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Abstract – Raman spectroscopy is a powerful and 
effective technique for analyzing and identifying the 
chemical composition of a substance. Two types of Raman 
spectra estimation algorithms exist: supervised and 
unsupervised. In this paper, we perform a comparative 
analysis of five supervised algorithms for estimating 
Raman spectra.  We describe a realistic measurement 
model for a dispersive Raman measurement device and 
observe that the measurement error variances vary 
significantly with bin index.  Monte Carlo analyses with 
simulated measurements are used to calculate the bias, 
root mean square error, and computational time for each 
algorithm. Our analyses show that it is important to use 
correct measurement weights and enforce the nonnegative 
constraint in parameter estimation. 

Keywords: Chem/Bio Detection, Raman Spectroscopy, 
Machine Learning, Classification, Constrained Parameter 
Estimation, Classical Weighted Least Squares, 
Nonnegative Weighted Least Square, Generalized 
Likelihood Ratio Test, Measures of Performance. 

1 Introduction 
The Raman effect or Raman scattering represents the 
inelastic quantum scattering of a photon by molecules in 
liquids, gases, or solids [2-3]. When light is incident on a 
molecule, most photons are scattered elastically so that the 
energy or frequency of the scattered photon is the same as 
that of the incident photon. This is known as the Rayleigh 
scattering. A small fraction (about one in a million) is 
scattered inelastically, causing the frequency of the 
scattered photon to be different (usually lower) from the 
frequency of the incident photon. This is known as Raman 
scattering. The frequency change is due to the change in 
energy levels of the vibrational or rotational energy of the 
molecule. Therefore, Raman spectroscopy is a powerful 
tool for analyzing the chemical composition of liquids, 
gases, or solids using a laser [2], [13-15], [12]. 

A Raman spectrum is a plot of the intensity of the 
scattered photon as a function of frequency shift.  The 
measured Raman spectrum can be used as a fingerprint to 
uniquely identify the chemical composition of a 
substance.  Application of Raman spectroscopy to analyze 
chemical compositions of various substances has seen a 
rapid growth in recent years [2], [13-15], [12]. This is 
primarily due to the development of inexpensive and 
effective lasers and charge-coupled device (CCD) 
detectors [2].  Raman spectroscopy is also popular 
because measurement collection is fast and does not 
require contact with the chemical substance.  

Suppose we have the measured Raman spectrum of a 
substance and we are interested in determining the 
chemical composition of the substance. The measured 
spectrum contains various error sources. Therefore, it is 
necessary to use a statistical measurement model that 
expresses the measurement as a function of the true 
spectrum and dominant error sources.   

Raman spectrum estimation algorithms are of two types, 
supervised and unsupervised machine learning algorithms 
[11]. In the supervised approach, a library of reference 
Raman spectra are used and the true target spectrum is 
expressed as a linear combination of the reference spectra. 
Each reference spectrum is assumed to be error-free. In 
practice, this is not feasible. If the errors in a measured 
reference spectrum are very small compared with the 
signal values, then it is a good approximation to treat the 
measured reference spectrum as error-free. Otherwise, one 
must model the errors in the reference spectra. Supervised 
algorithms assume that the library contains all reference 
spectra that may be encountered in data collection. A 
supervised algorithm estimates the nonnegative expansion 
coefficients or mixing coefficients using the reference 
spectra and a statistical measurement model. The 
unsupervised approach estimates the spectra and mixing 
coefficients directly from measurements.  

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 2239



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2009 2. REPORT TYPE 

3. DATES COVERED 
  06-07-2009 to 09-07-2009  

4. TITLE AND SUBTITLE 
Comparison of Raman Spectra Estimation Algorithms 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Georgia Tech Research Institute,Sensors and Electromagnetic
Applications Laboratory,Georgia Institute of 
Technology,Atlanta,GA,30332 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002299. Presented at the International Conference on Information Fusion (12th) (Fusion
2009). Held in Seattle, Washington, on 6-9 July 2009. U.S. Government or Federal Rights License. 

