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A Galerkin Approach to Define Measured Terrain Surfaces with Analytic Basis Vectors

to Produce a Compact Representation

Heather M. Chemistruck

Abstract

The concept of simulation-based engineering has been embraced by virtually
every research and industry sector (Sinha, Liang et al. 2001; Mocko and Fenves 2003).
Engineering and science communities have become increasingly aware that computer
simulation is an indispensable tool for resolving a multitude of scientific and
technological problems. It is clearly desirable to gain a reliable perspective on the
behaviour of a system early in the design stage, long before building costly prototypes
(Chul and Ro 2002; Letherwood, Gunter et al. 2004; Makarand Datar 2007; Ersal, Fathy
et al. 2008; Mueller, Ferris et al. 2009). Simulation tools have become a critical part of
the automotive industry due to their ability to reduce the time and money spent in the
development process.

Terrain is the principle source of vertical excitation to the vehicle and must be
accurately represented in order to correctly predict the vehicle response in simulation. In
this dissertation, non-deformable terrain surfaces are defined as a sequence of vectors,
where each vector comprises terrain heights at locations oriented perpendicular to the
direction of travel. The evolution and implications of terrain surface measurement
techniques and existing methods for correcting INS drift are reviewed as a framework for
a new compensation method for INS drift in terrain surface measurements. Each
measurement is considered a combination of the true surface and the error surface,
defined on a Hilbert vector space, in which the error is decomposed into drift (global
error) and noise (local error). It is also desirable to develop a compact, path-specific,
terrain surface representation that exploits the inherent anisotropicity in terrain over

which vehicles traverse. In order to obtain this, a set of analytic basis vectors is formed



from Gegenbauer polynomials, parameterized to approximate the empirical basis vectors
of the true terrain surface. It is also desirable to evaluate vehicle models and tire models
over a wide range of terrain types, but it is computationally impractical to store long
distances of every terrain surface variation. This dissertation examines the terrain
surface, rather than the terrain profile, to maximize the information available to the tire
model (i.e. wheel path data). A method to decompose the terrain surface as a

combination of deterministic and stochastic components is also developed.
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1. Introduction

This dissertation is focused on formulating a method to define a compact yet
accurate representation of terrain surfaces that can be universally applied to various
terrain measurement systems and types of terrain. This work begins by identifying and
removing a primary source of error inherent to all terrain measurement systems equipped
with an Inertial Navigation system (INS), known as INS drift. By removing the effect of
this drift, the precision of the terrain measurement is improved by an order of magnitude
and the true terrain surface is estimated. Next, the terrain surface is decomposed into
principle characteristics, such as elevation, bank angle and rutting, which are identified
by basis vectors. The empirical basis vectors are approximated by analytic basis vectors
through a Galerkin approach, which is demonstrated on several samples of typical US
highway data. In this way, the set of analytic basis vectors are developed such that they
can be used to characterize all terrain of a particular type. The analytic basis vectors are
formed from the discretization of a set of generating analytic functions. The
discretization of these functions is based on the capabilities of the particular terrain
measurement system used to sample the terrain. This method eliminates the necessity to
calculate empirical basis vectors for each set of data by implementing the analytical basis
vectors corresponding to that type of terrain (e.g., US Highways). The projection of the
terrain data onto the analytic basis vectors can be used to characterize the terrain data in
terms of its principle components. This method allows this characterization to be
independent of the means by which the terrain system discretely samples the terrain
surface.  The Vehicle Terrain Performance Laboratory (VTPL) Vehicle Terrain
Measurement System (VTMS) is used to acquire the data on a sample of US Highways as
a proof of concept for this research. US Highways were selected as a terrain type
because of their extensive use by the driving community, offering approximately
75,000km (46,000 mi) of paved surfaces. In this way, the principle components of the
terrain surface are developed and can be combined to form an increasingly accurate

representation of the terrain surface. Lastly, using this method of decomposing the



terrain, each principle component of the terrain surface can be classified as deterministic
or stochastic. If the terrain component can be classified as stochastic, then it can be
modeled using the same approach by which a terrain profile can be modeled, resulting in
a more compact statistical representation.

The remainder of this chapter provides motivation for this research on developing
a compact representation of terrain surfaces, especially for terrain profiler development
and tire and vehicle simulations, as presented in Section 1.1. The problems that this
research seeks to address are identified in Section 1.2. The thesis statement and scope of
work are introduced in Section 1.3, followed by main contributions in Section 1.4.
Lastly, a brief outline of the dissertation is presented in Section 1.5.

1.1 Motivation

Throughout a vehicle development program, it is necessary to possess chassis
load data representing severe customer usage to ensure that the vehicle will perform as
required. Unfortunately, actual loads are only available at the conclusion of the program.
The design engineer is challenged with using predicted chassis loads early in the design
process to design the ‘best’ components with the currently available knowledge. It is in
these early stages that changes are relatively easy and inexpensive to make. However,
measured chassis loads representing true loading conditions are not available until late in
the program when changes to the design are extremely costly, if allowed to be
implemented at all. More knowledge about a vehicle’s true loading conditions early in
the design process would reduce cost and timing for a new vehicle. Similar difficulties
are faced by tire engineers since tractive efforts are largely dictated by the tire-terrain
interaction (Shoop 2001). It is advantageous, therefore, to accurately predict these target
chassis loads early in the program and to maintain a consistent process for predicting
chassis loads as the design develops throughout the program.

In order to predict these target chassis loads, a set of terrain that will be
consistently used to excite the vehicle must be determined at the beginning of a vehicle
development program (Ferris and Larsen 2002). It is clear that the terrain is the main
excitation to the vehicle (Aurell and Edlund 1989). Non-deformable terrain topology

imposes a unilateral contact constraint on rolling tires to which the tires respond by



generating forces and moments. The terrain remains a consistent excitation to the
vehicle, even as the vehicle design changes. Knowledge of this excitation, when applied
in conjunction with high-fidelity tire and vehicle models, would allow chassis loads to be
accurately predicted in vehicle simulations. Therefore, throughout the design process the
system response to this consistent excitation can be calculated and compared for each
vehicle design considered. Accurate terrain models would then provide the vehicle
designer with a powerful tool to make informed design decisions early in the design
process while changes are relatively inexpensive to implement. This will, in turn, shorten
vehicle development time and reduce overall development costs.

The current practice for vehicle and tire simulations is to use terrain profile data
as the input to these models. The terrain profile is an indexed set of terrain heights
extending longitudinally along each wheel path. These profiles can be considered signals
and in many cases can be modeled as a stochastic process, thus creating a compact
representation of the terrain profile. The ability to capture these signals in a compact
form is a major advantage of this simple representation of terrain.  Although
computationally efficient, this compact representation limits the available fidelity of data
to excite tire models. It would be advantageous to the design engineer to implement
terrain surface data as the input to tire and vehicle models since terrain surfaces are
capable of capturing more detailed information about the tire contact patch.

The terrain surface can be represented as an indexed set of transverse vectors of
terrain height, represented in matrix form. That is, each vector of the matrix comprises a
set of terrain heights located perpendicular to the direction of travel of the vehicle.
Although terrain surface data are more computationally expensive to use in simulation,
they typically provide better estimates of the tire-road interaction. Toward this end, this
work proposes a method to compactly represent terrain surfaces through representation

by analytic functions.

1.2 Problem Statement

Terrain profiles, whether measured or modeled, are a useful tool for many groups.
For example, civil engineers use terrain profiles of highways for pavement health

monitoring to determine when a highway needs to be resurfaced. Vehicle engineers use



terrain profiles for physical simulations on shaker rigs to test the durability of a vehicle.
An engineer working in modeling and simulation uses terrain profiles to create a virtual
simulation to test a proposed vehicle design before it is built. While terrain profiles are
the common practice, it would be advantageous to expand each group’s capabilities to
use terrain surfaces. Terrain is the consistent input into ground vehicle suspensions and
is, therefore, vital to understand when designing or analyzing any ground vehicle.

The American Society of Testing and Materials (ASTM) defines a longitudinal
profile as the perpendicular deviations of the pavement surface from an established
parallel to the lane direction, usually the wheel tracks (ASTM 1989). However, this
paper also includes surfaces that are not paved, therefore, throughout the rest of this work
the term terrain will be used to represent on-road and off-road surfaces that a vehicle may
traverse. Terrain profiles, as shown in Figure 1, consist of longitudinal distance traveled
and corresponding vertical height. Note that the horizontal axis is distance traveled in
meters and the vertical axis is the height in millimeters (this is to accentuate vertical

profile characteristics).

0.015— ! !

0.01-

0.005

...............

ht (mm)

Figure 1. Sample longitudinal terrain profile.



Recent optical and computational advances have produced terrain measurement
systems (Herr 1996) that can discretely sample the terrain at 941 points across a 4.2 meter
wide transverse path, resulting in four-millimeter resolution of the terrain surface
measurement. A sample of a measured cobblestone terrain surface, rendered as a contour
plot, is shown in Figure 2. If desired, terrain profiles can be identified from the terrain
surface measurements for analysis, but as it can be seen from Figure 2, there is more
information captured in the surface measurement as compared with the profile
measurement in Figure 1. These three-dimensional (3D) scanners are capable of
differentiating between small localized disturbances and disturbances that will excite the
vehicle chassis due to the fact that the scanner measures the entire width of the lane,
instead of a single line down the road. This is particularly important for properly
characterizing the envelopment property of the tire for accurate vehicle simulations, such
that vehicle responses will not be affected by narrow dips and small stones in the terrain
mapping (Karamihas 2005). Thus, the problem with using a single longitudinal profile is
that it assumes that the profile represents the entire width of the tire contact patch that the
tire is traversing, when the profile may actually contain a rock or a crack that produces a
non-representative response. This is merely one problem that can be solved by providing
more detailed knowledge of the terrain.



Figure 2. Sample terrain surface.

Despite the advantages of these 3D terrain measurement systems for terrain
surface acquisition, several issues must be addressed. Current terrain measurement
systems acquire approximately one-million data points per second. While this data
acquisition rate improves the available signal bandwidth and allows sharp disturbances to
be detected in both the transverse and longitudinal directions, for longer stretches of
terrain, storing and manipulating these data is a daunting task. One benefit of the
techniques developed in this work is a reduction in the steps required to post-process the
measured terrain data for implementation in tire and vehicle simulations, as well as
replacing measured terrain data with a stochastic terrain surface.

The potential of having a tool to accurately model and reproduce terrain surfaces
has long been recognized, especially since previous studies have only been focused on
characterizing and synthesizing terrain profiles. It is computationally impractical to
simulate a vehicle traveling over long stretches of terrain, requiring choices to be made
about the physical terrain features that are most appropriate for a given application.
Toward this end, the methods developed in this work decompose the terrain surface into
its principle characteristics, subjectively described as elevation, bank angle, crowning,

and rutting to name a few. Each terrain component can then be statistically analyzed



individually, such as identifying the roughness contributed by each component. The
overall contribution to the terrain surface could also be studied, as in the degree of
elevation change or the degree of rutting is exhibited by this section of road. In this way,
terrain surfaces can be grouped into meaningful sets with similar physical characteristics
based on similarities of terrain components from which sets of surfaces can be selected to
satisfy the needs of given applications.

Additionally, difficulties arise when two adjacent lanes have been measured and
need to be concatenated to form one continuous terrain mapping. Accurate and
representative concatenation of the two lanes is critical if a lane change maneuver is to be
performed on the data set. A solution to this problem is developed in Chapter 3 in which

the true surface is estimated from measured sets of terrain data.

1.3 Thesis Statement and Scope of Work

Thesis Statement: A high-fidelity yet compact representation of terrain surface types can

be developed that are insensitive to the particular measurement system being used and
allows for the study of principle terrain characteristics.

The primary goal of this research is to develop a technique to develop a compact
representation of a terrain surface while improving the fidelity of the estimated terrain
surface. This work focuses on non-deformable terrain, defined herein as terrain whose
surface deformation due to a single vehicle traversing the surface is negligible, such as
paved roads (both asphalt and concrete), gravel roads, and typical off-road trails;
deformable terrain such as sand and snow are beyond the scope of this work. The focus
of this work is further restricted to terrain surfaces that are anisotropic in nature, defined
herein as having an inherent path defined over which vehicles travel and where that
travel, over time, has defined obvious paths or lanes. Specifically this work pertains to
nearly 6.3 million kilometers (DOT 2008) of non-deformable anisotropic terrain over
which nearly 254.4 million vehicles travel each day (DOT 2006). The results of this
study are intended for application in the accurate prediction of tire loads based on full-
knowledge of the tire patch: lateral, longitudinal, and radial tire forces and the

overturning, rolling resistance and self-aligning tire moments acting on the contact patch.



Better modeling of the contact patch will yield more representative tire loading, which
will lead to better estimates of chassis loading scenarios and will inevitably result in
better ground vehicle reliability predictions. Current application of this work is limited to
the analysis of U.S. Highways, comprised of both asphalt and concrete, but the methods

developed in this dissertation are applicable to any non-deformable anisotropic terrain.

1.4 Main Contributions

This research focuses on the development of a high-fidelity and compact
representation of terrain surfaces that are insensitive to the terrain measurement system
used to acquire the data. Nevertheless, the methodology developed in this work is not
limited to the example cases. For example, any discretized polynomial or series can be
used to approximate the empirical basis vectors, as long as it provides the smallest root
mean square error solution. Additionally, these methods apply for any non-deformable
terrain surfaces, but additional research will be needed to determine if they apply for
deformable terrain. The main contributions of this research are:

1) The first representation of terrain surfaces as elements of a Hilbert Space, H

a. Terrain surfaces are explicitly defined as a sequence of vectors

b. Each vector comprises terrain heights at locations oriented
perpendicular to the direction of travel.

c. A vector space is defined by the span of these vectors

d. A weighted inner-product is defined and the norm is defined as the
induced norm

2) A novel method to remove INS drift:

a. The Hilbert space is decomposed into a Global subspace, G, and the
complementary local subspace, G°.

b. A sequence of error vectors are defined such that each error vector is
the difference between the measured terrain surface vector and the true
surface vector.

c. The three vectors comprising the measurement, error, and true surface
at each longitudinal location have components in both the Global and

Local subspaces.



d. The Global subspace is defined such that the component of the error
vectors in the Global subspace can be modelled as a random-walk
process and the elements of the error vectors in the Local subspace are
elements of a zero-mean uncorrelated noise process.

e. The Global error, arising from Inertial Navigation System (INS) drift,
is identified and removed from the measurements such that the
standard deviation of the residual noise process (Local error) is within
the resolution of the measurement system (+/-1mm)

f. The true surface is computed from the drift-free measurements using a
non-linear expectation estimator.

3) The first rigorous definition of principle terrain characteristics:

a. Although principle terrain characteristics, such as elevation, bank
angle, crowning, and rutting have been subjectively described and
techniques for ad hoc measurement of these characteristics have been
defined (AASHTO 2009), this research develops sets of empirical
basis vectors for US Highways that are consistent between asphalt and
concrete roads

b. The principle terrain characteristics are defined with analytic basis
vectors that closely approximate these consistent empirical basis
vectors by minimizing the root mean square error between the
empirical and analytic basis vectors.

4) 1t is the first method that has been developed that can define terrain surfaces
without sensitivity to the measurement system used to acquire the terrain data

a. Analytic basis vectors can be discretized based on terrain measurement
system capabilities to sample the terrain

5) A novel method to stochastically represent a terrain surface

a. Components of terrain (known as o;) capture the magnitude of the
principle terrain characteristics along the length of the terrain surface

b. Components of terrain are classified as deterministic or stochastic

c. Stochastic components of terrain can be modelled in the same manner

as terrain profiles



d. Truncated terrain surface is synthesized based on stochastically

modelled components of terrain

1.5 Dissertation Outline

This work is organized as follows. Chapter 1 motivates the research and presents
the scope of work, research objectives and main contributions. In the second chapter,
recent literature pertaining to terrain measurement techniques and sources of error, such
as drift contributed by the Inertial Navigation System (INS) are presented, followed by
the definition of the coordinate system used throughout the developments in this work.
The second chapter concludes with background on current methods used to study the
roughness of the terrain and the latest terrain modeling techniques. A novel technique for
removing the drift components of error from terrain measurements is developed in the
third chapter. The fourth chapter develops a terrain surface representation that retains
sufficiently high-fidelity information while possessing the simplicity of terrain profiles,
as well as being insensitive to the choice of the terrain measurement system from which
the data were acquired. A novel method to represent a stochastic terrain surface is
developed in the fifth chapter. Applications of this research, conclusions that can be
drawn for this dissertation and areas for future work are presented in chapter six.
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2. Background

Terrain can typically be grouped into two major categories, the first is defined as
empirical terrain, based on physical measurements of the terrain surface, and the second
is based on mathematical models aimed at characterizing the physical measurements,
defined here as analytical terrain. It is further important to distinguish between the
concept of continuous and discrete, or analog and digital. There exists a continuous
empirical terrain surface, known as the true surface. This surface has infinite bandwidth
and maintains every detail of the terrain (Sayers and Karamihas 1998). Due to
limitations of technology, it is only achievable to sample the true terrain surface at
discrete locations, resulting in discrete empirical terrain surfaces, or digital terrain
surfaces. Furthermore, there exist continuous analytical functions that are used to
approximate continuous terrain surfaces. Additionally, synthetic terrain can be generated
by the continuous analytical functions, and then discretized to match the same sampling
rate of the empirical data for appropriate analysis of the two segments. With this
differentiation, several areas of research that will be reviewed in this chapter under the
empirical terrain classification are terrain measurement systems, including terrestrial
terrain measurement systems and digital terrain measurement (DTM) systems, the
coordinate system used for empirical terrain data, and roughness indices used to classify
the components of terrain. Under the analytical terrain classification, state-of-the-art
methods used to approximate empirical terrain data with mathematical models, including
statistical analysis, terrain characterization, and approximation techniques will be
reviewed. This chapter concludes with a concise summary of the state-of-the-art in

terrain studies.
2.1 Empirical Terrain

2.1.1 Terrestrial Terrain Measurement Systems
The technological developments in the area of terrain measurement has
progressed from vehicle-response systems (Hveem 1960; Gillespie, Sayers et al. 1980) to

the measurement of various types of terrain using vehicle-independent systems
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(Dembski, Rizzoni et al. 2006; Dembski, Rizzoni et al. 2006; Kern and Ferris 2007;
Wagner, Kern et al. 2007; Liu, Dembski et al. 2008). As a result of these technologies,
terrain measurement systems have been developed with various capabilities and can be
classified as one of the four types of systems (Perera and Kohn 2002; Wang 2006):

1) Manual Devices

2) Profilographs

3) Response type road roughness measuring systems (RTRRMs)

4) High-speed inertial profilers

Manual devices are typically used as reference devices for measuring terrain
because the measurements are taken statically and do not contain the same error
associated with dynamic systems. The standard test method for measuring road
roughness with a manual device is described in ASTM Standard E1364 (ASTM 1996).
The most common types of manual devices are the rod and level and the dipstick (Sayers
and Karamihas 1998). The rod and level are most commonly used in surveying. The
level provides the elevation reference, and the rod measures the height of the terrain
relative to the level. The Dipstick is a type of walking profiler that is more automated
than the rod and level system as it is equipped with an onboard computer for recording
elevation height and an inclinometer to measure the angle of the surface. Despite the role
of these devices as reference terrain measurement systems, they are time consuming and

do not allow for a high sampling rate of the vertical elevation of the road.
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A)

B)
Figure 3. Samples of manual devices A) Road and Level B) Dipstick

Profilographs are most commonly used in evaluating the smoothness of paved
surfaces. These systems are typically large, mobile, rigid beams with either a center
wheel that is linked to a computer which records the movement of the wheel from the
established datum, or modern systems can be equipped with a series of lasers to capture
multiple profiles along the span of the device. Regardless of the setup, these

measurement systems have been found to have inherent errors in their ability to
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appropriately measure the wavelengths present on the road- some wavelengths have been
amplified or attenuated as compared with the reference device. When comparing
roughness index values between these systems and the reference device, it has been found
that the measurements resulting from profilographs can totally miss the wavelength
which affects ride quality and roughness indices. The misreading may result in a
“smooth” roughness rating, when in actuality the pavement needs to be rehabilitated.
More detail on roughness indices can be found later in this Chapter.

RTRRMs estimate the terrain surface by measuring and summing the vertical
motion of the axle or road following wheel relative to the body of the host vehicle or
trailer, with respect to horizontal distance traveled by the host vehicle or trailer. The
measurement units are of average rectified slope (ARS) or more commonly known as
mm/km or in/mi (Gillespie, Sayers et al. 1980; Sayers and Paterson 1986; Gillespie 1992;
Wang 2006). The accuracy of the resulting effective terrain profile relies on the fidelity
of the physical condition of the tire and vehicle, since they act as a mechanical filter to
the terrain, as well as the operating speed of the host unit. Several examples of these
RTRRMs include the Bureau of Public Roads (BPR) Roughometer, the CHLOE, Mays
Meter and the PCA Meter to name a few. The BPR Roughometer, as seen in Figure 4A,
consisted of a single-wheel trailer in which the mass, tire properties (i.e. temperature and
pressure) and suspension system were standardized to minimize the effect of varying
parameters on the roughness measurement (Hveem 1960; Gillespie 1992). The CHLOE,
as seen in Figure 4B, featured a trailer equipped with two small wheels, located nine
inches apart to measure the local road slope as the system was towed at low speeds along
the road (Gillespie 1992). The Mays Meter, as seen in Figure 4C, was equipped with
transducers on the host vehicle body and axle to measure the vehicle’s suspension travel
(1973; Perera and Kohn 2002). The PCA Meter was very similar to the Mays Meter in
that it measured accumulated axle displacement, but this system gave a greater weight to
larger displacements (Gillespie 1992). All of these systems are subject to being affected
by the dynamics of the vehicle, particularly instability with time (a measurement
completed in present day is not comparable to measurements made several years ago) and
the roughness measurements are not transportable with measurements taken from

different systems (Sayers and Karamihas 1998). In addition to these flaws, there are
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numerous modeling difficulties to derive the original terrain profile in this process, as far
as identifying and removing the mechanical filtering properties of the vehicle system
(e.g., the enveloping property of tires precludes capturing the sharpness of terrain events).
RTRRMs should only be used, therefore, to describe the terrain’s influence on the host
vehicle in terms of ride quality or making general statements about terrain roughness, not

about generating the true terrain profile.

A)

B)
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C)
Figure 4. Samples of RTRRMs A) BPA Roughometer B) CHLOE C)Mays Meter
(Gillespie 1992).

A more precise method is direct measurement of terrain with high-speed inertial
profilers, as shown in Figure 5. These systems are typically equipped with some
combination of elevation sensors, accelerometers and distance measuring systems (Perera
and Kohn 2002). The elevation sensors measure the distance from the terrain to the
sensor, whether it is a laser, ultrasonic, optical, or infrared sensor. The accelerometers
are used to measure the vertical acceleration of the host vehicle with respect to the
elevation sensor, and used to establish an inertial reference. Lastly, the distance
measuring system such as a global positioning system (GPS) or speedometer is used to
provide the horizontal distance traveled. General Motors Research (GMR) developed the
first high-speed inertial profiler in the 1960s (Spangler and Kelly 1966). This profiler
implemented a road-following wheel that extended below the body of the host vehicle to
measure the relative distance between the body and the road surface. An accelerometer
was attached to the body and, having integrated the signal twice, measured the absolute
instantaneous vertical position of the body. The resulting road profile is then the
difference between the integrated signal and the measurement from the elevation sensor.
A major fault in this system is that it relies on accelerometer data to remove unwanted
body motion from post-processed data files. The reliability of these traditional
accelerometer-based systems suffers when vehicle speed falls below 5 m/s (Walker and
Becker 2006) and in other low frequency environments. Despite this, and the limitation

to sample a single longitudinal profile per measurement, the design of the GMR road
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profiler lead the way in technological advances for better, more consistent sampling of

the terrain surface.

Computer .
] Distance
— Measurement
I Accelerometer
Elevation |
Sensor ‘

Figure 5. Basic diagram of a high-speed inertial profiler.

In 1987, The Australian Road Research Board (ARRB) substituted a laser for the
road-following wheel (Prem 1987). In this system, the terrain is sampled optically, rather
than mechanically as had been the standard practice. Presently, research is being
conducted that examines the implications of this fundamental change. For example, the
laser has a much finer resolution than the tire contact patch, capable of detecting small
localized disturbances that would be enveloped or bridged by the tire of a typical
passenger vehicle (Smith 2009).

As computer power increased and signal processing techniques evolved, high-
speed inertial profilers became more capable (Kern and Ferris 2007; Wagner, Kern et al.
2007). Recent advances have produced 3D terrain measurement systems which can scan
a wide transverse path with vertical resolution of less than a millimeter. Current terrain
surface measurement systems incorporate a scanning laser (Herr 1996) that is rigidly
mounted to the body of a host vehicle (Kern and Ferris 2007; Wagner, Kern et al. 2007;
Liu, Dembski et al. 2008). The Vehicle Terrain Measurement System (VTMS) (Kern and
Ferris 2007; Wagner, Kern et al. 2007), shown connected to the host vehicle in Figure 6,
was used to acquire the data for this work. The scanning laser, affixed at the rear of the
vehicle, acquires 941 data samples transversely across a 4.2 meter wide path each
millisecond. In this particular system, the laser is emitted continuously and reflected
against a rotation prism so that the system acquires data at equal samples in time. The

laser system has a 90 degree field of view and the resulting parallax conversion produces
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results in a Cartesian coordinate system. This vehicle traverses the terrain while
simultaneously acquiring terrain measurements.  When the vehicle encounters a
disturbance, the laser translates and rotates with the body of the host vehicle. To obtain
accurate terrain measurements, the motion of the vehicle must be accurately measured so
that it can be removed from the laser measurement. Modern systems, including the
VTMS, use an Inertial Navigation System (INS) to measure the vehicle movement
(Kennedy, Hamilton et al. 2006). The accuracy of the INS depends on the alignment of
the Inertial Measurement Unit (IMU) to the laser and satellite coverage of the Global
Positioning System (GPS). Many factors affect the INS error. For example, small
misalignment between the scanning laser and the Inertial Measurement Unit (IMU) will
compound the error that can be anticipated from any Differential GPS (DGPS) (Smith
and Ferris 2008). Once the data from the scanning laser and the INS are translated to a
common coordinate system and synchronized in time, the laser data are nominally

corrected for host-vehicle body motion and transformed to a global coordinate system.

Figure 6: Host Vehicle Terrain Measurement System (VTMS)
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2.1.2 Digital Terrain Measurement Systems

Digital Terrain Modeling originated in the 1950°s with the original purpose to
aide in highway routing and design, with terrain data acquired photogrammetrically
(Miller and Laflamme 1958). Photogrammetry is the practice of determining the
geometric properties of an object from photos. A Digital Terrain Model (DTM) is
defined as “an ordered array of numbers that represents the spatial distribution of terrain
characteristics. The spatial distribution is represented by an XY horizontal coordinate
system and the terrain characteristic which is recorded is the terrain elevation, Z (Doyle
1978).” Similar to DTMs, Digital Elevation Models DEM) are defined differently from
DTMs because they capture different terrain characteristics. These models are defined by
latitude ¢ and longitude coordinates A, with the terrain elevation, h. The data from both
models are organized either in matrix form by XY coordinates and the corresponding Z
elevation or by equations of the surface defined by polynomials or Fourier series (Doyle
1978).

The coordinate system used in this early work was based on the State Plane
Coordinate System. In the 1930s, the United States was divided into specific regions and
a specific Cartesian coordinate system was assigned to each region. In the 1950’s the
coordinate system transitioned to the Universal Transverse Mercator coordinate system,
which is commonly known as the WGS84 ellipsoid used in GPS presently (Doyle 1978).
For the purpose of highway design, an XY horizontal coordinate system was established
with the X-axis in the general direction of the proposed highway alignment. As is
described in section 2.1.4 of this work, the global coordinate for terrestrial terrain
measurement systems is oriented with Y in the direction of vehicle travel, and X
perpendicular to vehicle travel.

DTM data can be acquired from existing topographical maps, photogrammetric
stereomodels, or more recently, airborne laser scanners. Before computers were common
place, review of topographical maps was popular, but time consuming, and did not offer
the same resolution that is available from airborne laser scanners of today. A better
method used in the 1950’s was photogrammetric stereomodels, where elevation data was
formatted in numerous ways, such as contour lines, profiles with elevations recorded at

regular intervals, or at geographic points along major terrain features (Doyle 1978).
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Photogrammetric systems are limited by good lighting, where elevation points can be
affected by shadows from trees. A notable photogrammetric system, the Gestalt
Photomapping System, was capable of outputting an array of digital elevation data at a
spacing of 182mm at photographic scale, corresponding to approximately 14.3m on the
ground scale when using photographs at 1:80,000 scale (Kelly, McConnell et al. 1977,
Rose 2001). Similar to terrestrial terrain measurement systems, as technology advanced,
the area of digital terrain measurement systems moved from manual methods and
photogrammetrics to airborne laser scanners. Airborne laser scanner data offers detailed
3D digital terrain mappings with approximately one elevation point per square meter over
a 1000x1000 km area.

Airborne laser scanners, also known as light detection and ranging (Lidar), are
used for the derivation of topographic data and the generation of DTMs. Most airborne
digital terrain measurement systems are mounted on an aircraft or helicopter, with data
taken in a strip-wise manner. The laser, operating near infra-red (IR) frequency ranges,
acquires data at frequencies ranging from 1-83kHz resulting in elevation accuracy of a
few centimeters (Briese and Pfeifer 2001). The scanning lasers used on these systems are
insensitive to shadows, unlike the photogrammetric systems, however the aperture size
on the laser is about half as small as that as the photogrammetric systems and requires
more laser scans to be taken to cover the same area of terrain (Kraus and Pfeifer 1998).
One version of an airborne laser scanner is the TopEye which is suspended from a
helicopter. It is equipped with a vertical scanning direct detection laser radar operating at
a wavelength of 1.06pum and pulse rate between 2 and 7kHz (Elmqvist, Jungert et al.
2001). The operational altitude is between 60-900m and is able to produce point
position, intensity of reflection as well as multiple return or double echo data. When
flying between 10-25m/s at altitudes of 120-375m, the point density of the acquired data
varies from 2-16 points per square meter (EImquvist, Jungert et al. 2001). These systems
along with terrestrial systems that are equipped with GPS and INS are inherently plagued

by systematic errors. These systematic errors are discussed in the next Section.

2.1.3 GPS and INS Error Sources
Typically, an INS is capable of establishing a geodetic position with two
centimeter accuracy (Smith 2009). It is clear that large localized disturbances in the
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measured terrain surface will cause erroneous vehicle simulation results. In addition,
slowly varying height changes that are artifacts of the INS drift will skew the absolute
height of the terrain surfaces in the global reference frame (Fritsch and Kilian 1994;
Kraus and Pfeifer 1998). For independent lane scans, this problem may not affect the
application of the terrain data, since the absolute height of the terrain may not be of
interest. If a measurement, for instance, is taken over perfectly level terrain for one mile,
a slowly varying height change of several centimeters will not hinder simulation
effectiveness. However, if data were recorded along the first lane of a two lane highway
early in the day and a few hours later the second lane was measured, then any vertical
misalignment of the two lanes resulting from the INS drift would produce an artificial
vertical shift between lanes. The misalignment between the two lanes would cause
undesired excitations into a model undergoing a lane change maneuver. Similar to a
method developed by Smith, Kraus suggested identifying terrain data that exist in two
sets of data and compare those points to known survey data, and adjust the surface
accordingly (Kraus 1997; Smith 2009).

Airborne laser scanners are plagued with the same systematic errors as the
terrestrial systems, as both systems are equipped with an INS and a GPS. The difference
is the magnitude of the INS drift. Experimentation has shown the root mean square
(R.M.S.) error of airborne systems to be 10.7cm or more in vertical elevation accuracy as
compared with survey data (Pfeifer, Stadler et al. 2001). This is a full order of magnitude
greater than that seen by terrestrial applications, where terrestrial measurement systems
may see a +/-10mm deviation due to INS drift (Chemistruck, Binns et al. 2010). Many
different errors and uncertainties arise when working with airborne laser scanner data due
to the amount of filtering that needs to be completed to reduce the acquired data to terrain
data only (Li 1994; Lopez 1997; Kraus and Pfeifer 1998; Briese and Pfeifer 2001;
Pfeifer, Stadler et al. 2001; Kraus, Briese et al. 2004). Focusing on the contributions of
error from the GPS and INS alone, studies have shown three major results. The first is
that the mean square error in determining the height of an elevation point as referenced
by the GPS is worse than the accuracy of the laser scanner measurement. Second, the
GPS phase ambiguities based on on-the-fly initialization for fast moving objects results in
+/-10cm error in identifying the origin of the polar coordinates. All airborne laser
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scanners use polar coordinates for data acquisition. Lastly, the INS orientation has an
error of up to 0.01 degrees, corresponding to a terrain point accuracy of +/-1cm for a
flying height of 1000m (Kraus and Pfeifer 1998). Data acquired from airborne laser
scanners have also shown discrepancies in height when trying to stitch two sets of data
together.

