure 55) that two basis vectors are 

needed to establish a zero-mean noise process, suggesting that only the first two 

components of terrain are required to form the truncated surface.  Consider the first two 

empirical basis vectors of size [48 x 1] and two corresponding components of terrain of 

the size [15,180 x 1].  The amount of data needed to represent this truncated terrain 

surface is 30,360 points (plus the 96 points needed to define the two empirical basis 

vectors).  The same number of points is required with using the analytic basis vectors, 

however the data required to define the analytic basis vectors is simplified by using 

known polynomial expressions.  In either case, these representations are drastic 

reductions from the original terrain surface, a matrix of the size [48 x 15,180] or a total of 

728,640 elevation points.  Now consider the use of a Hybrid deterministic-stochastic 

representation of the terrain surface in which the first component is deterministic, 

requiring 15,180 points, and the second component is stochastic, requiring perhaps 11 

AR model coefficients and 3 coefficients to define the probability distribution of the 

residual process (Wagner, et al.).  The total reduction in complexity is reduced by a factor 

of 50.  If both of the components were represented as stochastic processes, then this 

factor improves dramatically to nearly 6,000 – nearly four orders of magnitude. 

The demonstration of the method developed in this work is limited by the amount 

of available measured data.  Future work will study the capabilities of this method 

beyond the application to U.S. Highway data and investigate its compatibility with off-

road terrain and harsher on-road terrain surfaces.  The effect that the stochastic 

components will have in comparison with the original terrain should also be investigated.  

The original terrain and stochastic terrain will differ when compared feature by feature, 

but the overall physical properties will be the same.  This overall effect will be better 
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understood when terrain surfaces are used in tire and vehicle simulations.  Future work 

will investigate the overall effects of the stochastic surface on the loads generated by the 

tire and vehicle based on changing different surface components. 

5.6 Chapter 5 Conclusions 

Terrain profiles capture an incomplete representation of terrain topology data 

whereas terrain surfaces capture a great deal more information about the terrain.  

Extracting two longitudinal wheel path profiles using a collocation approach from the 

example presented in Section 5.2.4 results in a 20,000 point realization.   Alternatively, 

the discrete terrain surface can be represented exactly, requiring 800,000 elevation points 

for this example.  A computational problem arises when trying to work with and 

manipulate measured terrain surface data due to the large file sizes.  A new representation 

has been developed that captures the principle information about a terrain surface in a 

compact form, similar in structure to terrain profiles.  If two basis vectors representing 

elevation and bank angle are used in place of the two longitudinal wheel path profiles and 

two components of terrain corresponding to these basis vectors were used instead, then 

the principle information about the terrain surface (in the Galerkin sense) is captured 

using the same amount of data, 20,000 points total.  This new development increases 

computational efficiency while maintaining sufficient terrain surface knowledge.  It was 

demonstrated through an example that this new process successfully captures the 

characteristics of a terrain surface with as few as two principle directions.  Once this 

decomposition is complete, the projection of the true surface onto the principle directions 

can be modeled as either deterministic or a stochastic process.  If the component is 

identified as stochastic, then a mathematical model, such as an Autoregressive model, can 

be implemented.  Through the example shown in the Discussion Section of this Chapter, 

the terrain surface could be further reduced to two basis vectors, one deterministic 

component of terrain and one stochastically modeled component terrain, significantly 

reducing by a factor of 50 the data necessary to represent the surface.  It was also shown 

that using the elevation component of terrain may provide a better way to analyze the 

road roughness of the surface.  These components of terrain identify the magnitude of 

elevation along the length of the road and therefore serve as a better representation of the 
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surface as opposed to identifying two arbitrary profiles to represent the left and right 

wheel paths, and then formulate roughness for the two profiles.  
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6. Conclusions 

6.1 Summary of Research  

The concept of simulation-based engineering has been embraced by virtually 

every research and industry sector (Sinha, Liang et al. 2001; Mocko and Fenves 2003).  

Engineering and science communities have become increasingly aware that computer 

simulation is an indispensable tool for resolving a multitude of scientific and 

technological problems.  Design and analysis engineers are simulating increasingly 

complex mechanical systems.  It is clearly desirable to gain a reliable perspective on the 

behaviour of a system early in the design stage, long before building costly prototypes 

(Chul and Ro 2002; Letherwood, Gunter et al. 2004; Makarand Datar 2007; Ersal, Fathy 

et al. 2008; Mueller, Ferris et al. 2009).  Simulation tools have become a critical part of 

the automotive industry due to their ability to reduce the time and money spent in the 

development process.   
Terrain is clearly the principle source of vertical excitation to the vehicle and 

must be accurately represented in order to correctly predict the vehicle response in 

simulation.  Ideally, an efficient terrain surface definition could be developed that 

maintains the high-fidelity information required to accurately excite vehicle models.  

Modern terrain measurement systems use an Inertial Navigation System (INS) to measure 

and remove vehicle movement from laser measurements of the terrain surface.  

Instrumental and environmental errors inherent in the INS produce noise and drift errors 

in the resulting estimates of vehicle position and orientation.  The evolution and 

implications of terrain surface measurement techniques and existing methods for 

correcting INS drift have been reviewed as a framework for a new compensation method 

for INS drift in terrain surface measurements.  Each measurement is considered a 

combination of the true surface and the error surface, defined on a Hilbert vector space, 

in which the error is decomposed into drift (global error) and noise (local error).  The 

global and local subspaces are constructed such that the drift is modeled as a random 

walk process and the noise is a zero-mean process.  This theoretical development is 
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coupled with careful experimental design to identify the drift component of error and 

discriminate it from true terrain surface features, thereby correcting for the INS drift.  It is 

shown through an example that this new compensation method dramatically reduces the 

error variation in the measured surfaces to within the resolution of the measurement 

system itself.  It was also shown through the example using U.S. Highway data that 

classifying the first two basis vectors as spanning the global subspace results in a zero-

mean noise process with a standard deviation of 0.35mm.  This is approximately three 

standard deviations within the 1mm bound defined by the resolution of the measurement 

equipment. 

 It is also desirable to develop a compact, path-specific, terrain surface 

representation that exploits the inherent anisotropicity in terrain traversed by vehicles.  

This representation should also minimize the effect of the choice of measurement system 

used to sample the terrain surface.  Non-deformable terrain surfaces are defined as a 

sequence of vectors, where each vector comprises terrain heights at locations oriented 

perpendicular to the direction of travel.  A vector space is formed by the span of these 

vectors and a corresponding set of empirical basis vectors is developed.  A set of analytic 

basis vectors is formed from Gegenbauer polynomials, parameterized to approximate the 

empirical basis vectors.  Other polynomials were studied, but the Gegenbauer 

polynomials with λ equal to ½ resulted in the smallest Root Mean Square Error.  A 

weighted inner-product is defined to form a Hilbert space and the terrain surface vectors 

are projected onto the set of analytic basis vectors.  The weighting matrix is developed 

such that these projections are insensitive to the number and placement of the discrete 

transverse locations at which the terrain heights are defined.  Furthermore, components of 

terrain are developed from a projection of each analytic basis vector onto the terrain 

surface.  These components of terrain capture the magnitude of specific terrain 

characteristics along the length of the road, such as elevation, bank angle, or road 

crowning, for statistical analysis and modeling techniques similar to that of a terrain 

profile.  This method is successfully demonstrated on sets of paved road surfaces to show 

that a high-fidelity but compact definition of terrain surfaces is developed.   

It is also desirable to evaluate vehicle models and tire models over a wide range 

of terrain types, but it is computationally impractical to store long distances of every 
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terrain surface variation.  This dissertation examines the terrain surface, rather than the 

terrain profile, to maximize the information available to the tire model (i.e. wheel path 

data).   A method to decompose the terrain surface as a combination of deterministic and 

stochastic components is developed.  If any of the components of the terrain surface	are 

considered to be stochastic, then the sequence can be modeled as a stochastic process.  As 

a result, a stochastic terrain surface that is more computationally efficient to implement in 

simulation can be synthesized for any desired length.  Such a surface will include 

variation in the synthesized data, whereas measured data is deterministic and the 

simulation results for measured terrain will always result in the same responses.  These 

stochastic representations of terrain surfaces can then be implemented in tire and vehicle 

models to estimate chassis loads.  It was also shown that the elevation component of 

terrain may provide a better method to analyze the road roughness of the surface rather 

than single-path road profiles.   

6.2 Future Work 

Future work that may leverage the work presented here could include but is not 

limited to an in-depth study of rough, non-deformable terrain surfaces and an optimal 

selection for sampling the terrain surface. 

6.2.1 Rough, Non-deformable Terrain Surfaces 

All the examples presented in this work were based on data acquired from U.S. 

Highways.  It would be vital to include rough, non-deformable terrain surfaces in 

subsequent studies for classifying terrain surfaces and develop a compact representation 

of rough terrain.  Then, durability roads could be synthesized using the methods 

presented in this dissertation as a concatenation of various terrain features that are 

important for properly assessing vehicle durability, reliability, and ride and handling 

characteristics. 

6.2.2 Optimal Selection of {v} for Sampling the Terrain Surface 

Chapter 4 of this dissertation identified the need to develop a method to define the 

terrain surface that can be universally applied to various types of terrain measurement 

systems, from point lasers to scanning lasers.  The solution presented in Chapter 4, was a 
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best fit analytic polynomial approximation to empirical basis vectors for a specific terrain 

type.  The analytic polynomials can be discreteized to match the capabilities of any 

existing terrain measurement system.  While this is a numerical approach, an empirically 

based standard currently exists and defines what types of lasers, how many and at what 

locations along the width of a host vehicle the lasers should be mounted to adequately 

sample the terrain to identify road ruts (ASTM 2009).  Other empirical testing has been 

conducted to identify the flaws in this standard (Mehta, Roque et al. 2001; Ihs 2004; 

Offrell and Sjogren 2004; Sjogren and Lundberg 2004), and thus a need to extend the 

work presented in Chapter 4 to develop an optimal selection of discrete locations to 

identify specific terrain features, such as crowning and rutting, needs to be developed.  