14. ABSTRACT 
Raman spectroscopy is a powerful and effective technique for analyzing and identifying the chemical
composition of a substance. Two types of Raman spectra estimation algorithms exist: supervised and
unsupervised. In this paper, we perform a comparative analysis of five supervised algorithms for
estimating Raman spectra. We describe a realistic measurement model for a dispersive Raman
measurement device and observe that the measurement error variances vary significantly with bin index.
Monte Carlo analyses with simulated measurements are used to calculate the bias root mean square error,
and computational time for each algorithm. Our analyses show that it is important to use correct
measurement weights and enforce the nonnegative constraint in parameter estimation. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

Public Release 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



This paper examines estimation of Raman spectra using 
the supervised approach and performs a comparative 
analysis of five Raman spectra estimation algorithms: 

(i) classical weighted least squares (CWLS),  

(ii) nonnegative weighted least squares (NNWLS), 

(iii) fast combinatorial NNWLS  (FCNNWLS), 

(iv) block pivoting  NNWLS  (BPNNWLS), and 

(v) NNLS or NNWLS using generalized likelihood ratio 
test (GLRT). 

We use simulated data and perform Monte Carlo 
simulations to calculate measures of performance (MoP) 
for each algorithm.  MoP used in this study include bias in 
the estimator, root mean square error (RMSE), bias in the 
measurement residual, RMSE for the measurement 
residual, and computation time.  

These algorithms are implemented in a software 
simulation benchmark system designed specifically for 
analysis of detection algorithms.  Each algorithm is 
inserted into the benchmark software using a well defined 
interface. The benchmark’s native language is 
MATLAB®. For a fair comparison of run times, the 
algorithms were all coded in MATLAB®.  Nothing 
precludes an algorithm from being implemented using a 
language that can be incorporated into the MATLAB® 

environment, i.e., Java, C/C++, or FORTRAN. However, 
for purposes of comparison, MATLAB® was used for all 
algorithms. 

The outline of the paper is as follows. Sections 2 and 3 
describe the measurement model and measurement 
function for Raman spectra, respectively. We summarize 
various Raman spectra estimation algorithms in Section 4. 
Finally, Sections 5 and 6 present numerical results and 
conclusions. 

2 Measurement Model for Raman 
Spectrum 

The Raman spectroscopy sensor system transmits a laser 
pulse and produces a measured Raman spectrum from the 
energy scattered by the chemical substance. The spectrum 
is spread across the bins of a CCD detector.  The response 
on each bin corresponds to the amount of energy scattered 
at a particular frequency or wave number.  

 Let Mℜ∈y  denote a measured spectrum with values at 
M bins 

 ],[: 21 Myyy …=y  (1) 

where “:=” is used to define a quantity.   The measurement 
model [16-17], [11] for each element of y is described by 

 ,,,2,1,bs Mignny iiii …=++=  (2) 

where s
in , b

in , and ig  represent the signal, background 

noise,  and Gaussian noise, respectively.  The variables s
in  

and b
in  are modeled as discrete random variables (RVs) 

whereas ig  is a continuous RV. We assume that s
in , b

in , 
and ig  are independent. The noise ig  is introduced by the 
on-chip amplifier and is modeled as Gaussian with mean 
m and variance 2σ   

 ),,;(~ 2σmgNg ii  (3) 

 .)})({( 2σδ ijji mgmgE =−−  (4) 

The background noise b
in  is Poisson distributed  

 ),;(~ bb
Poisson

b
iii npn λ  (5) 

where b
iλ  represents the expected number of counts for 

the background noise  

 ,}{ bb
iinE λ=  (6) 

and 

 …,2,1,0,
!

);(Poisson ==
−

x
x

exp
xλλ

λ
 (7) 

We note that the variance of the Poisson distribution 
);(Poisson λxp is also .λ  The signal s

in  is Poisson 

distributed with parameter s
iλ  

 ),;(~ ss
Poisson

s
iii npn λ  (8) 

where s
iλ  represents the expected number of counts for 

the signal. Since s
in  and  b

in  are assumed to be 

independent, bs
ii nn +  is Poisson distributed with mean 

and variance of bs
ii λλ +  

 ).;(~ bsbs
Poisson

bs
iiiiii nnpnn λλ +++  (9) 

The vector measurement model is  

 ,bs gnny ++=  (10) 

where Mℜ∈),,( bs gnn are defined similarly as in (1).  