The accuracy of the INS is dependent on instrumental biases and environmental
biases, such as the number of satellites used by the receiver, the satellite-receiver
distance, atmospheric effects, satellite and receiver clock offsets, phase ambiguities, and
others (Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Sarma 2008). To decipher the
systematic errors based on the INS and GPS as compared with the measurement sensor,
Smith developed an excitation event and calibration surface to identify and isolate the
error of the measurement sensor, in this case a scanning laser (Smith and Ferris 2009;
Smith 2009). He also developed an ad hoc method to compensate for error contributed
by INS drift, but this method fails to retain the absolute height (Smith and Ferris 2008).
According to Fritsch, “the INS drift can be estimated from the long term stability of the
GPS observations and on the other hand the larger observation noise of the GPS
observations could be compensated by the short term stability of the INS (Fritsch and
Kilian 1994).”

A strong effort has been made to characterize the GPS and INS errors by
categorizing the errors based on the error origin. Specifically, several techniques have
been used to estimate instrumental biases. One of the first proposed techniques, from
preoperational GPS systems in the 1990’s, applies the least squares method to estimate
the coefficients of a two-dimensional quadratic model for vertical Total Electron Count
(TEC) from a single GPS receiver. TEC is defined as the number of electrons in a
column 1 m2 square extending from the base station to the satellite with unites of e/m2
(Coco, Coker et al. 1991). Coco et al. applied Lanyi and Roth’s technique to study the
variability of the GPS instrumental biases (Coco, Coker et al. 1991). As technology
advanced, ionospheric delay was investigated through the development of ionospheric
maps. The ionosphere acts as a dispersive medium to GPS signals, thus ionospheric
propagation delays can be removed by the use of two frequencies- L1 and L2 (Coco,
Coker et al. 1991). The bias for the two GPS frequencies (L1=1575.42 MHz and

22



L2=1227.60 MHz) and their difference, is referred to as differential instrumental bias and
will produce systematic errors in the estimates of the ionospheric delays (Sardon and
Zarraoa 1997). lonospheric delays are vertical delay estimates at specified lonospheric
Grid Points (IGPs). Estimation of the IGP delay is limited by instrumental biases.
Instrumental biases are the difference of the propagation paths of L1 and L2 signals and
is directly due to the circuitry in the GPS satellite and receiver hardware (Sarma 2008).
Wilson and Mannucci applied two techniques based on surface harmonics and
triangular interpolation for the development of global/regional ionospheric maps
(Mannucci, Hajj et al. 2004). When GPS systems became completely operational in the
mid-1990’s, regional and global TEC maps were developed to improve the overall
accuracy of the GPS system. These operational systems implement the dual frequencies,
L1 and L2, which were previously introduced. A better technique for estimating
instrumental biases and TEC was proposed by Sardon through modeling stochastic
parameters of the GPS errors with a Kalman filter (Sardon, Rius et al. 1994). Sardon
does not explicitly identify noise, multipath, differential delay between L1 and L2
antenna phase centers or selective availability in his stochastic model, rather he lumps the
errors into one term. More recently, Sarma et al. applies singular value decomposition
(SVD) algorithm to estimate the instrumental biases from data for several dual frequency
GPS receivers (Sarma 2008). A complete investigation of the accuracy of these systems
has been conducted by Binns, Smith and Wang (Wang 2006; Smith and Ferris 2008;
Smith and Ferris 2009; Smith 2009; Smith 2009; Binns 2010). A method for removing
the error contributions from the GPS and IMU is developed in Chapter 3, without
requiring the identification of each error source, such that the effects of INS drift in the
measured surface are removed. The next section defines the terrain coordinate system

used for theoretical development in this dissertation.

2.1.4 Defining the Coordinate System

The coordinate system for non-deformable, anisotropic terrain topology is defined
in this Section. Terrain surfaces in this work will be defined using a curved regular grid
(CRG) format; however it is important to note that other gridding methods exist. DTMs
are typically organized in three types of data structures, square-regular grid, triangulated
irregular network (TIN) and contour-based networks. Square-regular grids are most

23



computationally efficient, but fail to handle abrupt changes in the terrain surface. TINSs
are typically constructed with Delaunay triangulation and are most suitable for
identifying rough terrain features (Petrie and Kennie 1987; Yoon 2003). Contour-based
networks are best for identifying general trends in the terrain surface, and are particularly
good for hydrological applications. Other gridding techniques exist, but the techniques
briefly discussed here are most common for terrain applications (Wilson and Gallant
2000). The CRG format is discussed in detail next as it is the basis for the theoretical
discussion in this work.

The result of data acquisition and signal processing from the VTMS is a point
cloud of terrain height data, located in non-uniform locations in the horizontal plane, as
shown in Figure 7a (Kern and Ferris 2007; Wagner and Ferris 2007). Airborne terrain
measurement systems also acquire data in a non-uniform grid-spacing, but these systems
are faced with additional post-processing issues to remove vegetation and buildings from
the data set (Kraus and Pfeifer 1998; Kraus, Briese et al. 2004). Once the data from the
scanning laser(s) and the INS are translated to a common, body-fixed coordinate system,
synchronized in time, and nominally corrected for host-vehicle motion, the data are
transformed to a global coordinate system (X, y, z). The result is a point cloud of terrain
height data, located in the horizontal plane as shown in Figure 7a (Kern and Ferris 2007;
Wagner and Ferris 2007). A path coordinate, u, and a perpendicular coordinate, v, are
introduced to form a curved regular grid (CRG) in the horizontal plane, as shown in
Figure 7b (Gimmler, Ammon et al. 2005; Rauh and Mossner-Beigel 2008; VIRES
October 2008). Discrete longitudinal locations along coordinate u are defined as vector
u and are indexed by i; discrete transverse locations are defined as vector v and are
indexed by j. The terrain height corresponding to each discrete horizontal grid point (u,
v) is determined by examining the vertical heights in the localized area around that
horizontal location. The spatial interpolation method (e.g., mean, median, inverse-
distance-to-a-power, and kriging) must be carefully chosen based on the application
(Stein 1999; Stein, Meer et al. 2002; Detweiler and Ferris 2008; Detweiler and Ferris
2009; Wackernagel 2010), the accuracy of the measurement system (Pfeifer, Kostli et al.
1998; Pfeifer, Stadler et al. 2001; Detweiler and Ferris 2008; Smith and Ferris 2008;
Smith 2009), and the local homogeneity and isotropic nature of the terrain.. In this way,
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each terrain surface comprises a sequence of transverse scans, perpendicular to the
direction of vehicle travel, that have been nominally corrected for body motion. This
body motion correction relies on the ability to accurately measure the position and
orientation of the vehicle, typically using an INS that is prone to small amounts of drift
(Fritsch and Kilian 1994; Pfeifer, Kostli et al. 1998; Wagner, Kern et al. 2007). A

method to correct for INS drift is presented in Chapter 3 of this dissertation.

(A)

v

(B)

Figure 7: Creating a uniform grid (Curved Regular Grid) in the horizontal plane: A) cloud
data measured in vehicle centered coordinate system B) CRG example.

The discretized terrain surface is defined as a sequence of vectors of terrain
elevation as shown in Figure 8. Each vector is oriented perpendicular to the direction

of travel, nominally corrected for body motion, and indexed by i (VIRES October 2008).
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The number of discrete transverse locations and the corresponding length of vector v will
vary according to the measurement system. If single point lasers are used, then the length
of v will equal the number of lasers. Alternately, if a scanning laser is used that measures
a full lane width at irregularly spaced intervals, then the length of v depends on the
sampling interval for the spatial interpolation. Now consider several measurements of
the terrain surface. Each measurement is considered a realization of an underlying
stochastic process. An additional index, k, is introduced to indicate a particular
realization of the process; the total number of realizations being considered is r, so that k
takes on values 1, 2, ..., r. The motivation for defining the terrain in this manner is for
use in removing drift from the terrain measurements and for analyzing 3D terrain
surfaces for developing new surface modeling approaches. The next section reviews
terrain roughness indices as they apply to analyzing longitudinal profiles, however, in this
work they will be used to analyze the components of terrain.

Figure 8. Defining the surface coordinate system (u, v, z) on a CRG format.

2.1.5 Terrain Roughness Indices

Terrain roughness is the most important indicator of pavement performance
because it directly affects the way in which pavements serve the traveling public. Terrain
roughness impacts vehicle dynamics; road maintenance; and road users in terms of
health, safety, travel times, vehicle operating costs, and many other facets. It is defined
by ASTM E867-82A as “The deviations of the surface from a true planar surface with
characteristic dimensions that affect vehicle dynamics, ride quality, dynamic loads and
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drainage” (ASTM 2006). It is vital to consider the road and travelling vehicle as
inseparable parts of a unique complex system affecting the dynamics and loading of both.
Roughness indices are measures of unevenness of the pavement in relation to vehicle
response and, as such, are used as metrics to judge the ability of stochastic models to

characterize the terrain.

Clearly, two roads that share a single roughness index need not have the same
characteristics, but they share some general measure of roughness. The use of a single
number to describe the overall condition of a road has been questioned, and other
approaches for classifying terrain roughness using newly proposed indices or a
combination of indices have been proposed (Sayers and Karamihas 1996; Papagiannakis
and Raveendran 1998; Liu and Herman 1999; Ahlin, Granlund et al. 2004; Rouillard
2004; Capuruco, Hegazy et al. 2005; Kropa¢ and Mucka 2005; Kropac¢ 2008). Since
roughness indices statistically describe the unevenness of the terrain, a major application
is to judge the quality of the synthetic terrain produced from the terrain models. The
index values for the synthetic terrain and the measured terrain can be computed and the
distributions of the index for the synthetic and measured terrain then compared.
Similarities in the distributions indicate how well the model captures the terrain
unevenness in the synthesized data set, insofar as a single roughness index is able to
characterize terrain unevenness. Discrepancies in the distributions would suggest that the
terrain model is incapable of sufficiently modeling a particular terrain and a different
terrain model should be used. In this work, the roughness indices will be used to analyze
the principle components of terrain and compare the results with the roughness index of a
longitudinal profile taken from the terrain surface and draw conclusions.

2.1.3.1  Quarter-Car Roughness Indices

The indices presented in this Section calculate the terrain roughness with some
mathematical operation on the accumulated suspension stroke over the total distance
traveled as determined by a quarter car model, as shown in Figure 9. The sprung mass,
M;, is the portion of the vehicle body mass supported by one wheel. The unsprung mass,
M,, is the mass of the wheel, tire and half of the axle/suspension at one corner of the

vehicle. The tire spring rate is depicted by K;, and the suspension spring rate is depicted
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by Ks. The damping coefficient of the suspension system is Cs. The measure of
suspension travel over time is show as z(t), and the distance traveled by the model is L.
The parameters chosen for this model are Golden Car parameters, please refer to
Appendix B for details. The parameters do not describe an average American passenger
as commonly thought; rather the parameters were selected to match the sprung mass
response of a typical passenger vehicle. Specifically, the spring rates were selected to
match the two major resonant frequencies, body and axle bounce, with the damping
coefficient much higher than in most cars and trucks to improve correlation with a wide

variety of response-type measurement systems (Sayers 1995).

Figure 9. Quarter-car model used to calculate roughness indices based on inertial

profiling devices.

International Roughness Index (IRI)

The standard index used for determining road roughness is the International
Roughness Index (IRI) (Sayers 1989; Sayers 1995). The IRI has been adopted by road
agencies worldwide for use in pavement health monitoring and determining the best
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construction practices to develop the smoothest roads possible. It is considered an
indicator of pavement serviceability, independent of the particular equipment used to
measure it, internationally and geographically transferable, and time invariant (Hajek,
Kazmierowski et al. 1998). The IRI is computed from a single longitudinal profile with a
measurement resolution of 0.5mm to sufficiently capture the characteristics of the terrain
of interest. The terrain profile is assumed to have a constant slope between sampled
elevation points and is smoothed with a moving average having a base length of 250mm.
The smoothed profile is then filtered using a quarter car model at a simulated speed of 80
km/hr. The accumulated suspension motion is linearly accumulated and divided by the
profile length to yield the IRI, having units of elevation per distance (mm/km or in/mi),
as shown in Equation 1, with detailed calculations provided in Sayers (Sayers 1989;
Sayers 1995). In Equation 1, Z, is the motion of the sprung mass [m/s], Z,, is the motion
of the unsprung mass [m/s], L is the length of the profile [m], and V is the velocity at
which the simulation was executed [m/s]. This index will be used for analyzing the
principle components of terrain in Chapter 4 of this dissertation.

1 (Lv Equation 1
IRI :Zf |2, — Z,|dt
0

Ride Number (RN)

The algorithm developed to calculate the Ride Number (RN) is very similar to
that of the IRI, with different coefficients, initialization and averaging. The main
difference is that the accumulated suspension travel is calculated with the Root Mean
Square (RMS) for the RN rather than the mean absolute since the RN decomposes the
profile into three wavebands, represented by three profile index (PI) statistics.
Specifically, the PI is calculated for each waveband, and for each wheel path,
implementing the same quarter car simulation with different parameters; see Appendix B
for the parameter values. The result is a single Pl for the terrain set, determined by the
RMS of the wavebands for each wheel path. Further details of the calculations of the RN
can be found in Sayers (Sayers and Karamihas 1996). While the IRl and RN are very
similar, it is suggested that the RN does a better job at identifying pavement conditions as

compared with the IRI despite using a similar algorithm due to the waveband approach.
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The computational effort is equivalent for both indices with the main equation for the RN
presented in Equation 2. RN is an exponential transform of the RMS slope statistic Pl

with dimensionless units of slope [m/m] (Sayers and Karamihas 1996).
RN = 5e~160(PD) Equation 2

Roughness Index for Driving Expenditure (RIDE)

The Roughness Index for Driving Expenditure (RIDE) is based on the sprung
mass acceleration response of a reference vehicle to the pavement profile. Similar to IRI,
the index is based on results from a quarter car (QC) model where a transfer function
(TF) is developed which relates the QC response to that of the reference vehicle. By
using a QC model, the roughness index is insensitive to specific mechanical faults of a
reference vehicle. RIDE is calculated from the power spectral density (PSD) of the
sprung mass acceleration of the reference vehicle, as depicted in Equation 3, with full
details of the calculations provided in Papagiannakis (Papagiannakis and Raveendran
1998).

1 [ee]
RIDE =7 J j_ OOPSD(f)df Equation 3

The index is purported to have several advantages: it is directly related to riding
comfort; it is related to the dynamic axle loads and reflects heavy vehicle ride, damage,
and pavement damage; it is fully compatible with ISO standard 2631 (1SO 2004); and it
IS sensitive to pavement roughness excitation frequencies that are close to resonant
frequencies of the sprung mass and is suited for identifying pavements that need

rehabilitation (Papagiannakis and Raveendran 1998).

2.1.3.2 Five DOF Model Based Index

The index presented in this Section only considers vertical translations of a
simplified full vehicle model, as shown in Figure 10. Roll, pitch and yaw are neglected
for simplification of the analysis. The motivation for this index is that it better reflects

the ride quality of a particular vehicle as compared with a QC model. This index also
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allows for implementation of representative parameters true to the vehicle being studied,

as opposed to the Golden Car parameters.
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Figure 10. Full-car Roughness simulation model.

Full-car Roughness Index (FRI)

While IRI is the most popular single index, it does not consider high speed
vehicles or trucks, and therefore, IRI should only be used in conjunction with another
indicator if other criteria are desired to be studied. The Full-Car Roughness Index (FRI),
developed by Capuruco, claims that the full-car model more accurately represents vehicle
responses than a single QC model (Capuruco, Hegazy et al. 2005). The FRI combines
four QC models connected by front, rear and longitudinal axles located on a rectangular
frame, restricted to vertical displacements. Only the bounce forces and corresponding
displacements are of interest in calculating pavement roughness, and thus only the
vertical dynamics of the full-car model are studied. The major result of this study is that
roughness indices are most affected by vehicle speed and tire footprint. The

shortcomings of the FRI lie in the simplifications of a full vehicle model, for example, it

31



is assumed that the center of mass of the vehicle is at the centroid of the rectangular
frame instead of closer to the powertrain location. Of course, when a specific vehicle is
identified for simulation, a more representative result would be derived from a properly
parameterized, higher fidelity, vehicle model (Capuruco, Hegazy et al. 2005). The FRI
involves more computational effort, but results in higher repeatability of calculating the
index over similar terrains, making it more useful than the IRI for higher fidelity

simulations.

2.1.3.3  Sprung Mass Acceleration Roughness Indices

The indices presented in this section are based on the calculation of roughness
indices using response-type measurement responses. Response-type profilers are
typically equipped with an accelerometer located on the sprung mass of a vehicle or
trailer. The measured responses are system specific (not transferrable) and temporal- the
mechanical systems change with usage and time (Hajek, Kazmierowski et al. 1998).
These types of systems are very limited in their capabilities of describing universal
roughness, but are useful in understanding how a particular vehicle is affected by the
terrain it is traversing. This method is a better for ride quality evaluations, rather than

calculating a roughness index.
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Figure 11. Quarter-car model used to calculate roughness indices based on response-type

measurements.

Ride Condition Rating (RCR)

The Ontario Ministry of Transportation (MTO) uses a response-type road
roughness measuring system that measures roughness in terms of Root Mean Square
Vertical Acceleration (RMSVA) of a trailer axle (Hajek, Kazmierowski et al. 1998). The
roughness data used by MTO for pavement management is expressed in terms of a Ride
Condition Rating (RCR), based on a scale from zero to ten. A rating of ten represents the
smoothest ride, and a rating of five or six indicates that the pavement needs resurfacing
(Hajek, Kazmierowski et al. 1998). Unlike most organizations that are dubious of relying
solely on the IRI, the MTO supports the IRI since it eliminates the application of
response-type measurements for analyzing road roughness and replaces it with the

application of longitudinal pavement profile measures.
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Root Mean Square of Terrain Height (RMSy)

The Root Mean Square of Terrain Height, RMSy analyzes the importance of
short, medium and long road unevenness of the vehicle vibration (Kropa¢ and Mucka
2004; Kropéac¢ 2008). RMSy is defined in Equation 4, where Dy is a single measure of
the combined variance of the random component of the road profile with the harmonic
component of the road profile (Kropa¢ 2008). More information on the specifics of
calculating RMSy can be found in the article by Kropa¢ and Micka (Kropa¢ and Muacka
2005).

RMSy = /Dy Equation 4

It is important to decompose the analysis of road unevenness to different
wavelengths because the vehicle responds differently to certain frequencies. The vehicle
response to road unevenness indicated that some of the tested roads yielded a much
higher vertical acceleration than others, so much so that the allowable exposure to
vibration for people in the vehicle would be reduced by several hours (ISO 2004). This
study found that the IRI was insensitive to roughness caused by unevenness in certain
wavebands. From these findings, Kropa¢ and Mucka proposed the use of RMSy, as an
alternative to IRI (Kropéc 2008).

Perceived Vehicle Roughness

Ahlin focused his studies on vertical vibration for a single wheel track to
understand how well a synthesized terrain profile matches perceived vehicle wheel
roughness, or more commonly known as vertical vibrations. For this test, vertical
vibrations were measured on the right wheel of the front axle of a Volvo FL12 heavy
truck using an accelerometer (Ahlin, Granlund et al. 2004). Through quarter car
simulations, Ahlin compared measured vibrations to simulated vibrations to determine
the correlation between models. He found that the higher fidelity measurement of the
terrain used for simulated vibrations, the QC model yielded better correlation results as
compared with the lower fidelity measurements. Specifically, Ahlin used three single-
point lasers that were setup across the wheel path of the host vehicle to show that the
accuracy of the data in representing vertical wheel vibration is better than a single, single-

point laser placed in the wheel path (Ahlin, Granlund et al. 2004). With the increased
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data set from the three-single-point lasers, the perceived vehicle wheel roughness of the
synthesized terrain was found to be more representative of the measured terrain. To
further Ahlin’s study, roughness indices could be applied to the measured and
synthesized terrain to determine how well the synthesized data truly captures the terrain
characteristics. Ahlin’s approach will be implemented as a ‘check’ to determine how
well the synthesized terrain surface compares to the measured data in this project in
Chapter 5 of this dissertation. The next section of this Chapter leverages empirical

terrain measurements to develop analytical terrain.

2.2 Analytical Terrain

Analytical terrain can be separated into two categories, those based on a more
global approach such as approximating large areas of land with surface fitting by contour
lines (~ 1000km X 1000km) and those based on a more local approach by characterizing
terrain profiles (~1 km). Both categories use parameter identification to parameterize the
mathematical model chosen to characterize the terrain of interest where the key
differences lie in what the mathematical models are characterizing. In the first category,
global elevation is characterized based on surface estimation via elevation contour line
measurements, typically represented by sets of polynomials or Fourier series. The
purposes of such characterizations are typically for data compression and global terrain
analysis, such as hydrological flow or erosion analysis (Moore, Grayson et al. 1991;
Quinn, Beven et al. 1991). The second category is geared towards modeling segments of
longitudinal profiles over relatively short distances.  The purposes of these
characterizations are to synthesize road segments based off the original terrain of any

desired length, and also for data compression.
2.2.1 Global Terrain Approximation

Global terrain approximation starts with discretely measured terrain surface data
and uses polynomials or power series to approximate the surface. In this way, a
continuous curve is developed to represent the area of terrain. Most terrain surface
approximation techniques originated in DTM. Two major drawbacks of the methods
described are the coarse resolution and large amount of filtering which yield a basic
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description of the surface, with flaws occurring in the representation of ‘sharp’ terrain
features such as curbs, cliffs, rocks and others. Three terrain surface approximation

techniques are described next.

Active Contour

Active contour mapping is used when modeling ground surface contours for
creating DTM from airborne scanning data. Active contours have roots in the area of
image processing. The shape of an active contour to a particular ground surface is the
contour which minimizes an energy function. The energy function is typically
parameterized by internal energy as described by the physical characteristics associated
with the contour (material properties) and a potential energy field as described by the
terrain height (EImqvist 2001; EImqvist, Jungert et al. 2001). One issue that may arise is
that the solution may solve for a local minimum and not a global minimum. Another
issue is properly identifying the material properties of the terrain surface in question.
Interestingly, different terrain features can be identified or removed from the data
depending on the requirements of the application. For example, for rocky terrain, it may
be desired to estimate the underlying terrain and not the rocks, or it may be desired to
include the rocks in the true terrain surface. This method can be adapted for either case
such that the resulting terrain surface representation will be a continuous model of the
desired true terrain surface. However, due to the nature of this method, it is prone to

over-smoothing sharp-edged features such as rocks.

Linear Prediction

Pfeifer and Kraus developed an iterative robust interpolation algorithm based on
linear prediction to estimate the digital terrain surface. This algorithm is comprised of
two components, a stochastic model to define the weighting function and a functional
model to describe the interpolation scheme, both of which will be described in the next
paragraphs. As identified previously in this Chapter, measurements acquired from
airborne laser scanners contain information about vegetation, buildings and the terrain.
The ultimate goal of this approach is to remove vegetation and buildings from the data set

and be left with the original terrain surface.
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The first component of this algorithm determines the weighting function of each
elevation point. Each point is assigned a weight from zero to one based on the
classification of the point as a ground point or a vegetation point. For example, if the
point is located on or near the ground plane, then a weighting close to one is assigned,
and if a point is considered vegetation, or very far from the ground plane, then a weight
of zero is assigned. The specific weighting function used in this work is shown in
equation form in Equation 5 and in graphic form in Figure 12.  The weight function, p;,
for robust estimation is presented in Equation 5, where the parameters a and b determine
the steepness of the weight function, g is a shift value, and w is a “ceiling’ elevation value
and is user defined, such that any value above g+w is set to zero (Kraus and Pfeifer 1998;
Pfeifer, Kostli et al. 1998). An average is computed on the surface to calculate the
residuals, v; between each height measurement and the average surface. The shift value,
g forces the left branch of the weighting function equal to one with details on how to
calculate the shift value, g, explained in Kraus and Pfeifer (1998) and Pfeifer et al. (1998)
(Kraus and Pfeifer 1998; Pfeifer, Kostli et al. 1998). If the residuals are less than a shift
value, g, they are typically negative and classified as terrain points with weighting set
equal to one. If the residuals are between the shift value g and the shift value plus some
offset, g+w, they are typically small negative or positive and are classified as lower lying
vegetation or rocks, with a weighting value occurring between zero and one. If the
residuals are greater than the shift value plus some offset, then the points are classified as
vegetation or buildings and the weighting value is set equal to zero. Furthermore, the
parameters presented in Pfeifer’s work can be tuned to keep or eliminate specific terrain
features.

1

1 V=g
= g<vi<g+w Equation 5
0
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g 0 | g+w
Figure 12. Residual weighting function.

In the second component of the algorithm, linear prediction is used to identify an
accuracy value for each elevation grid point in a similar method to kriging and moving
least squares. This interpolation method is based on describing the surface with a
covariance function (Pfeifer, Stadler et al. 2001). The covariance function measures how
much two variables change together and describes the variance of a random variable
process or field. In this case, the two variables are the X and Y elevation point locations.
The end result is not a perfect terrain representation, as ‘sharp’ terrain features such as
trenches and curbs are smoothed out and buildings or trees are not always eliminated, but

it does provide an accurate representation of the terrain for a large land base.

Fixed Grid Polynomials
True terrain surfaces are continuous functions, which due to technological

limitations are discretized by measurement systems. Measurement systems acquire data
at different sampling rates and resolutions, as described in the earlier part of this chapter.
The problem Segu sought to solve was to regenerate the continuous terrain functions with
continuous polynomials based on discretized measured terrain data that has been gridded
based on specific terrain features (Segu 1985). The first step is to take the measured
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surface data and grid it based on terrain features. For example, if an area of the surface is
rough, then the gridding will need to have more nodes than if the surface is relatively flat
and uneventful. Then the discretized terrain height can be approximated as of function of
x and y location as shown in Equation 6, where a, are coefficients. Equation 6 can be
abbreviated in power series form as shown in Equation 7. The importance of this
representation is that Equation 7 takes on the same form as a double Chebyshev
polynomial, which provides a least squares solution for surface fitting. The coefficients
of double Chebyshev polynomial are determined from the measured data, and continuous
contour lines describing the surface are developed. Of course the methods presented by
Segu only considered the implementation of Chebyshev polynomials, but that is not to
say that cubic splines, linear interpolation, or other polynomials or power series could not
be used instead. Loucks suggests that instead of being concerned with the least squared
solution only, grid spacing and desired resolution need to be taken into account. He
suggests using cubic splines for finer resolution data to make a greater effort in capturing
more abrupt terrain features such as cliffs and other drop offs and linear interpolation or
Chebyshev polynomials for coarse resolution applications where an exact fit to the terrain
data is not required (Loucks 1996). Regardless of the approximation tool used, the
methods developed in Segu’s work are used as a baseline for the definition of 3D terrain
surfaces presented in Chapter 4 of this dissertation. The key differences are that this
method is used for developing contour elevation lines, whereas the methods presented in
Chapter 4 decompose the terrain surface to its principle components and then
approximate the components with sets of polynomials. The next section presents
different methods to characterize the terrain with mathematical models, that when

synthesized, capture the inherent statistical properties of the host terrain.

Z=ay+ a;x + ayy + azx? + azxy + agy? + - Equation 6
ki
_ i—jyJ ' :
z ZZarx yl, r €012,...m Equation 7
i=0 j=0

2.2.2 Local Terrain Characterization

If the terrain is considered to be a particular realization of an underlying

stochastic process, then measured terrain profiles can be used to develop the form and the
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order of the mathematical description of the stochastic process. A large set of terrain
profiles is then represented by a single stochastic process that has the same properties
(e.g., stationarity) as the measured terrain. A measured terrain profile is used to
parameterize the model, and the parameters are then defined as the terrain
characterization. Once the model is properly parameterized, realizations of any length
can be generated, and vehicle responses can be simulated that are accurate for the given
application. Equation 8 defines the stochastic process Z, as a family of random variables

defined over a common probability space.
{Z,,n=012,..} Equation 8

These random variables correspond to discrete locations along a prescribed path in the
horizontal plane and are indexed by a real parameter n > 0. Let S denote the state space
so that realizations of the process at index n, Z,, are elements of S.

Several methods have been examined for characterizing terrain profiles in this
dissertation. Extensive work has been conducted in using the Power Spectral Density
(PSD) of road profiles (Andren 2006; Kutay, Weaver et al. 2007) and road roughness
metrics (Gorsich, Gunter et al. 2003). Rouillard, Bruscella, and Sek suggested a method
based on PSD analysis and spatial acceleration to characterize and classify road
profiles (Bruscella and Rouillard 1999; Rouillard, Bruscella et al. 2000; Rouillard, Sek et
al. 2001). They used spatial acceleration to separate the stationary terrain profile
characteristics from non-stationary transient events. Later, Ferris examined the viability
of characterizing roads as an n™ order Markov chain (Kuchar 2001; Ferris 2004).
Recently, Kern, Wagner and Ferris demonstrated that an Autoregressive Integrated
Moving Average (ARIMA) model could be used for modeling road data and generating
synthetic road profiles that have similar statistical properties to those of measured roads
by defining a linear (AR) model excited by a stationary non-Gaussian process (Kern and
Ferris 2006; Kern and Ferris 2006; Kern and Ferris 2007; Li and Sandu 2007; Wagner
and Ferris 2007; Khashei, Bijari et al. 2008; Wagner and Ferris 2008). These models, in
addition to several others, have expanded the applicability of computational simulation in

the ground vehicle design and development process. In the remainder of this section,
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typical model properties are explained, and then several models of interest are
investigated.

2.1.34 Model Properties

Terrain models are formulated based the statistical properties of the terrain,
including one or more of the following: stationary, isotropic, homogenous, or Gaussian.
Chaika states that rigorous statistical tests must be performed before a statistical model is
created, but first, the properties must be defined (Chaika, Gorsich et al. 2004). When
examining these common model properties on measured terrain, these results were found.

1. Long sections of terrain profiles are not stationary,

2. Short sections of terrain profiles may not be stationary depending on their

content and characteristics.

3. Generally smooth roads are stationary, but rough roads are not.

Understanding the properties of measured terrain is essential for accurate terrain

modeling.

Stationary and Homogeneity

Stationarity of a time series implies that all joint probability density functions are
time invariant. For example, the variance of stationary signals will be time invariant.
(Bruscella and Rouillard 1999). However, the term stationary is commonplace for time
series analysis whereas terrain does not vary in time, rather location. The confusion
arises in the fact that time series analysis techniques are applied to terrain analysis. The
appropriate term to use in terrain analysis is homogeneous. A terrain profile is
homogeneous if the joint probability density functions are invariant with horizontal
translations in the coordinate frame (Bendat and Piersol 2000). This is analogous to
being stationary in time, but it is in the spatial domain. Many studies have shown that
smooth roads may be homogenous, but rough roads are not due to localized disturbances
(Bruscella and Rouillard 1999; Chaika, Gorsich et al. 2004; Andren 2006).

Isotropic

A terrain profile is isotropic if the joint probability density functions are invariant

with changes in direction or orientation of the coordinate frame (Frederick and Chang
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1965). Therefore, this property examines the terrain in all directions. For example, a
terrain surface with wheel rutting would not be considered isotropic, but rather

anisotropic.

Gaussian

A Gaussian distribution is a normal distribution with the mean, ., and variance, ¢°
(Bendat and Piersol 2000). Equation 9 and Figure 13 demonstrates a Gaussian
distribution.
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Figure 13: Gaussian Probability Distribution Function.

The Gaussian distribution is a commonly used assumption in terrain
characterization and realization; however, this assumption may not be valid in all cases.
If localized disturbances (e.g., potholes) are removed from terrain profiles, the residual
profile may be nearly Gaussian (Andren 2006). Some studies have transformed the
actual, non-Gaussian distribution to a Gaussian distribution, then performed the statistical
analysis on the transformed data, and finally, applied an inverse transformation to return
to the original data set (Bogsjo and Forsan 2004).
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2135 Terrain Models

Several terrain models are presented for discussion of the implementation and
pros and cons of each. Ultimately, one model will be selected as a proof of concept for

modeling the principle components of terrain in Chapter 5 of this dissertation.

Power Spectral Density (PSD)

One of the more popular models is the Power Spectral Density (PSD)
approximation of terrain profiles. The PSD identifies the frequency content of a
stochastic process or a deterministic function of time to identify frequencies of interest
and periodicities. Andren presents a literature survey of PSD approximations which
implement the basic equation of this model, as shown in Equation 10, where G, is the
roughness level of the displacement PSD, C is the general roughness parameter with units
of meters®, 2 is the wavelength with units of meters, and w is a dimensionless parameter
called waviness, ranging from 1-5 on measured roads, and is related to the wavelength of
the road (Andren 2006). Traditionally, w is approximately equal to 2 and C varies from
road to road.

