
A Dynamic Infrastructure for Interconnecting Disparate

ISR/ISTAR Assets (the ITA Sensor Fabric)∗

Joel Wright,Christopher Gibson
Flavio Bergamaschi

Emerging Technology Services
IBM UK, Hursley Park

Hursley, Winchester UK.
{joel.wright,gibsoncr,flavio}@uk.ibm.com

Kelvin Marcus,Ryan Pressley
Gunjan Verma,Gene Whipps
US Army Research Laboratory

Adelphi, MD, U.S.A.
{kmarcus,ryan.pressley,gunjan.verma,gwhipps}

@arl.army.mil

Abstract – Modern ISR1/ISTAR2 networks comprise
a very diverse and disparate set of asset types and net-
working technologies, which provide a unique set of chal-
lenges in the areas of sensor identification, classification,
interoperability and sensor data sharing, dissemination
and consumability. This paper presents the ITA Sensor
Fabric, developed as part of the International Technol-
ogy Alliance (ITA) in Network and Information Science,
a middleware infrastructure that addresses these chal-
lenges by providing unified/universal policy controlled
access to, and management of, ISR/ISTAR networks.
The ITA Sensor Fabric spans the network from com-
mand and control, through forward operating bases, and
out to mobile forces and fielded (both mobile and/or
fixed) sensors in the area of operations. This paper also
presents a use case scenario developed in partnership
with the U.S. Army Research Laboratory (ARL) and de-
ployed in ARL’s Wireless Emulation Laboratory (WEL),
that demonstrates the ITA Sensor Fabric applicability to
coalition operations.

Keywords: Sensor networks, middleware, fabric, pol-
icy, ISR, ISTAR.

1 Introduction
The diversity of sensors and networking technologies

commonly used in fielded sensor networks, particularly
in a coalition context, provide a unique set of challenges
[1] in several areas including:

∗Manuscript received May 22, 2009. This research was spon-
sored by the U.S. Army Research Laboratory and the U.K. Min-
istry of Defence and was accomplished under Agreement Num-
ber W911NF-06-3-0001. The views and conclusions contained in
this document are those of the author(s) and should not be in-
terpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Gov-
ernment, the U.K. Ministry of Defence or the U.K. Government.
The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

1Intelligence, Surveillance, and Reconnaissance.
2Intelligence, Surveillance, Target Acquisition, and Reconnais-

sance.

• Sensor identification and discovery.

• Sensor access and control.

• Sensor data consumability.

• Policy-based interoperability and trust.

The ITA Sensor Fabric (or Fabric) is an evolving mid-
dleware infrastructure, developed as part of the Interna-
tional Technology Alliance in Network and Information
Science [2], that addresses these challenges by provid-
ing unified access to, and management of, sensor net-
works. The Fabric is designed to simplify the develop-
ment and operation of sensor network solutions, specif-
ically those concerned with how sensors are attached,
discovered, and utilized. In this paper we describe the
Fabric, and its application to a simulated representative
coalition operation scenario.

The Fabric spans the network from the data centre
to deployed sensors and mobile personnel. It tracks the
sensors, nodes, and users of the sensor network facili-
tating universal access to sensor data from any point,
and maximising its availability and utility to applica-
tions and users. The Fabric is an extensible platform.
Its plug-in architecture allows new functions (such as fil-
ters, transformations, policies, security, and event detec-
tion algorithms) to be deployed into the sensor network
and selectively applied to sensor messages en route to
the user.

The Fabric, in addition to its use with fielded sensor
networks, can also be used as a research and development
tool that bridges the worlds of simulators and fielded sys-
tems. Its plug-in architecture, sensor data record and
playback capability, sensor simulation, and performance
measurement features make it ideal as a research plat-
form that offers a high degree of fidelity with fielded
systems (indeed it is such a system). Many technologies,
techniques, and algorithms can be easily integrated with
the Fabric providing significant opportunities for exper-
imentation, evaluation, and an accelerated route to use
in the field.