Large Signal Approximation 

If bs
ii λλ +  is large, then bs

ii nn +  is well approximated by 
Gaussian distributions 

 ).,;(~ bsbsbsbs
iiiiiiii nnNnn λλλλ ++++  (11) 
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Using (2) and (11) 

 ).,;(~ 2bsbsbs σλλλλ ++++++ iiiiiiii mgnnNy (12) 

Alternatively, 

 ,bs
iiii vmy +++= λλ  (13) 

 ).,0(~ 2bs σλλ ++ iii Nv  (14) 

Using the large signal approximation, (13) can be written 
as 

 ,bs vmλλy +++=  (15) 

where 

 ,]1,,11[: ′= …mm  (16) 

 ,],[: ss
2

s
1

s ′= Mλλλ …λ  (17) 

 ,],[: bb
2

b
1

b ′= Mλλλ …λ  (18) 

 ),,;(~ 1 R0vv ×MN  (19) 

 ).,,(diag: 2bs2b
1

s
1 σλλσλλ ++++= MM…R  (20) 

3 Measurement Function for  
Raman Spectra  

Suppose we have N reference spectra N
j

M
j 1}{ =ℜ∈s  in our 

library corresponding to N chemical substances. Then the 
true target spectra s  can be expressed as a linear 
combination of the reference spectra by 
 

 .
1

j

N

j
jx ss ∑

=

=  (21) 

We can write (21) in the matrix form 

 ,Axs =  (22) 

where 

 ,][: 21 ′= Nxxx …x  (23) 

 ,,,2,1,0 Njx j …=≥  (24) 

 ].[: 21 NsssA …=  (25) 

Then  

 ,s Psλ =  (26) 

where P is the MM ×  point spread function matrix of the 
diffraction grating used to spread the spectral energy 
across the CCD’s bins. Substitution of (22) in (26) gives 

 ,s Φxλ =  (27) 

where 

 .PAΦ =  (28) 

Not all photons that hit the CCD array are converted to 
photoelectrons. The quantum efficiency or flat-field 
response varies along the CCD array. This non-uniform 
detector efficiency is modeled by 

 ,)( iii Φxs βλ =  (29) 

where iβ is known from calibration measurements. We 
can write (29) in the matrix form 

 ,s xCλ =  (30) 

where 

 ,: BPABΦC ==  (31) 

 ).,,,(diag: 11 Mβββ …=B  (32) 

Under the large signal approximation, substitution of (30) 
in (15) gives 

 .b vmλxCy +++=  (33) 

Define the new measurement vector z 

 .: b mλyz −−=  (34) 

Then 

 .vxCz +=  (35) 

Thus, under the large signal approximation, the 
measurement model is linear with additive Gaussian 
measurement noise.  An estimate x̂  of x can be obtained 
using the maximum likelihood estimator (MLE) [4], [10] 
or weighted least squares (WLS) [4], [10] with the 
nonnegativity constraint (24). Thus, the estimation 
problem is a constrained estimation problem due to (24). 
Use of classical MLE or WLS would yield approximate 
results.  

4   Raman Spectra Estimation Algorithms 
This paper addresses estimation of Raman spectra under 
the large signal assumption. Future work will address the 
more general case where the large signal assumption is 
not valid.  

Since the measurement model in (35) is linear with 
additive Gaussian noise, the estimates from the MLE and 
WLS are the same provided the weight matrix W in WLS 
is equal to 1−R  [4], [10]. Then using (20),  

 ),,,,(diag: 21 Mwww …=W  (36) 

 .,...,2,1),/(1: 2bs Miw iii =++= σλλ  (37) 

The true weights in (37) are not known and must be 
estimated. Our future work will address this issue.  
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 The cost function for the parameter estimation problem is  

 ).()(:)( xCzWxCzx −′−=J  (38) 

We can rewrite (38) as 

 ),()(:)( xDηxDηx −′−=J  (39) 

where the weighted measurement vector  Mℜ∈η and 

weighted measurement matrix  NM ×ℜ∈D  are defined by 

 ,,...,2,1,: Mizw iii ==η  (40) 

 .,,2,1,,...,2,1,: NjMicwd ijiij …===  (41) 

4.1 Classical Weighted Least Squares 
Classical WLS (CWLS) [4], [10] solves the following 
problem without the nonnegative constraint (24) 

 ).(min xx J  (42) 

Since the CWLS does not enforce the nonnegative 
constraint, the estimate obtained using the CWLS is 
expected to have lower accuracy compared to the 
nonnegative WLS (NNWLS). 