Gg(n)=CA" Equation 10

This approximation represents a terrain profile by two numbers, C and w, the
resulting PSD approximation is a straight line. This simple concept can be expanded by
decomposing the spectrum into wavebands (commonly two or three). In this way, a
common value for the roughness parameter C is assumed to remain constant and different
values for w can be fit to each waveband.

Equation 11 is an example of a three waveband approximation.

CAWl 0<A<s)
Ga(n) =4CAW2 1, <A< A, Equation 11
CA™™3 A, <A<

For a spectral analysis estimate to be valid, the road should be a member of a stationary
random process. When terrain is homogeneous and isotropic, a complete terrain surface
can be modeled with a single terrain profile PSD. Several variations of the PSD are
presented next. The data used in the analysis of the following PSDS were filtered such

that long-wavelength disturbances (such as hills) were removed by applying a high-pass
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filter to keep wavelengths between 0.1m and 100m (1SO8608 1995). It is important to
note that the majority of terrain analysis using PSDs is completed incorrectly as it

validates the stationary requirement.

Parametric Road Spectrum (PRS)

Bogsjo presented four different models to parameterize road spectra following a
Gaussian distribution: parametric road spectrum, shifted spatial range spectrum, direct
spectrum estimation, and transformed direct spectrum estimation. The Parametric Road
Spectrum (PRS) model is a straight line fit in the log-log scale of a power spectrum.
Equation 12 describes the PRS approach, where n, is 0.1m™, C indicates the degree of
road unevenness, varying around 10 and the exponential value w varies from 2-3. The
parameter values were determined by a least-square fit over the spatial frequency range
of 0.011-2.83m™ (Bogsjo and Forsan 2004).

C*(i)_w 0.01<n<10 Equation 12
)

otherwise

Rprs(n) = { 0

Shifted Spatial Range Spectrum (SSR)

The Shifted Spatial Range spectrum (SSR) model focuses on correctly
approximating the low resonance frequency range of the vehicle, i.e. 1-2Hz. The SSR is

defined over the least square fit of the range corresponding to the spatial frequency range

for a vehicle traveling at constant velocity, defined as: 1/17 <n< Z/U . The SSR
spectrum is then defined over this range, in Equation 13, where n, is 0.1m™, C indicates
the degree of road unevenness, varying around 10 and the exponential value w varies
from 2-3. The lower frequency limit of the spectrum is adjusted to preserve the variance

of the measured profile as defined in Equation 14 (Bogsjo and Forsan 2004).

—w )
C*(L) Nstare<n<10 Equation 13
Rgsp(n) = o
0 otherwise
(101_W_C1—M‘;I0_2)ﬁ Equation 14
Ngtart = Max 0.7501
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Direct Spectrum Estimation (DSE) & Transformed Direct Spectrum Estimation (TrDSE)

The Direct Spectrum Estimation (DSE) model smooths the power spectrum of the
actual road; the smoothed road spectrum is then used in the model to develop synthetic
road profiles. A slight variation of the DSE is the Transformed Direct Spectrum
Estimation (TrDSE), which applies an empirical transformation function to the road
profile, and the resulting transformed road spectrum is determined by the DSE model.
This transformation procedure assumes strictly stationary data (Bogsjo and Forsan 2004).

When applied to a QC simulation model to analyze pseudo-damage, the PRS and
DSE models underestimated the fatigue damage in all cases, the SSR model performed
better at velocities that were not near vehicle resonance, and the non-Guassian TrDSE
model overestimated the fatigue damage, resulting in very conservative fatigue estimates.
From these studies, it was found that traditional stochastic analysis using Gaussian
distributions is insufficient in characterizing the spectra of the terrain that is critical in
predicting fatigue damage. This is likely due to the fact that fatigue is sensitive to
random, localized disturbances (Bogsjo and Forsan 2004). The conclusions identified in
this report will be considered for future ground vehicle reliability studies but in the case

of this situation, PSDs will not be applied as a stochastic modeling technique.

Markov Chains

Measured road profiles can be considered a realization of a discrete-time, finite-
state, closed, irreducible and aperiodic process (Ferris 2004). The Markov Property is
written in Equation 15.

P(Zpi1 = 2Zps1lZn = 2p, Zppoq = Zpe1y s Zo = 2o) = P(Z 41 Equation 15

= Zpy1lZn = zp)
That is, conditioned on the present, the future and the past are independent. The Markov
Chain has stationary transition probabilities when Equation 8 holds for all values of n.
The process defined in Equation 15 forms a Markov Chain when these random variables,
X, satisfy the Markov Property and they have stationary transition probabilities. The

transition function of the chain is defined in Equation 16.

P(sy,8,) =P(Zpp1 =512, =51), S1,5,€S, n=0 Equation 16
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The Markov Property implies that regardless of how the process arrived at state
s3, it has probability P (s;, sp) of being in state s, at the next measurement point. The n-
step transition function, P" (s, S) is the probability of going from state s; to state s, in n-
steps. A transition matrix arises from the transition function, where each transition
matrix represents a large set of road profiles that share the same characteristics (Ferris
2004). The Markov Chain representation of terrain will not be investigated in this work
but may be applied to future work for its capabilities of modeling a time-invariant

process.

Hilbert-Huang Transform and Empirical Mode Decomposition

The Hilbert-Huang Transform (HHT) is capable of analyzing and classifying
nonstationary and nonlinear terrain data. The HHT consists of two steps, the Empirical
Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA). The EMD is a
multi-resolution, local decomposition method which decomposes the terrain data into
basis functions specific to the data. These basis functions are known as Intrinsic Mode
Functions (IMF). IMFs have the following properties: they have instantaneous frequency
defined at every point; they are almost orthogonal; they form a complete basis set
(Ayenu-Prah and Attoh-Okine 2009). These basis functions are used to decompose a
single longitudinal profile whereas the methods developed in this work decompose the
entire terrain surface into characteristic basis vectors. Futhermore, the IMFs exist in the
frequency domain, whereas the basis vectors in this work exist in the spatial domain. The
EMD of the terrain data is completed when the residual process is a monotonic function,
or a constant. Specific details of the EMD can be found in works by Ayenu-Prah and
Attoh-Okine (Attoh-Okine, Ayenu-Prah Jr et al. 2006; Ayenu-Prah and Attoh-Okine
2009). It is important to note that during this decomposition, all information of the
original signal is retained such that the summation of the IMF and the residuals return the
original signal. The next step in the HHT is a Hilbert transform applied to each of the
IMFs to identify instantaneous frequencies and amplitudes for use in plotting the Hilbert
amplitude spectra (Attoh-Okine, Ayenu-Prah Jr et al. 2006; Ayenu-Prah and Attoh-Okine
2009). ldentification of the instantaneous frequencies and amplitudes of each IMF allows

for the analysis of the energy content of each IMF; the higher the energy content, the
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greater effect that IMF has on the original signal. The impact of the energy associated
with each IMF is not completely understood and remains under investigation. The HHT
is similar to the method presented in Chapter 4 of this dissertation, in that the terrain
surface is decomposed into a set of basis vectors, of which each basis vector is studied for

its contribution to the overall terrain surface.

Autoregressive Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) models can be used to
characterize road profiles through parameter identification of the Autoregressive
coefficients. Uncertainty is captured in the resulting residual process, which, under
certain circumstances, may be represented by a single probability density function. This
stochastic residual process can be used to drive the creation of a distribution of synthetic
terrain topology profiles.  This distribution is then dependent on the probability
distribution of the residuals as well as the ARIMA coefficients. ARIMA models are one
method for characterizing road profiles which incorporates the uncertainty of terrain
characteristics into the model structure. The ARIMA parameters are identified as p, d
and g, where p is the order of the autoregressive model, d is the number of times the data
was differenced and q is the order of the moving average model. It has been shown
previously that terrain topology does not generally exhibit moving average
characteristics, so the general form of the model becomes Equation 17, where ¢ is the
autoregressive coefficient, a; is the distribution of the residuals which is assumed to be
independently and identically distributed for all time, and V9 is the backward difference
operator.

vz = cplvdzi_1 + (pzvdzi_z + 4 a; Equation 17

The autoregressive coefficients traditionally are constants encompassing the
correlation of the current profile point to the previous profile points (Wagner and Ferris
2008). This model will be investigated further for its capabilities to model road profiles.

2.3 Literature Review Summary

Two major categories of terrain measuring and modeling have been reviewed:

terrestrial applications and airborne applications. A clear distinction should be made that
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this work focuses on terrestrially acquired measurements and focuses on modeling terrain
that is anisotropic (path specific). DTMs are concerned with modeling a large area at a
lower resolution (elevation points every 3-15m (Maxwell 1970; Pfeifer, Kostli et al.
1998)) than what is captured with the terrestrial systems (elevation points every 4-
25.4mm (Kern and Ferris 2007; Wagner, Kern et al. 2007)) due to the intended
application and current limitations of airborne technology.

Furthermore, when processing airborne laser scanner data, it has been assumed
that the data are sufficiently isotropically distributed (Pfeifer, Stadler et al. 2001). This is
the key difference between the methods used in DTMs and the methods presented in this
dissertation. The terrain measurement system used to acquire data for this research, the
VTMS, directly samples the area of interest. Airborne laser scanning systems scan a
broad area, and then require filtering techniques to remove unwanted vegetation or
buildings before the data can be used. This filtering often results in over-smoothing of
‘sharp’ terrain features such as rocks, curbs, drop-offs, etc. All of these sharp, distinct
terrain features are vital for vehicle durability and reliability analysis and cannot be
ignored or filtered out. Additionally, the data acquired in this work is sufficiently
anisotropic on the global scale so that vehicle paths are identifiable (e.g., >100mm), but
on the local scale (e.g. <10mm), the data are assumed to be isotropic for grid node
elevation identification.

Many terrain modeling discussions, in both the terrestrial and airborne
applications, culminate in the need to model terrain on different scales (e.g., millimeter,
centimeter, meter...). The methods proposed in this work propose decomposing the
terrain surface into its principle characteristics, and then modeling each characteristic
before reconstructing the surface, a method similar to empirical mode decomposition
(EMD) (Attoh-Okine, Ayenu-Prah Jr et al. 2006). In this way terrain features such as
elevation, banking and crowning can be modeled individually as opposed to directly
modeling different scales of the terrain. In the limiting case, when the road is so rough
that there is no clear path, then this method decomposes into DTM techniques used for
forests and other unstructured environments: a very large number of basis vectors are

required to represent the terrain.
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Many roughness indices and terrain modeling methods have been discussed. At
this time, there is no “‘best’ method for identifying the roughness of the road or modeling
the terrain. The International Roughness Index (IRI) is the standard practice for
identifying road roughness, but as can be seen by this literature review, many other
methods exist and seek to change the standard. This work suggests a different
implementation of the IRI from terrain profiles to evaluating the elevation component of
terrain. Similarly, there is no ‘best’” method or suggested model for modeling specific
types of terrain, as can be seen from the models presented in this literature review. This
work makes use of the Autoregressive model due the capabilities of adding randomness
to the synthesized profile from the residual process.

In summary, the methods developed in this work are based on data acquired from
a terrestrial terrain measurement system, the VTMS. Modern terrain measurement
systems use an Inertial Navigation System (INS) to measure and remove vehicle
movement from laser measurements of the terrain surface.  Instrumental and
environmental errors inherent in the INS produce noise and drift errors in the resulting
estimates of vehicle position and orientation. Chapter 3 develops a method to remove
INS drift in terrain measurements. This method employs a principle component analysis
through singular value decomposition (SVD) to define the “global” and ‘local subspaces.
SVD of the terrain surface identifies the principle terrain characteristics (basis vectors),
such as elevation, bank angle, and crowning and corresponding singular values. Next,
the empirical basis vectors are approximated with a set of analytic polynomials by a
Galerkin method in Chapter 4. Each set of empirical basis vectors corresponds to a
specific type of terrain, and therefore a specific set of analytic polynomials are chosen to
represent each terrain type. The types of terrain are identified by computing International
Roughness Index (IR), the universally employed terrain roughness index values for the
elevation component of terrain, which is defined as the projection of the terrain surface
onto each basis vector. It is important to note that this cross-section representation of
principle terrain components does not hinder the knowledge of the terrain as it had been
considered to do in the past (Maxwell 1970). Previous methods assumed that the cross-
section was an appropriate representation for data acquired with photogrammetrics, when
it had been shown that the resolution of the data was too low to accurately describe the
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surface in question. In Maxwell’s work, cross-sections were taken every 3-15m. In this
work, the basis vectors are projected onto the terrain surface to develop specific
components of terrain which describe the magnitude of each basis vector along the length
of the terrain surface at a much higher resolution, specifically every 0.0254m along the
length of the terrain segment. Lastly, in Chapter 5, an Autoregressive model is employed
on the components of terrain to model these components in the same manner as a terrain
profile. This is one realization of a stochastic terrain surface, but as seen in this Chapter,
many other modeling techniques exist. The next Chapter presents the methodology for

removing INS drift in terrain measurements.
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3. Correcting INS Drift in Terrain Surface

Measurements

3.1 Chapter 3 Introduction

Modern terrain surface measurement systems incorporate a scanning laser (Herr
1996) that is rigidly mounted to the body of a host vehicle (Kern and Ferris 2007;
Wagner, Kern et al. 2007; Liu, Dembski et al. 2008). This vehicle traverses the terrain
while simultaneously acquiring terrain measurements. When the vehicle encounters a
disturbance, the laser translates and rotates with the body of the host vehicle. To obtain
accurate terrain measurements, the motion of the vehicle must be accurately measured so
that it can be removed from the laser measurement. Modern systems use an Inertial
Navigation System (INS) to measure the vehicle movement (Kennedy, Hamilton et al.
2006). The accuracy of the INS depends on the alignment of the Inertial Measurement
Unit (IMU) to the laser and satellite coverage of the Global Positioning System (GPS).
Typically, an INS is capable of establishing a geodetic position with two centimeter
accuracy (Smith 2009). Much of the error is due to drift in both the position and
orientation estimates of the INS. These artifacts of the INS drift skew the estimated
height and orientation of the terrain surfaces in the global reference frame. The accuracy
of the INS is dependent on instrumental biases and environmental biases, such as the
number of satellites used by the receiver, the satellite-receiver distance, atmospheric
effects, satellite and receiver clock offsets, phase ambiguities, and others (Doyle 1978;
Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Pfeifer, Kostli et al. 1998; Briese and
Pfeifer 2001; Pfeifer, Stadler et al. 2001; Kraus, Briese et al. 2004; Sarma 2008). This
work does not seek to identify the origins of the error, but an overall technique to remove
the INS drift error from the system as a whole.

INS drift error manifests itself in vehicle simulations when multiple lanes must be
concatenated to form a surface. For example, if two adjacent lanes of a highway are
measured at different times during the day, then any vertical misalignment of the two
lanes resulting from the INS drift would produce an artificial vertical shift between lanes.
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The misalignment between the two lanes would cause undesired excitations into a model
undergoing a lane change maneuver. An example of INS drift in ellipsoidal height is
shown in Figure 14A. Ellipsoidal height is the height above or below the WGS84
reference ellipsoid. The host vehicle was parked away from buildings, such that the
antenna had a clear view of the sky. In this static position, several two-minute samples of
INS data were collected over the course of five consecutive days where the curves in
Figure 14A depict these samples of data. In a dynamic experiment, a section of road was
measured 10 times at different times throughout the day. The height variation of the road
can be seen in Figure 14B. It can be seen that the drift is consistent between static and
dynamic experiments. These findings exemplify the results of several studies indicating
that INS drift can be modeled as a random walk, zero mean stochastic process (Favey,
Cerniar et al. 1999; Giremus, Doucet et al. 2004; Kim and Sukkarieh 2004; Sun, Fu et al.
2008). This model is used in the development of a new method to define, identify, and

remove the INS drift to improve the accuracy of terrain surface measurements.
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Figure 14. Sample of GPS test results A) Static test results B) dynamic test results.

The objective of this Chapter is to develop a compensation method for INS drift
in terrain surface measurements. The remainder of this Chapter is developed as follows.
Background on body motion mitigation as associated with the Vehicle Terrain
Measurement System (VTMS) is presented. The contribution of this work is then
developed. A terrain surface measurement is considered as a combination of the true
surface and a realization of a stochastic error surface process. Each measured surface is
then a realization of a stochastic process and is defined as a sequence of vectors that are
elements of a Hilbert space. The Hilbert space is composed of a global vector space and
a complementary local vector space. A truncated set of orthonormal basis vectors are
constructed to span the global space via a Singular Value Decomposition (SVD) of the
set of measured vectors. Drift is defined as the global contribution to the error process
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and the drift components of the surface are defined as the projection of the error vectors
onto the basis vectors that span the global vector space. INS drift is then modeled as a
random walk process. The true surface is developed by estimating the expectation of the
sequence of measured vectors in the global vector space and the local vector space
separately. The method is applied to experimental data to demonstrate the concept and to
form a basis for discussion. A model order study and residual analysis is conducted on
the set of terrain to support the assumptions presented in this paper, and to show that the
fidelity of the resulting representation is retained to within the resolution of the
measurement system. Further application of this concept is discussed in the context of
INS errors, followed by concluding remarks.

3.2 Chapter 3 Background

Terrain measurement systems have evolved considerably from the early vehicle-
response systems (Spangler 1962; Spangler and Kelly 1966; Gillespie, Sayers et al. 1980)
to vehicle-independent measurement systems (Dembski, Rizzoni et al. 2006; Kern and
Ferris 2007; Wagner, Kern et al. 2007). Early vehicle-independent measurement systems
relied on accelerometer data to remove unwanted body motion from post-processed data
files. The reliability of these traditional accelerometer-based systems suffers when
vehicle speed falls below 5 m/s (Walker and Becker 2006) and in other low frequency
environments. More recent vehicle-independent measurement systems rely on some
combination of an INS, accelerometers, a distance measurement instrument, and
inclinometers to remove the host vehicle’s body motion from the laser data. Small
misalignment between the scanning laser and the IMU will compound the error that can
be anticipated from any DGPS (Smith and Ferris 2008). Recent advances have produced
3D terrain measurement systems that are capable of scanning a wide transverse path with
millimeter resolution. A more detailed description of terrain measurement systems can
be found in Chapter 2, Section 2.1.1 of this dissertation. The VTMS (Kern and Ferris
2007; Wagner, Kern et al. 2007), was used to acquire the data for this work.

The VTMS is equipped with a scanning laser and an INS. The scanning laser,
affixed at the rear of the vehicle, acquires 941 data samples, at millimeter resolution. The

data are collected transversely across a 4.2 meter wide path each millisecond, which
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results in approximately one-million data points each second. The INS consists of a GPS
receiver mounted to the host vehicle (rover GPS), an IMU rigidly mounted to the same
platform as the laser, and a GPS remote receiver that is fixed to a stationary point near the
section of terrain being measured (base station) (Wagner, Kern et al. 2007). The rover
GPS estimates the location of the vehicle in time and space, with some error due to the
distortion of the satellite signal from the Earth’s atmosphere (Lanyi and Roth 1988;
Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Mannucci, Hajj et al. 2004; Sarma
2008). The rover estimate of the vehicle location in time can be considered an estimate
of the true vehicle position plus some error vector. On the contrary, due to the fixed
position of the GPS base station, the true location can be determined accurately.
Combining the solutions from the rover and base station GPS solutions results in a
differential GPS (DGPS), which is more effective at minimizing the error in the vehicle
position. The IMU is comprised of a three-axis gyroscope to measure the roll, pitch and
yaw of the vehicle to estimate the orientation of the vehicle in space and three-axis
accelerometers to measure the translational accelerations of the vehicle. Once the raw
data have been collected, the measurements from the subsystems of the INS are
combined using proprietary post-processing software to obtain an accurate inertial
navigation solution. The information defining the position and orientation of the vehicle
is denoted as the number 1 in the schematic of Figure 15 with the information defining
the laser measurement denoted as the number 2 in the schematic. Coordinate
transformations convert the INS-centered data to laser-centered data, and then both
signals are transformed to ground-centered coordinates, known as the global (X.,Y)
coordinate system. As described in Chapter 2, Section 2.1.4, the global coordinate
system with non-uniform spacing of the data is converted to a uniform grid in CRG
format. Additional details of the system and data processing can be found in Appendix
A, or other work by Kern and Wagner (Kern and Ferris 2007; Wagner, Kern et al. 2007).
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Figure 15. Signal processing overview: Data collection and filtering.

An example is used to show the importance of accurately measuring and
removing the body motion of the vehicle from the terrain measurements: if the host
vehicle body motion is not removed from the laser measurements, then the measurement
from the scanning laser is not useful for vehicle simulations. Figure 16 illustrates this
concept. Figure 16A is a photograph of a sidewalk curb that was measured with the
VTMS. The data was processed with results shown in Figure 16B and Figure 16C. As
can be seen in Figure 16B, the vehicle body motion has not been properly removed
during processing, and if implemented in a vehicle simulation would produce unrealistic
response results in addition to other errors. Figure 16C depicts the surface rendering of
the same curb with the host vehicle body motion properly removed from the laser

measurement using the information acquired from the INS.
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B) C)
Figure 16. Body motion removal with VTMS.

Now that terrain surface has been nominally corrected for body motion, the
terrain can be represented as a sequence of transverse scans, perpendicular to the
direction of vehicle travel as described in Chapter 2, Section 2.1.4 of this dissertation.
The formulation of the terrain surface as this series of vectors in the (u, v) coordinate
system is important for the development of the INS drift removal method presented in the
next Section of this chapter. It is important to note that this nominal correction for body
motion relies on the ability to accurately measure the position and orientation of the
vehicle, typically using an INS that is prone to small amounts of drift (Wagner, Kern et
al. 2007). This drift manifests itself in several directions, predominantly in the vertical
direction, but also in directions such as roll. The duration of each scan from a typical
scanning laser is approximately 1 millisecond; it is assumed, therefore, that changes in
the drift are negligible during the duration of each individual scan such that the drift for a

particular scan is considered to be constant.
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3.3 Developing the INS Drift Compensation Technique

3.3.1 Defining the Coordinate System
The terrain coordinate system used to develop this method is described in Chapter
2, Section 2.1.4 of this dissertation.

3.3.2 Defining the Vector Space

Each realization of the terrain surface comprises a sequence of vectors, zjx. Each
vector in this realization has two components: the true surface vector, s;, and the error
surface vector, ejx. Since there is exactly one true surface, s;, for any set of realizations,
it is not indexed by k. Each of these sets of vectors, {z;.},{s;},{eix} , span the same

Hilbert space H, such that

Zix =S; + ey wheree;;, € H Equation 18

where the Hilbert space, H, is defined as the span of the set of error vectors {eix}. Then
the difference in any two vectors in the set {eix}, must also be elements of the space as

shown in Equation 19.

(e;x—ep) €EH Vi €[1,2,...,m]land Vk,h € [12,..7] Equation 19

Rearranging Equation 18 and substituting into Equation 19 shows that a difference in any

two realizations, z; ; and z; 5, must also span H.

eixk—€n=2ix—Zip €H Equation 20

That is, the difference in the measured vectors and all linear combinations of the vector
sets must also span H. A Singular Value Decomposition (SVD) of differences between
realizations {zjx — zin}, is used to determine a set of orthonormal basis vectors {b,} that

span H (Sylvester ; Lenzen and Waller 1997).

3.3.3 Decomposing the Vector Space

In the general sense, terrain can be described in terms of global and local
components. Global components have a large and sustained effect on the surface such as
hills and grades, bank angles, and ruts. Local terrain components are considered to be

small, localized disturbances such as pot holes, speed bumps, chatter bumps etc. It is
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important to establish the difference between the global and local concepts pertaining to
terrain and the global and local subspaces pertaining to this work. The space H is
decomposed into two subspaces: the global subspace, G, and its complement, G® which
captures the local features of the space. In this sense, the global subspace, G, pertains to
the primary drift components, specifically the vectors that define the principle directions
of H, and the local subspace, G°, pertains to the noise, or residual of the drift
components. The global subspace, G, is defined by the span of a truncated set of these
basis vectors, {b;}. The selection criteria for these basis vectors are developed in the
Error Modeling Section of this Chapter.

Vectors comprising the true surface, the realizations of each measured surface and
the error surface all have components in both the global and local subspaces. To
illustrate this concept, these vectors are decomposed into global and local subspaces
according to Equation 21, Equation 22, and Equation 23 respectively. The first
summation term in each Equation pertains to the contributions of the true surface,
realization or error surface to the global subspace. The terms in the parentheses in each
Equation pertain to the contributions of the true surface, realization or error surface to the
local subspace. As can be seen by these Equations, the local subspace is defined as the

residuals of the global subspace.

q q
si = (8¢ + (g = Z(bl.si) b, +|s;— Z(bl' s;) by Equation 21
=1 =1
q q
Zik = (zise) ; + (Zin) 5o = Z(bz' Zij) by + | Zip — Z(blﬁzi,k> b, Equation 22
=1 =1
q q
e = (ei); + (eir) e = Z(bb )by +| e — Z(bl' eij) by Equation 23
=1 =1

3.3.4 Error Modeling
This section focuses on the development of the INS error model. Recall that the goal
of this work is to remove the drift component of error, and thus, the primary focus of

these developments occurs in the global subspace, G. Again recall that the global
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subspace, G, is defined by the span of the truncated set of basis vectors, {b;}, arising
from a SVD of the realizations zjx. The error surface in the global subspace, (eik)s, IS
defined as the summation of the projection of the error vectors in the global subspace, as
defined in Equation 24.

q
(ei.k)G = Z(bb eir) b Equation 24
=1

The components of drift for each realization can occur in each of the q principle
directions defined by the set of basis vectors {b;}, but not in the local subspace, G°. The
component of the drift, §;,;, in each principle direction is the projection of the error

vector in that direction as defined in Equation 25.

Oins = (b, e;x) Equation 25

The components of the error vectors that do not lie in the global subspace, G are defined
as residual noise vectors, n; ;, and span the local subspace, G°. The decomposition of the
error surface, e; , is developed in Equation 26, where each error vector is defined as the
summation of the projection of the error vectors, e; , in the global directions, b;, and the

residual noise vectors, n; .

q

e,-_k = (ei,k)G + (ei,k)GC = Z 6i,k,lbl + ni’k Vie€e [1,2, ,m] and Vk ]
= Equation 26

€ [1,2,..7]

The number of basis vectors defining the global subspace, g, is incremented until
the residual noise vectors can be considered realizations of a zero-mean process. The
order in which basis vectors are added to the truncated set is determined by the
magnitude of their corresponding singular value, in descending order. Then, by

construction, the expectation of the noise vectors, n; ;, is zero, as shown in Equation 27.

E[ng]=0vi €[12,..,mland Vk €[12,..1] Equation 27

Again, by construction, there is no noise component in the global subspace as shown in
Equation 28.
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(b,nip)=0 VI € [1,2..,q]Vi[12,.., m]and Vk € [12,..7] Equation 28

The magnitude of drift, &, is defined for each direction in the global subspace,
G. The drift is modeled herein as a random walk process (Favey, Cerniar et al. 1999;
Giremus, Doucet et al. 2004; Kim and Sukkarieh 2004; Sun, Fu et al. 2008) defined in
Equation 29.

Oik1 = Oi—1k1 + & k1o Where &y € a zero mean process Equation 29

Drift is further decomposed into two components, a;.; and y;, as defined in Equation 30,
where y; is the average drift in each principle direction across all realizations and all
locations and oy, is the difference from y, in the i™ longitudinal location, for the k™

realization.
Oips = iy v, Equation 30

Drift is modeled as a random walk process and presently it is shown that oy,
must be a zero mean process. Consider differences in the expected drift between
sequential longitudinal locations, developed from Equation 29 and Equation 30, as shown

in Equation 31.

E[8:je1] = E[6i-111] = E[atis1] — E[ti—111] = E[&ix1] = 0 Equation 31
Since there can be no difference in the expected drift between sequential longitudinal
locations, the expected drift, E[(Si_k,l], and the expected difference from the average drift,

E[ai,k,l], must be constant for all longitudinal locations, i. Now consider drift at a

particular longitudinal location

i i Equation 32
Okt = Epk1 t o1 = Z Epkl t Qo1+ V1
p=1 p=1
The expectation across all realizations is then
i
E[6:p1] = Z E[&pxi] + E[aox:] + Elvi] = E[agu] + vi Equation 33

p=1

Define y, to be the expectation of §; ;. ; (which must be constant for all i) so that
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v1 2 E[8; 1] and therefore E[ogy ;] = 0 Equation 34
Since the expected difference from the average drift, E[ai,k,l], must be constant for all
longitudinal locations and E[aq,;| = 0, then by induction
E[aji] =0Vl Equation 35

Substituting the decomposed model of drift as defined in Equation 30, into the definition
of error, as defined in Equation 26, yields the total error model as shown in Equation 36.

q q
€ir = Z 6i,k,lbl + N, = Z(ai,k,l + YI)bl + n; Equation 36
=1 =1

The expected error is then the summation of y;, the average drift in each principle
direction across all realizations and all locations multiplied by each basis vector, as
shown in Equation 37.

q
E[ei,k] = Z Yiby Equation 37
=1

3.3.5 True Surface Estimation
The true surface must be estimated from a set of realizations, or measured
surfaces, that contain some components of error in the form of drift and noise. The true

surface is decomposed into the global and local subspaces according to Equation 38 and

Equation 39.
S; = (Si)G + (Si)GC = (Zi,k - ei‘k)G + (Zi,k — ei,k)(;C Equation 38
q q q
5i = Z Bikibi — z Siiby | +| Zix — Z Bikibr — Mk Equation 39
=1 =1 =1

The projection of each realization, z; ;, in each global direction is defined as f3; ;.

Biki = (b1, Z;x) Equation 40

It should be clear that the expectation of the true surface is simply the true surface
itself, and taking the expectation operator across Equation 39 yields the expectation of the

contributions from the global and local subspaces.
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q

q
se=Elsd = ) ElBucdbi = ) Elylby
=1

=1

Equation 41
+ | Elzix] -
l

q q q
=E z Bixibi| — z yibi +E|z; — Z Bikibi
=1 =1 =1

Two issues arise with this definition of the true surface. First, y; is unknowable

q
E[Bik:1b; — E[m]
=1

from the measured data. It is the offset, or bias, in each of the principle directions for all
of the measurements. Second, in practice the true expectation cannot be known exactly,
but must be estimated from a finite number of available measurements, as such the
estimated expectation is introduced and the estimate of the true surface is defined by
Equation 42. Detweiler (Detweiler and Ferris 2009) showed that nonlinear estimators of
expectation (e.g., median, mode, trimmed mean, inverse distance to a power, and
kriging) are most appropriate due in part to their insensitivity to outliers in the data. The
50% trimmed mean is implemented in the remainder of this work as the estimator of

location for the estimated expectation

q q
@éEZ by + Bz —Z b
i Z, Bixbi ik Z, Bikibi Equation 42

This estimation of the true surface is cast in terms of the true surface and the residual
error terms that arise from the measurement offset, y;, and the error in estimating the
expectation operator in Equation 43. Measurement techniques that mitigate the effects of
v and estimation techniques for the expectation operator will be addressed in the

Discussion section of this Chapter.
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q q 1
Si2s;+ z v.b; + E Z Bikibi| —E Z Bix1bi
=1 =1
q

=1
q
+ E Zi,k - Z Bi,k,lbl —E Zi,k - z Bi,k,lbl Equation 43
=1 =1
q q q
=5; + ZYlbl +E Z Biwibi| + E|zix — Z Bix:bi
=1 =1 =1
- E[zi,k]

Once the true surface has been estimated, it is possible, and instructive, to calculate the

estimated error,
ik =Zix—S; Equation 44

estimated drift,

a Equation 45
(8ir), = Sins = Z(bz' &;1) by
=1
estimated noise,
1 Equation 46
(éi,k)Gc =g = €x — Z(bl' €ix) by
=1

and the estimated drift-free measurement of the surface.

Equation 47

q
zig — (8ik) , = Zin — Z(bb €;1) by
=1

3.3.6 Model Order Study

This section develops an error analysis on the residuals to prove the retention of
high-fidelity information of the data set. In this case, the residuals are the noise process
associated with the local subspace. Furthermore, the phrase “retaining high-fidelity
information” is defined such that the noise floor of the residuals is at or below the system
resolution and accuracy, specifically that the mean and standard deviation of the noise are
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below 1mm. Thus, the standard deviation and mean of the noise surface are computed
after the implementation of each basis vector and compared to these desired values to
determine if the criteria have been satisfied.

For each horizontal grid location (i, j) consider r realizations (measurements) of
the terrain surface and the corresponding estimate of noise njjx. These realizations
represent a distribution of the estimated noise at that grid location from which the
standard deviation and mean noise are calculated. Together, these statistics form surfaces
describing the noise for each added basis vector. These surfaces indicate how the
residuals change over the terrain surface as more basis vectors are added. The mean is
calculated to demonstrate that the assumption of a zero-mean process is valid for this
example, as shown in Equation 48. An estimation of the mean of the entire noise surface
is calculated with Equation 49. The standard deviation is computed with the Equation 50,
where n; ; is the sample mean at each grid location. In order to estimate the standard
deviation of the entire surface, the square root of the average of variances of each
location is calculated, as shown in Equation 51, where m is the length of the terrain
sample, and n is the width of the terrain sample.  These two measures representing the
entire noise surface are used to perform a model order study and determine exactly how
many basis vectors are required to satisfy the assumptions presented in the theory. An

example using the INS drift compensation method is presented next.