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 1393

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2009 2. REPORT TYPE

3. DATES COVERED
 06-07-2009 to 09-07-2009

4. TITLE AND SUBTITLE
A Dynamic Infrastructure for Interconnecting Disparate ISR/ISTAR
Assets (the ITA Sensor Fabric)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Emerging Technology Services,IBM UK, Hursley Park,Hursley,
Winchester, UK, ,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002299. Presented at the International Conference on Information Fusion (12th) (Fusion
2009). Held in Seattle, Washington, on 6-9 July 2009. U.S. Government or Federal Rights License.

14. ABSTRACT
Modern ISR1/ISTAR2 networks comprise a very diverse and disparate set of asset types and net- working
technologies, which provide a unique set of chal- lenges in the areas of sensor identi cation, classi cation
interoperability and sensor data sharing, dissemination and consumability. This paper presents the ITA
Sensor Fabric, developed as part of the International Technol- ogy Alliance (ITA) in Network and
Information Science a middleware infrastructure that addresses these chal- lenges by providing
uni ed/universal policy controlled access to, and management of, ISR/ISTAR networks. The ITA Sensor
Fabric spans the network from com- mand and control, through forward operating bases, and out to
mobile forces and elded (both mobile and/or xed) sensors in the area of operations. This paper also
presents a use case scenario developed in partnership with the U.S. Army Research Laboratory (ARL) and
de- ployed in ARL’s Wireless Emulation Laboratory (WEL) that demonstrates the ITA Sensor Fabric
applicability to coalition operations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

First and foremost the Fabric exists to provide sensor
network clients (i.e., the final consumers of sensor data)
with controlled access to sensor network assets. At a fun-
damental level each sensor can be viewed as a source of
one or more data feeds. The Fabric provides clients with
the means to discover, control, and access the data feeds
that they require to complete their tasks [3]. Clients can
be individuals accessing the sensor network via one or
more applications; they can also be software processes
(for example, agents and services) that require access
to sensor data to complete a higher-level task that will
ultimately provide value to a human user. Clients can
be located at any point on the Fabric. They will often
be monitoring sensors from a workstation in a command
and control centre. Equally, they might be co-located
with (or close to) the sensors themselves. For example,
and in a commercial setting, an engineer who needs to
monitor sensor output whilst performing maintenance in
an industrial plant.

In the remainder of this paper we describe the Fabric
and its applications in more detail. Section 2 describes
the software architecture of the Fabric and its various
components, as well as providing a discussion on extend-
ing its capabilities. Section 3 details the application of
the Fabric in a simulated case study, which provides a
motivating example for the use of the Fabric in an ad-hoc
networking environment involving coalition operations.
To complete the paper, concluding remarks are given in
Section 4, and directions for further work in Section 5.

2 The ITA Sensor Fabric
The ITA Sensor Fabric is a two-way messaging bus and

set of middleware services connecting all of the network’s
assets to each other and to users. The Fabric leverages
a publish/subscribe messaging model with multi-hop ca-
pabilities, and ensures that messages are propagated effi-
ciently, without duplication, and with the minimum use
of valuable network bandwidth. Through the use of the
Fabric, an ad-hoc network of communicating nodes can
be viewed as a SOA3-style service bus, with transparent
handling of connections and routing (Figure 1).

A Fabric node is a node on the sensor network that
runs the following software stack:

• An instance of a message broker [4].

• An instance of a Fabric Manager.

• An instance of a Fabric Registry.

Clients also attach to Fabric nodes, consuming both
local data and data received from other Fabric nodes in
the network (although in both cases the client’s interface
to the data is via the bus). The Fabric Manager and
Fabric Registry processes are described in more detail
below.

3Service Oriented Architecture

Figure 1: The abstraction of the interconnections within
the sensor network provided by the Fabric bus.