4.2 Nonnegative Weighted Least Squares 
For the current measurement model (35), the NNWLS or 
nonnegative MLE (NNMLE) solves the problem 

 ).(
0

min x
x

J
≥

 (43) 

There are three commonly used algorithms for solving the 
NNWLS problem in (43).  These algorithms were 
proposed by Lawson and Hanson [9] (LHNNLS), Bro and 
De Jong [1], and Van Benthem and Keenan [18] 
(VKNNLS).  Although these three algorithms considered 
the same measurement variances for all measurements, i.e. 

,2IW vσ= they can be easily modified to handle non-
uniform weights. The latter two algorithms are 
improvements over the original algorithm of Lawson and 
Hanson for handling multiple measurement vectors, 

.,,2,1, KkM
k …=ℜ∈z   It can also be shown that for 

multiple measurement vectors }{ M
k ℜ∈z , solving the 

problem by processing one measurement vector at a time  
is much less efficient than collecting a number of 
measurement vectors and processing them at once using a 
column parallel algorithm [18].  Next, we summarize the 
three NNWLS algorithms. 

4.2.1 Lawson-Hanson Algorithm  
The standard algorithm for computing NNWLSx̂  is that of 
Lawson and Hanson [9], which is included in the  
MATLAB®  function,  “lsqnonneg.” 

 
Algorithm 1 LHNNWLS [9] 
Let pS and aS denote the passive and active index sets, 
respectively. 
 Given D,η , find x̂  that solves (43) with (39). 

1.  Set pS = NULL , aS  = {1, 2 … N},  and  x = 0. 
2.  Compute the N-vector ).(' DxηDw −=  
3.  If the set aS  is empty or if  a allfor  0 Sjw j ∈≤ , 

then go to Step 12. 
4.  Find an index  aSt ∈ such that 

{ }.:max aSjww jt ∈=  

5.  Move the index t from set aS   to set pS . 

6.  Let pD  denote the Nm ×2  matrix defined by 
 

Column j of .
                      0 a

p
p  if

 if  of column 
⎭
⎬
⎫

⎩
⎨
⎧

∈
∈

= Sj
jj SDD  

Compute the N-vector η ,   as a solution of the CLS 
problem  .p ηxD ≅  

Note that only the components p, Sjx j ∈ , are 
determined by this problem. 
Define   .  afor0 Sjx j ∈=  

7. If  2. Step  togo and set  ,allfor 0 p  ηx =∈> Sjx j  
8. Find an index 

 { }. ,0:)( min

)( such that  

p

p

Sjxxxx

xxSq

jjjj

qq q

∈≤−

=−∈ η
 

9. Set  .)( qqq xxx −=α  
10. Set  ).( xηxx −+= α  

11. Move from set pS  to set aS all indices pSj ∈ for 

which 0=jx .  Go to step 6. 
12. Computation completed 

NNWLSx̂ = x is the solution such that: .
  0,

 0,

a

p

⎭
⎬
⎫

⎩
⎨
⎧

∈=
∈>

Sjx
Sjx

j

j  

End Algorithm 1   LHNNLS 
 
This algorithm has some disadvantages for multiple 
measurement vectors because of  the repeated solution of 
the CLS problem  ηxD ≅p  in Step 6 within each of the 
iterations. 
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4.2.2 Fast Combinatorial NNWLS 
Algorithms (FCNNWLS) 

 
The efficiency of the NNWLS can be improved by 
processing multiple measurement vectors in a block, 

),,2,1( kzzz … , for unweighted measurements, and 

),,1,1( kηηη … for weighted measurements.  For multiple 
measurement vectors, define the weighted measurement 
matrix G and parameter matrix X   

 ],[: 21 kηηηG …=  (44) 

 ].[: 21 kxxxX …=  (45) 

Then the NNWLS problem for multiple measurement 
vectors is  
 ,min 2

0 F
GDX

X
−

≥
 (46) 

where F in (46) represents the Frobenius norm [9]. This is 
possible since common least squares (LS) problems across 
multiple observation vectors can be processed 
simultaneously.  The resulting modification to LHNNLS is 
referred to as the column parallel form of processing the 
passive set associated with multiple measurement vectors.  
The redundant computations can be taken advantage of 
and the pseudoinverse [9] of pD in Step 6 can be 
computed for some of the multiple measurement vectors 
with common structure [6,7,18].  All measurement vectors 
that correspond to a common pseudoinverse are grouped 
together.  Thus, the pseudoinverse is computed only once 
for each group of measurement vectors sharing this 
common pseudoinverse. 
 