Future work leveraging the findings in Chapter 4 could focus on generating an optimal 

selection of the discrete sampling locations along the width of the host vehicle, also 

known as {v}. 

6.3 Conclusions 

Recall the thesis statement from Chapter 1. 

A high-fidelity yet compact representation of terrain surface types can be developed that 

are insensitive to the particular measurement system being used and allows for the study 

of principle terrain characteristics. 

The primary goal of this research is to develop a technique to develop a compact 

representation of a terrain surface while improving the fidelity of the estimated terrain 

surface.  The methodology in this work is currently limited to: 

a) Non-deformable terrain- terrain whose surface deformation due to a single 

vehicle traversing the surface is negligible, such as paved roads (both asphalt 

and concrete), gravel roads, and typical off-road trails; deformable terrain 

such as sand and snow are beyond the scope of this work. 

b)   Anisotropic terrain- terrain having an inherent path defined over which 

vehicles travel and where that travel, over time, has defined obvious paths or 

lanes.   
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This dissertation focuses on the development of a high-fidelity and compact 

representation of terrain surfaces that are insensitive to the terrain measurement system 

used to acquire the data.  The main contributions of this research are: 

1) The first representation of terrain surfaces as elements of a Hilbert Space, H 

a) Terrain surfaces are explicitly defined as a sequence of vectors 

b) Each vector comprises terrain heights at locations oriented perpendicular 

to the direction of travel. 

c) A vector space is defined by the span of these vectors 

d) A weighted inner-product is defined and the norm is defined as the 

induced norm  

2) A novel method to remove INS drift: 

a) The Hilbert space is decomposed into a Global subspace, G, and the 

complementary local subspace, Gc. 

b) A sequence of error vectors are defined such that each error vector is the 

difference between the measured terrain surface vector and the true 

surface vector. 

c) The three vectors comprising the measurement, error, and true surface at 

each longitudinal location have components in both the Global and Local 

subspaces. 

d) The Global subspace is defined such that the component of the error 

vectors in the Global subspace can be modelled as a random-walk process 

and the elements of the error vectors in the Local subspace are elements of 

a zero-mean uncorrelated noise process. 

e) The Global error, arising from Inertial Navigation System (INS) drift, is 

identified and removed from the measurements such that the standard 

deviation of the residual noise process (Local error) is within the 

resolution of the measurement system (+/-1mm)  

f) The true surface is computed from the drift-free measurements using a 

non-linear expectation estimator. 

3) The first rigorous definition of principle terrain characteristics: 
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a) Although principle terrain characteristics, such as elevation, bank angle, 

crowning, and rutting have been subjectively described and techniques for 

ad hoc measurement of these characteristics have been defined (AASHTO 

2009), this research develops sets of empirical basis vectors for U.S. 

Highways that are consistent between asphalt and concrete roads 

b) The principle terrain characteristics are defined with analytic basis vectors 

that closely approximate these consistent empirical basis vectors by 

minimizing the root mean square error between the empirical and analytic 

basis vectors. 

4) It is the first method that has been developed that can define terrain surfaces 

without sensitivity to the measurement system used to acquire the terrain data 

a) Analytic basis vectors can be discretized based on terrain measurement 

system capabilities to sample the terrain  

5) A novel method to stochastically represent a terrain surface 

a) Components of terrain (known as σi,l) identify the magnitude of the 

principle terrain characteristics along the length of the terrain surface 

b) Components of terrain are classified as deterministic or stochastic 

c) Stochastic components of terrain can be modelled in the same manner as 

terrain profiles 

d) Truncated terrain surface is synthesized based on stochastically modelled 

components of terrain 

The results of this study are intended for application in the accurate prediction of: 

a) Tire loads- based on full-knowledge of the tire patch: lateral, longitudinal, and 

radial tire forces and the overturning, rolling resistance and self-aligning tire 

moments acting on the contact patch.  

b)  Chassis loading scenarios- better ground vehicle reliability predictions 

c) Pavement Life- crack propagation, rutting, roughness 

Better modeling of the contact patch will yield more representative tire loading, 

which will lead to better estimates of chassis loading scenarios and will inevitably result 

in better ground vehicle reliability predictions.  Current application of this work is limited 

to the analysis of U.S. Highways, comprised of both asphalt and concrete, but the 
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methods developed in this dissertation are applicable to any non-deformable path-specific 

terrain. 
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Nomenclature 

H Hilbert Space spanned by sets of vectors {zi,k}, {si}, and {ei,k} 

G Subspace of H, in which global events are defined 

Gc Complement of subspace G, in which local events are defined 

zi,k ith vector component of the kth realization of the terrain surface height 

si ith vector component of the true surface height 

 ith vector component of the estimated true surface height ࢏ො࢙

 ሻ ith vector component of the truncated true surface࢏ሺࢉ࢔࢛࢚࢘ො࢙

ei,k Error in realization zi,k with respect to si 

ni,k Noise component of the ith error vector of the kth realization 

bl Orthonormal empirical basis vector in the principle direction indexed by l 

 Orthonormal analytical basis vector in the principle direction indexed by l ࢒࢖

୧,௟ Estimated true surface projected onto basis vector pl or bl 

i,k,l Projection of ei,k onto b୪ representing the contribution of the measurement 

error in the lth global direction 

i,k,l Difference in the ith transverse profile, kth realization in the l direction from l 

l Ensemble average drift in the l direction across all realizations 

β୧,୩,௟ Projection of zi,k onto the basis vector bl 

i Index for discrete longitudinal locations along the path coordinate u, where i 

∈ {1,2,…,m} 

j Index for transverse locations along the path coordinate v, where j ∈ 

{1,2,…,n} 

k, h Indices for the realization (measurement) [1, 2, … r] 

l Index for the principle directions of H, where l ∈ {1,2, …, q} 

q Number of principle directions of H (i.e., the dimension of G) 

〈•,•〉 Inner-product operator on two vectors 

〈•,•〉௪ Weighted inner-product operator on two vectors 
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Eሾ•ሿ Expectation operator 

E෡ሾ•ሿ Estimated expectation operator (some ensemble averaging technique, such as 

mean, median, 50% trimmed mean, etc.) 

m The number of discrete longitudinal locations along the terrain surface 

r 
the number of realizations (measurements) used to estimate the true terrain 
surface 

t truncated set of basis vectors 

a Number of polynomial terms (polynomial order is a-1) 

(x, y) Global coordinate system 

(u, v) Path-centered coordinate system 

u Vector of discrete longitudinal locations along path coordinate u 

v Vector of discrete transverse locations at which the terrain heights are 

defined either through measurement or spatial interpolation 

RMSH Root Mean Square of terrain height 

DH 
Single measure of the combined variance of the random component of the 

road profile with the harmonic component of the road profile 

Zn Stochastic process 

n Process index 

S State space of the stochastic process 

zn Elements of S 

 ௗሺ݊ሻ The roughness level of the displacement PSDܩ

C The general roughness parameter (PSD) 

w Dimensionless parameter called waviness (PSD) 

λ Wavelength of the road (PSD) 

P( ) Probability 

s1,  s2, … States of State Space of stochastic process 

Pn ( ) n-step transition function 

p Order of the autoregressive model 

d The number of times the data were differenced 

q The order of the moving average model 

φ The autoregressive coefficient 
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ai The distribution of the uncorrelated residuals 

 Backward difference operator ୢ׏

RPRS(n) Parametric Road Spectrum 

RSSR(n) Shifted Spatial Range Spectrum 

μ Mean 

σ2 Variance 

m	 Total vehicle mass (kg) 

mୱ	 Sprung mass (kg) 

m୳ୱ	 Unsprung mass of each wheel assembly (kg) 

kୱ,୤	 Front suspension stiffness (N/m) 

kୱ,୰	 Rear suspension stiffness (N/m) 

k୲	 Tire stiffness (N/m) 

c୤	 Damping coefficient front suspension N/(m/s) 

c୰	 Damping coefficient rear suspension N/(m/s) 

a	 Distance front axle to center of mass (m) 

b	 Distance rear axle to center of mass (m) 

t୤	 Track width front axle (m) 

t୰	 Track width rear axle (m) 

z(t) Measured suspension travel over time 

L Length of the profile [m] 

௦ሶݖ  Motion of sprung mass [m/s] 

௨ሶݖ  Motion of unsprung mass [m/s] 

V Velocity of at which the simulation was executed 

IRI International Roughness Index 

RN Ride Number 

RIDE Roughness Index for Driving Expenditure 

SVD Singular Value Decomposition 

AR Autoregressive Model 

f Sprung mass acceleration of reference vehicle 

yi(t) Road input to full-car model, i indicates the corner of the vehicle  
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FRI Full-car roughness index 

PSD Power Spectral Density 

RCR Ride Condition Rating 

pi Weight function for robust estimation (linear prediction) 

a, b Steepness of weight function (linear prediction) 

g Shift value (linear prediction) 

w Ceiling elevation value that is user defined (linear prediction) 

vi Surface residuals (linear prediction) 