— k=14 jk Equation 48
ni,j = f
—_ i1 25=1T) Equation 49
(m *n)
Equation 50
—\2
_ Z;=1(ni,j,k —Nj
% = r—1

Equation 51
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3.4 Chapter 3 Proof of Concept

3.4.1 Design of Experiment

An example is presented to demonstrate the effectiveness of the INS drift
compensation method developed in this work. By identifying and eliminating the INS
drift component of the surface, a large contribution of the system error can be removed
and thus, improve the correlation between multiple measurements of a single terrain
surface. A single lane of longitudinally tined concrete road, approximately 151.1m long,
was selected at the MnRoad testing facility in Albertville, Minnesota for this experiment.
The pavement was measured ten times, providing ten realizations of the surface for
analysis (r=10). The lane was closed to traffic and the data were collected in alternating
directions. The data were acquired at a vehicle speed of approximately 10 m/s, so that a
transverse scan was collected every 10mm longitudinally. The measurements were
nominally corrected for body motion (Wagner, Kern et al. 2007) and mapped to a
regularly spaced grid as described in Section 2.1.4. The longitudinal spacing of 10mm
resulted in 15110 longitudinal locations and a transverse spacing of 25.4mm at 48

transverse locations resulted in a 1.22 m wide terrain surface.

3.4.2 Application of Theory

SVD was performed on a set of ten realizations of longitudinally tined concrete
terrain surfaces yielding a set of corresponding singular values and basis vectors. The
magnitude of the ordered set of singular values corresponding to each basis vector is
represented graphically in Figure 17. As indicated by the Figure, the first singular value
has a magnitude of 6.63, the second singular value has a magnitude of 1.76, and
subsequent singular values are negligible. Additionally, the shapes of the first two basis
vectors are plotted in Figure 18. In general terms, it appears that the first basis vector
accounts for a constant offset in elevation and the second basis vector describes the bank
angle (i.e., “‘cross-slope’ or ‘road camber’). This agrees with intuition that the primary
changes in the road surface are in elevation and banking. The results of the magnitude of
the singular values suggest that the first two singular values will have the greatest effect
on the terrain surface and may be classified as the global subspace, G. However, in

practice, the number of basis vectors, g, sufficient to define the global subspace, G, must
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be incremented until the noise vectors, n;x, have a mean that is not statistically different
than zero. The order in which these basis vectors are added is determined by the
magnitude of their corresponding singular value. The required number of basis vectors to

result in a zero-mean noise process for this example is studied later in this Section.

h d ! ] 9 ® ¢ ® o ® o ® o @ o @ : @ ]
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Figure 17. Plot of first 20 Singular Values.
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Figure 18. Plot of first two basis vectors.

The implications of adding basis vectors to the span of the global subspace, G are
shown qualitatively by examining the estimated noise vectors (refer to Equation 46) and
the estimated drift-free measurements of the surface (Equation 47). This qualitative
examination is considered in two ‘views’: first, transverse noise vectors are considered at
a particular longitudinal location; and second, longitudinal profiles of the measurements,
with the drift components removed, at a particular transverse location. For the second
view, consider each estimated drift-free measurement of the surface to be the
concatenation of longitudinal profiles; each longitudinal profile is then parallel to the
coordinate u in Figure 8 and located at a particular transverse location, indexed by j.

First, consider the case when no basis vectors have been introduced and no drift
has been removed. A typical set of noise vectors (viewed from the transverse direction at
an i index location of 300), as shown in Figure 19, and longitudinal profiles of measured
terrain (for a j index location of 25), shown in Figure 20. Since no basis vectors have
been introduced, the noise vectors in this instance represent the total error for this set of

realizations. It is clear that significant vertical offset and banking (seen in the estimated
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noise vectors) exist in the data. The longitudinal profiles show +/-10 mm of vertical drift,
which is consistent with the static test results shown in Figure 14. Additionally, it can be
seen that one of the profiles, indicated by yellow triangles, does not follow the same
trends as the other nine profiles. If these data were merely averaged, then this profile
would have a significant effect on the results of the estimated true surface. Since each
profile is individually corrected for drift error, and a nonlinear expectation estimator that
is insensitive to outliers (i.e., the trimmed mean) is selected, then this outlier has minimal

effect on the calculation of the estimated true surface.
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Figure 19. Estimated noise vectors (g=0 and i=300).
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After implementing the first basis vector (i.e., q=1), the resulting noise vector
(Figure 21), shows that a significant trend in the banking remains, however the vertical
offset has been eliminated. It is also clear from both the noise vectors and the
longitudinal terrain profiles that the measured data are segregated into two groups
depending on the direction the vehicle was traveling when the data were collected. In the
transverse direction, roll drift exists in both directions. Recall that the data were collected
in opposite directions. This data acquisition strategy allows this roll drift to be detected
in the measurements, as indicated by the two distinct groups: one group exhibiting a
positive slope that was collected in one direction, and the second group exhibiting a
negative slope that was collected in the opposite direction. Similarly, these two groups
are characterized by distinct offsets in the longitudinal direction. This longitudinal
profile is taken near the right side of the pavement, so that the grouping with a positive
slope has a positive offset from the group with the negative slope. This indicates that the
terrain surface itself does not contain significant banking, but rather that the system has

some drift (or bias) in the body roll estimate. Although a distinct offset remains between
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these groups, the spread of the data as shown in Figure 22 is decreased to +/-5 mm, which

is a significant improvement over the original data shown in Figure 20.

=
| ——k=2 |

| —o— k=4

Amplitude, [mm]

Figure 21. Estimated noise vectors (g=1 and i=300).
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Figure 22. Longitudinal profiles (g=1 and j=25).

Implementing the first two basis vectors (i.e., g=2) of drift compensation results
in the estimated noise vectors shown in Figure 23 and in the longitudinal profiles of drift-
free terrain shown in Figure 24. From Figure 23, it can be seen that two basis vectors
suffice to reduce the estimated noise to a zero-mean process. The constant offset in
elevation and the cross-slope have been eliminated from the estimated noise; the
remaining vertical variation is within +/-1 mm, which is consistent with the resolution of
the scanning laser (1 mm). Consistently, the variation in the drift-free surfaces results in
a vertical variation of +/-1mm. An enlarged segment of the profiles is shown in Figure
24, where the estimated true profile is shown as a dashed line. The estimated true profile
depends on the method selected to estimate the expected value of the profile at that
location, and as such, the trimmed mean was used as the estimation of the expectation to

determine the true surface.
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Figure 23. Estimated noise vectors (q=2 and i=300).
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Figure 24. Longitudinal profiles (g=2 and j=25) and estimated True Surface.

3.4.3 Residual Analysis and Model Order Study

The previous Section qualitatively showed that the implementation of two basis
vectors appears to be sufficient in classifying the global subspace. An error analysis on
the residuals is performed in this section to demonstrate the retention of high-fidelity
information of the data set. Recall that the phrase “retaining high-fidelity information” is
defined such that the noise floor of the residuals is at or below the system resolution and
accuracy, or that the mean and standard deviation of the noise are below 1mm. Thus, the
standard deviation and mean of the noise surface are computed after the implementation
of each basis vector and the results of this study are presented.

First consider the mean noise amplitude surface with no basis vectors, as shown in
Figure 25A. Since no basis vectors have been introduced, the mean noise surface
represents the mean error for this set of realizations. It can be seen that significant
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vertical offset and cross-slope exist in the data. Referring to Figure 25B, transverse mean
noise vectors have been plotted along a sample of longitudinal locations along the terrain
surface to clearly show the variation of the surface. This figure also identifies the bounds
specified by the measurement system of +/-1mm as indicated by red dashed lines. While
the variation of each realization is on the order of +/-10mm, the variation of the average
of the realizations is within the desired bounds of +/-1Imm. This suggests that another

measure, the standard deviation, needs to be investigated.

A)
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Figure 25. Amplitude of mean noise surface A) 3D plot B) Cross-sections from 3D Plot
for 0 basis vectors.

Next, the standard deviation surface of the terrain realizations is calculated and
presented in Figure 26A. The corresponding transverse standard deviation vectors have
been plotted in Figure 26B along a sample of longitudinal locations along the terrain
surface to clearly show the variation across the surface. Again, since no basis vectors
have been introduced, the standard deviation surface represents the standard deviation of
the total error for this set of realizations. Figure 26B clearly identifies the desired std.
deviation of 1mm with a red dashed line. It can be seen that the standard deviation of the

noise surface for 0 basis vectors does not meet the 1mm or less requirement.
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Figure 26. Standard deviation of noise surface A) 3D plot B) Cross-sections from 3D plot
for 0 basis vectors.

After implementing the first basis vector (i.e., q=1), the resulting mean noise
amplitude surface (Figure 27A), shows that the major vertical fluctuations of the surface
have been removed. Referring to the transverse mean noise vectors in Figure 27B, it can
be seen that the tolerance on the mean has been reduced to +/-0.2mm from +/-1mm.
Again, the standard deviation of the noise surface must be investigated to identify if the

implementation of one basis vector is sufficient to meet the requirement of a standard
deviation of 1mm or less.
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Figure 27. Amplitude of mean noise surface A) 3D plot B) Cross-sections from 3D Plot

for 1 basis vector.
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The standard deviation surface of the terrain realizations is calculated and
presented in Figure 28A after the implementation of one basis vector (q=1). The
corresponding transverse standard deviation vectors have been plotted in Figure 28B
along a sample of longitudinal locations along the terrain surface to clearly show the
variation across the surface. The effect of the roll component of error is evident in the
fact that the standard deviation takes on a ‘v-shape.” This ‘v-shape’ corresponds with
Figure 21, where the vertical error component has been removed and categorized as the
first component of drift, but the roll component of error remains. From Figure 28B, it
can also be seen that with the implementation of one basis vector, the standard deviation

is not within the desired bounds of less than 1mm.
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Figure 28. Standard deviation of noise surface A) 3D plot B) Cross-sections from 3D plot
for 1 basis vector.

Implementing the second basis vector (i.e., g=2) of drift compensation results in
the mean noise amplitude surface shown in Figure 29A and the transverse mean noise
vectors in Figure 29B. The reduction of the amplitude of the mean noise surface is
negligible from the implementation of two basis vectors. Again, the standard deviation
of the noise surface must be investigated to identify if the implementation of two basis
vectors is sufficient to meet the requirements of a standard deviation of 1mm or less.
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Implementing the second basis vector (i.e., g=2) of drift compensation results in
the standard deviation surface shown in Figure 30A and the transverse standard deviation
vectors in Figure 30B. From Figure 30B, it can be seen that two basis vectors suffice to
reduce the standard deviation of the noise surface to less than 1mm, except for a few
isolated locations where the maximum standard deviation is on the order of 2mm. These
isolated locations can be attributed to discrepancies between the realizations at those
locations. In this case, the discrepancies can be attributed to cracks between the concrete
slabs. This exemplifies one of the limitations of high-speed terrain measurements
systems in the fact that these systems have difficulties in accurately recording the depth
of cracks in terrain segments. One important feature of this method is that localized
events (such as cracks) are identified through this noise analysis. Without the ability to
remove the drift component of the error, the error due to drift would dominate the error
analysis, masking the presence of localized anisotropicities. Once the method has been
applied to the data, and the drift has been removed, these localized events produce
deviations from the average standard deviation of the noise surface, in this case on the
order of 2mm. Since this deviation is greater than the resolution of the laser system, it
can be used to identify the significance of the localized event. It should be clear,
however, that the method developed in this work is able to identify localized events and
also produce a noise surface that is not so significant that it will hinder the vehicle
response over this surface at this location. Implementation of two basis vectors produces
an average standard deviation of the noise that is less than half of the desired value of
Imm. Again,, the maximum standard deviation can be used to identify localized events
(local anisotropicities). The constant offset in elevation and the cross-slope are
statistically insignificant (Refer to Figure 29B); the remaining vertical variation is within
+/-0.2 mm, which is much less than the resolution of the scanning laser (1 mm). These
results are consistent with the qualitative analysis completed in the previous section
where the effect of each basis vector on each realization was studied.
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To summarize the results of the residual analysis on the noise surface, Figure 31
and Figure 32 were developed. While there are as many basis vectors as the dimension
of the space (in this case 48), the general trend in the mean noise and standard deviation
model order studies can be identified after the implementation of two basis vectors.
Figure 31 is the result of a scalar representation of the mean noise amplitude surface after
the implementation of each basis vector, as calculated by Equation 51. The desired value
of 1mm corresponding to the resolution of the laser measurement system is identified as a
red dashed line. It can be seen that the mean of the noise surface is on the order of 10
meters before any basis vectors have been implemented. Once one basis vector (and
subsequent basis vectors) has been implemented, the mean of the noise surface drops
down to the order of 10® meters. This correlates to the previous findings in this section
that after the implementation of the first basis vector, the mean of the noise does not
change. This scalar representation of the mean noise amplitude suggests that the
residuals are a zero-mean process via the nonlinear expectation estimate, without any
implementation of basis vectors (g=0). However, it is clear that the standard deviation of
the noise needs to be considered to indicate a measurement of confidence that the mean

noise surface is truly a zero-mean process.
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Figure 31. Model order study of summary measure of mean noise amplitude.
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Figure 32 is the result of a scalar representation of the standard deviation of the
noise surface after the implementation of each basis vector, as calculated by Equation 49.
The desired value of 1Imm corresponding to the resolution of the laser measurement
system is identified as a red dashed line. It can be seen that the standard deviation of the
mean noise surface (calculated from Equation 51) is approximately equal to 7mm before
any basis vectors have been implemented. Implementing one basis vector brings the
standard deviation down to approximately 1.5mm, which is still greater than the desired
value of Imm. Implementation of two basis vectors (and subsequent basis vectors)
brings the standard deviation down to approximately 0.35mm, so that approximately
three standard deviations lie within the Imm bound, and is well within the resolution of

the measurement equipment.
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Figure 32. Model order study of summary measure of standard deviation as compared
with desired value.
The overall results of the residual analysis and model order study indicate that the
fidelity of the measurements have been maintained after implementation of the INS drift
removal method. Based on the analysis conducted in this Section, the roll component of

drift was identified and removed while still preserving the true road bank angle. Further
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discussion on methods to mitigate the effects of y, is presented in the Discussion Section
of this Chapter.

3.5 Chapter 3 Discussion

This work develops a method to address the INS errors occurring in the height
measurements of terrain surface measurements. It was assumed that the data being
considered had been discretized along a path-centered coordinate, forming a curved
regular grid (CRG). Inherent in this transformation is the spatial interpolation required to
estimate the height of the surface at each grid point. Clearly the uncertainties in the pitch
and yaw measurements will affect the accuracy of the measurement of the horizontal
locations of the measured heights. This uncertainty can affect the estimation of the
height estimate at each grid location to varying degrees depending on the choice of
spatial interpolation method. For example, the height estimate will be highly sensitive to
uncertainty in the horizontal location if a nearest-neighbor or inverse-distance-to-a-power
method is implemented. In every case, the search area around each grid point should
exceed the uncertainty in horizontal location and this uncertainty should be minimized
(Detweiler and Ferris 2008; Detweiler and Ferris 2009). This concept is further discussed
in Chapter 4 of this dissertation.

The estimation of the true surface is affected by the offset, or bias, in each of the
principle directions for all of the measurements, vy, and the error in estimating the
expectation operator, as shown in Equation 43. The measurement offset, vy, is
unknowable from the measured data, but can be mitigated by prudent experimental
design. This was made evident in the example, where the data were collected in
opposing directions. In this way, the drift in the roll measurement was distinguishable
from the cross-slope in the terrain surface. If all the data were collected in the same
direction, then drift in the roll direction would have been indistinguishable from actual
cross-slope in the surface, and the resulting contribution of, y,, would have been
significantly larger, yet unseen in the estimate of the true surface. In contrast, the error
contributable to the first drift direction, the vertical measurement offset y;, cannot be
mitigated by experimental design. For example, one cannot drive on the surface of the

terrain, then turn the vehicle upside-down and perform subterranean driving on the
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bottom of the surface. If this were possible, then the drift in the direction of vertical bias
in the measurement could be distinguished from the actual height changes in the terrain.
A suggestion to alleviate the unobservable component of y, would be to compare the
measured data with surveyed data to identify the ‘true’ variations of height of the terrain
at specific locations (landmarks). It should be clear that if data can only be collected in
one direction (as is the case when a road is not closed to traffic) that a static survey of the
road bank angle at specific locations would be required to determine y,. The additional
information provided by the surveyed landmarks is a collocation enhancement to the
method developed in this section. That is, the offset, or bias, that is unknowable from the
measured scanning laser data can be identified using a collocation approach with
additional survey data, reducing the error in the estimate of the true surface. However,
these survey data are not generally available and the effects of the bias can be identified
and removed through careful experimental design and technique.

With careful planning, y, can be mitigated by driving on each section of road in
alternating directions. In this way the drift component in the roll direction can be
differentiated from the road banking. Similarly, higher order effects such as road
crowning and rutting can be identified by acquiring data at different lateral locations in
each lane. For example, road crowning could be differentiated by a parallax issue by
acquiring terrain data with the vehicle centered on the lane, +0.5m of center of the lane
and -0.5m of center of the lane. In this way, the drift component due to parallax could be
differentiated from true road crowning. Similar data acquisition techniques could also
identify and differentiate any drift components associated with road rutting.

The methodology developed in this work examines one variable at a time, such
that each component of drift is identified as decoupled from the next component due to
the enforcement of orthogonality. As a result, each drift component and the effect
exhibited on the error surface are studied individually. Another approach to error
modeling is the implementation of response surface methodology. Such an approach is
aimed at modeling the response of the system based on the coupling of two or more
variables and studying the response. In the model presented in this Chapter, it seems
logical that elevation is decoupled from bank angle, because the elevation does not
change based on changes in bank angle. However, bank angle could affect the amount of
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crowning in the terrain, or asymmetry may affect and even skew the amount of rutting
that exists in the terrain surface. By implementing response surface methodology to
further develop the INS drift error model, the results of each error model can be studied
to identify better experimental methods to identify and remove error associated with
coupled variables. This is similar to the method described previously where acquiring
data in opposing directions on the same section of road identifies the roll drift component
of error to be removed from the measurement. Similarly, coupled terms could be
identified and removed from the realizations using response surface methodology. Future
work will focus on and study the effects of coupling certain variables to improve the
overall error model.

As identified in the theory development of this work, the true expectation cannot
be known exactly, but must be estimated from a finite number of available
measurements. The interpolation scheme that is selected to estimate the expectation
operator is consequential to computational efficiency, outlier sensitivity, location
sensitivity, and trend sensitivity (Detweiler and Ferris 2009). Recall the plot of the
longitudinal data with no error compensation (i.e., g=0) shown in Figure 20. The ten
measured profiles show +/-10 mm of vertical drift, which is consistent with the static test
results shown in Figure 14. This may suggest that error contributions from the IMU can
be considered negligible as it can be seen from Figure 20 that the DGPS is the primary
contributor to the system drift as the drift error is identical in magnitude to the stationary
test. Additionally, one of the profiles follows a slightly different trend then the other nine
profiles, demonstrating the importance of using an estimator that is robust with respect to
outliers in the data. Although the mean is the least squares estimator, it is based on the
assumption that all realizations should be treated equally and therefore cannot be used to
identify and mitigate the effects of outliers. Therefore, the mean estimator of expectation
was not used in this work since outliers would skew this estimate of the true surface.
This choice of the proper interpolation method was addressed by Detweiler, Stein and
Wackernagel (Stein 1999; Stein, Meer et al. 2002; Detweiler and Ferris 2008; Detweiler
and Ferris 2009; Wackernagel 2010). For this study, the trimmed mean interpolation

method was selected: the mean of the inner two quartiles of data was used.
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When a more comprehensive set of terrain surfaces have been studied, it may be
possible to form an archetypal set of basis vectors for use in all terrain models. The
results of this study are promising; it appears that the first basis vector can be defined as a
constant vertical offset and the second basis vector can be defined as a the ‘bank angle’.
A third basis vector may be defined to describe the “crowning’ of the road. Proper
experimental technique, such as acquiring some measurements of the surface at varying
lateral locations (e.g., to the left and to the right of the lane center), would then be used to
differentiate the crowning of the road from any parallax issues in the measurement
system. Similarly, an additional basis vector may define “road rutting”. The method
developed in this work highlights the importance of understanding the interdependence of
the analysis techniques applied to measured data and proper data acquisition techniques,
and how this understanding allows the identification of instrumental drift and the ability

to minimize the effect on the estimate of the true terrain surface.

3.6 Chapter 3 Conclusions

Terrain measurement systems equipped with an INS have drift that skew the
estimated height and orientation of the terrain surfaces in the global reference frame. A
compensation method is developed to correct this INS drift in terrain measurements.
Each terrain surface measurement is considered a combination of the true surface and the
error surface in which the error is decomposed into drift (global error) and noise (local
error). The global and local subspaces are constructed such that the drift is modeled as a
random walk process while the noise is a zero-mean process. This theoretical
development is coupled with careful experimental design to develop a method to identify
the drift component of error and discriminate it from true terrain surface features, and
correct for the INS drift. It is shown through an example that this new compensation
method dramatically reduces the variation in the measured surfaces from +/- 10mm to
within the resolution of the measurement system itself: +/- Imm. This example required
two basis vectors- elevation and bank angle, to establish the global subspace and reduce
the noise to a zero-mean process with a standard deviation of 0.35mm. The
implementation of this method has implications for a wide range of applications in which

accurate terrain surfaces are required. In terms of ride quality, this method provides a
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means to appropriately stitch multiple lanes of road together without the effects of
unwanted discontinuities to perform various handling simulations. For example, a
simulated vehicle lane change, where the two lanes are concatenated from separate
terrain surfaces, will provide a representative surface with negligible discontinuity. An
archetypal set of basis vectors is developed in the next Chapter for use in classifying
terrain types for the development of terrain models, and of the development of models of

the principle terrain surface features.
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4. Using a Galerkin Approach to Define Terrain

Surfaces

4.1 Chapter 4 Introduction

It is clear that the terrain is the main excitation to the vehicle (Aurell and Edlund
1989). Knowledge of this excitation, when applied in conjunction with high-fidelity tire
and vehicle models, would allow chassis loads to be accurately predicted in vehicle
simulations. Therefore, throughout the design process the system response to this
consistent excitation can be calculated and compared for each tire and chassis design
considered. Accurate terrain models would then provide the tire and chassis designers
with a powerful tool to make informed design decisions early in the design process while
changes are relatively inexpensive to implement. This will result in shortened vehicle
development time and reduced overall development costs.

The current practice for vehicle and tire simulations is to use terrain profile data
as the input to tire and vehicle models. The terrain profile is an indexed set of terrain
heights extending longitudinally along each wheel path. These profiles can be considered
signals and in many cases can be modeled as a stochastic process, thus creating a
compact representation of the terrain profile. Although computationally efficient, this
compact representation limits the available fidelity of data for use in tire models. It
would be advantageous to the design engineer to implement terrain surface data as the
input to tire and vehicle models since terrain surfaces capture more detailed information
about the tire contact patch.

The terrain surface can be represented as an indexed set of transverse vectors of
terrain height, represented in matrix form. That is, each vector of the matrix comprises a
set of terrain heights located perpendicular to the direction of travel of the vehicle.
Although terrain surface data are more computationally expensive to use in simulation,
they typically provide better estimates of the tire-terrain interaction. Toward this end,
this Chapter proposes a method to compactly represent terrain surfaces through analytic

functions.

93



The objective of this Chapter is to develop a terrain surface representation that
retains sufficiently high-fidelity information for detailed vehicle simulation, possesses the
simplicity of terrain profiles, and is being insensitive to the choice of the terrain
measurement system from which the data were acquired. The remainder of this work is
developed as follows. Background on several gridding techniques used across various
areas of studies is introduced. Then, the method by which currently available terrain
measurement systems acquire data is provided to clarify the concept of terrain surfaces as
a sequence of vectors. A vector space is formed by the span of these vectors and a
corresponding set of empirical basis vectors is defined. This background is used as the
foundation for the developments in this work. A range of possible analytic basis vectors
are then generated using known sets of polynomials. The polynomial sets are
parameterized to provide the minimized root mean square error (RMSE) fit between the
resulting analytic basis vectors and the empirical basis vectors. A weighted inner-product
is defined to form a Hilbert space and is use to project the terrain surface vectors onto the
set of analytic basis vectors. The weighting matrix is developed such that these
projections are insensitive to the number and placement of the discrete transverse
locations at which the terrain heights are defined. In this way, a single set of analytic
basis vectors are determined for a general class of terrain (such as all U.S. Highways),
thus eliminating the need to calculate empirical basis vectors for individual surfaces in
this class. This representation also allows less capable terrain topology measurement
systems to estimate the main features of terrain surfaces. The method is applied to
experimental data to demonstrate the concept and to form a basis for discussion, followed
by concluding remarks.

4.2 Chapter 4 Background

4.2.1 Terrain Measurement Approaches Classified as Collocation or Galerkin
Methods

Terrestrial terrain measurement systems sample the terrain surface based on the
number and types of optical lasers implemented. Refer to Chapter 2, Section 2.1.1 for a
complete review of terrestrial terrain measurement systems. Two main approaches exist

to optically sample the terrain; the first is to use point lasers to measure longitudinal
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profiles at specific transverse locations, and the second is to use a scanning laser that is
capable of measuring a swept path at a higher concentration of sampled locations along
the measured path. Consider the following demonstrative example, where it is assumed
that the data are acquired from a scanning laser and mapped to a uniform grid spacing.
Let si be the vector representing the true surface of the section of terrain at the
longitudinal location indexed by i. Let vector s; contain elements indexed 1 to 80
corresponding to transverse points in the v(j) direction, such that the terrain section has a
width of 80 points, as shown in Figure 33. Furthermore, let the set of vectors {s;} span
10,000 locations in the u(i) direction, such that the terrain section has a length of 10,000
points. Using this representation, {s;} contains 800,000 elevation points to describe the
section of terrain. The remainder of this section will leverage this example and discuss a

collocation method and a Galerkin method to define the terrain surface.

< Si

800,000 Elevation u(i)
points '

80 .V_(J' )

1

Figure 33. Example of discretized terrain surface in Curved Regular Grid Format.

The use of point lasers to sample the data can be considered a collocation method
to characterize the terrain. The collocation method is based on a finite-dimensional space
of candidate solutions, such as longitudinal terrain profiles, and a number of collocation
points in the domain of the space, such as grid points. It is then desired to select the
solution which satisfies the given equation at the collocation points, or in this case, select
the solution which exactly represents the terrain profile at the each grid point of interest.
In the case of point lasers, as can be seen from Figure 34, if lasers are placed along the
wheel paths of a vehicle and sampled at the required grid points, then any spatial
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interpolation method between these grid points must, by definition, be a collocation
method provided that the equations exactly represent the grid points themselves.. By
implementing a collocation approach and referring to the example presented earlier in

this section, it would require 10,000 points to exactly represent each wheel path profile.

Multiple 2D profiles
resulting from

Figure 34. 2D terrain profiles resulting from point lasers used to characterize the surface

by a Collocation method.

On the contrary, scanning lasers are capable of measuring the full width of a
typical highway lane as depicted by Figure 35, which allows the entire surface to be
characterized as opposed to just wheel path profiles. This method of approximating the
terrain surface can be considered a Galerkin method of characterizing terrain. The key
difference between a Galerkin method and a collocation method is that the Galerkin
method satisfies conditions in an integral or average sense over all points, rather than an
exact solution at every grid point, thus allowing the entire surface to be approximated.
With the Galerkin method, it is acceptable to formulate a set of continuous analytic basis
functions that can be discretized based on the capabilities of the measurement system for
specific types of terrain. Once the analytic basis functions are identified for a sample set
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of terrain using scanning lasers capable of measuring the full width of a typical highway

lane, the effects of fewer measured samples of the terrain surface can be analyzed.

Terrain surface resulting
from Single 3D Surface

Figure 35. 3D terrain surface resulting from a scanning laser used to characterize the
terrain by a Galerkin method.

4.2.2 Terrain Analysis Methods

Many methods are available for use in discretizing a continuous surface for
analytical purposes and vary based on the application. In the application of terrain
surface analysis, the surface is already discretized based on the terrain measurement
system used to acquire the data. The data are acquired in the form of point-cloud data
and thus, the issue of analysis technique arises based on the spatial interpolation used to
map to a regularly spaced grid. Several methods of formulating a uniform grid are
reviewed to identify key differences, and clearly describe the method developed in this

dissertation.
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Finite Element Analysis
Finite Element Analysis (FEA) is used to numerically solve field problems. A

field problem is classified as a differential equation that requires the formulation of finite
elements to produce a solution in terms of a spatial distribution of one or more dependent
variables (Cook, Malkus et al. 2002). These finite elements are defined by grid nodes.
Various elements exist to better solve different problems, the details of which are beyond
the scope of this work. The collection of elements and grid nodes is commonly referred
to as a mesh. The mesh can be adjusted to better fit the contours of the continuum being
analyzed. The main advantage of FEA is that this method represents and solves for the
dependent variable of interest locally, (between nodes), to approximate how the
continuum will respond to specific inputs and boundary conditions. Consider the
following example to demonstrate how the underlying principles of FEA work. An
element comprised of four nodes is presented in Figure 36, implementing the &
coordinate system. The shape functions, N;, also known as basis functions, associated
with each node are defined in Equation 52, where i corresponds to the node number. The
displacement field, u, corresponding to this example is presented in Equation 53.
Referring to the example presented earlier in this section, if the FEA method was
implemented on the surface in its current configuration, then there would be 800,000
nodes and 800,000 shape functions required to define the displacement field of the
sample terrain surface. Of course the beauty of using FEA is the mesh can be refined
(coarser or finer) to appropriately represent the continuum under study. Furthermore,
material properties are associated with the mesh so isotropic or anisotropic properties are
defined prior to analysis. This method is applicable to a large general class of problems,
including capturing and characterizing the details of local terrain features such as
potholes or bumps. It is computationally expensive, however, when applied to
anisotropic terrain surfaces that define the scope of applicability of the developments in
this work. Specifically, the scope is terrain having an inherent path defined over which

vehicles travel and where that travel, over time, has defined obvious paths or lanes.
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Ni(¢)= ¥2(1-¢)
Ni(ip)= % (1- n) Equation 52
Ni (&)= Y4 (1- ) (1)

u(&,n)=N1(& m)ur+ Na(& m)ua+ Na(& i)uz+ Na(& m)us Equation 53

A

W

Figure 36. Simple four node FEA example.

Digital Terrain Model Analysis

Digital Terrain Models (DTM) are discussed in detail in Section 2.1.2, and the
points that are important to this Chapter are briefly reviewed here. A Cartesian
coordinate set is established in the horizontal plane (defined by X, and Y), and
polynomials are formed that may include coupling terms for X and Y due the assumption
that the terrain being studied is isotropic. The polynomials are parameterized in one of
several ways. The order of the polynomial (as well as the number of the corresponding
parameters) can be increased such that the measured points are matched exactly (a
collocation approach) or lower order polynomials may be parameterized to minimize
some integral error for all measured points (a Galerkin approach). In either case, the

99



order and form of the polynomial is developed without a priori knowledge of the specific
anisotropicity addressed in this work. Similar in this way to the FEA method, the DTM
method is applicable to a large general class of problems, but is computationally
expensive when applied to anisotropic terrain having an inherent path defined over which
vehicles travel and where that travel, over time, has defined obvious paths or lanes. In
general, the DTM method is appropriate for modeling terrain on the global scale where

localized terrain features such as potholes and bumps are inconsequential.

Principle Component Analysis

The terrain studied in this work has well defined paths. This specific
anisotropicity is exploited, allowing the longitudinal and transverse directions to be
decoupled and a single set of vectors (discretized polynomials) to be used to define the
transverse direction at all longitudinal locations. That is, the entire terrain surface can be
represented by several basis vectors as opposed to thousands of shape functions as with
the FEA method, or with high order polynomials as with the DTM method. A Singular
Value Decomposition (SVD) algorithm is used to develop these basis vectors since the
SVD algorithm minimizes error based on the error type chosen, has high numerical
precision (minimal round-off error), and controls linear dependence among the columns
of the matrix by setting very small singular values approximated to zero (Haykin 2003).
It can be applied to square or rectangular matrices. As a result of implementing SVD on
the terrain sets, the principle components, or basis vectors are identified. In the case
where the path is indistinguishable, more general methods of parameterizing the
polynomials should be applied. The method proposed in this work would require a large
number of basis vectors to be developed and would simply converge to an uncoupled

formulation of the DTMs in the limiting case.

4.2.3 Defining the Hilbert Space and True Surface

Each vector composing the terrain surface measurement, z;,, is considered a
combination of the true surface, s;, and a realization of a stochastic error process, e; .
The error is decomposed into drift (global error) and noise (local error); drift is modeled
as a random walk process while the noise is a zero-mean process (Favey, Cerniar et al.