When requesting data, clients simply ask their local
Fabric Manager for feeds from one or more deployed as-
sets, requiring no knowledge of the structure of the de-
ployed network itself. The Fabric’s handling of connec-
tions and routing means that a deployed network, such
as that seen in Figure 2, may be viewed using the logical
bus of Figure 1 by the network’s end points, reducing
the complexity of data acquisition and dissemination.

2.1 Publish/Subscribe Messaging

The ITA Fabric builds upon the publish/subscribe
messaging pattern, which is well known and well estab-
lished in Enterprise Application Integration. In this sec-
tion we give an introduction to the basic architecture
and benefits of publish/subscribe messaging.

Publish/subscribe messaging provides a one-to-many
distribution mechanism that utilizes a central hub or
broker through which all messages pass. Thus a single
message, published from a device on a low bandwidth
and/or high-cost network to a message broker, could be
efficiently distributed to a large number of subscribers.
The message broker administers the message distribu-
tion process using a topic-based approach. It receives
subscription requests from client applications, indicating
the topics in which they are interested. When a message
is received from a publisher on a topic that matches one
or more of the subscriptions, the broker sends a copy of
that message to each registered subscriber.

The most powerful aspect of broker-based pub-
lish/subscribe messaging is the decoupling of publishers
from subscribers, as depicted in Figure 3. Clients only
have to deal with their connection to the broker; they
have no knowledge of the source or destination of the
messages, unless it is specifically included in the content
of the message.

1394

Figure 2: The topology abstracted by the Fabric bus.

2.2 The Fabric Messaging Bus

The Fabric is a two-way messaging bus that connects
assets and clients on a sensor network. The connection
is not direct; it is decoupled via the publish/subscribe
paradigm. That is to say, producers of data (sensors)
publish to the bus, and the consumers (clients) then sub-
scribe to the bus in order to receive the sensor data. The
data itself is identified on the bus using a globally unique
topic name and, as such, every data feed from every sen-
sor is uniquely identifiable.

Not only sensors publish data onto the bus; soft-
ware services that aggregate, fuse, transform, and fil-
ter sensor data will also publish their output using the
same technique. Furthermore, the Fabric uses the pub-
lish/subscribe model not only to connect publishers with
subscribers, but also to send control and management
messages.

Sensor networks consist of a set of interconnected
nodes. Typically there is not a direct network con-
nection between each node, and so the Fabric provides
multi-hop communication capabilities. Poorly connected
nodes at the edge of the network can fully participate
on the Fabric bus giving Fabric users a single, fully con-
nected, system. The distributed publish/subscribe capa-
bility is implemented using interconnected brokers, one
per Fabric node, with the message propagation handled

by the Fabric. Every effort is made to route messages
efficiently, without duplication, and with the minimum
use of valuable network bandwidth. To achieve this,
the Fabric Manager employs an algorithm to determine
whether messages have been altered by the application
of a plug-in, and to combine those messages, destined
for separate clients, that are identical. This reduces the
network bandwidth usage when the transformed message
is re-published to the next node(s) en route to the sub-
scriber(s), and the process then begins again on the next
node in the journey.

At the pure messaging layer the communication is
anonymous. In a distributed messaging fabric, this
means that a publishing sensor node or subscribing ap-
plication need only be concerned with the connection to
its local message broker. The Fabric transparently or-
chestrates the broker-to-broker communications between
the sending and receiving applications.

Figure 3: Decoupling publishers from subscribers.

2.3 The Fabric Manager

As the main Fabric service running on a node, the Fab-
ric Manager has wide ranging responsibilities. It builds
the major capabilities of the Fabric on top of the mes-
sage broker (which provides the actual communications
infrastructure) and the Fabric Registry (which is respon-
sible for storing the configuration and operational status
of the Fabric infrastructure). The major features and
functionality provided by the Fabric Manager are as fol-
lows:

• Establishes the communication channels between
nodes, handling the routing of message between
publishers and subscribers attached to the bus.