P(z) Gaussian distribution 

݊௜,௝ Mean of the terrain surface for each grid location 

݊ Scalar representation of the mean of the terrain surface 

 ௜,௝ Standard deviation of the terrain surface for each grid locationߪ

 Scalar representation of the standard deviation of the terrain surface ߪ

ሺߦ,  ሻ Node based coordinate systemߟ

௜ܰሺߦሻ Shape function in ሺߦሻ 

௜ܰሺߟሻ Shape function in ሺߟሻ 

௜ܰሺߦ, ,ߦሻ Shape function in ሺߟ  ሻߟ

,ߦሺݑ  ሻ Displacement fieldߟ

λ Parameter to tune Gegenbauer polynomials 

௡ܥ
ሺఒሻሺݔሻ Gegenbauer polynomials 

௞ܶሺݔሻ Chebyshev polynomials 

݂ሺݔሻ Fourier series basis functions 

ܽ଴ Fourier series coefficient 

ܽ௡ Fourier series coefficient 

ܾ௡ Fourier series coefficient 

ܲሺݒሻ Continuous polynomial 

v Continuous coordinate on which the continuous polynomial is defined  

,࢜ሺ࢖  and v ߣ ሻ Discretized polynomial in vector form as a function ofߣ

 ሻ Vandermonde matrix, nxa for which n=a࢜ሺࢂ

 ሻ Gegenbauer coefficients in vector formߣሺࢉ
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 Matrix of coefficients ࡯

 Weighting matrix ࢃ

,࢜ሺࡼ  and v ߣ ሻ Discretized polynomial in matrix form as a function ofߣ

 ሻ Gegenbauer coefficients in matrix formߣሺ࡯

R Weighted grammian 

 ௟ Coefficients pertaining to the magnitude of the contribution of each analyticߠ

basis vector to the true terrain surface 

RMSE Root mean square error 

 Original transverse measurement locations ࢊࢋ࢛࢙࢘ࢇࢋ࢓࢜

 തതതതതതതതതതതതത Mean of the original transverse measurement locationsࢊࢋ࢛࢙࢘ࢇࢋ࢓࢜

t Track width of typical passenger vehicle 

 ሻ Distance between the two local minima for the fifth analytic basis vectorߣሺߩ
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Appendix A - VTMS Detailed Description 

 The VTMS is equipped with a Phoenix Scientific PPS scanning laser and a 

Novatel SPAN INS.  The scanning laser acquires data at 1kHz with an accuracy of +/- 

0.5mm in the horizontal plane and +/- 0.5mm in elevation.  The INS combines an inertial 

measurement unit (IMU) which measures three translational accelerations and three 

rotational velocities at 100 Hz with a differential GPS acquiring data at 5 Hz.   The 

differential GPS and IMU signals are then combined through Kalman filtering. 

The horizontal precision of the complete system is defined in terms of the 

standard deviation in the height measurement vs. the horizontal distance the vehicle has 

traveled between repeated measurements, as shown in Figure 66.  This can be thought of 

as the precision as a function of wavelength.  The INS is capable of a horizontal precision 

of 1 mm for short distances traveled; the limiting factor is the laser spot size.  Precision 

levels of 10 mm are possible for distances of up to 10 m; this is limited by the drift in the 

uncorrected IMU data (1deg/hr).  For distances greater than 10 m, the precision is limited 

by the DGPS, which has a precision of 10mm + 1ppm (e.g., 20 mm at 10 km traveled); 

the DGPS is affected by the number of satellites and atmospheric interference. 

 

Figure 66. Horizontal Precision of VTMS. 
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Appendix B - Parameter Values for Calculating IRI 

Table 3: Golden Car Parameters 

Parameter Description 

C Cs/Ms=6.0 : Normalized damping coefficient 

K1 Kt/Ms=653 : Normalized tire stiffness 

K2 Ks/Ms=63.3 : Normalized spring stiffness 

μ Mu/Ms=0.15 : Normalized mass ratio 

LB 250mm, Moving average base length 

V V=80 km/hr : Forward speed 

 

Table 4: Ride Number Quarter Car Parameters 

Parameter Description 

C Cs/Ms=17 : Normalized damping coefficient 

K1 Kt/Ms=5120 : Normalized tire stiffness 

K2 Ks/Ms=390 : Normalized spring stiffness 

μ Mu/Ms=0.036 : Normalized mass ratio 

V V=80 km/hr : Forward speed 

 

  



 184

Appendix C - Gegenbauer Polynomials 

Gegenbauer polynomials are solutions to the Gegenbauer differential equation for integer 

n.  They are proportional, or depending on the normalization, equal to the ultraspherical 

polynomials ௡ܲ
ఒሺݔሻ.  The Gegenbauer polynomials are extensions of Legendre 

Polynomials.  The generating function for these polynomials are then given by 

1
ሺ1 െ ݐݔ2 ൅ ଶሻఒݐ

ൌ ෍ܥ௡
ሺఒሻሺݔሻݐ௡

ஶ

௡ୀ଴

 
Equation 84

The first few Gegenbauer Polynomials are then 

଴ܥ
ሺఒሻሺݔሻ ൌ 1 Equation 85

ଵܥ
ሺఒሻሺݔሻ ൌ Equation 86 ݔߣ2

ଶܥ
ሺఒሻሺݔሻ ൌ െߣ ൅ ሺ1ߣ2 ൅ ଶ Equation 87ݔሻߣ

ଷܥ
ሺఒሻሺݔሻ ൌ െ2ߣሺ1 ൅ ݔሻߣ ൅ ሺ1ߣ4/3 ൅ ሻሺ2ߣ ൅ ଷ Equation 88ݔሻߣ

A recurrence relation is presented as 

௡ܥ݊
ሺఒሻሺݔሻ ൌ 2ሺ݊ ൅ ߣ െ 1ሻܥݔ௡ିଵ

ሺఒሻ ሺݔሻ െ ሺ݊ ൅ ߣ2 െ 2ሻܥ௡ିଶ
ሺఒሻ ሺݔሻ, ∀݊

ൌ 2,3… 

Equation 89
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Appendix D - Legendre Polynomials 

Legendre polynomials are solutions to Legendre differential equations.  The Legendre 

polynomial can be defined by the contour integral over the range [-1,1], where n is an 

integer and the contour integral encloses the origin and is traversed in a counterclockwise 

direction (Arfken 1985). 

௡ܲሺݖሻ ൌ
1
݅ߨ2

රሺ1 െ ݖݐ2 ൅ ݐ௡ିଵ݀ିݐଶሻିଵ/ଶݐ
Equation 90

The first few Legendre Polynomials are 

଴ܲሺݔሻ ൌ 1 Equation 91

ଵܲሺݔሻ ൌ Equation 92 ݔ

ଶܲሺݔሻ ൌ
1
2
ሺ3ݔଶ െ 1ሻ 

Equation 93

ଷܲሺݔሻ ൌ
1
2
ሺ5ݔଷ െ  ሻݔ3

Equation 94

ସܲሺݔሻ ൌ
1
8
ሺ35ݔସ െ ଶݔ30 ൅ 3ሻ 

Equation 95

ହܲሺݔሻ ൌ
1
8
ሺ63ݔହ െ ଷݔ70 ൅  ሻݔ15

Equation 96

଺ܲሺݔሻ ൌ
1
16

ሺ231ݔ଺ െ ସݔ315 ൅ ଶݔ105 െ 5ሻ 
Equation 97

The Legendre Polynomials can also be generated using Gram-Schmidt 

Orthonormalization on the open interval (-1, 1) with the weighting function 1.  

Normalizing so that Pn(1)=1 yields the expected Legendre Polynomials. 

଴ܲሺݔሻ ൌ 1 Equation 98

ଵܲሺݔሻ ൌ ൥ݔ െ
׬ ݔ݀ݔ
ଵ
ିଵ

׬ ݔ݀
ଵ
ିଵ

൩ ∗ 1 ൌ  ݔ
Equation 99

ଶܲሺݔሻ ൌ ݔ ൥ݔ െ
׬ ݔଷ݀ݔ
ଵ
ିଵ

׬ ݔଶ݀ݔ
ଵ
ିଵ

൩ െ ൥
׬ ݔଶ݀ݔ
ଵ
ିଵ

׬ ݔ݀
ଵ
ିଵ

൩ ∗ 1 ൌ ଶݔ െ
1
3

 
Equation 100
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ଷܲሺݔሻ ൌ ൦ݔ െ
׬ ݔ ቀݔଶ െ 1

3ቁ
ଶ
ݔ݀

ଵ
ିଵ

׬ ቀݔଶ െ 1
3ቁ

ଶ
ݔ݀

ଵ
ିଵ

൪ ൬ݔଶ െ
1
3
൰ െ ቎

׬ ሺݔଶ െ 1
3ሻ

ଶ݀ݔ
ଵ
ିଵ

׬ ݔଶ݀ݔ
ଵ
ିଵ

቏

∗ ݔ ൌ ଷݔ െ
3
5

 

Equation 101

The Legendre Polynomials are a special case of ultraspherical functions with α=1/2, a 

special case of the Jacobi Polynomials ௡ܲ
ሺఈ,ఉሻ with α=β=0.  A generating function for the 

Legendre Polynomial is written as 

݃ሺݐ, ሻݔ ൌ ሺ1 െ ݐݔ2 ൅ ଶሻݐ ൌ ෍ ௡ܲሺݔሻݐ௡
ஶ

௡ୀ଴

 
Equation 102

The recurrence form of the Legendre Polynomial is written as 

ሺ݈ ൅ 1ሻ ௟ܲାଵሺݔሻ െ ሺ2݈ ൅ 1ሻݔ ௟ܲሺݔሻ ൅ ݈ ௟ܲିଵሺݔሻ ൌ 0 Equation 103
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Appendix E - Chebyshev Polynomials 

Chebyshev polynomials are solutions to the Chebyshev differential equation.  They are 

typically used as an approximation to a least squares fit and are a special case of the 

Gegenbauer polynomial when α=0.  Chebyshev polynomials of the first kind are defined 

by the contour integral over the range [-1, 1]. 