1999; Sun, Fu et al. 2008). Each measured surface is then a realization of a stochastic
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process and is defined as a sequence of vectors that are elements of a Hilbert space, H.
Since there is exactly one true surface for any number of realizations, s; is not indexed by
k. It is shown that the true surface must also span the Hilbert space H (Chemistruck,
Binns et al. 2010).

The Hilbert space is decomposed into principle directions. A set of orthonormal,
empirical basis vectors, by, are constructed to span the space via Singular Value
Decomposition (SVD) of the set of measured vectors. Basis vectors are added to the
composition of the true surface until the residual noise vectors have a mean that is not
statistically different than zero; this number of basis vectors is defined as g. The span of
these g basis vectors defines the global subspace, G. The order in which the basis vectors
are added is determined by the magnitude of their corresponding singular value, in
descending order. Currently, the global subspace is defined by the span of the truncated
set of empirical basis vectors. In this Chapter, the global subspace is redefined by the
span of a truncated set of analytic basis vectors.

Due to the finite number of realizations (measurements), the true surface, s;, is
determined by considering the estimated expectation of the sequence of measured vectors
projected in the global vector space, G, and the complementary vector space separately.
The vector defining the estimated true terrain elevation at the longitudinal location
indexed by i is then defined as §;. This estimation of the true surface must be coupled
with careful experimental design. Specifically, the drift component of error is identified
and removed from the measured terrain and the expected value of this drift-free surface is
the estimated true terrain surface, thus correcting for the INS drift (Chemistruck, Binns et
al. 2010). Note that

Equation 54 would reduce to the expected height, E[z;«], if the expectation were

known exactly or a linear estimator were used.
q q

$;2E Z(b,, zi)by | +E |z — Z(bp Zi )by Equation 54
=1 1=1

Samples of paved U.S. Highway data present very similar trends in their resulting

empirical basis vectors; a typical set of vectors is shown in Figure 37. Generally, the first

101



basis vector accounts for a vertical offset in elevation and the second basis vector
describes the ‘cross-slope’ or ‘bank angle’. This agrees with intuition that the primary
changes of a paved surface are in elevation and banking. The fourth basis vector
approximates the shape of ‘rutting,” a condition that arises from road wear due to tire
interaction. Due to this consistency in road construction of paved surfaces and
interaction with vehicles, the shapes of the empirical basis vectors are correspondingly
similar for all terrain surfaces that have a distinct path. This work develops a method to
capture these characteristics with analytic functions. The correlation between empirical
basis vectors and analytic basis functions is exploited to develop a single set of analytic
basis vectors that can be used for a specific type of terrain. These analytic basis vectors
are developed to provide a definition of terrain surfaces that is insensitive to the choice of
terrain measurement system and can be applied to terrain that have similar topology. In
this way, new empirical basis vectors do not have to be developed and implemented in
each characterization of terrain and direct comparison of terrain of the same terrain type
can be performed. To achieve this, the empirical basis vectors are approximated by a set
of analytic functions for specific types of terrain; the analytic functions are sampled at
discrete locations defined by measurement locations provided by the measurement
system or the prescribed gridding locations.
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Figure 37. First four empirical basis vectors based on a sample of measured U.S.
Highway data.

4.2.4 Analytic Functions

Several polynomial sets are introduced in this section and briefly defined as
potential candidates to approximate the empirical basis vectors. Well-defined and
commonly used sets of polynomials are used instead of curve-fitting polynomials to the
empirical data so that definitions of the terrain surface are portable and cross-platform

terrain measurements can be implemented.

Gegenbauer Polynomials

The Gegenbauer polynomials, more commonly known as ultraspherical functions,
belong to the class of orthogonal polynomials. Normality is enforced after the functions
are discretized. A recurrence relationship for the Gegenbauer polynomial is presented in

Equation 55, with parameter A (0,1] and are defined over the domain [-1, 1]. The
Legendre polynomial results when X is equal to 0.5. The shapes of the first five Legendre

polynomials are presented in Figure 38 and upon inspection it can be seen that these
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analytic functions approximate the empirical basis vectors shown in Figure 37. The tails
are set to +1 or -1, but the local minimums and maximums vary based on the order of the
polynomial. ~ Additional detail on the Gegenbauer Polynomials and the Legendre
Polynomials can be found in Appendix C and Appendix D respectively.

nC,(l’U x)=2(n+21- 1)xC,(1’P1 (x)

0 B Equation 55
—(n+21-2)C, =, (x), Yn=23..
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Figure 38. First five Gegenbauer polynomials with A=0.5.

Chebyshev Polynomials

The Chebyshev polynomials also belong to the class of orthogonal polynomials.
Normality of the polynomials is enforced after the functions are discretized. A
recurrence relationship for the Chebyshev polynomials is presented in Equation 56, after
setting Toto 1 and T, to x over the range of [-1, 1]. The shapes of the first five Chebyshev
polynomials are presented in Figure 39. One of the properties of the Chebyshev

polynomials is that the local minimums and maximums are set to one, and all of the tails
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start or end at -1 or +1. Additional detail on the Chebyshev Polynomials can be found in

Appendix E.
T (%) = 2xTj—1 (%) — Tea(x) Yk = 2,3, ... Equation 56
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Figure 39. First five Chebyshev Polynomials.

Fourier Series Basis Functions
The Fourier series basis functions make use of the orthogonality relationships of the sine

and cosine functions. The Fourier series form a complete orthogonal system over [-=w, 7]
and are defined by the function presented in Equation 57. The coefficients ap, a, and b,
are defined in Appendix F. The shapes of the first four Fourier series basis functions are
presented in Figure 40. Only the first four basis vectors are presented because the Fourier
series basis functions do not include a linear (sloped) line as do the Gegenbauer and
Chebyshev polynomials; thus, to match the shapes of these polynomials without the
sloped line, only four basis functions are required. Since the Fourier series are based on

sines and cosines, the tails of the basis functions will start or end at +1 or 0, and the local
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minimum and maximums are equal to +1 or -1. Additional detail on the Fourier Series

Polynomials can be found in Appendix F.

[ee] [ee] H
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Figure 40. First four Fourier series basis functions.

4.3 A Galerkin Approach to Decomposing Terrain Surfaces

The estimated true terrain surface can be decomposed into contributions in the
principle directions defined by the empirical basis vectors, by, (Equation 54). In this
work, the estimated true surface is decomposed via analytic basis vectors, pj, that capture
the fundamental shapes of the empirical basis vectors. The analytic basis vectors, pj, are
defined from continuous analytic basis functions (shown in

Equation 55) using a Galerkin approach, thus redefining the global subspace, G,
with a finite set of analytic basis vectors. The definition of the estimated true surface is
redefined in Equation 58. Each component of the estimated true terrain surface is defined

in terms of the principle directions, o), as shown in Equation 59. The magnitude of each
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principle direction along the length of the terrain surface is defined as o;), and is termed
the component of terrain in the I" principle direction.

a q Equation 58
5;2E Z(Pl: Zi)wPi| + E|zix — Z(Pb Z; k)wPi
=1 =1

Cii 2 (P Sidw Equation 59
Several criteria are imposed in the development of the analytic basis vectors.

Specifically, the analytical basis vectors must satisfy the properties enumerated below:

1. Spanning the same n dimensional vector space as the empirical basis vectors.

2. Orthogonal with respect to a weighted inner-product. This is a fundamental
requirement of the Galerkin approach, which enables simple mapping of the
estimated true terrain surface onto the analytic basis function.

3. Normalized with respect to a weighted inner-product, simplifying subsequent
calculations.

4. Closely correlated to the empirical basis vectors.

5. Insensitive to the selection of the transverse locations composing v.

The remainder of this section develops the method to determine the analytic basis
vectors.

It is clear that if the complete set of n analytic basis vectors is linearly
independent, then they span the same space as the empirical basis vectors. However, a
different Hilbert space must be formed. The redefined Hilbert space, H, has a weighted
inner-product and induced norm. The analytic functions are mapped on H through
Galerkin discretization so that the discretization error is orthogonal to H. When the
continuous polynomials are discretized, the error associated with this discretization
method is orthogonal to H, and no discretization error exists in H. The global subspace
G, is redefined as the span of the truncated set of analytic basis vectors,{p;}. The driftis
then the projection of the error vectors onto the global subspace and the noise is defined
as the error projected onto the complement of the global subspace. Again, basis vectors

are added to the definition of the global subspace until the residual noise vectors have a
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mean that is not statistically different than zero. With the Hilbert space redefined, the
parameterization of the polynomials can be determined.

Recall v is the continuous coordinate (shown in Figure 7A) and note that any
continuous polynomial can be written in the form presented in Equation 60. The order of

the polynomial is defined by (a-1).
P(v) =co+ v+ cv% + -+ cv*t Equation 60

Next the continuous coordinate v is sampled at a sequence of n discrete points to form a
vector of monotonically increasing values, v. This vector represents the transverse
locations at which the terrain heights are defined either through measurement or spatial
interpolation. The transverse locations, v, are scaled and centered on zero so that they
exist on the interval [-1, 1], corresponding to the domain of the continuous polynomials.
In this way, each discrete polynomial vector, p, is represented in matrix form as shown in
Equation 61. The matrix of polynomial terms for discretized values of v is defined as V.
The vector of polynomial coefficients, c, is determined by the choice of the generating
polynomial (e.g., Gegenbauer, Fourier, Chebyshev, or others...). The remainder of the
theoretical developments in this Chapter are based on the set of Gegenbauer polynomials
to avoid redundancy and without loss of generality. The Gegenbauer polynomial is

parameterized by A according to Equation 55.

[1 v, v . vf‘l] o
2 -1
p=pw)=|t vz V2 - ViTW2L_yuyem Equation 61
[1 v, v2 .. v 1\

4.3.1 Vandermonde Matrix

In general, the matrix V is an n x a matrix where the number of polynomial terms,
a, will be larger than the number of transverse locations, n. To formulate a Vandermonde
matrix for V, consider a truncated polynomial of order n. Since v is defined to be
monotonically increasing (thereby having distinct values), then V* exists, V is positive

definite, and the mapping from the polynomial coefficients to the solution of the
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polynomial along v is a one-to-one correspondence (i.e., the polynomial interpolation
problem is solvable with a unique solution).

Consider the complete set of n analytic basis vectors, {p|} where | € {1, 2, ..., n},
defined by Equation 62. The analytic basis vectors are linearly independent and span the
same space as the empirical basis vectors. Each vector in the set is a function of the
particular measurement locations (defined by v) and a particular set of coefficients, ¢|(A1).
A concatenation of these coefficient vectors is defined as the coefficient matrix, C, as
shown in Equation 63. The Vandermonde matrix, V, and the coefficient matrix, C, are
used to develop the weighted inner product and the resulting Hilbert space.

pi(w, 1) =V(@w)c, (1) Equation 62
C=[cq..c,] Equation 63

A weighted inner product is developed to produce a set of analytic basis vectors
that are orthonormal with respect to the weighting matrix, W, such that cLVTWVc, is the
Kroenecker delta function, as shown in Equation 64. Note that this definition satisfies the
requirements that an inner product is positive definite since a Vandermonde matrix, V, is
positive definite and its inverse must exist. More detail on inner products is provided in
Appendix G. Furthermore, the coefficients of the polynomial are defined to be linearly
independent due to the orthogonality of the polynmomials, and the inverse of the
coefficient matrix, C, must exist. The definition of the weighting matrix that produces
this desired orthonormality is defined in Equation 65.

(DL D)W = PEWD, = ctVIWVc, = 8 Equation 64

w2 whH1(chH 1) v-1 = (p"H)-1p1 Equation 65

Analytic basis vectors are defined as the orthonormal discrete basis vectors from
the Gegenbauer polynomials. Consider the first basis vector, p;, corresponding to the
zero-th order Gegenbauer polynomial. Since p; is a vector of ones, the corresponding
vector of coefficients, ¢, is given by Equation 66. The second basis vector, p, is derived
from the first order Gegenbauer polynomial and the corresponding vector of coefficients

is given by Equation 67. The coefficient matrix, C, has the form shown in Equation 68.
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It is clear that all coefficient vectors except the first are functions of the parameter A.
This parameter is used to adjust the shape of the analytic basis vectors so that they are
closely correlated to the empirical basis vectors (satisfying the fourth design criterion).
This process is demonstrated for U.S. Highways in the Proof of Concept Section of this
Chapter. Next, the general formulation of this method is presented in terms of a weighted

grammian.

1
p1 =p1(v) =1=Vc, wherecy = 0}

: Equation 66
0
(0
(2]
p2 =p,(v) =v =Vc, where ¢, = 4 0 ¥ Equation 67
Lo
1 0 -1
0 2 0
C=|0 0 22(14+4) - Equation 68
: : 0
0 0 :

4.3.2 Underdetermined Systems

In general, the number of polynomial terms, a, will be larger than the number of
transverse measurement locations n, such that a > n. This results in an underdetermined
system of equations, which, if there is any solution, then there are an infinite number of
solutions which form an affine space. It is desired to identify the “simplest” solution to
this problem, which is of the form y=Ax. The goal is to identify the least squared error
solution in this affine space, that is, the solution that minimizes the norm of the error
vector (Donoho, Kakavand et al. 2007). Recall the formulation of the problem defined in
matrix form in Equation 69. In the general sense, V(v) is an n x a matrix of polynomial
terms for discretized values of v and C is an a x n matrix of vectors of polynomial
coefficients. In the case of Gegenbauer polynomials, the matrix of coefficients is

parameterized by A and written C(1)
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1 vy v .. vi™
_ 1 v, v v .
P=Pwi)=|1 V2 ¥ e o )] Equation 69
1 v, v2 v,?‘lJ
=V()C(Y)

The weighted inner product is reformulated for the general case in which the
polynomials are not truncated to n = a as in the case of the Vandermonde matrix. A
weighted grammian, R, is introduced to aide in the formulation of the reformulated
weighted inner product in Equation 70. Specifically, a weighting matrix is developed
such that the weighted inner product of the element (p;, pi)w is equal to the Kroenecker
delta function. A weighted inner product in matrix form is developed to produce a matrix
of analytic basis vectors that are orthonormal with respect to the weighting matrix, W,
such that the weighted grammian equals the identity matrix, as shown in Equation 71.
Note that this definition satisfies the requirements that an inner product is positive
definite since a grammian is always positive definite. The definition of the weighting
matrix that produces this desired orthonormality is defined in Equation 72, which is the
same as Equation 65. This more general formulation retains all of the higher order
polynomial terms, and reduces to the Vandermonde formulation when the order of the
polynomial is truncated to the number of measurement locations (i.e., when a=n). Even
without the truncation, the resulting P matrix is the same for this underdetermined system
as it is for the Vandermonde formulation. This can be attributed to the fact that V is an [n
x a] matrix and C is an [a x n] matrix, so when multiplied, P becomes an [n x n] matrix.

Next, the concept of components of terrain is introduced.

<PuP1> <pP2uP1>  <PpP1> Equation 70
<P, > < p,y, > e < Py >
R=Rw,2) = P1:P2 PZ:PZ Pn:Pz =[]
<PuPn> <DP2Pn> = <PnbDn>
R =(P,P)y, = PTWP =CTVIwWvc =1 Equation 71
w2 WwT-1(cN1(0)"v-1 = pr1lp-1 Equation 72
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4.3.3 Defining Components of Terrain in the I Principle Direction

The Hilbert space is developed such that the resulting projections onto the
analytic basis vectors, o;;, are insensitive to the selection of the transverse measurement
locations composing vector v (and subsequently matrix V) and with respect to the
parameterization of the coefficient vectors, ¢, and matrix C. This insensitivity is
demonstrated through a heuristic example in which the estimated true surface, §;, is
simply a linear combination of the analytic basis vectors, given in Equation 73. In this
simplified case, the estimated true surface is constructed such that it lies completely in
the global subspace. The 6, coefficients are defined, for this example only, as the
magnitude of the contribution of each analytic basis vector to this artificial estimated true
surface. For this case, the choice of measurement locations (manifested in V) and
parameterization of the analytic basis vectors (manifested in C) have no effect on the
determination of the components of the terrain. This is due to the definition of the
weighting matrix, W, defined in Equation 65 and equivalently in Equation 72. Also by
definition in Equation 64, the weighted inner product is only equal to one when k is equal
to | and is zero otherwise, which is used in Equation 74. This is also consistent with the
grammian formulation. Consider, for example, if the road surface is perfectly flat and
level, but vertically offset by a specific value, then according to Equation 73, 8; must be
proportional to this vertical offset and 6, for k > 1 must be zero. In this case, the
resulting first component of terrain o,; would be 6;. Similarly, if the road were flat but
banked, then 6, would be proportional to the surface’s bank angle and all values for 6,
for k=2 would be zero. If the estimated true surface is any linear combination of the
analytic basis vectors, then the resulting projection onto each analytic basis vector, o,
given in Equation 74, is completely insensitive to the choice of transverse locations, v, or

the choice of the parameterization of the generating polynomial, A.

a
5= Z OxPk
k=1

Equation 73
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Using this definition of components of terrain, o;;, a new representation is
developed that captures the principle information about a terrain surface in a compact
form, which is similar in structure to terrain profiles. Each terrain component o;,,
represents the contributions of the true surface in each principle direction. These terrain
components are signals that are similar in form and simplicity to a terrain profile, except
o, represents the magnitude of each basis vector to the terrain surface. This concept is

further developed in Chapter 5.
4.4 Chapter 4 Proof of Concept

4.4.1 Design of Experiment

An example using measured data is presented to demonstrate the effectiveness of
using analytic basis vectors in capturing the characteristic shapes of the empirical basis
vectors. Furthermore, the insensitivity to the discrete transverse locations at which the
terrain heights are defined (either through measurement or spatial interpolation) is
studied, showing the versatility of this approach in adapting to various profiler platforms.
Four sections of U.S. Highway data (two concrete sections and two asphalt sections),
each 151.1m long, were selected at the MnRoad testing facility in Albertville, Minnesota
for this experiment. The sections were closed to traffic and each surface was measured
ten times, in alternating directions, at a vehicle speed of approximately 10 m/s. The
measurements were nominally corrected for body motion (Kern and Ferris 2007; Wagner,
Kern et al. 2007) and mapped to a regularly spaced grid. The longitudinal spacing of
10mm resulted in 15110 longitudinal locations and a transverse spacing of 25.4mm at 51
transverse locations resulted in a 1.3 m wide terrain surface. The terrain heights at these
uniform grid locations were captured in matrix form and a principle component analysis
using an SVD algorithm was performed to identify the empirical basis vectors (refer to
Figure 37). The empirical basis vectors used in this example represent a small portion of

U.S. Highway data and, although they are not comprehensive, they provide a very

113



encouraging degree of support for representing terrain surfaces with analytic basis

vectors.

4.4.2 Application of Theory

Before the analytic and empirical basis vectors are analyzed, the vector of
transverse locations for the empirical data, v, is shifted horizontally 1.1375m to be
centered on zero and scaled by a factor of 1.5 to exist on the same domain as the analytic
basis vectors, [-1, 1]. The transverse locations defining v for the generation of the
analytical basis vectors were evenly spaced among 51 points spanning [-1 ,1]. The
magnitudes of the empirical basis vectors, b;, were scaled by a factor of four to aid in
visualizing the correlation. Clearly the correlation between the analytic basis vectors and
the empirical basis vectors depends on the shifting and scaling of the measurement
locations, v, but not on the scaling of the magnitude of the empirical basis vectors. The
end of this Section will compare the root mean square error (RMSE) of each proposed
analytic basis vector with the corresponding empirical basis vectors to determine which

set of polynomials best represent this set of U.S. Highway data.

Gegenbauer Polynomials vs. Empirical Basis Vectors

For the Gegenbauer polynomials, the value of A defines the relative scale of the
tails of the polynomial; a value of A=0.1 results in flat functions and a value of A=1
results in polynomials with extreme tails. When A=0.5, the Legendre polynomials are
generated with the range bounded by [-1, 1]. The RMSE between the empirical and the
analytic basis vectors corresponding to the Gegenbauer polynomials results when A lies
in the interval [0.45, 0.55], suggesting that the Legendre polynomials are most
appropriate form of the Gegenbauer polynomials to compare to the empirical basis
vectors. The Legendre polynomials will also be used to compare to the other two sets of
polynomials to identify the most appropriate set of analytic polynomials to approximate
the empirical data. This comparison will be discussed at the end of this Section. A
comparison of the first four empirical basis vectors with the Legendre polynomials is
shown in Figure 41. The first empirical basis vector and the first analytic basis vector

provide a means to describe the overall change in elevation, however there is an obvious
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offset between the empirical and analytic basis vectors; this is simply due to the scaling
of the magnitude of the empirical basis vectors and, again, has no impact of the
correlation. The second empirical basis vector is collinear with the second analytic basis
vector, defining the bank angle in the road. The analytic and empirical basis vectors for
the bank angle terrain characteristic correlate well. There was negligible crowning in the
empirical data (corresponding to the third analytic basis vector), so no comparison is
possible and no figure is provided. The third empirical basis vector representing the
asymmetry terrain characteristic is compared with the fourth analytic basis vector
(corresponding to the third order polynomial). The empirical data shows an asymmetry
in the shape of the basis vector in that the local maximum is much narrower than the local
minimum. The fourth empirical basis vector representing the road rutting terrain
characteristic correlates well with the fifth analytic basis vector, however the empirical

vectors exhibit deeper local minimums than the analytic basis vector.
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Figure 41. Empirical basis vectors compared with the Legendre polynomials.

Chebyshev Polynomials vs. Empirical Basis Vectors

A comparison of the first four empirical basis vectors with the Chebyshev
polynomials is shown in Figure 42. The first empirical basis vector and the first analytic

basis vector provide a means to describe the overall change in elevation, however there is
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an obvious offset between the empirical and analytic basis vectors. The second empirical
basis vector is collinear with the second analytic basis vector, defining the bank angle in
the road. It is important to note that the analytic basis vectors pertaining to the first two
Legendre and Chebyshev polynomials are identical. The main differences in appropriate
curve fitting will become apparent in the latter basis vectors. There was negligible
crowning in the empirical data (corresponding to the third analytic basis vector), so no
comparison is possible and no figure is provided. The third empirical basis vector
representing the asymmetry terrain characteristic is compared with the fourth analytic
basis vector (corresponding to the third order polynomial). The analytic basis vector does
not appear to correlate well with the empirical basis vector due to the property of the
Chebyshev polynomials that the local minima and maxima are equal to +1 or -1. The
fourth empirical basis vector representing the road rutting terrain characteristic correlates
well with the fifth analytic basis vector.
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Figure 42. Empirical basis vectors compared with the Chebyshev polynomials.

Fourier Basis Functions vs. Empirical Basis Vectors

A comparison of the first four empirical basis vectors with the Fourier series basis
functions is shown in Figure 43. The first empirical basis vector and the first analytic
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basis vector provide a means to describe the overall change in elevation; again there is an
obvious offset between the empirical and analytic basis vectors. It is important to note
that the first analytic basis vectors are identical for the three sets of polynomials used in
this analysis. More importantly, the second empirical basis vector is not represented in
the basis functions of the Fourier series and thus does not show any correlation with the
second analytic basis vector. The Fourier series could be summed to approximate the
sloped line, but this negates the intention of this process and would require an infinite
sum to obtain this. The fact that the Fourier basis functions do not capture the bank angle
basis vector, and that this basis vector pertains to one of the two dominant features in the
terrain surface indicates that the Fourier series are not appropriate to model the empirical
data. Other differences will be seen in the third and fourth basis vectors. The third
empirical basis vector representing the asymmetry terrain characteristic is compared with
the third analytic basis vector. Similar to the third order Chebyshev polynomial, the local
minimum and maximum are greater than that of the empirical data suggesting that the
third order Fourier basis vector is not a good fit. The fourth empirical basis vector
representing the road rutting terrain characteristic does not appear to correlate well with
the fifth analytic basis vector. The local minimums do not line up with the minimums of
the empirical data and the local maximum is too narrow as compared with the empirical
data.
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Figure 43. Empirical basis vectors compared with the Fourier series basis functions.

RMSE Study to Determine ‘Best Fit’

The ‘best fit’ between the empirical basis vectors and the proposed sets of
analytic polynomials is identified by the set of polynomials that presents the minimal
RMSE between the first four empirical basis vectors and the corresponding analytic basis
vectors (refer to Figure 41, Figure 42, and Figure 43 for a visual comparison). Plots
comparing the RMSE of each polynomial set to the empirical basis vectors are described
and shown next.

The RMSE between the Legendre, Chebyshev and Fourier polynomials and the
first empirical basis vector was calculated and plotted in Figure 44. Referring to the
previous section, it is important to note that each of these polynomial sets produced the
same analytic basis vector, thus there is no differentiation between the polynomials. The
trend in the RMSE plot is due to the fact that the empirical basis vector corresponding to
the terrain characteristic of elevation is not perfectly level and exhibits a small downward

slope. The error is then shown to increase when moving from the left to the right, with an

average RMSE of 9.8%.
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Figure 44. RMSE of analytic polynomials vs. empirical basis vectors for b;.

The RMSE between the Legendre, Chebyshev and Fourier polynomials and the
second empirical basis vector was calculated and plotted in Figure 45. Referring to the
previous section, it is important to note that the Legendre and Chebyshev polynomials
produced the same analytic basis vector, thus there is no difference between these two
polynomials. The Fourier basis functions do not include a sloped line as one of its shapes
and results in a large error when compared with the second empirical basis vector. The
average RMSE of the Legendre and Chebyshev was calculated to be 0.83%, indicating

that either polynomial is an appropriate fit for this basis vector.
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Figure 45. RMSE of analytic polynomials vs. empirical basis vectors for b,.

The RMSE between the Legendre, Chebyshev and Fourier polynomials and the
third empirical basis vector was calculated and plotted in Figure 46. All of the
polynomials produced a significant amount of error, as high as 60%. Despite this, the
Legendre basis vector produced the least amount of error of the three polynomials, with
an average RMSE of 12.8%. The greatest amount of error occurred on the tails and when

trying to match the asymmetric maximum of the empirical basis vector.
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The RMSE between the Legendre, Chebyshev and Fourier polynomials and the
fourth empirical basis vector was calculated and plotted in Figure 47. The average
RMSE of all of three polynomials were compared to identify which basis vector
produced the minimum RMSE. The fifth Legendre basis vector produced an average
RMSE of 8.1%. The fifth Chebyshev basis vector produced an average RMSE of 8.5%.
The fourth Fourier basis vector produced an average RMSE of 15%. While the Legendre
basis vector produced the lowest average RMSE, it also yielded the second highest peak

value of error.
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Figure 47. RMSE of analytic polynomials vs. empirical basis vectors for b.

The Fourier polynomials produced errors much greater than the Legendre and

Chebyshev polynomials, as shown in Table 1. By calculating the average RMSE of each

analytic basis vector against each empirical basis, it is concluded that the Legendre

polynomials best define the analytic basis vectors for U.S Highways. It is expected that

additional datasets will provide some spatial averaging to the empirical basis vectors,

thus smoothing the empirical data and further supporting the correlation with the

Legendre basis vectors.

Table 1. Average RMSE values of each analytic basis vector compared with each

empirical basis vector.

Basis 1 Basis 2 Basis 3 Basis 4
Legendre 9.8% 0.83% 12.9% 8.1%
Chebyshev 9.8% 0.83% 17.7% 8.5%
Fourier 9.8% 16.9% 17.8% 15%

122




4.4.3 Portability of Method to other Terrain Measurement Systems

Next, the insensitivity in the estimation of the components of terrain, , with
respect to the transverse grid locations is demonstrated. As previously demonstrated, the
Legendre polynomials provide the best fit for U.S. Highway data and will be used as the
representative set of basis vectors for the remainder of this work. Consider a simple
terrain measurement system configuration with three optical sensors distributed along the
width of the vehicle such that they measure the center of each wheel path and the center
of the vehicle, with resulting analytic basis vectors shown in Figure 48A. This is
compared to a system producing data at ten transverse sample locations with resulting
analytic basis vectors shown in Figure 48B. Clearly a greater transverse sampling density
(defined by v) provides more information about the surface being measured. That is,
information about higher order contributions is unavailable from a system with few
transverse measurement locations. To the extent possible, however, the method
developed in this Chapter provides a means by which a consistent description of the
surface can be generated by equipment with different sampling densities.

l aa

A)
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Figure 48. Legendre basis vectors for A) three samples comprising v and B) ten samples

comprising v.

The components of terrain, o;;, were studied for the first two principle directions
for a system with three transverse locations (so that the length of v is three) and for a
system with ten transverse locations. The first two components of terrain, ci; and o,
are shown in Figure 49 and Figure 50 respectively, along with the corresponding percent
difference between the two components. The percent difference in the two signals
represents the relative capability of a system with discrete sampling locations at three
locations compared to a system sampling at ten locations to accurately capture the first
two terrain surface characteristics. The first component of the terrain, ci1, multiplied by
the corresponding first basis vector, p;, captures the elevation of the terrain surface. The
mean percent difference in the first component of terrain for the two sampling vectors is
1.8E-5%. The second component of the terrain, oj,, captures the banking in the terrain
surface. Note that in Figure 50 the mean percent difference in the second component of
terrain for the two sampling vectors (three locations vs. ten) is 0.0255%. It should be

clear that the more basis vectors used to span the vector will reduce the amount of shared
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content between basis vectors. In this example, the differences in the components of
terrain arise due to the amount of information that is contained in the three basis vectors
versus ten basis vectors. This estimation error is contributed by the definition of the
vector space. When only three points are used to define the terrain surface, there is less
confidence (more variation) in the estimate of the components of terrain as there would

be with more transverse samples.
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Figure 49. Comparing o; 1 for for two measurement systems.
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While this evidence cannot be regarded as conclusive without more extensive
investigation of highway data, there is a strong indication that U.S. Highway data can be
decomposed into projections onto analytic basis vectors that adequately capture the
shapes of the empirical data. In this way, the method is portable in that the same set of
analytic basis vectors can be used on all U.S. Highways. The portability of this method
also extends to the ability to use measurements systems with different equipment

configurations, as demonstrated by an example.

4.5 Chapter 4 Discussion

More empirical data representing various classes of terrain need to be studied to
understand the limitations of this method. Terrain should be studied based on location,
material composition, and paved vs. unpaved conditions and separated into appropriate
types based on these characteristics. The appropriate selection of the polynomial sets

would then be identified for each terrain type using the method developed in this Chapter.
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It should be noted that the correlation of the analytic basis vectors to the empirical basis
vectors is highly dependent on the scaling and shifting of the transverse locations, v, and
this must be examined when determining the appropriate parameterization.

Expanding the database to include various terrain types may also suggest using a
different set of generating functions to approximate the empirical basis vectors. Such
techniques that may prove to be promising include, but are not limited to, the
polynomials previous described here, Laguerre polynomials, non-uniform rational basis
splines (NURBS), and Maclaurin polynomials (Taylor series polynomials when ay=0).
Once a more comprehensive set of data have been collected, each set of generating
functions can be investigated using the method developed in this Chapter. For example,
different sets of generating functions may be more appropriate for different types of
terrain. Again, the appropriateness of each generating function would be determined by
minimizing the RMSE between the resulting analytic basis vectors and the corresponding
empirical basis vectors.

Although curve fitting the empirical data directly may appear to be the most
efficient representation of the terrain, it does not exploit the specific anisotropicity of this
path-specific method. Toward this end, a set of well-known generating polynomials
describe a specific type of the terrain to maintain the portability of the method developed
in this chapter. In this way, this method could be applied to any terrestrial terrain
measurement system to formulate an accurate description of the terrain surface that
contains path information. Additionally, these well-known sets of polynomials are
commonly used in real-time data analysis. In this case, the empirical basis vectors are
replaced by a recurrence relationship, thus eliminating the need to retain the information
describing the empirical basis vectors and reducing the total information needed to
describe the terrain surface. The next Chapter will further develop a method to represent

terrestrial terrain measurement data in a more compact form.

45.1 Segmenting the Terrain

To reinforce the acceptability and appropriateness of the empirical basis vectors,
the terrain sample was segmented into ten sections of approximately 1500 points in
length. A SVD was performed on each section and the empirical basis vectors were
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compared for all segments. This was completed in order to justify taking the SVD of the
entire surface rather than using more of a FEA approach, where shape functions (basis
vectors) are calculated for each grid node.

The first basis vector, corresponding to the principle direction of elevation, for the
ten sections is shown in Figure 51A. It can be seen that each basis vector follows a
similar trend with a maximum variation of approximately 0.001. Figure 51B identifies
the maximum and minimum bounds of the first basis vector, as plotted in red dashed
lines, by taking the maximum and minimum values across all ten sections. The mean of
the ten sections is plotted as a dashed blue line. The elevation basis vector corresponding
to the SVD of the entire surface is plotted in black. It can be seen that this basis vector

falls within the calculated bounds. .
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Figure 51. ldentifying basis vector variation along the terrain section A) Comparing all

ten segments B) Comparing the minimum bound, maximum bound, mean basis vector,

and the basis vector of the entire surface.