Modifications to algorithm LHNNLS are made to the CLS 
part of the code in Step 6.  These entail finding the 
multiple measurement vectors with a common 
pseudoinverse and solving the CLS problem.  This 
pseudoinverse may be used in subsequent computations as 
well.  As an example, given 3 measurement vectors, the 
number of pseudoinverse computations may be reduced 
from 7 to 4 (see [20] for details).  Two pseudoinverse 
computations are common to two of the three iterations 
and one of those is used twice in the second iteration.  The 
sequence is  
 

1.  {1, 1, 1}  
2.  {2, 3, 2}  
3.  {2, 3, 4} 

 
Where the same pseudoinverse is applied to all three 
columns in step 1, one less pseudoinverse is required in 
step 2, and two of those are reused in step 3.  The savings 
in computations will become even more significant as the 
number of measurement vectors becomes larger.   

4.2.3 Block Pivoting NNWLS (BPNNWLS) 
Further computational savings can be realized by 
generalizing the active set method of LHNNLS, which is a 
single principal pivoting algorithm, to a block principal 
pivoting algorithm [8].  This method modifies LHNNLS 
using a block exchange rule to move blocks of columns 
from the “passive” to “active” sets.  The quotes are due to 
the fact that the sets employed in the block principal 
pivoting method do not necessarily correspond to the 
active and passive sets of algorithm LHNNLS. 
 

4.2.4 Weighted Generalized Likelihood 
Ratio Test (WGLRT) Algorithm 

The subspace version of  the generalized likelihood ratio 
test (GLRT) [5] has been applied to analyze Raman 
spectroscopy data [14-15]. In this formulation, the 
likelihood function ),,ˆ;( 1Hp Rxz for the measurement 
model (35) is calculated under the hypothesis 1H , where 
all reference spectra are included in constructing C and x̂  
is the NNWLS estimate. Then the thi   reference spectra is 
removed and the likelihood function ),,ˆ;( 000 Hp Rxz for 
the measurement model  

 ,: 0000 vxCz +=H  (49) 

 ),,;(~ 000 R0vv N  (50) 

is calculated under the hypothesis 0H , where  0C  is the 

corresponding measurement matrix and  0x̂  is the 
NNWLS estimate.  If the log-likelihood ratio exceeds a 
threshold, i.e., 
 
 ,),,ˆ;(ln),,ˆ;(ln 0001 α>− HpHp RxzRxz  (51) 

then the thi  substance is assumed to contribute to the 
target substance. This process is repeated for each 
reference spectra and the indices },,,{ 21 piii …  are 
determined for which the test (51) succeeds. Using these 
indices, the measurement matrix   pC is formed and the 

NNWLS estimate  px̂  is calculated.   

5 Numerical Simulation and Results 
We used 67 reference Raman spectra, N

j
M

j 1}{ =ℜ∈s , 
N=67.  All the components of x were zero except 

.0.160 =x  Each spectrum has values at M = 1024 bins. In 
the Monte Carlo simulations, the mean and variance of the 
Gaussian measurement noise are 10 and 225, respectively. 
We used a constant value of 256 for the Poisson parameter 

b
iλ for all bin values. We then calculated sλ by selecting 

and substituting a true x vector into (30). Figure 1 shows 
the variation of the measurement error variance with bin 
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index for the current scenario. We observe that the 
measurement error variance changes significantly with the 
bin index.  

0 100 200 300 400 500 600 700 800 900 1000
20

25

30

35

40

45

50

bin number

λs  +
 λ

b  +
 σ

2

σ = 15

λs = F(bin)

λb = 256

 
Figure 1. Variation of measurement error variance with 

bin index. 