௡ܶሺݖሻ ൌ
1
݅ߨ4

ර
ሺ1 െ ௡ିଵିݐଶሻݐ

ሺ1 െ ݖݐ2 ൅ ଶሻݐ
 ݐ݀

Equation 104

The generating function for these polynomials exists for |x|≤1 and |t|<1 are then given by 

ଵ݃ሺݐ, ሻݔ ൌ
1 െ ଶݐ

1 െ ݐݔ2 ൅ ଶݐ
ൌ ଴ܶሺݔሻ ൅ 2෍ ௡ܶሺݔሻݐ௡

ஶ

௡ୀଵ

 

݃ଶሺݐ, ሻݔ ൌ
1 െ ݐݔ

1 െ ݐݔ2 ൅ ଶݐ
ൌ ෍ ௡ܶሺݔሻݐ௡

ஶ

௡ୀ଴

 

Equation 105

A direct representation of the generating function is given by 

௡ܶሺݔሻ ൌ
1
2
ଶݔ ቎ቌඨ1 െ

1
ଶݖ
൅ 1ቍ

௡

൅ ቌඨ1 െ
1
ଶݖ
ቍ

௡

቏ 

Equation 106

The first few Chebyshev Polynomials are then 

଴ܶሺݔሻ ൌ 1 Equation 107

ଵܶሺݔሻ ൌ Equation 108 ݔ

ଶܶሺݔሻ ൌ ଶݔ2 െ 1 Equation 109

ଷܶሺݔሻ ൌ ଷݔ4 െ Equation 110 ݔ3

ସܶሺݔሻ ൌ ସݔ8 െ ଶݔ8 ൅ 1 Equation 111

A recurrence relation is presented that is true after setting T0(x)=1 and T1(x)=x 

௞ܶሺݔሻ ൌ ݔ2 ௞ܶିଵሺݔሻ െ ௞ܶିଶሺݔሻ ∀݇ ൌ 2,3,… Equation 112
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Appendix F - Fourier Series Polynomials 

Fourier series polynomials take on a similar form to that of power series or Taylor series, 

except instead of an infinite series of powers, Fourier series are based on an infinite series 

of sines and cosines.  Fourier series can be expressed in the following form 

݂ሺݔሻ ൌ
ܽ଴
2
൅෍ܽ௡ܿݏ݋

ߨ݊
݈
ݔ

ஶ

௡ୀଵ

൅෍ܾ௡݊݅ݏ
ߨ݊
݈
ݔ

ஶ

௡ୀଵ

 
Equation 113

Let f(x) and f’(x) be periodic functions having period 2l, where f(x) and f’(x) are 

piecewise continuous on -∞ < x < ∞.  Let the Fourier coefficients be defined by 

ܽ௡ ൌ
1
݈
න ݂ሺݔሻܿݏ݋
௟

ି௟

ߨ݊
݈
,ݔ݀ ݊ ൌ 0,1… 

Equation 114

ܾ௡ ൌ
1
݈
න ݂ሺݔሻ݊݅ݏ
௟

ି௟

ߨ݊
݈
,ݔ݀ ݊ ൌ 1,2… 

Equation 115

 

  



 189

Appendix G - Inner Product Properties 

Inner product properties 

 Conjugate Symmetry 

,࢞〉 〈࢟ ൌ ,࢟〉 〈തതതതത࢞ ൌ ,࢟〉 Equation 116 〈࢞

 Bilinearity 

,࢞ߙ〉 〈࢟ ൌ ,࢟〉ߙ Equation 117 〈࢞

 Bilinearity 

࢞〉 ൅ ,࢟ 〈ࢠ ൌ ,࢞〉 〈ࢠ ൅ ,࢟〉 Equation 118 〈ࢠ

 Non-negativity (Positive Definiteness)  

,࢞〉 〈࢞ ൐ 0 ݂݅ ࢞ ് 0 

,࢞〉 〈࢞ ൌ 0 ݂݅ ࢞ ൌ 0 

Equation 119
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Appendix H - Weighted Inner Product 

Weighted Inner Product 

 For a finite dimensional vector space, a weighted inner product can be obtained 

by inserting a Hermitian weighting matrix W between the elements.  The concept 

of orthogonality is defined with respect to the particular inner product used: 

changing the inner product may change the orthogonality relationship between 

vectors. 

,࢞〉 ௐ〈࢟ ൌ Equation 120 ܹ࢞ࡴ࢟

 In order for the weighted inner product to be used to define a norm, as in 

ௐ‖࢞‖
ଶ ൌ ,࢞〉 ௐ〈࢞ ൌ Equation 121 ܹ࢞ࡴ࢞

 It is necessary that ܹ࢞ࡴ࢞ ൐ 0 for all x not equal to 0.  A matrix W with this 

property is said to be positive definite. 

 A Hermitian matrix is a square matrix which is equal to its own conjugate 

transpose.  A matrix that has only real entries is Hermitian if and only if it is a 

symmetric matrix with respect to the main diagonal.  A real and symmetric matrix 

is simply a special case of a Hermitian matrix. 

 Weighting can also be applied to integral inner products.  If there is some function 

w(t)>=0 over [a,b], then an inner product can be defined as 

〈݂, ݃〉௪ ൌ න ݐሻ݀ݐሻ݃ሺݐሻ݂ሺݐሺݓ
௔

௕
 

Equation 122

 The weighting can be used to place more emphasis on certain parts of the function  

 

  



 191

Appendix I – Hilbert Space 

Hilbert Space: A finite dimensional vector space where the norm is the induced norm and 

an inner-product exists. 

 Norm is the induced norm for a Hilbert space.  The length of vector x. 

‖࢞‖ ൌ ,࢞〉 〈࢞
ଵ
ଶ 

Equation 123

 Form basis vectors so that 

,௜࢞〉 〈௝࢞ ൌ ሺ݅ߜ െ ݆ሻ ൌ ൜
1 ݎ݋݂ ݅ ൌ ݆
0 ݎ݋݂ ݅ ് ݆

 
Equation 124

 Angle between vectors x and y is consistent with dot product 

,࢞〉 〈࢟ ൌ ௫௬ Equation 125ߠݏ݋ܿ‖࢟‖‖࢞‖

To be a basis vector, the vectors must be orthogonal.  Normalize for mathematical 

convenience. 
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Appendix J – INS Drift Sample Matlab Code 

This Appendix provides a sample of Matlab code used to develop the INS drift 

compensation method. 

function arrayData = remove_ins_drift_hmc_2010_09_07(directory) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% REMOVE INS DRIFT from crg structs 
% 
% Title: remove_ins_drift 
% Author:JBF, RMB, HMC 
% Date: 2010 09 07 
% 
% DESCRIPTION 
% 
% Assumptions 
% 1) directory contains subdirectories that in turn contain .mat files 
% which are stuctures, D, with a D.z matrix that represents the best 
% estimate of the surface for that run 
% 
% Inputs 
% 1) directory containing a set of subdirectories, each subdirectory 
containing an .mat file from 
% an individial measurements/runs/realization of a particular terrain. 
% That is, the directory only contains information about a single 
terrain 
% surface, not different terrain surfaces 
% 
% Variables 
% dirName: the name of the diirectory in which the subdirectories 
exist, 
%           without the superdirectories appended 
% Outputs 
% 
% 
% Tasks 
% 1) Define bigZ from directory 
% 2) Define a 'large' number of basis vectors 
% 3) Calculate the projection of the measured vectors onto the basis 
% vectors (beta (i,k,l)) 
% 4) Sum projections of measured vectors onto basis vectors 
% 5) Calculate the estimated True Surface 
% 6) Calculate the error surfaces 
% 7) Calculate the drift surfaces 
% 8) Evaluate noise surface to be sure it is zero-mean 
% 9) Calculate the drift-free surfaces and over-write arrayData(k).z 
% 10) create additional structure in the arrayData array with True 
Surface 
% 
% Validation sets 
% 1) directory='\\172.16.56.51\datashare\Unsecured\Data\MnRoad 2009 10 
20\Mnroad_20091019_Section1' 
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% 2) directory='\\172.16.56.51\datashare\Unsecured\Data\MnRoad 2009 10 
20\Mnroad_Section5' 
% 3) directory='\\172.16.56.51\datashare\Unsecured\Data\Clean Data - DO 
NOT MODIFY\Mnroad_20091019_Section1' 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
  
% maxnBasis is the maximum number of basis vectors and is being 
% defined as a parameter. If the length of the vectors (n) is less than 
% maxnBasis, then maxnBasis is reduced later in the program 
maxnBasis=20; 
  
% Get the name of the main directory 
remainder = directory; 
while true 
    [dirName, remainder] = strtok(remainder, '\'); 
    if isempty(remainder),  break;  end 
end 
  
% 1) Define bigZ from the directory 
% define a 3D matrix with each surface being added as a layer to the 3D 
% matrix bigZ.  This is done to simplify further processing of data 
% (without the meta info carried along) 
% bigZ is the concatenation of the crg surfaces 
%   bigZ(i,j,k) then 
%   i: index of transverse profile, length of longitudinal profile 
("row"), i=[1,2,..., m] 
%   j: index of longitudinal profile, length of transverse profile 
("col"), j=[1,2,..., n] 
%   k: index of realization (measurement), k=[1,2,..., r] 
  
arrayMatFilename = get_matFilename(directory);  % this is an array of 
structures containing a field called .matFilename, this is not an array 
of strings (or all the filenames would have to be the same length?)  
r=length(arrayMatFilename); 
  
  
% 1b) load first mat file 
load(arrayMatFilename(1).matFilename);    % There should now be a 
struct called 'D' in the workspace 
  
% Account for different versons of the mat file... 
if exist('Surface','var'), D=Surface; clear Surface; end 
  
% Determine 'best' reported value of z (median best, mean next best, 
'z', 
% third best... 
D.z = D.weightCdf(:,:,5); 
  