The second basis vector, corresponding to the principle direction of bank angle,
for the ten sections is shown in Figure 52A. It can be seen that each basis vector follows
a similar trend with a maximum variation of approximately 0.0005. Figure 52B identifies
the maximum and minimum bounds of the second basis vector, as plotted in red dashed
lines, by taking the maximum and minimum values across all ten sections. The mean of
the ten sections is plotted as a dashed blue line. The bank angle basis vector
corresponding to the SVD of the entire surface is plotted in black. It can be seen that this

basis vector falls within the calculated bounds.
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Figure 52. Identifying basis vector variation along the terrain section A) Comparing all

ten segments B) Comparing the minimum bound, maximum bound, mean basis vector,

and the basis vector of the entire surface.

The third basis vector, corresponding to the principle direction of asymmetry, for
the ten sections is shown in Figure 53A. It can be seen that the basis vectors follow a
similar trend, but show a lot of variation in peak and valley location. This reduced
correlation between basis vectors from different segments along the length of the road is
partially explained by the fact that the third singular value is negligible compared to the
first two. Additionally, it was shown in Chapter 3 that in order to obtain a zero-mean
noise process, only two basis vectors need to be implemented for these examples of U.S.
Highway data. Figure 53B identifies the maximum and minimum bounds of the third
basis vector, plotted in red dashed lines, by taking the maximum and minimum values
across all ten sections. The mean of the ten sections is plotted as a dashed blue line. The
asymmetry basis vector corresponding to the SVD of the entire surface is plotted in
black. It can be seen that this basis vector falls within the calculated bounds, however the

bounds span from -0.3 to 0.2.
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Figure 53. Identifying basis vector variation along the terrain section A) Comparing all
ten segments B) Comparing the minimum bound, maximum bound, mean basis vector,

and the basis vector of the entire surface.

The fourth basis vector, corresponding to the principle direction of road rutting
for the ten sections is shown in Figure 54A. It can be seen that the basis vectors do not
appear to be correlated. Similar to the third basis vector, this reduced correlation between
basis vectors from different segments along the length of the road is explained by the fact
that the singular value is negligible. Again, it was shown in Chapter 3 that in order to
obtain a zero-mean noise process for the proof of concept using U.S. Highway data, only
two basis vectors need to be implemented. The lack of correlation between the basis
vectors will deteriorate as the order of the basis vectors continues to increase due to the
corresponding singular values approaching zero. Figure 54B identifies the maximum and
minimum bounds of the fourth basis vector, as plotted in red dashed lines, by taking the
maximum and minimum values across all ten sections. The mean of the ten sections is
plotted as a dashed blue line. The road rutting basis vector corresponding to the SVD of
the entire surface is plotted in black. It can be seen that this basis vector exceeds the

calculated bounds at several locations, and the bounds span from -0.2 to 0.3.
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Figure 54. Identifying basis vector variation along the terrain section A) Comparing all
ten segments B) Comparing the minimum bound, maximum bound, mean basis vector,

and the basis vector of the entire surface.

4.5.2 Scaling and Shifting the Transverse Locations of the Analytic Basis VVectors
Another consideration for future work would be to scale and shift the transverse
locations so that the transverse locations can be defined based on standard road and
vehicle characteristics. For example, consider aligning the two local minima of the fifth
analytic basis function (Cs in Figure 38) with the track width of typical passenger
vehicles, defined as t. The distance between the two local minima, defined as p(1), is a
function of the parameterization, 2. The vector v would be normalized according to
Equation 75, where Vmeasured are the original transverse locations and Vmeasureq iS the mean
of the original data. In this way, the transverse locations are normalized to correspond
with the ‘rutting’ condition that arises from road wear due to tire interaction. The ability
to quantitatively identify the presence of physical characteristics such as rutting in any

pavement may lead to new insight into the mechanisms leading to pavement degradation.
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VUmeasured ; VUmeasured o(d) Equation 75

2
Once more data have been collected from a variety of terrain types, and they have

v =

been properly decomposed into their principle components, o;;, investigations can be
made into the stochastic or deterministic nature of the principle components. If
components of the terrain surface, o), can be considered realizations of an underlying
stochastic process, then a stochastic model of these components can be developed.
Terrain surfaces could then be represented by a combination of deterministic and
stochastic processes. If all of the surface components are included and classified as
deterministic, then the synthesized terrain surface would reproduce the originally
measured terrain surface. As more components are classified as stochastic, more
variation in the realizations will arise. This variation can be useful in chassis loading
predictions where vehicle simulations conducted over several realizations of the same
terrain type would identify more realistic maximum and minimum load cases.
Reconstructing the terrain surface with these models would yield a compact, stochastic
terrain surface representation. Since realizations of any length could be generated,
vehicle responses could be simulated that are accurate for the given application, yet found
quickly enough to make informed design decisions early in the design process.
Synthesizing terrain surfaces in this manner will help shorten the development time to
bring a new vehicle to market and provide a better fundamental understanding of how the

vehicle is excited. This concept is further developed in Chapter 5 of this dissertation.

4.6 Chapter 4 Conclusions

Terrain surfaces capture a great deal more information about the terrain topology
than simple terrain profiles. A new representation has been developed that captures the
principle information about a terrain surface in a compact form, similar in structure to
terrain profiles. Specifically, a Galerkin method was developed to define terrain surfaces
as sequences of vectors in a Hilbert space composed of analytic basis vectors with a
weighted inner-product and a weighted grammian. The analytic basis vectors that best fit
the U.S. Highway example are generated from Gegenbauer polynomials that are

parameterized to closely match the empirical basis vectors. Within the scope of U.S.
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Highways, the proper parameterization of the generating polynomial results in a special
case of the Gegenbauer polynomials: the Legendre polynomials. The resulting analytic
basis vectors successfully capture the characteristics of the first four empirical basis
vectors. A weighted inner-product was developed such that the resulting representation
of the terrain surface is insensitive, within the limitations of the sampling density, to the
measurement system used to acquire the terrain surface data. The basis vectors are then
projected back onto the true surface to formulate components of terrain corresponding to
each principle direction. These components of terrain describe the magnitude of each
principle direction along the length of the road. Possible applications of this new method
include modeling the changes in projections of the analytical basis vectors as a stochastic
process and quantifying physical characteristics of the terrain such as elevation, bank

angle, crowning, and road rutting.
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5. Compact Models of Terrain Surfaces

5.1 Chapter 5 Introduction

Throughout a chassis development program it is necessary to possess load data
representing severe customer usage to ensure that the chassis will perform as required.
Unfortunately, actual loads are only available at the conclusion of the program. The
design engineer is challenged with using predicted chassis loads early in the design
process — when changes are relatively easy and inexpensive to make — and measured
chassis loads late in the program — when changes to the design are extremely costly, if
allowed to be implemented. It is clear that the terrain is the main excitation to the vehicle
(Aurell and Edlund 1989). The non-deformable terrain imposes a unilateral geometric
boundary constraint on rolling tires to which the chassis responds by generating loads,
moments, motions, deformations, etc. The terrain surface remains a consistent excitation
to the chassis, even as the chassis design changes. Knowledge of this excitation, when
applied in conjunction with high fidelity tire and vehicle models, would allow chassis
loads to be accurately predicted in vehicle simulations. Therefore, throughout the design
process the system response to this consistent excitation can be calculated and compared
for each chassis design considered. Accurate terrain models would then provide the
chassis designer with a powerful tool to make informed design decisions early in the
design process while changes are relatively inexpensive to implement. This will, in turn,
shorten vehicle development time and reduce overall development costs.

High-fidelity terrain surfaces can be used as excitations to vehicle models in a
virtual environment to accurately emulate the operation of a real vehicle. For example,
specific events on a vehicle manufacturer’s proving ground may be simulated and
compared to measured data for model validation (Chaika, Gorsich et al. 2004). Current
terrain measurement systems acquire approximately one million data points per second
(Brandenburg and Rudd 1974; Karamihas 2005; Kern and Ferris 2007; Wagner, Kern et
al. 2007). This data acquisition rate improves the available signal bandwidth and allows
sharp disturbances to be detected in both the transverse and longitudinal directions.

Capturing these disturbances is critical; the driver’s perception of ride quality is largely
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dictated by these events (Ferris 1999; Ahlin, Granlund et al.) and chassis durability is
highly sensitive to transient loading (Lu and Lee 1996; Liu and Herman 1999;
Stadterman, Connon et al. 2003; Bogsjo and Forsan 2004; Lei and Yang 2006; Duni,
Toniato et al. 2008). Most terrain measurement systems are equipped with an Inertial
Navigation System (INS) and accelerometers to remove body motion from the measured
surface. INS systems are plagued with an inherent system drift, easily identified by
taking multiple measurements of the same segment of road. Previous work by the
authors produced a method, as presented in Chapter 3 of this dissertation, to compensate
for the INS drift error of the terrain measurement system (Chemistruck, Binns et al.
2010).

The objective of this work is to develop a stochastic terrain surface that leverages
the terrain representation implemented in the INS drift removal technique and previous
work on Autoregressive (AR) terrain models. The remainder of this work is developed as
follows. Background on terrain measurement is provided to further clarify the concept of
terrain surfaces as a sequence of vectors and the compensation technique for INS drift is
reviewed. A brief description of Autoregressive terrain models is also provided. The
contribution of this work is then developed. The notion of global and local subspaces is
generalized to a continuous scale in which the terms “global’ and local’ are subjective
locations along a well-defined continuum of possible scales. Specifically, the true
surface is decomposed into a sequence of vectors; each vector represents the transverse
heights of the terrain along a line perpendicular to the direction of vehicle travel. A
Hilbert space is defined from this collection of vectors and principle directions are
determined. These principle directions are cast as a set of orthonormal basis vectors, for
both analytic and empirical basis vectors. The projection in each of the principle
directions is a series that can be considered either a deterministic or stochastic component

of the true surface where each series is termed ‘a component of terrain in the I

principle
direction’. The method is applied to experimental data to demonstrate the concept and to
form a basis for discussion. Further application of this concept is discussed in the context
of studying the partial autocorrelation of the stochastic components of the true surface to
identify if it is appropriate to implement an AR model to characterize the process,

followed by concluding remarks.
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5.2 Chapter 5 Background

5.2.1 Terrestrial Terrain Measurement and INS Drift Compensation

Typically, terrestrial terrain surface measurement systems incorporate a scanning
laser (Herr 1996) that is rigidly mounted to the body of a host vehicle. This vehicle
traverses the terrain while simultaneously acquiring terrain measurements. When the
vehicle encounters a disturbance, the laser translates and rotates with the body of the host
vehicle. To obtain accurate terrain measurements, the motion of the vehicle must be
accurately measured so that it can be removed from the laser measurement. Modern
systems use INS to measure the vehicle movement (Kennedy, Hamilton et al. 2006). The
accuracy of the INS depends on the alignment of the Inertial Measurement Unit (IMU) to
the laser and satellite coverage of the Global Positioning System (GPS). The reduction of
accuracy of the INS is contributed by many different error types (Lanyi and Roth 1988;
Coco, Coker et al. 1991; Sardon, Rius et al. 1994; Sardon and Zarraoa 1997; Mannucci,
Hajj et al. 2004; Sarma 2008). A detailed discussion of terrain measurement systems is
presented in Section 2.1.1 and a thorough discussion of INS and GPS error is presented in
Section 2.1.3 of this dissertation.

Recall the compensation method developed in Chapter 3 to correct INS drift in
terrain measurements in which each terrain surface is considered to be a combination of
a true surface and an error surface. The error is decomposed into drift (global error) and
noise (local error). The global and local subspaces are constructed such that the drift is
modeled as a random walk process while the noise is a zero-mean process. This
theoretical development is coupled with careful experimental design to develop a method
to identify the drift component of error and discriminate it from true terrain surface
features, and correct for the INS drift (Gillespie, Sayers et al.). This Chapter classifies
global and local terrain surface features into deterministic or stochastic processes. The
number of basis vectors is incremented until the residual from the sum of the projections
(i.e., the noise) becomes a zero-mean process. Experimentation has shown that two basis
vectors are required to satisfy this criterion for a set of U.S. Highway data (Chemistruck,
Binns et al. 2010). Experimental results have also shown that the first two basis vectors

represent some vertical offset, defined as the principle characteristic of elevation and a
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slope offset defined as the principle characteristic of bank angle. This work expands
upon the work presented in Chapters 3 and 4 by examining the projection of the true
surface onto orthonormal basis vectors that define the principle directions to formulate

components of terrain and a truncated terrain surface.

5.2.2 Autoregressive Modeling

An Autoregressive (AR) model is comprised of a small set of coefficients and a
residual process which drives the model. The AR model characterizes the current value
of a profile as the linear combination of previous profile values and a residual process. If
the profile is known, then the AR coefficients can be derived (e.g. via the Yule-Walker
method), and the realization of the residual process is calculated. If the residual process
is homogeneous, then the probability distribution can be represented as a Cumulative
Probability Function (CPF). The set of AR model parameters for the stable AR model
and the residual probability parameters compose a final set of model parameters that
completely capture the physical characteristics of the terrain profile (Kern and Ferris
2006; Kern and Ferris 2006; Kern and Ferris 2007; Li and Sandu 2007; Wagner and
Ferris 2007; Wagner and Ferris 2008; Wagner and Ferris 2010; Wagner and Ferris 2010).
For this work, the AR model will be used to characterize suitable components of terrain
and then synthesize a stochastic representation of the component for use in formulating a
stochastic terrain surface.

5.2.3 Defining the Coordinate System
The terrain coordinate system used to develop the method presented in this

chapter is described in Chapter 2, Section 2.1.4 of this dissertation.

5.2.4 Defining the Hilbert Space

A terrain surface measurement {z;,}, is considered a combination of the true
surface, {s;}, and a realization of a stochastic error surface process (refer to Section 3.3.2
for a detailed description). Each measured surface is then a realization of a stochastic
process and is defined as a sequence of vectors that are elements of a Hilbert space, H.

Since there is exactly one true surface, {s;}, for any set of realizations, it is not indexed
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by k. It is shown that the true surface must also span the Hilbert space H (Chemistruck,
Binns et al. 2010).

The Hilbert space is decomposed into the principle directions of the terrain
surface. A set of orthonormal basis vectors, by, are constructed to span the space via a
Singular Value Decomposition (SVD) of the set of measured vectors. SVD is used for
principle component analysis (PCA) and was chosen for terrain surface analysis because
paved roads share the same primary characteristics, such as elevation, bank angle,
crowning, etc. By implementing SVD, these primary characteristics can be studied as
individual terrain features. The order of the basis vectors is determined by the magnitude
of their corresponding singular value, added in descending value. Basis vectors are
added to the composition of the true surface until the residual noise vectors can be
considered realizations of a zero-mean process; this number of basis vectors is defined as
g.- Recall that it was shown in Chapter 4 that the empirical basis vectors can be
approximated by a set of analytic polynomials: the Legendre polynomials, in an effort to
reduce the amount of information required to describe the terrain surfaces of similar types
of terrain. Both formulations of components of terrain and truncated surfaces pertaining
to empirical basis vectors and analytic basis vectors will be studied in this Chapter to
develop a compact, high-fidelity, mixed deterministic-stochastic representation of terrain.
The user will then be able to decide which formulation is most appropriate depending on
the application.

Recall the following example from Chapter 4, Section 4.2.1, where the terrain
surface is mapped to uniform grid spacing and the data have been acquired from a
scanning laser. Let s; be the vector representing the true surface of the section of terrain
at the longitudinal location indexed by i. Let vector s; contain elements indexed 1 to 80
corresponding to transverse points in the v(j) direction, such that the terrain section has a
width of 80 points, as shown in Figure 33. Furthermore, let the set of vectors {s;} span
10,000 locations in the u(i) direction, such that the terrain section has a length of 10,000
points. Using this representation, {s;} contains 800,000 elevation points to describe the
section of terrain. A method is developed in this Chapter that reduces the number of
points required to describe the terrain surface to no more than the 20,000 points required
to describe two wheel path profiles.
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Figure 55. Example of discretized terrain surface in Curved Regular Grid Format.

The true surface is estimated by considering the estimated expectation of the
sequence of measured vectors projected in the global vector space, G, and its
complement separately as shown in Equation 76 (Refer to Section 3.3.5 for detail on how
this equation was derived). Note that the second summation in Equation 76 would be
identically zero, if the expectation were known exactly (or a linear estimator were used).
The second term in the summation is retained for a more general derivation of results
(when a nonlinear estimator is used). The projection of each measured surface vector,
Zik, in the direction of each global direction for the empirical basis vectors is defined as

Bik., as shown in Equation 77.

1 d Equation 76
gi = z E[Bi,k,l]bl + 2 E[Zi,k - Bi,k,l]bl
=1 =1
Bi,k,l 2 (b, Zi,k) Equation 77

The true surface developed in terms of the analytic basis vectors is the same as
Equation 76 except that the projections are onto the analytic basis vectors, p; as shown in
Equation 78. The projection of each measured surface vector, zj, in the direction of each
global direction for the analytic basis vectors is defined as i as shown in Equation 79.
Note that the same notation for Sk, is used since the developments in this Chapter are
independent of the choice of basis vector (analytic or empirical).
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k 4 Equation 78
802 ) BlBualpi+ ) Elzi — Budlpy
=1 =1
Biki = (PvZig) Equation 79

5.3 Classifying Terrain Surfaces

The true surface is decomposed into contributions in the principle directions
defined by the empirical orthonormal basis vectors, as shown in Equation 76 or by the
analytic orthonormal basis vectors in Equation 86. The projection of the estimated true
surface is defined in each of the principle directions, o;;, for the empirical basis vectors,
as shown in Equation 88. Similarly, the projection of the estimated true surface is

defined in each of the principle directions, o;,, for the analytic basis vectors, as shown in

Equation 89.
d d Equation 80
ciy = (b, $;) = Z E[Bix:] + z E[z;r — Bix.]
=1 =1
ciy = (Pu Sidw Equation 81

Each component of terrain, o;;, can be considered either a deterministic
component of the true surface, or a stochastic component. This concept will be discussed
further in the following section. A truncated surface can then be defined as the
summation of the o;; multiplied by the truncated set of t empirical basis vectors (I = 1, 2,
..., t) and is defined as Equation 82. A truncated surface can also be defined in terms of
the truncated set of t analytic basis vectors as defined in Equation 83. It is important to
note that the truncated set of basis vectors can be incremented to include all of the basis
vectors defining the space, n or it can be reduced to some value less than n such as q basis
vectors used to identify contributions to the global subspace from Chapter 3.
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tsn Equation 82
s'trunc(i) = Z i by

=1

t<n

Strunc(i) = Z Gi,1 P1

=1 Equation 83

5.3.1 Hybrid deterministic-stochastic representation of terrain surfaces

Features of the true surface can be recreated exactly if all of the components o;,
are considered to be deterministic and are recorded for the entire longitudinal length of
the surface. This approach does not allow the surface to be represented in a more
compact form, nor give additional insight into the fundamental characteristics of the
terrain. However, if some, or all, of the o;; are considered to be stochastic, then the
sequence can be modeled as a stochastic process, and it may be possible to cast the
process in a mathematical framework such as an AR model. In this case, the coefficients
of the model would characterize the manner in which the process behaves in that
principle direction.

The accuracy of the terrain surface representation is dependent on how each o ;is
classified. If all of the terrain components, o;;, are classified as deterministic, then the
synthesized terrain surface would exactly resemble the true terrain surface. However, if
only the first o;, is classified as deterministic, and the remaining o;; are classified as
stochastic, then some variation in the realization will arise. The number of o;; that are
modeled as stochastic is determined by the user and the application. This variation can
be useful in chassis loading predictions based on tire and vehicle models. If it is desired
to execute a vehicle simulation over several realizations of the same terrain type to
identify maximum and minimum load cases, then the more o;, that are classified as
stochastic will allow for more variation within that type of terrain. The effects of
identifying the number of components that are deterministic or stochastic will be
determined by studying the autocorrelation and the partial autocorrelation of each o;; to
identify the correlation length. Examining the correlation length, will help to identify if

that component should be modeled as a stochastic process and what model is most
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appropriate. The longitudinal jointly tined concrete example is considered in the Proof of
Concept section of this Chapter.

If some of the true surface components of the principle directions are modeled as
an underlying stochastic process, then an Autoregressive (AR) technique can be
employed. This characterization could be used to model the stochastic true surface
components (Kern and Ferris 2006; Kern and Ferris 2006; Kern and Ferris 2006; Kern,
Ferris et al. 2007; Wagner and Ferris 2007; Wagner and Ferris 2008). An example of the

AR modeling capabilities is presented in the Proof of Concept section.

5.4 Chapter 5 Proof of Concept

An example is presented to demonstrate the decomposition of a terrain surface
into components represented by the o;; and the implications of modeling these
components as either deterministic or realizations of a stochastic process. A single lane
of transversely tined jointed concrete, approximately 151.1m long, was selected at the
MnRoad testing facility in Albertville, Minnesota for this experiment. A detailed
description of the example of terrain and the data acquisition process are developed in
Section 3.4.1. A profile taken from the true terrain surface is shown in Figure 56. The
analysis is conducted in terms of longitudinal profiles to demonstrate the implications of
this method. The empirical basis vectors are employed first and then the analytic basis
vectors are employed for a comparison and to show the feasibility of approximating the

empirical basis vectors with the analytic basis vectors.
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Figure 56. Original road profile.

5.4.1 Application of Theory

Basis Vectors- Empirical and Analytic
In practice, the number of basis vectors, g, sufficient to define the global

subspace, G, must be incremented until the noise vectors, njx, have a mean that is not
statistically different than zero. For this set of terrain, two basis vectors were required to
make the noise vectors a zero-mean process. The order in which these basis vectors are
added is determined by the magnitude of their corresponding singular value in
descending order. The first singular value has a magnitude of 6.41, and the second
singular value has a magnitude of 1.59, and for this example the subsequent singular
values are negligible. The shapes of the first two empirical basis vectors are plotted in
Figure 57. These shapes correspond to the predominant changes in the road which
typically include elevation change (uphill or downhill grades), bank angle (increased on
turns, flatter on straights), crowning on major roads to allow for proper draining and road

rutting due to tire wear. In general terms, the first basis vector accounts for a constant
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offset in elevation and the second basis vector describes the ‘bank angle’ or ‘road

camber’ in the terrain set.
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Figure 57. First two empirical basis vectors, b;.

The shapes of the first two analytic basis vectors are plotted in Figure 58. The
Legendre polynomials are used because they minimize the root mean square error
between analytic and empirical basis vectors, as developed in Chapter 4. The analytic
basis vectors correspond to the predominant changes in the road in the same way as the
empirical vectors, which typically include elevation change (uphill or downhill grades),
bank angle (increased on turns, flatter on straights), crowning on major roads to allow for
proper draining and road rutting due to tire wear, except that the analytic basis vectors are

smooth curves with no irregularity.
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Figure 58. First two analytic basis vectors, p;.

Components of Terrain for the I" principle direction — Empircal and Analytic

The projection of the estimated true surface onto the first two empirical basis
vectors is depicted in Figure 59. Executing this projection identifies the magnitude of
each principle direction (basis vector) along the length of the road and is known as the

I™ principle direction, i, (refer to Equation 88). For

component of terrain for the
example, if the terrain was perfectly flat, but vertically offset, then the corresponding
component, o;1, would be proportional to the magnitude of the offset. Likewise, if the
terrain was perfectly flat and banked at a constant angle, then the corresponding
component, ai, would be proportional to the bank angle of the terrain. There is minimal
contribution from the second basis vector in this example as there does not appear to be
an identifiable bank angle in the original profile. These observations agree with the
magnitudes of the singular values; the first component, i1, has the greatest contribution
in representing the terrain surface, and the remaining components, gi;, have minimal
contributions to representing the terrain surface for U.S. Highway data. In this example,

consider the first component, i1, to be a deterministic process that captures the major
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terrain characteristics of the terrain surface and subsequent a;, (I > 1) are identified as

stochastic processes.
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Figure 59. First two empirical o).

The projection of the estimated true surface onto the first two analytic basis
vectors is depicted in Figure 60. Executing this projection identifies the magnitude of
each principle direction (basis vector) along the length of the road and is defined as the
component of terrain for the 1™ principle direction, o, (refer to Equation 89). It can be
seen from comparing Figure 59 to Figure 60that there is more content in the analytic
components of terrain. Referring to Section 4.4.2, this can be attributed to the fact that
the empirical basis vectors contain the inherent variability in this particular terrain
surface. The analytic basis vectors are developed to represent one type of terrain surface,
rather than any one particular terrain surface of that type, and are therefore smoother than
the empirical basis vectors. The differences in the magnitudes of the components of the
terrain depend on the scaling of the corresponding basis vectors, therefore, the
magnitudes of the components of terrain differ between the empirical and analytical basis
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vectors. For example, consider the first empirical basis vector; the magnitude is

approximately 0.6 as compared with the analytic basis vector that is exactly one.
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Figure 60. First two analytic oj.

Truncated Surface Formulation- Empirical and Analytic
The truncated surfaces generated from the empirical basis vectors and the analytic

basis vectors both agree well with the true terrain surface. The truncated surfaces are
based on using all of the available information on the terrain, i.e. all basis vectors and all
components of terrain- a deterministic approach (48 basis vectors and 48 components of
terrain for this example). The average difference between the analytically generated
terrain surface and the true terrain surface is on the order of 10°m. This disagreement
may be attributed to a numerical round-off issue in the calculation of the weighting
matrix. The average difference between the empirically generated terrain surface and the
true terrain surface is on the order of 10*°m and is negligible. This is expected since the
truncated surface based on the empirical basis vectors and components of terrain are
produced from the same data sets that formulated the true terrain surface. None-the-less,
the approximation of the empirical basis vectors by Legendre polynomials proves to be a

good fit, and a difference of 10°m is two orders of magnitude smaller than the resolution
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of the original terrain surface measurement and deviations of 10 um will not affect the
handling, ride, or durability of a vehicle.

Consider the first two components of the terrain, g;;, corresponding to the first
two empirical basis vectors b;. Understanding how each i, and b, contributes to the
truncated surface compared with the true surface is identified in Figure 61. It can be seen
that as the contributions from each ¢;, are added, the truncated surface converges to the
true surface. The true terrain surface is represented by the blue line, the truncated surface
pertaining to the first empirical basis vector and component of terrain is represented by
the green line, and the first plus the second empirical basis vectors and components of
terrain are represented by the green line. The peaks between the second truncated terrain
surface and the true terrain surface differ by 0.4mm.
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Figure 61. Comparing true surface to subsequent empirical truncated surfaces.

5.4.2 Hybrid Deterministic-Stochastic Representation of Terrain Surfaces
Consider the transversely tined jointed concrete studied in this Chapter and the
normalized partial autocorrelation of the first component in Figure 62. The partial

autocorrelation of g;; does not decay until lag 22. This could indicate that o;; should be
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modeled as a deterministic component of the true surface. However, the partial
autocorrelation of ¢, as shown in Figure 63 and ;3 (not shown) decay within 6 lags and
are more appropriate candidates to be represented as a stochastic process. Since the
partial autocorrelation decays quickly, an AR model would be appropriate to implement.
This brief study suggests that the first o;; could be represented as a deterministic process
and the remaining components can be modeled as a stochastic process. If this were the
case, then elevation changes would be exactly preserved in the first component, ;;, and
stochastic variation would be induced in the remaining components, ai; (I > 1) in
directions such as roll and crowning. Thus the stochastic nature would produce different

variations of the original road surface.
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Figure 62. Partial autocorrelation of 4.
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Figure 63. Partial autocorrelation of g ,.

Consider an example of the AR modeling capabilities for the bank angle
component of terrain in Figure 64. Since the correlation length is short (approximately a
lag of 6 from Figure 63), modeling this component seems appropriate. The empirically
calculated bank angle component of terrain is shown in blue, and the AR synthesized
component of terrain is shown as a red dashed line. It can be seen that the synthesized
curve maintains the major characteristics of the original component of terrain but due to
the AR residual process, the synthesized component exhibits different trends than the
empirical component. In terms of the truncated surface, the differences in the
synthesized bank angle component of terrain can be seen in Figure 65. Again, the
synthesized truncated surface is shown as a red dashed line and the true surface is shown
as a blue solid line. Since the variation exhibited by the two components of terrain is of
small magnitude, profiles taken from the surface were used to illustrate the effects of a
stochastically represented bank angle component of terrain. It would be expected that
more drastic changes would result from stochastically modeling the elevation component
of terrain as that component has the greatest effect in depicting the terrain surface.
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Figure 64. Empirical bank angle component of terrain and AR synthesis of bank angle
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Figure 65. Comparing true surface to truncated surface with AR synthesized bank angle

component of terrain.
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5.4.3 Implication of Surface Representation on Statistical Analyses

This new formulation of a compact model improves the ability to analyze the
roughness of the terrain surface. Currently, all roughness indices analyze longitudinal
profiles. A better representation of the terrain roughness is realized by analyzing each
component of terrain. For example, consider the first component of terrain, the elevation.
The International Roughness Index (IRI) as described in Section 2.1.3.1 is the standard
practice for calculating road roughness. The calculations of the IRI are also described in
Section 2.1.3.1. The IRI of the elevation component of terrain, left and right wheel paths
of the true surface and mean of the left and right wheel paths were calculated and
presented in Table 2. There are obvious differences between the IRI calculated for the
left and right so the mean IRI between the wheel paths was calculated. Comparing the
IRI of the elevation component of terrain to the mean IRI of the left and right wheel paths
produces a 0.138% difference. Since the elevation component of terrain identifies the
magnitude of the first basis vector along the length of the terrain section, it seems more
appropriate than arbitrarily using the left and right wheel path longitudinal profiles as an

analysis.

Table 2. IRl comparison between components of terrain and longitudinal profiles.

International Roughness Index
Elevation Component of Terrain 0.5756
Left Wheel Path Longitudinal Profile 0.5680
Right Wheel Path Longitudinal Profile 0.5848
Mean of Wheel Paths 0.5764

In addition to response surface modeling (discussed in Section 3.5), previous
research with Empirical Mode Decomposition (EMD) showed that combining certain
features from each level of decomposition produced an identifiable terrain feature (Attoh-
Okine, Ayenu-Prah Jr et al. 2006). For example, if contributions from the first and third
basis vectors are combined, it may be possible to identify a new surface characteristic,
other than elevation, bank angle, crowning or rutting. By construction, the basis vectors
are orthonormal, however the projection of the terrain surface vectors onto these basis
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vectors may not be independent. It is likely that there is a relationship between the

components of terrain, o; ;, that can be used to further simplify the representation.

5.5 Chapter 5 Discussion

A detailed review of the effectiveness of this method via a specific example
provides more insight into the usefulness of this method in developing a compact
representation of terrain. It was shown in the INS drift compensation example from
Chapter 3 and discussed earlier in this Chapter (see Figure 55) that two basis vectors are
needed to establish a zero-mean noise process, suggesting that only the first two
components of terrain are required to form the truncated surface. Consider the first two
empirical basis vectors of size [48 x 1] and two corresponding components of terrain of
the size [15,180 x 1]. The amount of data needed to represent this truncated terrain
surface is 30,360 points (plus the 96 points needed to define the two empirical basis
vectors). The same number of points is required with using the analytic basis vectors,
however the data required to define the analytic basis vectors is simplified by using
known polynomial expressions. In either case, these representations are drastic
reductions from the original terrain surface, a matrix of the size [48 x 15,180] or a total of
728,640 elevation points. Now consider the use of a Hybrid deterministic-stochastic
representation of the terrain surface in which the first component is deterministic,
requiring 15,180 points, and the second component is stochastic, requiring perhaps 11
AR model coefficients and 3 coefficients to define the probability distribution of the
residual process (Wagner, et al.). The total reduction in complexity is reduced by a factor
of 50. If both of the components were represented as stochastic processes, then this
factor improves dramatically to nearly 6,000 — nearly four orders of magnitude.

The demonstration of the method developed in this work is limited by the amount
of available measured data. Future work will study the capabilities of this method
beyond the application to U.S. Highway data and investigate its compatibility with off-
road terrain and harsher on-road terrain surfaces. The effect that the stochastic
components will have in comparison with the original terrain should also be investigated.
The original terrain and stochastic terrain will differ when compared feature by feature,

but the overall physical properties will be the same. This overall effect will be better
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understood when terrain surfaces are used in tire and vehicle simulations. Future work
will investigate the overall effects of the stochastic surface on the loads generated by the

tire and vehicle based on changing different surface components.