One hundred Monte Carlo trials were used to calculate 
measures of performance (MoP) for each spectral 
estimation algorithm.  The equations and resulting MoP 
results are presented here. 
 
Let sM be the total number of Monte Carlo simulations 

and mx̂  the estimate of x in the thm Monte Carlo 

simulation. The estimation error in the thj  component of  
x in the thm  Monte Carlo simulation is defined by 
 
 .,,2,1,ˆ:~

,, Njxxx jmjjm …=−=  (47) 

The bias error for the  thj coefficient and overall bias error 
for the coefficients are defined, respectively, by 

 ,,,2,1,~1:
s

1
,

s
, Njx

M
b

M

m
jmjx …== ∑

=

 (48) 

 .~1:
1 1

,
s

s

∑∑
= =

=
N

j

M

m
jmx x

NM
b  (49) 

The root mean square error (RMSE) for the thj coefficient 
and the overall RMSE for the coefficients are defined, 
respectively, by 

 ,,,2,1,~1:RMSE
2/1

1

2
,

s
,

s

Njx
M

M

m
jmjx …=⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

 (50) 

 .~1:RMSE
2/1

1 1

2
,

s

s

⎥
⎦

⎤
⎢
⎣

⎡
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= =

N

j

M

m
jmx x

NM
 (51) 

Let imz ,ˆ denote the predicted measurement at the thi bin in 

the thm Monte Carlo simulation. Then 
 
 .,,2,1,)ˆ(:ˆ , Miz imim …== xC  (52) 

The measurement residual at the thi bin in the thm Monte 
Carlo simulation is defined by 

 .,,2,1,ˆ:~
,,, Mizzz imimim …=−=  (53) 

The bias error of the measurement residual at the thi bin 
and the overall bias of the measurement residual are 
defined, respectively, by 

 ,,,2,1,~1:
s

1
,

s
, Miz

M
b

M

m
imiz …== ∑

=

 (54) 

 .~1:
1 1

,
s

s

∑∑
= =

=
M

i

M

m
imz z

MM
b  (55) 

The RMSE of the measurement residual at the thi bin and 
the overall RMSE for the measurement residual are 
defined, respectively, by 

 .,,2,1,~1:RMSE
2/1

1

2
,

s
,

s

Miz
M

M

m
imiz …=⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

 (56) 

 .~1:RMSE
2/1

1

2
,

1s

s

⎥
⎦

⎤
⎢
⎣

⎡
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==

M

m
im

M

i
z z

MM
 (57) 

Table 1 summarizes unweighted bias and RMS error 
results for both parameter estimation and measurement 
residual using 100 Monte Carlo trials and one 
measurement vector.  Recall that unweighted refers to the 
use of a weight matrix equal to the identity matrix.    

Table 1.  Overall errors for unweighted versions  
of the algorithms. 

Algorithm Estimation 
 

Residual

Bias RMSE Bias RMSE
CLS -1.5904e-5 0.0928 -0.1041 7.4593
NNLS 1.4883e-4 0.0031 0.9737 3.1252
FCNNLS 1.4883e-4 0.0031 0.9737 3.1252
BPNNLS 1.4883e-4 0.0031 0.9737 3.1252
NNGLRT 8.8715e-13 4.6835e-4 -1.04e-6 0.7288

 
Table 2 summarizes the bias and RMS error results when 
the algorithms use the weight matrix defined in (36-37). 
Comparing the results between Table 1 and Table 2 shows 
a significant reduction in the measurement residual bias 
error and RMSE when the weight matrix is used.  

Table 2.  Overall errors for weighted versions 
of the algorithms. 

Algorithm 
Estimation  

 
Residual

Bias RMSE Bias RMSE
CWLS -1.6241e-5 0.0918 -0.0053 0.8240
NNWLS 1.1793e-4 0.0028 0.0421 0.1801
FCNNWLS 1.1793e-4 0.0028 0.0421 0.1801
BPNNWLS 1.1793e-4 0.0028 0.0421 0.1801
NNWGLRT 1.102e-14 4.322e-4 0.0018 0.0256

The results for parameter estimation are nearly the same 
for the first four algorithms.  In addition, the NNWGLRT 
algorithm has the best performance.  
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Tables 3 and 4 show the average CPU times for 100 
Monte Carlo trials. The LS-based methods have lower 
CPU times than the likelihood-based method.  For 
multiple measurement vectors the block pivoting method 
outperformed the other constrained least squares methods. 
The CLS method is faster but the estimation and residual 
errors are very large compared to the constrained methods.   