[m,n]=size(D.z); 
  
if ~D.suppressOutput, 
    disp(' '); 
    disp(['Processing ' dirName]); 
    disp(' '); 
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    disp(['Number of longitudinal points (length of profiles, m): ', 
num2str(m)]); 
    disp(['Number of transverse points (size of vector space, n): ', 
num2str(n)]); 
    disp(['Number of realizations (measurements runs taken, r):   ', 
num2str(r)]); 
    figure(1); clf(1); surf(D.z); title(['Heights for ',D.filename]); 
    figure(2); clf(2); contour(D.z); title(['Heights for 
',D.filename]); 
end 
  
bigZ=zeros(m,n,r); 
  
bigZ(:,:,1) = D.z;       % take best reported value of z  
  
%arrayData(1:r)=struct; 
arrayData(1:r)=D;       % pre-allocate memory so that all r structures 
start off looking like the first one 
clear D; 
  
% 1b) load subsequent mat files 
for k = 2:r, 
    load(arrayMatFilename(k).matFilename);    % There sould now be a 
struct called 'D' in the workspace 
     
    % Account for different versons of the mat file... 
    if exist('Surface','var'), D=Surface; clear Surface; end 
     
    % Determine 'best' reported value of z  
    D.z = D.weightCdf(:,:,5); 
  
    arrayData(k)=D; 
    bigZ(:,:,k) = D.z;       % take best z value 
    %bigZ(:,:,k)=detrend(bigZ(:,:,k)); 
    clear D; 
end 
  
  
  
% 2) Define the basis vectors 
% calculate the first maxnBasis basis vectors, they will not all be 
used in the 
% final analysis, but they are available.  There can not be more basis 
% vectors that the size of the vector space itself, which is n, the 
length 
% of each vector 
maxnBasis = min(maxnBasis, n); 
[singularValues, basis] = get_basis_vectors(bigZ, maxnBasis); 
singularValues = diag(singularValues); 
% if ~arrayData(1).suppressOutput, 
%     disp(['Singular Values: ', num2str(singularValues')]); 
%     figure(3); clf(3); 
%     stem(singularValues); 
%     xlabel('Singular Value index (l)'); 
%     ylabel('Singular Value'); 
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%     title(['Singular Values for ', dirName]); 
%     figure(4); clf(4); 
%     plot(basis(:,1:min(5,maxnBasis)),'-'); 
%     hold on; 
%     plot(basis(:,1:min(5,maxnBasis)),'o'); 
%     xlabel('Transverse Location Index (j)'); 
%     ylabel('Basis Vector Height'); 
%     title(['Basis Vectors for ', dirName]); 
% end 
  
% 3) Calculate the projection of the measured vectors onto all the 
basis 
% vectors (beta (i,k,l)) 
beta = zeros(m,r,maxnBasis); 
for l=1:maxnBasis, 
    for k=1:r, 
        for i=1:m, 
            beta(i,k,l) = bigZ(i,:,k)*basis(:,l); 
        end 
    end 
end 
  
% 4) Loop on increasing number of basis vectors being USED, nBasis, 
until 
% the noise is is zero-mean with a standard deviation less than 1/2 a 
% milimeter (therefore the standard deviation is 2 standard deviations 
away from the resolution of the laser).  
  
%Initialize variables for loop to run 
StdTotal=1; 
MeanTotal=1; 
nBasis = -1;         % initialize nBasis to zero, it is immediately 
incremented inside the while loop 
maxNoise = 1; 
minNoise = -1; 
%while ( (StdTotal>0.0005 || MeanTotal > 0.0001 || maxNoise > 0.010 || 
minNoise < -0.010) && nBasis<maxnBasis ), 
 while ( (StdTotal>0.0005 || MeanTotal > 0.0001 ) && nBasis<maxnBasis 
),  
    nBasis = nBasis + 1; 
     
    % 4a) Sum projections of measured vectors onto basis vectors 
    sumProjection = zeros(m,n,r); 
    for i=1:m, 
        for k=1:r, 
            for l=1:nBasis, 
                sumProjection(i,:,k) = sumProjection(i,:,k) + 
beta(i,k,l)*basis(:,l)'; 
            end 
        end 
    end 
     
    bigZMinusSumProjection = bigZ-sumProjection; 
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    % 4b) Calculate the estimated True Surface 
    % [expectedS] = get_expectation_20090515(s, dim, method) 
    trueSurface = get_expectation_20090515(bigZMinusSumProjection, 3, 
2) + ... 
        get_expectation_20090515(sumProjection, 3, 2); 
     
    % 4c) Calculate the error surfaces 
    error = zeros(m,n,r); 
    for k=1:r, 
        error(:,:,k)=bigZ(:,:,k)-trueSurface; 
    end 
     
    % 4d) Calculate the drift surfaces 
    drift = zeros(m,n,r); 
    for i=1:m, 
        for k=1:r, 
            for l=1:nBasis, 
                drift(i,:,k) = drift(i,:,k) + 
(error(i,:,k)*basis(:,l))*basis(:,l)'; 
            end 
        end 
    end 
     
    %Calculate the projection of the True Surface onto the principle 
    %directions 
  sigma = zeros(m,nBasis); 
    for i=1:m, 
        for l=1:nBasis, 
                sigma(i,l)=trueSurface(i,:)*basis(:,l); 
        end 
    end 
     
    %Calculate the truncated surface 
    sTrunc=zeros(m,n); 
    for i=1:m, 
        for l=1:nBasis, 
            sTrunc(i,:)=sigma(i,l)*basis(:,l)'; 
        end 
    end 
  
     
    % 4e) The noise surface is then the error surface - the drift 
surface 
    noise = error - drift; 
     
    % 4f) Evaluating the noise surface to see if it is a zero-mean 
process 
    % with a standard deviation less than 0.5mm 
  
    [myMean, myStd, StdTotal, MeanTotal, VarTotal, maxNoise, 
minNoise]=CheckNoise(noise); 
     
    %xtrans=linspace(0.5,1.8,n); 
    xtrans=arrayData(1).v; 
    %xlong=linspace(1,151.2,m); 
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    xlong=linspace(0,arrayData(1).nu*arrayData(1).uinc,m)'; 
     
    % 4g) Plotting every tenth longitudinal profiles 
    for i=1:1:min(9,floor(m/300)),        % loop on drift-free 
longitudinal profile 
                 
        figure(10+i); clf(10+i); hold all; 
        title(['Error Vectors at u = ', num2str(xlong(i*300)), ' m, .  
', num2str(nBasis), ' basis vectors']); 
        xlabel('Transverse Distance, [m]'); ylabel('Amplitude, [mm]'); 
grid on; 
        for k=1:r, 
            plot(xtrans,1000*error(i*300,:,k));  
            %plot(tranProf(:,k));        % drift-free 
        end 
        %plot(trueSurface(i*200,:),'k:'); 
        figure(20+i); (20+i); hold all; 
        title(['Noise Vectors at u = ', num2str(xlong(i*300)), ' m, .  
', num2str(nBasis), ' basis vectors']); 
        xlabel('Transverse Distance, [m]'); ylabel('Amplitude, [mm]'); 
grid on;  
        for k=1:r, 
            plot(xtrans,1000*noise(i*300,:,k)) 
        end 
        figure(30+i); (30+i); hold all; 
        title(['Drift Vectors at u = ', num2str(xlong(i*300)), ' m, .  
', num2str(nBasis), ' basis vectors']); 
        xlabel('Transverse Distance, [m]'); ylabel('Amplitude, [mm]'); 
grid on; 
        for k=1:r, 
            plot(xtrans,1000*drift(i*300,:,k)) 
        end 
                 
    end 
     
    for j=1:1:min(9,floor(n/10)),        % loop on drift-free 
longitudinal profile 
         
        figure(40+j); (40+i); hold all; 
        title(['Drift-Free and True Surface at v = ', 
num2str(xtrans(j*10)), ' m, .  ', num2str(nBasis), ' basis vectors']); 
        xlabel('Longitudinal Distance, [m]'); ylabel('Amplitude, [m]'); 
grid on; 
        longProf=zeros(m,r); 
        for k=1:r, 
            longProf(:,k)=bigZ(:,j*10,k)-drift(:,j*10,k);      % these 
are the samples of drift-free long profiles 
            plot(xlong,longProf(:,k));        % drift-free 
        end 
        plot(xlong,trueSurface(:,j*10),'k:'); 
         
        disp(['cross correlation for long prof. ', num2str(j*10)]); 
        c=corr(bigZ(:,j*10,:)), 
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        %disp(['standard deviation of noise for long prof. ', 
num2str(j*10)]); 
        %stand = std(noise(:,j*10,:),0,2), 
         
        % look at drift 
        figure(50+j); (50+i); hold all; 
        title(['Drift at v = ', num2str(xtrans(j*10)), ' m, .  ', 
num2str(nBasis), ' basis vectors']); 
        xlabel('Longitudinal Distance, [m]'); ylabel('Amplitude, 
[mm]'); grid 
on;legend('k=1','k=2','k=3','k=4','k=5','k=6','k=7','k=8','k=9','k=10') 
        for k=1:r, 
            driftProf(:,k)=drift(:,j*10,k);      % these are the 
samples of long drift profiles 
            plot(xlong,driftProf(:,k)*1000); 
        end 
        % look at noise 
        figure(60+j); (60+i); hold all; 
        title(['Noise at v = ', num2str(xtrans(j*10)), ' m, .  ', 
num2str(nBasis), ' basis vectors']); 
        xlabel('Longitudinal Distance, [m]'); ylabel('Amplitude, 
[mm]'); grid on;         for k=1:r, 
            %noiseProf(:,k)=longProf(:,k)-trueSurface(:,j*10);      % 
these are the samples of longitudinal noise profiles 
            noiseProf(:,k)=noise(:,j*10,k); 
            plot(xlong,noiseProf(:,k)*1000); 
        end 
    end    % for j=1:1:8,        % loop on drift-free longitudinal 
profile 
     
end    % while (CheckNoise), 
  
disp(StdTotal); 
disp(MeanTotal); 
disp(nBasis);         % initialize nBasis to zero, it is immediately 
incremented inside the while loop 
disp(maxNoise); 
disp(minNoise); 
  