5.6 Chapter 5 Conclusions

Terrain profiles capture an incomplete representation of terrain topology data
whereas terrain surfaces capture a great deal more information about the terrain.
Extracting two longitudinal wheel path profiles using a collocation approach from the
example presented in Section 5.2.4 results in a 20,000 point realization. Alternatively,
the discrete terrain surface can be represented exactly, requiring 800,000 elevation points
for this example. A computational problem arises when trying to work with and
manipulate measured terrain surface data due to the large file sizes. A new representation
has been developed that captures the principle information about a terrain surface in a
compact form, similar in structure to terrain profiles. If two basis vectors representing
elevation and bank angle are used in place of the two longitudinal wheel path profiles and
two components of terrain corresponding to these basis vectors were used instead, then
the principle information about the terrain surface (in the Galerkin sense) is captured
using the same amount of data, 20,000 points total. This new development increases
computational efficiency while maintaining sufficient terrain surface knowledge. It was
demonstrated through an example that this new process successfully captures the
characteristics of a terrain surface with as few as two principle directions. Once this
decomposition is complete, the projection of the true surface onto the principle directions
can be modeled as either deterministic or a stochastic process. If the component is
identified as stochastic, then a mathematical model, such as an Autoregressive model, can
be implemented. Through the example shown in the Discussion Section of this Chapter,
the terrain surface could be further reduced to two basis vectors, one deterministic
component of terrain and one stochastically modeled component terrain, significantly
reducing by a factor of 50 the data necessary to represent the surface. It was also shown
that using the elevation component of terrain may provide a better way to analyze the
road roughness of the surface. These components of terrain identify the magnitude of

elevation along the length of the road and therefore serve as a better representation of the
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surface as opposed to identifying two arbitrary profiles to represent the left and right
wheel paths, and then formulate roughness for the two profiles.
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6. Conclusions

6.1 Summary of Research

The concept of simulation-based engineering has been embraced by virtually
every research and industry sector (Sinha, Liang et al. 2001; Mocko and Fenves 2003).
Engineering and science communities have become increasingly aware that computer
simulation is an indispensable tool for resolving a multitude of scientific and
technological problems. Design and analysis engineers are simulating increasingly
complex mechanical systems. It is clearly desirable to gain a reliable perspective on the
behaviour of a system early in the design stage, long before building costly prototypes
(Chul and Ro 2002; Letherwood, Gunter et al. 2004; Makarand Datar 2007; Ersal, Fathy
et al. 2008; Mueller, Ferris et al. 2009). Simulation tools have become a critical part of
the automotive industry due to their ability to reduce the time and money spent in the
development process.

Terrain is clearly the principle source of vertical excitation to the vehicle and
must be accurately represented in order to correctly predict the vehicle response in
simulation. ldeally, an efficient terrain surface definition could be developed that
maintains the high-fidelity information required to accurately excite vehicle models.
Modern terrain measurement systems use an Inertial Navigation System (INS) to measure
and remove vehicle movement from laser measurements of the terrain surface.
Instrumental and environmental errors inherent in the INS produce noise and drift errors
in the resulting estimates of vehicle position and orientation. The evolution and
implications of terrain surface measurement techniques and existing methods for
correcting INS drift have been reviewed as a framework for a new compensation method
for INS drift in terrain surface measurements. Each measurement is considered a
combination of the true surface and the error surface, defined on a Hilbert vector space,
in which the error is decomposed into drift (global error) and noise (local error). The
global and local subspaces are constructed such that the drift is modeled as a random

walk process and the noise is a zero-mean process. This theoretical development is
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coupled with careful experimental design to identify the drift component of error and
discriminate it from true terrain surface features, thereby correcting for the INS drift. Itis
shown through an example that this new compensation method dramatically reduces the
error variation in the measured surfaces to within the resolution of the measurement
system itself. It was also shown through the example using U.S. Highway data that
classifying the first two basis vectors as spanning the global subspace results in a zero-
mean noise process with a standard deviation of 0.35mm. This is approximately three
standard deviations within the Imm bound defined by the resolution of the measurement
equipment.

It is also desirable to develop a compact, path-specific, terrain surface
representation that exploits the inherent anisotropicity in terrain traversed by vehicles.
This representation should also minimize the effect of the choice of measurement system
used to sample the terrain surface. Non-deformable terrain surfaces are defined as a
sequence of vectors, where each vector comprises terrain heights at locations oriented
perpendicular to the direction of travel. A vector space is formed by the span of these
vectors and a corresponding set of empirical basis vectors is developed. A set of analytic
basis vectors is formed from Gegenbauer polynomials, parameterized to approximate the
empirical basis vectors.  Other polynomials were studied, but the Gegenbauer
polynomials with A equal to % resulted in the smallest Root Mean Square Error. A
weighted inner-product is defined to form a Hilbert space and the terrain surface vectors
are projected onto the set of analytic basis vectors. The weighting matrix is developed
such that these projections are insensitive to the number and placement of the discrete
transverse locations at which the terrain heights are defined. Furthermore, components of
terrain are developed from a projection of each analytic basis vector onto the terrain
surface. These components of terrain capture the magnitude of specific terrain
characteristics along the length of the road, such as elevation, bank angle, or road
crowning, for statistical analysis and modeling techniques similar to that of a terrain
profile. This method is successfully demonstrated on sets of paved road surfaces to show
that a high-fidelity but compact definition of terrain surfaces is developed.

It is also desirable to evaluate vehicle models and tire models over a wide range
of terrain types, but it is computationally impractical to store long distances of every
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terrain surface variation. This dissertation examines the terrain surface, rather than the
terrain profile, to maximize the information available to the tire model (i.e. wheel path
data). A method to decompose the terrain surface as a combination of deterministic and
stochastic components is developed. If any of the components of the terrain surface are
considered to be stochastic, then the sequence can be modeled as a stochastic process. As
a result, a stochastic terrain surface that is more computationally efficient to implement in
simulation can be synthesized for any desired length. Such a surface will include
variation in the synthesized data, whereas measured data is deterministic and the
simulation results for measured terrain will always result in the same responses. These
stochastic representations of terrain surfaces can then be implemented in tire and vehicle
models to estimate chassis loads. It was also shown that the elevation component of
terrain may provide a better method to analyze the road roughness of the surface rather

than single-path road profiles.

6.2 Future Work

Future work that may leverage the work presented here could include but is not
limited to an in-depth study of rough, non-deformable terrain surfaces and an optimal

selection for sampling the terrain surface.

6.2.1 Rough, Non-deformable Terrain Surfaces

All the examples presented in this work were based on data acquired from U.S.
Highways. It would be vital to include rough, non-deformable terrain surfaces in
subsequent studies for classifying terrain surfaces and develop a compact representation
of rough terrain. Then, durability roads could be synthesized using the methods
presented in this dissertation as a concatenation of various terrain features that are
important for properly assessing vehicle durability, reliability, and ride and handling

characteristics.

6.2.2 Optimal Selection of {v} for Sampling the Terrain Surface
Chapter 4 of this dissertation identified the need to develop a method to define the
terrain surface that can be universally applied to various types of terrain measurement

systems, from point lasers to scanning lasers. The solution presented in Chapter 4, was a
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best fit analytic polynomial approximation to empirical basis vectors for a specific terrain
type. The analytic polynomials can be discreteized to match the capabilities of any
existing terrain measurement system. While this is a numerical approach, an empirically
based standard currently exists and defines what types of lasers, how many and at what
locations along the width of a host vehicle the lasers should be mounted to adequately
sample the terrain to identify road ruts (ASTM 2009). Other empirical testing has been
conducted to identify the flaws in this standard (Mehta, Roque et al. 2001; lhs 2004;
Offrell and Sjogren 2004; Sjogren and Lundberg 2004), and thus a need to extend the
work presented in Chapter 4 to develop an optimal selection of discrete locations to
identify specific terrain features, such as crowning and rutting, needs to be developed.
Future work leveraging the findings in Chapter 4 could focus on generating an optimal
selection of the discrete sampling locations along the width of the host vehicle, also

known as {v}.

6.3 Conclusions
Recall the thesis statement from Chapter 1.

A high-fidelity yet compact representation of terrain surface types can be developed that
are insensitive to the particular measurement system being used and allows for the study
of principle terrain characteristics.

The primary goal of this research is to develop a technique to develop a compact
representation of a terrain surface while improving the fidelity of the estimated terrain
surface. The methodology in this work is currently limited to:

a) Non-deformable terrain- terrain whose surface deformation due to a single
vehicle traversing the surface is negligible, such as paved roads (both asphalt
and concrete), gravel roads, and typical off-road trails; deformable terrain
such as sand and snow are beyond the scope of this work.

b) Anisotropic terrain- terrain having an inherent path defined over which
vehicles travel and where that travel, over time, has defined obvious paths or

lanes.
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This dissertation focuses on the development of a high-fidelity and compact

representation of terrain surfaces that are insensitive to the terrain measurement system

used to acquire the data. The main contributions of this research are:

1) The first representation of terrain surfaces as elements of a Hilbert Space, H

3)
b)

c)
d)

Terrain surfaces are explicitly defined as a sequence of vectors

Each vector comprises terrain heights at locations oriented perpendicular
to the direction of travel.

A vector space is defined by the span of these vectors

A weighted inner-product is defined and the norm is defined as the

induced norm

2) A novel method to remove INS drift:

a)

b)

d)

The Hilbert space is decomposed into a Global subspace, G, and the
complementary local subspace, G°.

A sequence of error vectors are defined such that each error vector is the
difference between the measured terrain surface vector and the true
surface vector.

The three vectors comprising the measurement, error, and true surface at
each longitudinal location have components in both the Global and Local
subspaces.

The Global subspace is defined such that the component of the error
vectors in the Global subspace can be modelled as a random-walk process
and the elements of the error vectors in the Local subspace are elements of
a zero-mean uncorrelated noise process.

The Global error, arising from Inertial Navigation System (INS) drift, is
identified and removed from the measurements such that the standard
deviation of the residual noise process (Local error) is within the
resolution of the measurement system (+/-1mm)

The true surface is computed from the drift-free measurements using a

non-linear expectation estimator.

3) The first rigorous definition of principle terrain characteristics:
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a) Although principle terrain characteristics, such as elevation, bank angle,
crowning, and rutting have been subjectively described and techniques for
ad hoc measurement of these characteristics have been defined (AASHTO
2009), this research develops sets of empirical basis vectors for U.S.
Highways that are consistent between asphalt and concrete roads

b) The principle terrain characteristics are defined with analytic basis vectors
that closely approximate these consistent empirical basis vectors by
minimizing the root mean square error between the empirical and analytic
basis vectors.

4) Itis the first method that has been developed that can define terrain surfaces
without sensitivity to the measurement system used to acquire the terrain data
a) Analytic basis vectors can be discretized based on terrain measurement

system capabilities to sample the terrain

5) A novel method to stochastically represent a terrain surface
a) Components of terrain (known as ;) identify the magnitude of the

principle terrain characteristics along the length of the terrain surface

b) Components of terrain are classified as deterministic or stochastic

c) Stochastic components of terrain can be modelled in the same manner as
terrain profiles

d) Truncated terrain surface is synthesized based on stochastically modelled
components of terrain

The results of this study are intended for application in the accurate prediction of:

a) Tire loads- based on full-knowledge of the tire patch: lateral, longitudinal, and
radial tire forces and the overturning, rolling resistance and self-aligning tire
moments acting on the contact patch.

b) Chassis loading scenarios- better ground vehicle reliability predictions

c) Pavement Life- crack propagation, rutting, roughness

Better modeling of the contact patch will yield more representative tire loading,
which will lead to better estimates of chassis loading scenarios and will inevitably result
in better ground vehicle reliability predictions. Current application of this work is limited
to the analysis of U.S. Highways, comprised of both asphalt and concrete, but the
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methods developed in this dissertation are applicable to any non-deformable path-specific

terrain.
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Nomenclature

Hilbert Space spanned by sets of vectors {zix}, {si}, and {ei«}

Subspace of H, in which global events are defined

Complement of subspace G, in which local events are defined

i vector component of the k™ realization of the terrain surface height

i vector component of the true surface height

i vector component of the estimated true surface height

i vector component of the truncated true surface

Error in realization z;x with respect to s;

Noise component of the i error vector of the k™ realization

Orthonormal empirical basis vector in the principle direction indexed by |
Orthonormal analytical basis vector in the principle direction indexed by |
Estimated true surface projected onto basis vector p, or b

Projection of ejx onto by representing the contribution of the measurement
error in the 1" global direction

Difference in the i" transverse profile, k™ realization in the | direction from y,
Ensemble average drift in the | direction across all realizations

Projection of z;x onto the basis vector by

Index for discrete longitudinal locations along the path coordinate u, where i
€ {1,2,....m}

Index for transverse locations along the path coordinate v, where j €
{1,2,....n}

Indices for the realization (measurement) [1, 2, ... r]

Index for the principle directions of H, where 1 € {1,2, ..., q}

Number of principle directions of H (i.e., the dimension of G)
Inner-product operator on two vectors

Weighted inner-product operator on two vectors
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(x,y)
(u, v)

RMSH
D

Zy

P()

S1, S2, ..

P"()

S O o ©

Expectation operator

Estimated expectation operator (some ensemble averaging technique, such as
mean, median, 50% trimmed mean, etc.)

The number of discrete longitudinal locations along the terrain surface

the number of realizations (measurements) used to estimate the true terrain
surface

truncated set of basis vectors

Number of polynomial terms (polynomial order is a-1)

Global coordinate system

Path-centered coordinate system

Vector of discrete longitudinal locations along path coordinate u

Vector of discrete transverse locations at which the terrain heights are
defined either through measurement or spatial interpolation

Root Mean Square of terrain height

Single measure of the combined variance of the random component of the
road profile with the harmonic component of the road profile

Stochastic process

Process index

State space of the stochastic process

Elements of S

The roughness level of the displacement PSD

The general roughness parameter (PSD)

Dimensionless parameter called waviness (PSD)

Wavelength of the road (PSD)

Probability

States of State Space of stochastic process

n-step transition function

Order of the autoregressive model

The number of times the data were differenced

The order of the moving average model

The autoregressive coefficient
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RIDE
SvD
AR

yi(t)

The distribution of the uncorrelated residuals
Backward difference operator

Parametric Road Spectrum

Shifted Spatial Range Spectrum

Mean

Variance

Total vehicle mass (kg)

Sprung mass (kg)

Unsprung mass of each wheel assembly (kg)
Front suspension stiffness (N/m)

Rear suspension stiffness (N/m)

Tire stiffness (N/m)

Damping coefficient front suspension N/(m/s)
Damping coefficient rear suspension N/(m/s)
Distance front axle to center of mass (m)
Distance rear axle to center of mass (m)
Track width front axle (m)

Track width rear axle (m)

Measured suspension travel over time

Length of the profile [m]

Motion of sprung mass [m/s]

Motion of unsprung mass [m/s]

Velocity of at which the simulation was executed
International Roughness Index

Ride Number

Roughness Index for Driving Expenditure
Singular Value Decomposition
Autoregressive Model

Sprung mass acceleration of reference vehicle

Road input to full-car model, i indicates the corner of the vehicle
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FRI Full-car roughness index
PSD Power Spectral Density
RCR Ride Condition Rating
Pi Weight function for robust estimation (linear prediction)

a,b Steepness of weight function (linear prediction)

g Shift value (linear prediction)
W Ceiling elevation value that is user defined (linear prediction)
Vi Surface residuals (linear prediction)

P(2) Gaussian distribution

n;; Mean of the terrain surface for each grid location
n Scalar representation of the mean of the terrain surface
i Standard deviation of the terrain surface for each grid location
o Scalar representation of the standard deviation of the terrain surface

& n) Node based coordinate system

N; (&) Shape function in (&)

N;(n) Shape function in (1)
N;(¢,m)  Shape function in (¢,7)

u(é,n)  Displacement field

A Parameter to tune Gegenbauer polynomials

C;S/D (x) Gegenbauer polynomials

Ty (x) Chebyshev polynomials

f(x) Fourier series basis functions

ao Fourier series coefficient
a, Fourier series coefficient
b, Fourier series coefficient

P(v) Continuous polynomial
v Continuous coordinate on which the continuous polynomial is defined
p(v, 1)  Discretized polynomial in vector form as a function of A and v
V(v) Vandermonde matrix, nxa for which n=a

c(Q) Gegenbauer coefficients in vector form
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C Matrix of coefficients
w Weighting matrix

P(v,1) Discretized polynomial in matrix form as a function of A and v

c(h) Gegenbauer coefficients in matrix form
R Weighted grammian
0, Coefficients pertaining to the magnitude of the contribution of each analytic
basis vector to the true terrain surface
RMSE Root mean square error
Original transverse measurement locations

Vmeasured

VUmeasurea Mean of the original transverse measurement locations
t Track width of typical passenger vehicle

p(A) Distance between the two local minima for the fifth analytic basis vector
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Appendix A - VTMS Detailed Description

The VTMS is equipped with a Phoenix Scientific PPS scanning laser and a
Novatel SPAN INS. The scanning laser acquires data at 1kHz with an accuracy of +/-
0.5mm in the horizontal plane and +/- 0.5mm in elevation. The INS combines an inertial
measurement unit (IMU) which measures three translational accelerations and three
rotational velocities at 100 Hz with a differential GPS acquiring data at 5 Hz. The
differential GPS and IMU signals are then combined through Kalman filtering.

The horizontal precision of the complete system is defined in terms of the
standard deviation in the height measurement vs. the horizontal distance the vehicle has
traveled between repeated measurements, as shown in Figure 66. This can be thought of
as the precision as a function of wavelength. The INS is capable of a horizontal precision
of 1 mm for short distances traveled; the limiting factor is the laser spot size. Precision
levels of 10 mm are possible for distances of up to 10 m; this is limited by the drift in the
uncorrected IMU data (1deg/hr). For distances greater than 10 m, the precision is limited
by the DGPS, which has a precision of 10mm + 1ppm (e.g., 20 mm at 10 km traveled);

the DGPS is affected by the number of satellites and atmospheric interference.

[N

=
o

Horizontal Deviation (mm)

10

Horizontal Distance (m)

Figure 66. Horizontal Precision of VTMS.
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The vertical accuracy of the system was assessed by exciting the vehicle over
large 70 mm wooden cleats; the vehicle was driven at a speed such that its resonant
frequencies were excited as described by Smith (Smith 2009). A steel calibration
surface, as shown in Figure 67 (located between the wooden excitation event) was

measured during this severe excitation, resulting in an RMS error of 2 mm.

Figure 67. Sample calibration surface for inertial profilers.
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Appendix B - Parameter Values for Calculating IRI

Table 3: Golden Car Parameters

Parameter | Description

C Cs/Ms=6.0 : Normalized damping coefficient
K1 Ki/Ms=653 : Normalized tire stiffness

K2 Ks/Ms=63.3 : Normalized spring stiffness

u M./Ms=0.15 : Normalized mass ratio

Ls 250mm, Moving average base length

\/ V=80 km/hr : Forward speed

Table 4: Ride Number Quarter Car Parameters

Parameter | Description
C Cs/Ms=17 : Normalized damping coefficient
Ki K¢/Ms=5120 : Normalized tire stiffness
K2 Ks/Ms=390 : Normalized spring stiffness
u Mu/M¢=0.036 : Normalized mass ratio
V=80 km/hr : Forward speed
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Appendix C - Gegenbauer Polynomials

Gegenbauer polynomials are solutions to the Gegenbauer differential equation for integer
n. They are proportional, or depending on the normalization, equal to the ultraspherical
polynomials P}(x). The Gegenbauer polynomials are extensions of Legendre

Polynomials. The generating function for these polynomials are then given by

1 > N Equation 84
=) e
(1 —2xt +t2)4
n=0

The first few Gegenbauer Polynomials are then
Cé”(x) =1 Equation 85
M (x) = 22x Equation 86
CM(x) = =2+ 22(1 + Dx? Equation 87
CM(x) = =2A(1 + Dx + 4/31(1 + D (2 + x> Equation 88

A recurrence relation is presented as

nCcP(x) =2+ 21— DxCP,(x) — (n + 21— 2)CP, (x), vn Equation 89

=23..
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Appendix D - Legendre Polynomials

Legendre polynomials are solutions to Legendre differential equations. The Legendre
polynomial can be defined by the contour integral over the range [-1,1], where n is an
integer and the contour integral encloses the origin and is traversed in a counterclockwise
direction (Arfken 1985).

1 -
P,(2) = __jg(l — 2tz + t2)"L/2¢n-1g; Equation 90
2mi
The first few Legendre Polynomials are

Po(x) =1 Equation 91
P(x) = x Equation 92

1 .
P,(x) = 2 (3x2—1) Equation 93

1 .
P3(x) =5 (5x3 — 3x) Equation 94

1 :
Py(x) = 3 (35x* — 30x2 + 3) Equation 95

1 .
Ps(x) = §(6Sx5 — 70x3 + 15x) Equation 96
Equation 97

1
Py(x) = E(231x6 — 315x* + 105x%2 — 5)

The Legendre Polynomials can also be generated wusing Gram-Schmidt
Orthonormalization on the open interval (-1, 1) with the weighting function 1.

Normalizing so that P,(1)=1 yields the expected Legendre Polynomials.

Py(x) =1 Equation 98
[ xdx Equation 99
Pi(x) = [x -= ] *1=
f_1 dx

Equation 100

f_ll x3dx] ~ f_11 x%dx

1 5 1 ]*1=x2_
J_ x?dx J_,dx

Py(x) =x [x —
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Equation 101

1 1 1 1
_lx(x2—§ dx ( , 1)_ J2, (e = 3)%dx
2

Py(x) =[x — xX° ==
1 1 3 L2
f_l(x2—§) dx J-yx?dx
3
—,.3_2
*x=x—¢

The Legendre Polynomials are a special case of ultraspherical functions with a=1/2, a

special case of the Jacobi Polynomials P,f“'ﬁ) with a=B=0. A generating function for the
Legendre Polynomial is written as
> Equation 102
glt,x) =1 —-2xt+t?) = Z B,(x)t"
n=0
The recurrence form of the Legendre Polynomial is written as
AU+ 1P () — QL+ DxP(x) +IP_1(x) =0 Equation 103
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Appendix E - Chebyshev Polynomials

Chebyshev polynomials are solutions to the Chebyshev differential equation. They are
typically used as an approximation to a least squares fit and are a special case of the
Gegenbauer polynomial when a=0. Chebyshev polynomials of the first kind are defined

by the contour integral over the range [-1, 1].

1 ((@A—-t») ! Equation 104
TTL(Z) = 2
4mi ) (1 — 2tz +t?)
The generating function for these polynomials exists for [x|<1 and |t|<1 are then given by
1—t? = .
96 = T = To(@) +2 Z T ()t
. Equation 105
— X
T n
9N =1y e Z n(0)t
A direct representation of the generating function is given by
n n Equation 106
1, 1 1
Tn(X):EX 1_Z_2+1 + 1—2—2

The first few Chebyshev Polynomials are then

To(x) =1 Equation 107

Ti(x) =x Equation 108

T,(x) =2x? -1 Equation 109
T3(x) = 4x3 — 3x Equation 110
T,(x) = 8x* —8x2 +1 Equation 111

A recurrence relation is presented that is true after setting TO(x)=1 and T1(x)=x
T (x) = 2xTj_1(x) — Tj_,(x) Vk = 2,3, ... Equation 112
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Appendix F - Fourier Series Polynomials

Fourier series polynomials take on a similar form to that of power series or Taylor series,
except instead of an infinite series of powers, Fourier series are based on an infinite series

of sines and cosines. Fourier series can be expressed in the following form

o)

ao nm = . nm
fx) = > + z (nCOS ==X + Z bnsme
n=1

n=1

Equation 113

Let f(x) and f’(x) be periodic functions having period 2l, where f(x) and f’(x) are
piecewise continuous on -oo < X < co. Let the Fourier coefficients be defined by
1 (! nmw Equation 114
a, = TJ- f(x)cosde, n=0,1..
-1

1! nm Equation 115
b, = Tf f(x)sianx, n=12..
-1
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Appendix G - Inner Product Properties

Inner product properties

Conjugate Symmetry
(x,y) = (%) = (y, %)
Bilinearity
(ax,y) = a(y, x)
Bilinearity
(x+y,2)=(x2)+(y2)

Non-negativity (Positive Definiteness)

(x,x)>0ifx+0

(x,x)=0if x=0
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Appendix H - Weighted Inner Product

Weighted Inner Product

For a finite dimensional vector space, a weighted inner product can be obtained
by inserting a Hermitian weighting matrix W between the elements. The concept
of orthogonality is defined with respect to the particular inner product used:
changing the inner product may change the orthogonality relationship between
vectors.
(x, y)w = yIwx Equation 120
In order for the weighted inner product to be used to define a norm, as in
Ixllfy = (% 20w = xFWx Equation 121
It is necessary that x#Wax > 0 for all x not equal to 0. A matrix W with this
property is said to be positive definite.
A Hermitian matrix is a square matrix which is equal to its own conjugate
transpose. A matrix that has only real entries is Hermitian if and only if it is a
symmetric matrix with respect to the main diagonal. A real and symmetric matrix
is simply a special case of a Hermitian matrix.
Weighting can also be applied to integral inner products. If there is some function
w(t)>=0 over [a,b], then an inner product can be defined as
(.9 = [ wOr©gat Fauation 122
b

The weighting can be used to place more emphasis on certain parts of the function
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Appendix | — Hilbert Space

Hilbert Space: A finite dimensional vector space where the norm is the induced norm and
an inner-product exists.
e Norm is the induced norm for a Hilbert space. The length of vector x.

xll = (x, )2 Equation 123

e Form basis vectors so that

1fori=j Equation 124

xi,2j) = (i =) = {Ofori *j

e Angle between vectors x and y is consistent with dot product
(x,y) = llx|[llyllcosby, Equation 125

To be a basis vector, the vectors must be orthogonal. Normalize for mathematical

convenience.
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Appendix J — INS Drift Sample Matlab Code

This Appendix provides a sample of Matlab code used to develop the INS drift

compensation method.

function arrayData = remove_ins_drift_hmc 2010 09 07(directory)
%6%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6 %6%% %6 %6%% % %% %% 6% %% %% %% %% %% %%

% REMOVE INS DRIFT from crg structs

%

% Title: remove ins drift

% Author:JBF, RMB, HMC

% Date: 2010 09 07

%

% DESCRIPTION

%

% Assumptions

% 1) directory contains subdirectories that in turn contain .mat files
% which are stuctures, D, with a D.z matrix that represents the best
% estimate of the surface for that run

%

% Inputs

% 1) directory containing a set of subdirectories, each subdirectory
containing an .mat file from

% an individial measurements/runs/realization of a particular terrain.
% That is, the directory only contains information about a single
terrain

% surface, not different terrain surfaces

%

% Variables

% dirName: the name of the diirectory in which the subdirectories
exist,

% without the superdirectories appended

% Outputs

%

%

% Tasks

% 1) Define bigZ from directory

% 2) Define a "large®™ number of basis vectors

% 3) Calculate the projection of the measured vectors onto the basis
% vectors (beta (i,k,I))

% 4) Sum projections of measured vectors onto basis vectors

% 5) Calculate the estimated True Surface

% 6) Calculate the error surfaces

% 7) Calculate the drift surfaces

% 8) Evaluate noise surface to be sure it is zero-mean

% 9) Calculate the drift-free surfaces and over-write arrayData(k).z
% 10) create additional structure in the arrayData array with True
Surface

%

% Validation sets

% 1) directory="\\172.16.56.51\datashare\Unsecured\Data\MnRoad 2009 10
20\Mnroad_20091019_Sectionl*
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% 2) directory="\\172.16.56.51\datashare\Unsecured\Data\MnRoad 2009 10

20\Mnroad_Section5*

% 3) directory="\\172.16.56.51\datashare\Unsecured\Data\Clean Data - DO
NOT MODIFY\Mnroad_20091019 Sectionl®

%6%9%%%%6%6%6%%% %% %%6%6%%%% %% %6%6%6%%% % % %%6%6%% %% % % %6%6%6% %% % % %%6%6%% %% % % %6%6%% %% % % %%6%%% %%
%%%

% maxnBasis is the maximum number of basis vectors and is being

% defined as a parameter. ITf the length of the vectors (n) is less than
% maxnBasis, then maxnBasis is reduced later in the program
maxnBasis=20;

% Get the name of the main directory

remainder = directory;

while true
[dirName, remainder] = strtok(remainder, "\");
if isempty(remainder), break; end

end

% 1) Define bigZ from the directory

% define a 3D matrix with each surface being added as a layer to the 3D
% matrix bigZ. This is done to simplify further processing of data
% (without the meta info carried along)

% bigZ is the concatenation of the crg surfaces

%  bigzZ(i,j,k) then

% i: index of transverse profile, length of longitudinal profile
Crow"), i=[1,2,..., m]

% j: index of longitudinal profile, length of transverse profile
("col™), j=[1.,2,..., n]

% k: index of realization (measurement), k=[1,2,..., r]

arrayMatFilename = get_matFilename(directory); % this is an array of
structures containing a field called .matFilename, this is not an array
of strings (or all the filenames would have to be the same length?)
r=length(arrayMatFilename);

% 1b) load first mat file
load(arrayMatFilename(1) .matFilename); % There should now be a
struct called "D" in the workspace

% Account for different versons of the mat file...
if exist("Surface®,"var®), D=Surface; clear Surface; end

% Determine "best” reported value of z (median best, mean next best,
2t

% third best...

D.z = D.weightCdf(:,:,5);

[m,n]=size(D.z);

if ~D.suppressOutput,
disp(” ");
disp(["Processing " dirName]);
disp(" ");
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disp(["Number of longitudinal points (length of profiles, m): =,

num2str(m)]);

disp(["Number of transverse points (size of vector space, n): =,
num2str(n)1);

disp(["Number of realizations (measurements runs taken, r): ",
num2str(r)]);

figure(1l); clIf(1l); surf(D.z); title(["Heights for ",D.filename]);
figure(2); clf(2); contour(D.z); title(["Heights for
*,D.Ffilename]);
end

bigZ=zeros(m,n,r);

bigz(:,:,1) = D.z; % take best reported value of z
%arrayData(l:r)=struct;

arrayData(1:r)=D; % pre-allocate memory so that all r structures
start off looking like the first one

clear D;

% 1b) load subsequent mat files
for k = 2:r,

load(arrayMatFilename(k) .matFilename); % There sould now be a
struct called "D" in the workspace

% Account for different versons of the mat file...
if exist("Surface®,"var®), D=Surface; clear Surface; end

% Determine "best” reported value of z
D.z = D.weightCdf(z,:,5);

arrayData(k)=D;

bigz(:,:,k) = D.z; % take best z value
%bigZ(:,:,k)=detrend(bigZ(:,:,k));
clear D;

end

% 2) Define the basis vectors

% calculate the First maxnBasis basis vectors, they will not all be
used in the

% Final analysis, but they are available. There can not be more basis
% vectors that the size of the vector space itself, which is n, the
length

% of each vector

maxnBasis = min(maxnBasis, n);

[singularValues, basis] = get basis vectors(bigZ, maxnBasis);
singularValues = diag(singularValues);

% 1f ~arrayData(l).suppressOutput,

% disp(["Singular Values: *, num2str(singularValues®)]);
% figure(3); clf(3);

% stem(singularValues);

% xlabel ("Singular Value index (1)%);

% ylabel (*Singular Value®);
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% title(["Singular Values for ", dirName]);

% figure(4); clf(4);

% plot(basis(:,1:min(5,maxnBasis)),"-");

% hold on;

% plot(basis(:,1:min(5,maxnBasis)), "0");

% xlabel ("Transverse Location Index (j)");
% ylabel ("Basis Vector Height®);

% title(["Basis Vectors for *, dirName]);
% end

% 3) Calculate the projection of the measured vectors onto all the
basis
% vectors (beta (i,k,I))
beta = zeros(m,r,maxnBasis);
for I=1:maxnBasis,
for k=1:r,
for i=1:m,
beta(i,k,l) = bigz(i,:,k)*basis(:,I1);
end
end
end

% 4) Loop on increasing number of basis vectors being USED, nBasis,
until

% the noise is is zero-mean with a standard deviation less than 1/2 a
% milimeter (therefore the standard deviation is 2 standard deviations
away from the resolution of the laser).