Table 3.  Average CPU time over 100 Monte Carlo trials. 
 
Algorithm 

CPU Time (seconds) 
 

Unweighted Weighted 
CLS 3.18 3.26 
NNLS 3.20 3.23 
FCNNLS 3.76 3.80 
BPNNLS 3.32 3.34 
NNGLRT 11.68 11.77 

 
Table 4.  Average CPU time over 100 Monte Carlo trials. 
Algorithms used to process multiple measurement vectors. 

 
 
Algorithm 

CPU Time (seconds) 
 

Unweighted Weighted
20 MVs 20 MVs  100 MVs

CLS 2.64 2.69 2.84
NNLS 4.89 5.07 11.08
FCNNLS 5.54 5.67 13.02
BPNNLS 3.31 3.38 5.90

 
These results demonstrate that great care needs to be taken 
when specifying the measurement model since this 
impacts the formulation of the detection algorithms.  As 
can be seen from the tables and the graphs, the residual 
errors can be reduced significantly with the proper 
measurement model and measurement error covariance.  
Note the decrease in the residual error bias and RMSE in 
Tables 1 and 2.  Plotting MoP values versus bin index 
averaged over the 100 Monte Carlo trials  in Figures 2, 3, 
and 4 clearly illustrates the decrease. 
 
Figure 2 compares  the bias errors of  measurement 
residuals for the CLWS, NNWLS, and NNWGLRT 
algorithms. The NNWGLRT algorithm has nearly zero 
bias. 
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Figure 2. CWLS, NNWLS and NNWGLRT residual error bias. 

In Figure 3, we observe that CLS has the highest RMSE 
for measurement residual and NNWLS has the lowest.  
We also note that CWLS outperforms NNLS.  This 
observation underscores the importance of including error 
sources in the measurement model.   Figure 4 shows that 
both the NNWLS and NNWGLRT exhibit good 

performance with respect to residual error RMSE.  The 
NNWGLRT results exhibit almost no residual error.  It is 
also interesting to note that the unweighted NNGLRT 
algorithm performs better than the NNLS.  
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Figure 3. CLS, CWLS, NNLS, and NNWLS residual error RMSE. 
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Figure 4. NNLS, NNWLS, NNGLRT, and NNWGLRT residual error 

RMSE zoomed to bins 100 to 350. 

Figures 5 and 6 show the bias and RMSEs for parameter 
estimation using the CWLS, NNWLS, and NNWGLRT 
algorithms.  We observe that the use of nonnegative 
constraints significantly improves the accuracies of 
parameter estimation.  
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Figure 5. Estimation error bias. 
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Figure 6. Parameter estimation RMSE. 

6 Conclusions 
This paper compared five supervised algorithms for 
estimating Raman spectra in the large signal domain. In 
this domain, the measurement model can be approximated 
as being linear with additive Gaussian noise. The 
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measurement error variances vary significantly with bin 
index. The parameter estimation problem is constrained 
because the elements of the parameter vector must be 
nonnegative. We have presented numerical results for the 
bias error and RMSE of the estimated parameter and 
measurement residual. 

Since the measurement error variances vary significantly 
with bin index, it is important to use the correct weights or 
measurement error variances in parameter estimation. It is 
also important to enforce the nonnegativity constraint in 
the estimation of the mixing coefficients. The NNWLS, 
FCNNWLS, and BPNNWLS algorithms yield nearly the 
same accuracy and NNWGLRT has the best accuracy, but 
the worst computational performance. The CPU times of 
NNWLS, FCNNWLS, and BPNNWLS are also similar 
when only one measurement vector is processed at a time. 
When a block of data is processed together, BPNNWLS 
shows considerable computational advantage. 

Our future work will focus on three areas.  First, the more 
general case when the large signal approximation is not 
valid will be investigated. Second, a more 
computationally efficient NNGLRT algorithm will be 
developed.  Third, a similar investigation and comparison 
with unsupervised algorithms will be carried out so that 
their potential for Chemical/Biological detection 
capability can be evaluated. 
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