% 9) Calculate the drift-free surfaces etc. 
for k=1:r, 
    arrayData(k).driftFreeZ = bigZ(:,:,k)-drift(:,:,k); 
    arrayData(k).noise = noise(:,:,k); 
    arrayData(k).drift = drift(:,:,k); 
    arrayData(k).trueSurface = trueSurface; 
end 
  
% % 10) create additional structure in the arrayData array with True 
Surface 
% arrayData(r+1).z = trueSurface; 
  
save test.mat; 
  
for k=1:r, 
    save_D(arrayData(k)); 
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end 
  
  
return    % remove_ins_drift 
  
  
function [sigma, b] = get_basis_vectors(bigZ, nBasis) 
% This function performs a SVD on all the differences in measured 
vectors 
% to determine a set of basis vectors that spans the vector space of 
the 
% error. 
% bigZ is the concatenation of the measured surfaces 
%   bigZ(i,j,k) then 
%   i: index of transverse profile ("row"), i=[1,2,..., m] 
%   j: index of longitudinal profile ("col"), j=[1,2,..., n] 
%   k: index of realization (measurement), k=[1,2,..., r] 
[m,n,r]=size(bigZ); 
  
% Determine the number of combinations of differences in measured 
vectors 
nDiffMeas = m*(r-1)*r/2; 
maxCounterDiffMeas = 1e4;   % only consider the first 
maxCounterDiffMeas vectors... 
maxCounterDiffMeas = min(nDiffMeas, maxCounterDiffMeas); 
  
diffMeas = zeros(maxCounterDiffMeas,n); 
counterDiffMeas = 0;        % counter the number of vectors for SVD 
  
% TODO randomly select the pairs of measured vectors to use, using 
% [index]=generate_random_indices(m,num) 
for i=1:m, 
    for k=1:(r-1), 
        for h=k+1:r, 
            counterDiffMeas = counterDiffMeas + 1; 
            diffMeas(counterDiffMeas,:) = bigZ(i,:,k)-bigZ(i,:,h); 
            if counterDiffMeas == maxCounterDiffMeas, break; end 
        end 
        if counterDiffMeas == maxCounterDiffMeas, break; end 
    end 
    if counterDiffMeas == maxCounterDiffMeas, break; end 
end 
  
[~,sigma,b] = svds(diffMeas, nBasis); 
  
return    % get_basis_vectors 
  
  
function [expectedS] = get_expectation_20090515(s, dim, method) 
%The expectation of variable (in any number of dimensions(, s, 
% is returned after s has ben 'averaged' over 
% the 'dim' dimension using the 'method' method. 
  
[nRows,nCols,nRuns] = size(s); 
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switch method 
    case 1 
        expectedS = mean(s, dim); 
    case 2 
        expectedS = trimmean(s, 50, dim); 
    case 3 
        expectedS = median(s, dim); 
    otherwise 
end 
  
return    % get_expectation 
  
  
function [myMean, myStd, StdTotal, MeanTotal, VarTotal, maxNoise, 
minNoise]=CheckNoise(noise) 
%CheckNoise: This function loads the noise surface(s) and evaluates for 
a 
%zero-mean process in terms of the mean and standard deviation 
% 
% Input:  noise: noise vectors from INS drift code 
%          
% Output: myMean: mean noise surface combining mean of each kth value 
%         myStd:  standard deviaiton noise surface combining std of 
each 
%                 kth value 
%         StdTotal: Single number representation of std deviation of 
%                 surface 
%         MeanTotal: Single number representation of mean of surface 
%         VarTotal: Single number representation of variance of surface 
  
[m,n,r] = size(noise); 
%Establish size of matrices 
myMean = zeros(m,n); 
myStd = zeros(m,n); 
  
% Calculate mean noise surface and standard deviation noise surface for 
% each kth measurement 
for i=1:m 
    for j=1:n 
        myMean(i,j)=mean(noise(i,j,:)); 
        myStd(i,j)=std(noise(i,j,:)); 
    end  
end 
  
%Std Deviation and variance of surface as represented by a single 
number 
VarTotal=0; 
for i=1:m 
    for j=1:n 
        VarTotal=VarTotal+var(noise(i,j,:)); 
    end 
end 
VarTotal=VarTotal/(m*n); 
StdTotal=sqrt(VarTotal) 
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%Mean of surface as represented by a single number 
NoiseTotal=0; 
maxNoise = 0; 
minNoise = 0; 
for i=1:m 
    for j=1:n 
        NoiseTotal=NoiseTotal+(noise(i,j,:)); 
        maxNoise=max( maxNoise, max(noise(i,j,:)) ); 
        minNoise=min( minNoise, min(noise(i,j,:)) ); 
    end 
end 
MeanTotal=mean(NoiseTotal/(m*n)) 
  
return 
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Appendix K – Analytic Basis Vectors Sample Matlab 

Code 

This Appendix provides a sample of Matlab code used to calculate the RMSE between 

the empirical and analytic basis vectors. 

function [sigma_Gegen, sTrunc_GegenSum, sigma, sTruncSum, basis, 
basis_trunc, Gegen_basis, RMS_gegen, Fourier_basis, RMS_fourier, 
Chebyshev_basis, 
RMS_chebyshev,v]=AnalyticvsEmpirical_2010_09_29(v_Indexa,lambda,shift_v
_horiz, scale_v, scale_basis,q) 
%% Description 
%This function compares the Analytic basis vectors with the Emperical 
Basis 
%Vectors for Gegenbauer tuned on lambda, Chebyshev and Fourier 
% 
%Inputs:  (v_Indexa,lambda,shift_v_horiz, scale_v, scale_basis,q) 
% 
%   v_Indexa: vector of whole number indices i.e. [1:1:50] creates.  
Will 
%   map the space from [-1, 1] by 50 points. 
%   lambda: parameter to tune Gegenbauer polynomials, must exist on 
(0,1] 
%   shift_v_horiz: shift the empirical basis vectors to exist and be 
%   centered on [-, 1] 
%   scale_v:  scales the width of the span of the empirical basis 
vectors 
%   scale_basis: magnifies empirical basis vectors 
%   q: number of analytic basis vectors to be generated 
% 
% 
%% Adjust Empirical basis vectors and formulate v vector 
%Load Empirical basis vectors 
load('C:\Documents and Settings\IALR\Desktop\Candidate 
Release\TestData\EmpiricalBasis.mat'); 
load('C:\Documents and Settings\IALR\Desktop\Candidate 
Release\TestData\TrueSurface_Section1.mat'); 
  
v_Empir_Orig=linspace(0.5,1.8,48);  %Original data spacing in meters 
  
%Need to scale original data to be centered on 0.  In this case, the 
data 
%spans 1.3 meters. 
  
v_Empir_cent=v_Empir_Orig-1.1375;    %Centers data on 0.  Spans -0.6375 
to 0.6375m 
  
v_Empir_horiz_shift=v_Empir_cent+shift_v_horiz; %Shifts v_empir to the 
left or right 
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v_Empir=v_Empir_horiz_shift*scale_v;  %Scales v_empir by a 
multiplicative factor 
  
basisscaled(:,:)=basis(:,:)*scale_basis;  %Scales magnitude of basis 
vectors 
  
v_spacing=length(v_Indexa); 
  
%Analytic Basis Vectors% 
v=linspace(-1,1,v_spacing); 
  
%% Gegenbauer Polynomials 
  
[~, Gegen_basis, ~, w] = make_basis_2010_04_30(v, lambda); 
  
  
%% Root Mean square Error Routine Gegenbauer 
  
%truncate emprical basis vectors to be same length as analytic% 
basis_trunc=basisscaled(v_Indexa,:); 
  
sum_total=zeros(length(v),4); 
  
for h=1:3 
    for i=1:length(v) 
        sum(i,h)=(Gegen_basis(i,h)-basis_trunc(i,h))^2; 
        sum_total(i,h)=sum_total(i,h)+sum(i,h); 
    end 
    RMS_gegen(:,h)=sqrt(sum_total(:,h)/length(v)); 
end 
  
for i=1:length(v) 
    sum(i,3)=(Gegen_basis(i,4)-basis_trunc(i,3))^2; 
    sum_total(i,3)=sum_total(i,3)+sum(i,3); 
end 
RMS_gegen(:,3)=sqrt(sum_total(:,3)/length(v)); 
  
for i=1:length(v) 
    sum(i,4)=(Gegen_basis(i,5)-basis_trunc(i,4))^2; 
    sum_total(i,4)=sum_total(i,4)+sum(i,4); 
end 
RMS_gegen(:,4)=sqrt(sum_total(:,4)/length(v)); 
  
%% Plotting Gegenbauer 
  
%Color scheme for plots 
clr1={'b*','r*','g*','k*'}; 
clr2={'b','r','g','k'}; 
  
disp(['For lambda= ' num2str(lambda)]) 
  
figure; title('Gegenbauer vs. Empirical') 
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%title(['Lambda = ( ', num2str(lambda), ')']) 
subplot(2,2,1),hold on, grid on, plot(v_Empir, 
basisscaled(:,1),clr1{1}), plot(v,Gegen_basis(:,1),clr2{1}), 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=1', 'Analytic 
p_1','Location','Best'), hold off; 
subplot(2,2,2),hold on, grid on, plot(v_Empir, 
basisscaled(:,2),clr1{2}), 
plot(v,Gegen_basis(:,2),clr2{2});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=2', 'Analytic 
p_2','Location','Best'), hold off; 
subplot(2,2,3),hold on, grid on, plot(v_Empir, 
basisscaled(:,3),clr1{3}), 
plot(v,Gegen_basis(:,4),clr2{3});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=3', 'Analytic 
p_4','Location','Best'), hold off; 
subplot(2,2,4),hold on, grid on, plot(v_Empir, 
basisscaled(:,4),clr1{4}), 
plot(v,Gegen_basis(:,5),clr2{4});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=4', 'Analytic 
p_5','Location','Best'), hold off; 
%legend('Gegenbauer Basis q=0','EmpiricalBasis q=0', 'Gegenbauer Basis 
q=1','EmpiricalBasis q=1','Gegenbauer Basis q=3','Gegenbauer Basis 
q=4', 'EmpiricalBasis q=2','EmpiricalBasis q=3','Location','Best') 
  