%lnitialize variables for loop to run
StdTotal=1;
MeanTotal=1;
nBasis = -1; % initialize nBasis to zero, it is immediately
incremented inside the while loop
maxNoise = 1;
minNoise = -1;
%while ( (StdTotal>0.0005 |] MeanTotal > 0.0001 || maxNoise > 0.010 ||
minNoise < -0.010) && nBasis<maxnBasis ),
while ( (StdTotal>0.0005 || MeanTotal > 0.0001 ) && nBasis<maxnBasis
),

nBasis = nBasis + 1;

% 4a) Sum projections of measured vectors onto basis vectors
sumProjection = zeros(m,n,r);
for 1=1:m,
for k=1:r,
for I=1:nBasis,
sumProjection(i,:,k) = sumProjection(i,:,k) +
beta(i,k,D*basis(:,1)";
end
end
end

bigZMinusSumProjection = bigZ-sumProjection;
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% 4b) Calculate the estimated True Surface
% [expectedS] = get expectation_20090515(s, dim, method)
trueSurface = get_expectation_20090515(bigZMinusSumProjection, 3,
2) + ...
get_expectation_20090515(sumProjection, 3, 2);

% 4c) Calculate the error surfaces
error = zeros(m,n,r);
for k=1:r,
error(:,:,k)=bigZ(:, :,k)-trueSurface;
end

% 4d) Calculate the drift surfaces
drift = zeros(m,n,r);
for i=1:m,
for k=1:r,
for I=1:nBasis,
drift(i,:,k) = drift(i,:,k) +
(error(i,:,k)*basis(:,1))*basis(:,1)";
end
end
end

%Calculate the projection of the True Surface onto the principle
%directions
sigma = zeros(m,nBasis);

for i=1:m,

for I=1:nBasis,

sigma(i, D=trueSurface(i, :)*basis(:,1);

end

end

%Calculate the truncated surface
sTrunc=zeros(m,n);
for 1=1:m,
for I=1:nBasis,
sTrunc(i, :)=sigma(i, D*basis(:,1)";
end
end

% 4e) The noise surface is then the error surface - the drift
surface
noise = error - drift;

% 4f) Evaluating the noise surface to see if it Is a zero-mean
process
% with a standard deviation less than 0.5mm

[myMean, myStd, StdTotal, MeanTotal, VarTotal, maxNoise,
minNoise]=CheckNoise(noise);

Y%xtrans=linspace(0.5,1.8,n);
xtrans=arrayData(l) .v;
%xlong=linspace(1,151.2,m);
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xlong=linspace(0,arrayData(l) .nu*arrayData(l) .uinc,m)";

% 4g) Plotting every tenth longitudinal profiles
for i=1:1:min(9, floor(m/300)), % loop on drift-free
longitudinal profile

Ffigure(10+i); clIf(10+i1); hold all;
title(["Error Vectors at u = ", num2str(xlong(i*300)), " m,
", num2str(nBasis), " basis vectors®]);
xlabel ("Transverse Distance, [m]"); ylabel("Amplitude, [mm]");

grid on;
for k=1:r,
plot(xtrans,1000*error(i*300,:,k));
%plot(tranProf(:,k)); % drift-free
end

Y%plot(trueSurface(i*200,:),"k:");

figure(20+i); (20+i); hold all;

title(["Noise Vectors at u = ", num2str(xlong(i*300)), " m,
", num2str(nBasis), " basis vectors®]);

xlabel ("Transverse Distance, [m]"); ylabel("Amplitude, [mm]");
grid on;

for k=1:r,

plot(xtrans,1000*noise(i*300, :,k))

end

Ffigure(30+i); (30+i); hold all;

title(["Drift Vectors at u = ", num2str(xlong(i*300)), " m,
", num2str(nBasis), " basis vectors"]);

xlabel ("Transverse Distance, [m]"); ylabel("Amplitude, [mm]");

grid on;
for k=1:r,
plot(xtrans,1000*drift(i*300, :,k))
end
end
for j=1:1:min(9,floor(n/10)), % loop on drift-free

longitudinal profile

Ffigure(40+j); (40+i); hold all;
title(["Drift-Free and True Surface at v = ",

num2str(xtrans(J*10)), " m, . ", num2str(nBasis), " basis vectors"]);
xlabel ("Longitudinal Distance, [m]"); ylabel("Amplitude, [m]");
grid on;
longProf=zeros(m,r);
for k=1:r,
longProf(:,k)=bigZ(:,j*10,k)-drift(:,j*10,k); % these
are the samples of drift-free long profiles
plot(xlong, longProf(:,k)); % drift-free
end

plot(xlong,trueSurface(:,j*10), "k:");

disp([“cross correlation for long prof. °, num2str(j*10)]);
c=corr(bigz(:,j*10,:)),

197



%disp(["“standard deviation of noise for long prof. ",
num2str(J*10)]);
%stand = std(noise(:,j*10,:),0,2),

% look at drift
figure(50+j); (50+i); hold all;
title(["Drift at v = ", num2str(xtrans(j*10)), " m, . -,
num2str(nBasis), " basis vectors"]);
xlabel ("Longitudinal Distance, [m]"); ylabel("Amplitude,
[mm]*); grid
on;legend("k=1","k=2","k=3", "k=4","k=5","k=6", "k=7","k=8","k=9", "k=10")
for k=1:r,
driftProf(:,k)=drift(:,j*10,Kk); % these are the
samples of long drift profiles
plot(xlong,driftProf(:,k)*1000);
end
% look at noise
Ffigure(60+j); (60+i); hold all;
title(["Noise at v = ", num2str(xtrans(j*10)), " m, . =,
num2str(nBasis), " basis vectors"]);
xlabel ("Longitudinal Distance, [m]"); ylabel("Amplitude,
[mm]"); grid on; for k=1:r,
%noiseProf(:,k)=longProf(:,k)-trueSurface(:,j*10); %
these are the samples of longitudinal noise profiles
noiseProf(:,k)=noise(:,j*10,k);
plot(xlong,noiseProf(:,k)*1000);
end
end % for j=1:1:8, % loop on drift-free longitudinal
profile

end % whille (CheckNoise),

disp(StdTotal);

disp(MeanTotal);

disp(nBasis); % initialize nBasis to zero, it is immediately
incremented inside the while loop

disp(maxNoise);

disp(minNoise);

% 9) Calculate the drift-free surfaces etc.
for k=1:r,
arrayData(k) .driftFreez = bigZ(:,:,k)-drift(:,:,k);
arrayData(k) .noise = noise(:,:,k);
arrayData(k) .drift = drift(z,:,k);
arrayData(k) .trueSurface = trueSurface;
end

% % 10) create additional structure in the arrayData array with True
Surface
% arrayData(r+1).z = trueSurface;

save test.mat;
for k=1:r,
save_D(arraybData(k));
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end

return % remove_ins_drift

function [sigma, b] = get basis vectors(bigZ, nBasis)

% This function performs a SVD on all the differences in measured
vectors

% to determine a set of basis vectors that spans the vector space of
the

% error.

% bigZ is the concatenation of the measured surfaces

% bIgZ(I,J,k) then

% : iIndex of transverse profile (“row™), i=[1,2,..., m]
% j: index of longitudinal profile (“col’ ) Jj=11,2,..., n]
% k: index of realization (measurement), k=[1,2,..., r]

[m,n,r]=size(bigZ);

% Determine the number of combinations of differences in measured
vectors

nDiffMeas = m*(r-1)*r/2;

maxCounterDiffMeas = 1le4; % only consider the first
maxCounterDiffMeas vectors. ..

maxCounterDiffMeas = min(nDiffMeas, maxCounterDiffMeas);

diffMeas = zeros(maxCounterDiffMeas,n);
counterDiffMeas = O; % counter the number of vectors for SVD

% TODO randomly select the pairs of measured vectors to use, using
% [index]=generate_random_indices(m,num)
for 1=1:m,
for k=1:(r-1),
for h=k+1:r,
counterDiffMeas = counterDiffMeas + 1;
diffMeas(counterDiffMeas, :) = bigz(i,:,k)-bigz(i,:,h);

if counterDiffMeas == maxCounterDiffMeas, break; end
end
iT counterDiffMeas == maxCounterDiffMeas, break; end
end
if counterDiffMeas == maxCounterDiffMeas, break; end
end

[~,sigma,b] = svds(diffMeas, nBasis);

return % get basis_vectors

function [expectedS] = get_expectation_20090515(s, dim, method)
%The expectation of variable (in any number of dimensions(, s,

% is returned after s has ben "averaged®™ over
% the "dim" dimension using the "method" method.

[nRows,nCols,nRuns] = size(s);
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switch method

case 1
expectedS = mean(s, dim);
case 2
expectedS = trimmean(s, 50, dim);
case 3
expectedS = median(s, dim);
otherwise
end
return % get_expectation

function [myMean, myStd, StdTotal, MeanTotal, VarTotal, maxNoise,
minNoise]=CheckNoise(nhoise)

%CheckNoise: This function loads the noise surface(s) and evaluates for
a

%zero-mean process in terms of the mean and standard deviation

%

% Input: noise: noise vectors from INS drift code

%

% Output: myMean: mean noise surface combining mean of each kth value

% myStd: standard deviaiton noise surface combining std of
each

% kth value

% StdTotal: Single number representation of std deviation of

% surface

% MeanTotal: Single number representation of mean of surface

% VarTotal: Single number representation of variance of surface

[m,n,r] = size(noise);
%Establish size of matrices
myMean = zeros(m,n);

myStd = zeros(m,n);

% Calculate mean noise surface and standard deviation noise surface for
% each kth measurement
for 1=1:m
for j=1:n
myMean(i,j)=mean(noise(i,j,:));
myStd(i,j)=std(noise(i,j,:));
end
end

%Std Deviation and variance of surface as represented by a single
number
VarTotal=0;
for i=1:m

for j=1:n

VarTotal=VarTotal+var(noise(i,j,:));

end
end
VarTotal=VarTotal/(m*n);
StdTotal=sqgrt(VarTotal)
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%Mean of surface as represented by a single number
NoiseTotal=0;

maxNoise = 0;

minNoise = 0;

for 1=1:m
for j=1:n

NoiseTotal=NoiseTotal+(noise(i,j,:));
maxNoise=max( maxNoise, max(noise(i,j,:)) ):
minNoise=min( minNoise, min(noise(i,j,:)) );
end
end
MeanTotal=mean(NoiseTotal/(m*n))

return
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Appendix K — Analytic Basis Vectors Sample Matlab
Code

This Appendix provides a sample of Matlab code used to calculate the RMSE between

the empirical and analytic basis vectors.

function [sigma_Gegen, sTrunc_GegenSum, sigma, sTruncSum, basis,
basis_trunc, Gegen_basis, RMS_gegen, Fourier_basis, RMS_fourier,
Chebyshev_basis,
RMS_chebyshev,v]=AnalyticvsEmpirical_2010_09 29(v_Indexa, lambda,shift_v
_horiz, scale v, scale basis,q)

%% Description

%This function compares the Analytic basis vectors with the Emperical
Basis

%Vectors for Gegenbauer tuned on lambda, Chebyshev and Fourier

%

%lnputs: (v_Indexa,lambda,shift_v_horiz, scale_v, scale basis,q)

%

% v_Indexa: vector of whole number indices i.e. [1:1:50] creates.
Will

% map the space from [-1, 1] by 50 points.

% lambda: parameter to tune Gegenbauer polynomials, must exist on
(0,1]

% shift_v_horiz: shift the empirical basis vectors to exist and be
% centered on [-, 1]

% scale_v: scales the width of the span of the empirical basis
vectors

% scale_basis: magnifies empirical basis vectors

% qg: number of analytic basis vectors to be generated

%

%

%% Adjust Empirical basis vectors and formulate v vector

%Load Empirical basis vectors

load("C:\Documents and Settings\IALR\Desktop\Candidate
Release\TestData\EmpiricalBasis.mat");

load("C:\Documents and Settings\IALR\Desktop\Candidate
Release\TestData\TrueSurface_Sectionl.mat");

v_Empir_Orig=linspace(0.5,1.8,48); %Original data spacing in meters

%Need to scale original data to be centered on 0. In this case, the
data
%spans 1.3 meters.

v_Empir_cent=v_Empir_Orig-1.1375; %Centers data on 0. Spans -0.6375
to 0.6375m

v_Empir_horiz_shift=v_Empir_cent+shift_v_horiz; %Shifts v_empir to the
left or right
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Vv_Empir=v_Empir_horiz_shift*scale_v; %Scales v_empir by a
multiplicative factor

basisscaled(:,:)=basis(:,:)*scale_basis; %Scales magnitude of basis
vectors

v_spacing=length(v_Indexa);

%Analytic Basis Vectors%
v=linspace(-1,1,v_spacing);

%% Gegenbauer Polynomials

[~, Gegen_basis, ~, w] = make basis 2010 04 30(v, lambda);

%% Root Mean square Error Routine Gegenbauer

%truncate emprical basis vectors to be same length as analytic%
basis_trunc=basisscaled(v_Indexa,:);

sum_total=zeros(length(v),4);

for h=1:3
for i=1:length(v)
sum(i,h)=(Gegen_basis(i,h)-basis_trunc(i,h))"2;
sum_total (i,h)=sum_total (i,h)+sum(i,h);
end
RMS_gegen(:,h)=sqrt(sum_total(:,h)/length(v));
end

for i=1:length(v)
sum(i,3)=(Gegen_basis(i,4)-basis_trunc(i,3))"2;
sum_total (i,3)=sum_total (i,3)+sum(i,3);

end

RMS_gegen(:,3)=sqrt(sum_total(:,3)/length(v));

for i=1:length(v)
sum(i,4)=(Gegen_basis(i,5)-basis_trunc(i,4))"2;
sum_total (i,4)=sum_total (i,4)+sum(i,4);

end

RMS_gegen(:,4)=sqrt(sum_total(:,4)/length(v));

%% Plotting Gegenbauer

%Color scheme for plots

C|r1={'b*','r*','g*','k*'};

Clr2:{.b.’.r.’.g.’.k.};

disp(["For lambda= " num2str(lambda)])

figure; title("Gegenbauer vs. Empirical®)
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title(["Lambda = ( ", num2str(lambda), ")"1)

subplot(2,2,1),hold on, grid on, plot(v_Empir,
basisscaled(:,1),clr1{1}), plot(v,Gegen_basis(:,1),clr2{1}),
xlabel (*Normalized Transverse Distance, v, [m]")

ylabel ("Amplitude®), legend("Empirical g=1", “Analytic
p_1°,"Location”, "Best"), hold off;

subplot(2,2,2),hold on, grid on, plot(v_Empir,
basisscaled(:,2),clr1{2}),
plot(v,Gegen_basis(:,2),clr2{2});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel ("Amplitude®);legend("Empirical g=2", "Analytic
p_2","Location”, "Best"), hold off;

subplot(2,2,3),hold on, grid on, plot(v_Empir,
basisscaled(:,3),clr1{3}),
plot(v,Gegen_basis(:,4),clr2{3});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel("Amplitude®);legend("Empirical g=3", "Analytic
p_4°,"Location”, "Best"), hold off;

subplot(2,2,4),hold on, grid on, plot(v_Empir,
basisscaled(:,4),clrl{4}),

plot(v,Gegen _basis(:,5),clr2{4});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel("Amplitude®), legend("Empirical g=4", “Analytic
p_5%,"Location”, "Best"), hold off;

%legend("Gegenbauer Basis =07, "EmpiricalBasis gq=0", "Gegenbauer Basis
g=1","EmpiricalBasis g=1", "Gegenbauer Basis gq=3", "Gegenbauer Basis
g=4", “EmpiricalBasis =27, "EmpiricalBasis q=3", "Location”, "Best")

%% Chebyshev Polynomials

[Chebyshev_basis]=Chebyshev(Vv);

%% Root Mean square Error Routine Chebyshev
sum_totalCheby=zeros(length(v),4);

for h=1:3
for i=1:length(v)
sumCheby (i ,h)=(Chebyshev_basis(i,h)-basis_trunc(i,h))"2;
sum_totalCheby(i,h)=sum_totalCheby(i,h)+sumCheby(i,h);
end
RMS_chebyshev(: ,h)=sqgrt(sum_totalCheby(:,h)/length(v));
end

for i=1:length(v)
sumCheby (i ,3)=(Chebyshev_basis(i,4)-basis_trunc(i,3))"2;
sum_totalCheby(i,3)=sum_totalCheby(i,3)+sumCheby(i,3);
end
RMS_chebyshev(:,3)=sqgrt(sum_totalCheby(:,3)/1length(v));

for i=1:length(v)

sumCheby (i ,4)=(Chebyshev_basis(i,5)-basis_trunc(i,4))"2;
sum_totalCheby(i,4)=sum_totalCheby(i,4)+sumCheby(i,4);
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end
RMS_chebyshev(:,4)=sqrt(sum_totalCheby(:,4)/length(v));

%% Plotting Chebyshev

%Color scheme for plots
C|r1={'b*','r*','g*','k*'};
Clr2:{'b','|",'g','k'};

disp(["For lambda= " num2str(lambda)])

figure; title("Chebyshev vs. Empirical®)

Wtitle(["Lambda = ( *, num2str(lambda), “)°])

subplot(2,2,1),hold on, grid on, plot(v_Empir,
basisscaled(:,1),clr1{1}), plot(v,Chebyshev_basis(:,1),clr2{1}),
xlabel("Normalized Transverse Distance, v, [m]")

ylabel ("Amplitude®), legend("Empirical g=1", "Analytic

T 17,"Location”,"Best"), hold off;

subplot(2,2,2),hold on, grid on, plot(v_Empir,
basisscaled(:,2),clrl{2}),
plot(v,Chebyshev_basis(:,2),clr2{2});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel("Amplitude®);legend("Empirical g=2", "Analytic

T 27,"Location”,"Best"), hold off;

subplot(2,2,3),hold on, grid on, plot(v_Empir,
basisscaled(:,3),clrl{3}),

plot(v,Chebyshev basis(:,4),clr2{3});xlabel ("Normalized Transverse
Distance, v, [m]")

ylabel ("Amplitude®);legend("Empirical g=3", “Analytic

T 47,"Location”,"Best"), hold off;

subplot(2,2,4),hold on, grid on, plot(v_Empir,
basisscaled(:,4),clrl{4}),

plot(v,Chebyshev basis(:,5),clr2{4});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel("Amplitude®), legend("Empirical g=4", “Analytic

T 5%,"Location”,"Best"), hold off;

%legend("Gegenbauer Basis =07, "EmpiricalBasis gq=0", "Gegenbauer Basis
g=1","EmpiricalBasis =17, "Gegenbauer Basis =37, "Gegenbauer Basis
g=4", "EmpiricalBasis g=2","EmpiricalBasis g=3", "Location”, "Best")

%% Fourier Polynomials

[~, Fourier_basis] = make_basis_ fourier_ 2010 09 27(v, q);

%% Root Mean square Error Routine Fourier
sum_totalFourier=zeros(length(v),4);

for h=1:3
for i=1:length(v)
sumFourier(i,h)=(Fourier_basis(i,h)-basis_trunc(i,h))"2;
sum_totalFourier(i,h)=sum_totalFourier(i,h)+sumFourier(i,h);
end
RMS_fourier(:,h)=sqgrt(sum_totalFourier(:,h)/length(v));
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end

for i=1:length(v)
sumFourier(i,3)=(Fourier_basis(i,3)-basis_trunc(i,3))"2;
sum_totalFourier(i,3)=sum_totalFourier(i,3)+sumFourier(i,3);

end

RMS_fourier(:,3)=sqrt(sum_totalFourier(:,3)/length(v));

for i=1:length(v)
sumFourier(i,4)=(Fourier_basis(i,4)-basis_trunc(i,4))"2;
sum_totalFourier(i,4)=sum_totalFourier(i,4)+sumFourier(i,4);

end

RMS_fourier(:,4)=sqrt(sum_totalFourier(:,4)/length(v));

%% Plotting Fourier

%Color scheme for plots
C|rl:{'b*','r*','g*','k*'};
Clr2:{.b.’.r.’.g.’.k.};

disp(["For lambda= " num2str(lambda)])

figure; title("Fourier vs. Empirical®)

Wtitle(["Lambda = ( *, num2str(lambda), “)°])

subplot(2,2,1),hold on, grid on, plot(v_Empir,
basisscaled(:,1),clrl1{1}), plot(v,Fourier_basis(:,1),clr2{1}),
xlabel("Normalized Transverse Distance, v, [m]")

ylabel ("Amplitude®), legend("Empirical g=1", "Analytic

f 1°,"Location”,"Best"), hold off;

subplot(2,2,2),hold on, grid on, plot(v_Empir,
basisscaled(:,2),clrl{2}),
plot(v,Fourier_basis(:,2),clr2{2});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel("Amplitude®);legend("Empirical g=2", "Analytic

Tt 2°,"Location”,"Best"), hold off;

subplot(2,2,3),hold on, grid on, plot(v_Empir,
basisscaled(:,3),clrl{3}),
plot(v,Fourier_basis(:,3),clr2{3});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel ("Amplitude®);legend("Empirical g=3", “Analytic

f 3","Location”,"Best"), hold off;

subplot(2,2,4),hold on, grid on, plot(v_Empir,
basisscaled(:,4),clrl{4}),
plot(v,Fourier_basis(:,4),clr2{4});xlabel("Normalized Transverse
Distance, v, [m]")

ylabel ("Amplitude®), legend("Empirical g=4", “Analytic

T 47,"Location”,"Best"), hold off;

%legend("Gegenbauer Basis =07, "EmpiricalBasis gq=0", "Gegenbauer Basis
%g=1", "EmpiricalBasis g=17, "Gegenbauer Basis =37, "Gegenbauer Basis
g=4", "EmpiricalBasis g=2", "EmpiricalBasis g=3", "Location”, "Best")

%% Plotting RMS to compare each basis vector

figure
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grid on

title("RMSE of Analytic vs. Empirical (1”"s”t Basis Vector)")
hold on

plot(v,RMS_gegen(:,1),°g")

plot(v,RMS_chebyshev(:,1),"r")

plot(v,RMS_fourier(:,1),"b")

xlabel ("Normalized Transverse Distance, v, [m]")

ylabel ("Root Mean Square Error®)

legend("C 1 vs. b 1°,"T 1 vs. b 1", "f 1 vs. b 1%)

figure

grid on

title("RMSE of Analytic vs. Empirical (2"n”~d Basis Vector)")
hold on

plot(v,RMS _gegen(:,2),"g")

plot(v,RMS_chebyshev(:,2),"r")

plot(v,RMS_fourier(:,2),"b")

xlabel("Normalized Transverse Distance, v, [m]")

ylabel ("Root Mean Square Error®)

legend("C 2 vs. b 2","T 1 vs. b 2", "f 2 vs. b 2%)

figure

grid on

title("RMSE of Analytic vs. Empirical (3°r~d Basis Vector)"®)
hold on

plot(v,RMS_gegen(:,3),"g")

plot(v,RMS_chebyshev(:,3),"r")

plot(v,RMS_fourier(:,3),"b")

xlabel (*Normalized Transverse Distance, v, [m]")

ylabel ("Root Mean Square Error®)

legend("C 4 vs. b 3","T 4 vs. b 3", "f 3 vs. b 3%)

figure

grid on

title("RMSE of Analytic vs. Empirical (4™t”™h Basis Vector)")
hold on

plot(v,RMS_gegen(:,4),°9g")

plot(v,RMS_chebyshev(:,4),"r")

plot(v,RMS_fourier(:,4),"b")

xlabel ("Normalized Transverse Distance, v, [m]")
ylabel("Root Mean Square Error"®)

legend("C 5 vs. b 4°,"T 5 vs. b 4%, "f 4 vs_. b 4%)

%% Terrain Components Empirical

[m,n]=size(TrueSurface);
basis=basis(1:48,:);

%Calculate the projection of the True Surface onto the principle
%directions
sigma = zeros(m,4);
for i=1:m,
for 1=1:4,
sigma(i, )=TrueSurface(i, :)*basis(:,1);
end
end

207



%Calculate the truncated surface
sTruncSum=zeros(m,n);
sTrunc=zeros(m,n);
for 1=1:m,
for 1=1:4,
sTrunc(i, 2)=sigma(i, D*basis(:,1)";
sTruncSum(i, :)=sTruncSum(i, :)+sTrunc(i,:);
end
end

%% Terrain Components Analytical
vindex=linspace(1,48,20);
vindex=floor(vindex);
[a,b]=size(Gegen_basis);
TrueSurfaceTrunc=TrueSurface(:,vindex);

%Calculate the projection of the True Surface onto the principle
%directions
sigma_Gegen = zeros(m,20);
for 1=1:m,
for 1=1:20,

sigma_Gegen(i, )=TrueSurfaceTrunc(i, :)*w*Gegen_basis(:,1);
end
end

%Calculate the truncated surface
sTrunc_Gegen=zeros(m,a);
sTrunc_GegenSum=zeros(m,a);
for i=1:m,
for 1=1:18,
%
sTrunc_Gegen(i, :)=sTrunc_Gegen(i, :)+sigma_Gegen(i,l)*Gegen_basis(:,1)";
sTrunc_Gegen(i, :)=sigma_Gegen(i,1)*Gegen_basis(:,1)";

sTrunc_GegenSum(i, :)=sTrunc_GegenSum(i, :)+sTrunc_Gegen(i,:);
end
end
return

function [coeff, b, p, w] = make_basis_2010_04_30(v, lambda)
%%%9%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%% %6%6% % %6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % Y6%6% % %6%6% % %6%6% % %%6% % %
%%%

% DESCRIPTION%

%

% returns the transition matrix so that sigma = InvV*s

%

% Assumptions

%

% 1) Uses WEIGHTED inner-product (w=diag(1/nv); b"*w*b)

% 2) Changes v to a column vector

%

% lambda = 1/2 => Legendre

%
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%

% INPUTS

%

% 1) v: row vector with lateral locations of the grid with respect to
path (meters)

% 2) lambda: parameter defining the Gegenbauer polynomials

%

4 OUTPUTS

%

h 1) coeff: a matrix of vectors representing the coefficients for the
analytical polynomials

% 2) b: a matrix of analytical basis vectors drived from the Gegenbauer
% polynomials evaluated at the locations defined by v

% 3) p: a matrix of polynomials evaluated at locations defined by x =
% vector v

% 4) w: weighting matrix for inner-product

%

% INTERNAL VARIABLE DEFINITONS

%

% .nv: number of v values

%

% TASKS

% 1) Initialize variables

% 2) Form first two polynomial vectors and coefficients directly

% 3) Form additional vectors from recursive method

% 4) Check rank of coeff and form inverse

% 5) Form Vandermonde matrix, V

% 6) Check rank of V and form inverse

% 7) Check p = V*coeff

% 8) Form orthonormal basis vectors

% 9) Form the weighting matrix w for the inner-product

% 10) Check w is positive defninite

% 10a) Check that w is symmetric

% 10b) Check that w has positive eigenvalues

X

<

%

% VALIDATION

% v=[0 1 2 3 4] - validated up through p4 (C3)

% v=[-1 -.5 0 .5 1]; lambda = .5;
%6%%%%%6%6%6%%%%%%%6%6%%%% %% %6%6%6%% %% %% %6%6%% %% % % %6%6%%% % % % %%6%6%%% % % % %6%6%%% % % % %%6%%% %%
%

% 1) Initialize variables
sizeV = size(v);

if sizeV(2)>sizeV(l), v=v"; end; %Force v to be a vector
nv = length(v);
p = zeros(nv,nv);

coeff = zeros(nv,nv);
errorTol = (nv*2)*1.0e-10; % effectively an acceptable "zero"

% 2) Form First two polynomial vectors and coefficients directly
p(:,1) = ones(nv,1l);
coeff(1,1) = 1;

p(:,2) = 2*lambda*v;
coeff(2,2) = 2*lambda;
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% 3) Form additional vectors from recursive method
for 1=3:nv,
n=i-1; % "n" in documentation is i-1...
cl 2*(n+lambda-1)/n; % coefficient multiplying vP(n-1)
c2 -(n+2*lambda-2)/n; % coefficient multiplying P(n-2)
p(z,1) = c1*(v.*p(z,i-1)) + c2*p(:,1-2);
% coeff calculated here. ..
coeff(l,i) = c2*coeff(1,i-2);
for j=2:nv,
coeff(J,i) = cl*coeff(J-1,i-1)+c2*coeff(j,i-2);

end
end

% 4) Check rank of coeff and form inverse
rankCoeff = rank(coeff);
it (rankCoeff<nv),

disp(“coeff matrix is rank deficient");

disp(["rank coeff = " num2str(rankCoeff)]);
disp(["required rank = " num2str(nv)]);
invC=[];

else
invC = inv(coeff);
invCt = inv(coeff");

end

% 5) Form Vandermonde matrix, V
V = zeros(nv,nv);
for i=1:nv,
V(:,1)=v.™N(i-1);
end

% 6) Check rank of V and form inverse
rankV = rank(V);
it (rankv<nv),

disp("V matrix is rank deficient");

disp(["rank V = " num2str(rank\V)]);
disp(["required rank = " num2str(nv)]);
invw=[];

else
invww = inv(V);
invwwt = inv(V");

end

% 7) Check p = V*coeff
error = abs(max(max(p-V*coeff)));
if error> errorTol,
disp("p does not equal V*coeff");

disp(["min(min(p-V*coefT)) = " num2str(error)]);
disp(["maximum difference = " num2str(errorTol)]);
coeff=[];

v=0:; v=[:
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p=L1;

end

% 8) Form orthonormal basis vectors
b=V*coefT;

% 9) Form the weighting matrix w for the inner-product
w=invvVt*invCt*invC*invV; % TODO use "/" or "\" to take inverse
instead of "inv"

% 10) Check w is positive defninite
% 10a) Check that w is symmetric
error = abs(max(max(w-w")));
if (error>errorTol*1.0e+5), % W is a very poorly conditioned
matrix, implement "/" function and change this errorTol
disp("w is not symmetric®);
disp(["errorTol = " num2str(errorTol)]);
disp([“error = " num2str(error)]);
w=[1;

end

% 10b) Check that w has positive eigenvalues
error = min(eig(w));
if (error < 0),
disp("w does not have positive eigenvalues®);
disp(["min eig = " num2str(error)]);
w=[];

end

%Development items - plot up to the first 5 basis vectors

% Figure; plot(v,p(:,1:min(5,nv)),"-"); xlabel("v"); ylabel("p");
title(["lambda = ", num2str(lambda)]); hold on;
plot(v,p(:,1:min(5,nv)),"0%);

figure; plot(v,b(:,1:min(5,nv)),"-"); xlabel("Normalized Transverse
Distance, v,[m]"); ylabel("Amplitude®); title(["Gegenbauer Basis
Vectors (lambda = ", num2str(lambda), ")"]); hold on;
plot(v,b(:,1:min(5,nv)),"0");

return

function [a, b, f] = make_basis_fourier_2010 09 24(v)

%6%9%%%%6%6%6%%%% %% %6%6%%%% % % %%6%6%%% % % %6%6%6%%% % % % %6%6%6% %% % % %%6%6%% %% % % %6%6%6% %% % % %%6%%% %%
%%%

% DESCRIPTION%

%

% Assumptions

%

% 2) Changes v to a column vector

%

%
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% INPUTS

%

% 1) v: row vector with lateral locations of the grid with respect to
path (meters)

% 2) n: number of basis vectors desired to plot

%

% OUTPUTS

%

% 3) p: a matrix of polynomials evaluated at locations defined by x =
% vector v

%

% INTERNAL VARIABLE DEFINITONS

%

% .nv: number of v values

%

% TASKS

% 1) Initialize variables

%

% VALIDATION

% v=[0 1 2 3 4] - validated up through p4 (C3)

% v=[-1 -.5 0 .5 1]; lambda = .5;

%6%9%%%%6%6%6%%% %% %6%6%6%%%% % % %6%6%6%%% % % %6%6%6%% %% % % %6%6%6% %% % % %%6%6%% %% % % %6%6%6% %% % % %%%%% %%
%

% 1) Initialize variables
sizeV = size(Vv);

if sizeV(2)>sizevV(l), v=v"; end; %Force v to be a vector

v = sort(v); %make sure v is monotonically
increasing

nv length(v);

p zeros(nv,nv);
a = zeros(nv,nv+l);

b = zeros(nv,nv);

%errorTol = (nv*2)*1.0e-10; % effectively an acceptable '"zero"

theta = 2*pi*(v-v(1))/(v(nv)-v(1)); % Normalize 0 < theta < 2*pi
maps to vector v

a(:,1) = ones(nv,1l); % this is the constant term... a sub O
for j = 1:nv,
a(:,j*+1) = cos(j*theta);
b(:,jJ) = sin(J*theta);
end
figure(1l); hold all;
xlabel ("v");
ylabel ("Fourier curves - cosines");
plot(v,a(:,1))
for j = 1:nv,
plot(v,a(:,j+1));
end

figure(2); hold all;

xlabel ("v™);

ylabel("Fourier curves - sines®);
for j = 1:nv,
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plot(v,b(:.J));
end

%% Fourier Series %%

f=ones(nv,1);
terml=0;
term2=0;

for j=1l:nv
terml=terml+(a(:,j+1)).*cos(theta*v);
term2=term2+b(:,j)-*sin(theta*v);

end

f=a(:,1l)./2+terml+term2;

return

function [chebyshev]=Chebyshev(x)

%Input row vector and polynomial order for chebyshev polynomials of
order 1

chebyshev(:,1)=ones(length(x),1);
chebyshev(:,2)=1_*x;

chebyshev(:,3)=2_*x."2-1;
chebyshev(:,4)=4_*x."3-3*X;
chebyshev(:,5)=8.*x.M-8*x_."2+1;
chebyshev(:,6)=16_*x."5-20_*x_."3+5_*x;
chebyshev(:,7)=32_*X."6-48_*X_."M+18_*x_."2-1;
chebyshev(:,8)=64_*x."7-112_*X_"5+56.*x_."3-7.%*X;

figure

plot(x,chebyshev(:,1),"0-b");

hold on

plot(x,chebyshev(:,2),"g");
plot(x,chebyshev(:,3),"-"m");
plot(x,chebyshev(:,4), " -xr");
plot(x,chebyshev(:,5), " --c");

xlabel("Normalized Transverse Distance, v, [m]")
ylabel ("Amplitude®)

legend("Analytic T_17,"Analytic T_2","Analytic T_3", Analytic
T 47,"Analytic T_5%)

grid on

return
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