  
%% Chebyshev Polynomials 
  
[Chebyshev_basis]=Chebyshev(v); 
  
  
%% Root Mean square Error Routine Chebyshev 
  
sum_totalCheby=zeros(length(v),4); 
  
for h=1:3 
    for i=1:length(v) 
        sumCheby(i,h)=(Chebyshev_basis(i,h)-basis_trunc(i,h))^2; 
        sum_totalCheby(i,h)=sum_totalCheby(i,h)+sumCheby(i,h); 
    end 
    RMS_chebyshev(:,h)=sqrt(sum_totalCheby(:,h)/length(v)); 
end 
  
for i=1:length(v) 
    sumCheby(i,3)=(Chebyshev_basis(i,4)-basis_trunc(i,3))^2; 
    sum_totalCheby(i,3)=sum_totalCheby(i,3)+sumCheby(i,3); 
end 
RMS_chebyshev(:,3)=sqrt(sum_totalCheby(:,3)/length(v)); 
  
for i=1:length(v) 
    sumCheby(i,4)=(Chebyshev_basis(i,5)-basis_trunc(i,4))^2; 
    sum_totalCheby(i,4)=sum_totalCheby(i,4)+sumCheby(i,4); 
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end 
RMS_chebyshev(:,4)=sqrt(sum_totalCheby(:,4)/length(v)); 
  
%% Plotting Chebyshev 
  
%Color scheme for plots 
clr1={'b*','r*','g*','k*'}; 
clr2={'b','r','g','k'}; 
  
disp(['For lambda= ' num2str(lambda)]) 
  
figure; title('Chebyshev vs. Empirical') 
%title(['Lambda = ( ', num2str(lambda), ')']) 
subplot(2,2,1),hold on, grid on, plot(v_Empir, 
basisscaled(:,1),clr1{1}), plot(v,Chebyshev_basis(:,1),clr2{1}), 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=1', 'Analytic 
T_1','Location','Best'), hold off; 
subplot(2,2,2),hold on, grid on, plot(v_Empir, 
basisscaled(:,2),clr1{2}), 
plot(v,Chebyshev_basis(:,2),clr2{2});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=2', 'Analytic 
T_2','Location','Best'), hold off; 
subplot(2,2,3),hold on, grid on, plot(v_Empir, 
basisscaled(:,3),clr1{3}), 
plot(v,Chebyshev_basis(:,4),clr2{3});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=3', 'Analytic 
T_4','Location','Best'), hold off; 
subplot(2,2,4),hold on, grid on, plot(v_Empir, 
basisscaled(:,4),clr1{4}), 
plot(v,Chebyshev_basis(:,5),clr2{4});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=4', 'Analytic 
T_5','Location','Best'), hold off; 
%legend('Gegenbauer Basis q=0','EmpiricalBasis q=0', 'Gegenbauer Basis 
q=1','EmpiricalBasis q=1','Gegenbauer Basis q=3','Gegenbauer Basis 
q=4', 'EmpiricalBasis q=2','EmpiricalBasis q=3','Location','Best') 
  
%% Fourier Polynomials 
  
[~, Fourier_basis] = make_basis_fourier_2010_09_27(v, q); 
  
  
%% Root Mean square Error Routine Fourier 
  
sum_totalFourier=zeros(length(v),4); 
  
for h=1:3 
    for i=1:length(v) 
        sumFourier(i,h)=(Fourier_basis(i,h)-basis_trunc(i,h))^2; 
        sum_totalFourier(i,h)=sum_totalFourier(i,h)+sumFourier(i,h); 
    end 
    RMS_fourier(:,h)=sqrt(sum_totalFourier(:,h)/length(v)); 
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end 
  
for i=1:length(v) 
    sumFourier(i,3)=(Fourier_basis(i,3)-basis_trunc(i,3))^2; 
    sum_totalFourier(i,3)=sum_totalFourier(i,3)+sumFourier(i,3); 
end 
RMS_fourier(:,3)=sqrt(sum_totalFourier(:,3)/length(v)); 
  
for i=1:length(v) 
    sumFourier(i,4)=(Fourier_basis(i,4)-basis_trunc(i,4))^2; 
    sum_totalFourier(i,4)=sum_totalFourier(i,4)+sumFourier(i,4); 
end 
RMS_fourier(:,4)=sqrt(sum_totalFourier(:,4)/length(v)); 
  
%% Plotting Fourier 
  
%Color scheme for plots 
clr1={'b*','r*','g*','k*'}; 
clr2={'b','r','g','k'}; 
  
disp(['For lambda= ' num2str(lambda)]) 
  
figure; title('Fourier vs. Empirical') 
%title(['Lambda = ( ', num2str(lambda), ')']) 
subplot(2,2,1),hold on, grid on, plot(v_Empir, 
basisscaled(:,1),clr1{1}), plot(v,Fourier_basis(:,1),clr2{1}), 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=1', 'Analytic 
f_1','Location','Best'), hold off; 
subplot(2,2,2),hold on, grid on, plot(v_Empir, 
basisscaled(:,2),clr1{2}), 
plot(v,Fourier_basis(:,2),clr2{2});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=2', 'Analytic 
f_2','Location','Best'), hold off; 
subplot(2,2,3),hold on, grid on, plot(v_Empir, 
basisscaled(:,3),clr1{3}), 
plot(v,Fourier_basis(:,3),clr2{3});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude');legend('Empirical q=3', 'Analytic 
f_3','Location','Best'), hold off; 
subplot(2,2,4),hold on, grid on, plot(v_Empir, 
basisscaled(:,4),clr1{4}), 
plot(v,Fourier_basis(:,4),clr2{4});xlabel('Normalized Transverse 
Distance, v, [m]') 
ylabel('Amplitude'), legend('Empirical q=4', 'Analytic 
f_4','Location','Best'), hold off; 
%legend('Gegenbauer Basis q=0','EmpiricalBasis q=0', 'Gegenbauer Basis 
%q=1','EmpiricalBasis q=1','Gegenbauer Basis q=3','Gegenbauer Basis 
q=4', 'EmpiricalBasis q=2','EmpiricalBasis q=3','Location','Best') 
  
  
%% Plotting RMS to compare each basis vector 
  
figure 
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grid on 
title('RMSE of Analytic vs. Empirical (1^s^t Basis Vector)') 
hold on 
plot(v,RMS_gegen(:,1),'g') 
plot(v,RMS_chebyshev(:,1),'r') 
plot(v,RMS_fourier(:,1),'b') 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Root Mean Square Error') 
legend('C_1 vs. b_1','T_1 vs. b_1', 'f_1 vs. b_1') 
  
figure 
grid on 
title('RMSE of Analytic vs. Empirical (2^n^d Basis Vector)') 
hold on 
plot(v,RMS_gegen(:,2),'g') 
plot(v,RMS_chebyshev(:,2),'r') 
plot(v,RMS_fourier(:,2),'b') 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Root Mean Square Error') 
legend('C_2 vs. b_2','T_1 vs. b_2', 'f_2 vs. b_2') 
  
figure 
grid on 
title('RMSE of Analytic vs. Empirical (3^r^d Basis Vector)') 
hold on 
plot(v,RMS_gegen(:,3),'g') 
plot(v,RMS_chebyshev(:,3),'r') 
plot(v,RMS_fourier(:,3),'b') 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Root Mean Square Error') 
legend('C_4 vs. b_3','T_4 vs. b_3', 'f_3 vs. b_3') 
  
figure 
grid on 
title('RMSE of Analytic vs. Empirical (4^t^h Basis Vector)') 
hold on 
plot(v,RMS_gegen(:,4),'g') 
plot(v,RMS_chebyshev(:,4),'r') 
plot(v,RMS_fourier(:,4),'b') 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Root Mean Square Error') 
legend('C_5 vs. b_4','T_5 vs. b_4', 'f_4 vs. b_4') 
  
%% Terrain Components Empirical 
  
[m,n]=size(TrueSurface); 
basis=basis(1:48,:); 
  
%Calculate the projection of the True Surface onto the principle 
    %directions 
  sigma = zeros(m,4); 
    for i=1:m, 
        for l=1:4, 
                sigma(i,l)=TrueSurface(i,:)*basis(:,l); 
        end 
    end 
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    %Calculate the truncated surface 
    sTruncSum=zeros(m,n); 
    sTrunc=zeros(m,n); 
    for i=1:m, 
        for l=1:4, 
            sTrunc(i,:)=sigma(i,l)*basis(:,l)'; 
            sTruncSum(i,:)=sTruncSum(i,:)+sTrunc(i,:); 
        end 
    end 
  
%% Terrain Components Analytical 
vIndex=linspace(1,48,20); 
vIndex=floor(vIndex); 
[a,b]=size(Gegen_basis); 
TrueSurfaceTrunc=TrueSurface(:,vIndex); 
     
   %Calculate the projection of the True Surface onto the principle 
    %directions 
  sigma_Gegen = zeros(m,20); 
    for i=1:m, 
        for l=1:20, 
                
sigma_Gegen(i,l)=TrueSurfaceTrunc(i,:)*w*Gegen_basis(:,l); 
        end 
    end 
     
    %Calculate the truncated surface 
    sTrunc_Gegen=zeros(m,a); 
    sTrunc_GegenSum=zeros(m,a); 
    for i=1:m, 
        for l=1:18, 
%            
sTrunc_Gegen(i,:)=sTrunc_Gegen(i,:)+sigma_Gegen(i,l)*Gegen_basis(:,l)'; 
             sTrunc_Gegen(i,:)=sigma_Gegen(i,l)*Gegen_basis(:,l)'; 
             
sTrunc_GegenSum(i,:)=sTrunc_GegenSum(i,:)+sTrunc_Gegen(i,:); 
        end 
    end  
return 

 

function [coeff, b, p, w] = make_basis_2010_04_30(v, lambda) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
% DESCRIPTION% 
% 
% returns the transition matrix so that sigma = invV*s 
% 
% Assumptions 
% 
% 1) Uses WEIGHTED inner-product (w=diag(1/nv); b'*w*b) 
% 2) Changes v to a column vector 
% 
% lambda = 1/2 => Legendre 
%  
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% 
% INPUTS 
% 
% 1) v: row vector with lateral locations of the grid with respect to 
path (meters) 
% 2) lambda: parameter defining the Gegenbauer polynomials  
% 
% OUTPUTS 
% 
% 1) coeff: a matrix of vectors representing the coefficients for the 
analytical polynomials 
% 2) b: a matrix of analytical basis vectors drived from the Gegenbauer 
% polynomials evaluated at the locations defined by v 
% 3) p: a matrix of polynomials evaluated at locations defined by x = 
% vector v 
% 4) w: weighting matrix for inner-product 
% 
% INTERNAL VARIABLE DEFINITONS 
% 
%  .nv: number of v values 
% 
% TASKS 
% 1) Initialize variables 
% 2) Form first two polynomial vectors and coefficients directly 
% 3) Form additional vectors from recursive method 
% 4) Check rank of coeff and form inverse 
% 5) Form Vandermonde matrix, V 
% 6) Check rank of V and form inverse 
% 7) Check p = V*coeff 
% 8) Form orthonormal basis vectors 
% 9) Form the weighting matrix w for the inner-product 
% 10) Check w is positive defninite 
%   10a) Check that w is symmetric 
%   10b) Check that w has positive eigenvalues 
  
% 
% VALIDATION 
% v=[0 1 2 3 4] - validated up through p4 (C3) 
% v=[-1 -.5 0 .5 1]; lambda = .5; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
  
% 1) Initialize variables 
sizeV = size(v); 
if sizeV(2)>sizeV(1), v=v'; end;    %Force v to be a vector 
nv = length(v); 
p  = zeros(nv,nv); 
coeff = zeros(nv,nv); 
errorTol = (nv^2)*1.0e-10;  % effectively an acceptable "zero" 
  
% 2) Form first two polynomial vectors and coefficients directly 
p(:,1) = ones(nv,1); 
coeff(1,1) = 1; 
  
p(:,2) = 2*lambda*v; 
coeff(2,2) = 2*lambda; 
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% 3) Form additional vectors from recursive method 
for i=3:nv,      
    n=i-1;                  % 'n' in documentation is i-1... 
    c1 = 2*(n+lambda-1)/n;  % coefficient multiplying vP(n-1) 
    c2 = -(n+2*lambda-2)/n;  % coefficient multiplying P(n-2) 
    p(:,i) = c1*(v.*p(:,i-1)) + c2*p(:,i-2); 
    % coeff calculated here... 
    coeff(1,i) = c2*coeff(1,i-2); 
    for j=2:nv, 
        coeff(j,i) = c1*coeff(j-1,i-1)+c2*coeff(j,i-2); 
    end 
     
end 
  
% 4) Check rank of coeff and form inverse 
rankCoeff = rank(coeff); 
if (rankCoeff<nv), 
    disp('coeff matrix is rank deficient'); 
    disp(['rank coeff =    ' num2str(rankCoeff)]); 
    disp(['required rank = ' num2str(nv)]); 
    invC=[]; 
else 
    invC  = inv(coeff); 
    invCt = inv(coeff'); 
end 
  
  
% 5) Form Vandermonde matrix, V 
V = zeros(nv,nv); 
for i=1:nv, 
    V(:,i)=v.^(i-1); 
end 
  
% 6) Check rank of V and form inverse 
rankV = rank(V); 
if (rankV<nv), 
    disp('V matrix is rank deficient'); 
    disp(['rank V =        ' num2str(rankV)]); 
    disp(['required rank = ' num2str(nv)]); 
    invV=[]; 
else 
    invV  = inv(V); 
    invVt = inv(V'); 
end 
  
  
% 7) Check p = V*coeff 
error = abs(max(max(p-V*coeff))); 
if error> errorTol, 
    disp('p does not equal V*coeff'); 
    disp(['min(min(p-V*coeff)) =    ' num2str(error)]); 
    disp(['maximum difference  = ' num2str(errorTol)]); 
    coeff=[]; 
    V=[]; v=[]; 
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    p=[]; 
end 
  
  
% 8) Form orthonormal basis vectors 
b=V*coeff; 
  
  
% 9) Form the weighting matrix w for the inner-product 
w=invVt*invCt*invC*invV;        % TODO use '/' or '\' to take inverse 
instead of 'inv' 
  
  
% 10) Check w is positive defninite 
%   10a) Check that w is symmetric 
error = abs(max(max(w-w'))); 
if (error>errorTol*1.0e+5),     % W is a very poorly conditioned 
matrix, implement '/' function and change this errorTol 
    disp('w is not symmetric'); 
    disp(['errorTol = ' num2str(errorTol)]); 
    disp(['error = ' num2str(error)]); 
    w=[];  
end 
  
%   10b) Check that w has positive eigenvalues 
error = min(eig(w)); 
if (error < 0), 
    disp('w does not have positive eigenvalues'); 
    disp(['min eig = ' num2str(error)]); 
    w=[];  
end 
  
  
%Development items - plot up to the first 5 basis vectors 
% figure; plot(v,p(:,1:min(5,nv)),'-'); xlabel('v'); ylabel('p'); 
title(['lambda = ', num2str(lambda)]); hold on; 
plot(v,p(:,1:min(5,nv)),'o'); 
figure; plot(v,b(:,1:min(5,nv)),'-'); xlabel('Normalized Transverse 
Distance, v,[m]'); ylabel('Amplitude'); title(['Gegenbauer Basis 
Vectors (lambda = ', num2str(lambda), ')']); hold on; 
plot(v,b(:,1:min(5,nv)),'o'); 
  
return 
 
 function [a, b, f] = make_basis_fourier_2010_09_24(v) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
% DESCRIPTION% 
% 
% Assumptions 
% 
% 2) Changes v to a column vector 
% 
% 
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% INPUTS 
% 
% 1) v: row vector with lateral locations of the grid with respect to 
path (meters) 
% 2) n: number of basis vectors desired to plot 
% 
% OUTPUTS 
% 
% 3) p: a matrix of polynomials evaluated at locations defined by x = 
% vector v 
% 
% INTERNAL VARIABLE DEFINITONS 
% 
%  .nv: number of v values 
% 
% TASKS 
% 1) Initialize variables 
  
% 
% VALIDATION 
% v=[0 1 2 3 4] - validated up through p4 (C3) 
% v=[-1 -.5 0 .5 1]; lambda = .5; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
  
% 1) Initialize variables 
sizeV = size(v); 
if sizeV(2)>sizeV(1), v=v'; end;    %Force v to be a vector 
v = sort(v);                        %make sure v is monotonically 
increasing 
nv = length(v); 
p  = zeros(nv,nv); 
a = zeros(nv,nv+1); 
b = zeros(nv,nv); 
%errorTol = (nv^2)*1.0e-10;  % effectively an acceptable "zero" 
  
theta = 2*pi*(v-v(1))/(v(nv)-v(1));    % Normalize 0 < theta < 2*pi  
maps to vector v 
  
 a(:,1) = ones(nv,1);   % this is the constant term... a_sub_0 
 for j = 1:nv, 
     a(:,j+1) = cos(j*theta); 
     b(:,j) = sin(j*theta); 
 end 
figure(1); hold all; 
xlabel('v'); 
ylabel('Fourier curves - cosines'); 
plot(v,a(:,1)) 
for j = 1:nv, 
     plot(v,a(:,j+1)); 
end 
  
figure(2); hold all; 
xlabel('v'); 
ylabel('Fourier curves - sines'); 
for j = 1:nv, 
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     plot(v,b(:,j)); 
end   
  
%% Fourier Series %% 
  
f=ones(nv,1); 
term1=0; 
term2=0; 
  
for j=1:nv 
    term1=term1+(a(:,j+1)).*cos(theta*v); 
    term2=term2+b(:,j).*sin(theta*v); 
end 
f=a(:,1)./2+term1+term2; 
return 
 
 function [chebyshev]=Chebyshev(x) 
%Input row vector and polynomial order for chebyshev polynomials of 
order 1 
chebyshev(:,1)=ones(length(x),1); 
chebyshev(:,2)=1.*x; 
chebyshev(:,3)=2.*x.^2-1; 
chebyshev(:,4)=4.*x.^3-3*x; 
chebyshev(:,5)=8.*x.^4-8*x.^2+1; 
chebyshev(:,6)=16.*x.^5-20.*x.^3+5.*x; 
chebyshev(:,7)=32.*x.^6-48.*x.^4+18.*x.^2-1; 
chebyshev(:,8)=64.*x.^7-112.*x.^5+56.*x.^3-7.*x; 
  
figure 
plot(x,chebyshev(:,1),'o-b'); 
hold on 
plot(x,chebyshev(:,2),'g'); 
plot(x,chebyshev(:,3),'-^m'); 
plot(x,chebyshev(:,4),'-xr'); 
plot(x,chebyshev(:,5),'--c'); 
xlabel('Normalized Transverse Distance, v, [m]') 
ylabel('Amplitude') 
legend('Analytic T_1','Analytic T_2','Analytic T_3','Analytic 
T_4','Analytic T_5') 
grid on 
return 
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