• Tracks the operational status of connected sensors
and nodes, and in the future will register local data
fusion algorithms as intelligence assets with the Fab-
ric Registry.

• Provides a container for running plug-ins, in-
network information fusion, filtering, and other al-
gorithms.

1395

• Provides the point from which the capabilities of the
Fabric may be extended.

2.4 The Fabric Registry

Infrastructure information about the Fabric, includ-
ing details on all deployed nodes and other ISR/ISTAR
assets, is recorded in the Fabric Registry. As new as-
sets are added to the Fabric they are automatically in-
cluded in the Registry, making them available for use
by all Fabric users. The Fabric Registry is implemented
as a database, storing information about the currently
deployed infrastructure in a number of tables defining:
asset types, asset instances, networking and routing in-
formation, tasks and task associations, Fabric users, and
Fabric extensions.

Four database tables detail the physical assets de-
ployed on the Fabric: nodes, platforms, sensors, and
feeds. Each of these tables includes details such as type,
physical location, operational characteristics, neigh-
bours, task commitments, and current operational sta-
tus/availability, along with a human readable description
of each asset. Every class of asset (node, platform, sensor
and feed) has an associated table describing the various
types known to the Fabric. These types form a hierarchy
when defining individual asset instances: platforms are
connected to nodes, sensors are mounted on platforms,
and one or more feeds are published by sensors. An-
other group of related tables define the configuration of
the plug-ins and extension points (i.e., application de-
fined message processing) deployed on each node, with
plug-ins configured either to be applied to each message
passing through a node, or to be applied to messages
destined for specific tasks or clients.

Further tables define tasks, and associations between
tasks and collections of sensors and nodes. This allows
clients to subscribe to a group of nodes required to per-
form a required task without having to subscribe indi-
vidually. The database also maintains a table describing
which clients are subscribed to which tasks.

Routing information is also defined within the Reg-
istry. A table in the database details the neighbours of a
node, including how those two nodes are connected, and
whether the connection is currently active. One or more
routes between two nodes may then be described includ-
ing the individual hops in the route, along with the cost
associated with each hop. This information may then
be used to choose the route for messages, depending on
criteria defined by the subscribing clients, for example to
minimize the total cost to the network for transmitting
the data.

The current development version of the Fabric employs
a distributed Registry implemented using the Gaian dis-
tributed/federated database [5], also developed under
the ITA program. GaianDB is an extension to Apache
Derby [6] whose principal feature is its ability to auto-
nomically discover and federate other GaianDBs, usung

a scale-free algorithm. Its connectivity model is biologi-
cally inspired in that it strives to minimize network di-
ameter and maximize connections to the fittest nodes.
GaianDB advocates a flexible “store locally, query any-
where” (SLQA) paradigm.

By implementing the Fabric Registry on a distributed
database, the Fabric has in-built resilience to network
failures. Should a portion of the Fabric become discon-
nected then the fragments can continue to operate as
Fabric-islands until they are reconnected. Each Fabric-
island effectively has its own Fabric Registry, composed
of the distributed database elements that are still con-
nected, meaning that the node information stored in the
visible database fragment describes exactly those nodes
and sensors available on the island. Note that this pro-
cess also works in reverse, for example when two fab-
ric islands connect. Optionally, clients can choose that
subscriptions to message feeds be persistent; i.e. when
Fabric islands reconnect the interrupted persistent sub-
scriptions can be re-established.

2.5 Sensors

ISR/ISTAR sensor assets publish data to topics in a
global name space. They have no notion of whom or
what is interested in their data; they simply respond to
received control messages, or requests to capture read-
ings (and publish them for use to the broker on their lo-
cal Fabric node). Subscribers may be client applications
or software agents such as fusion algorithms or filters.
Subscribers need not be concerned with the technical
details of connecting to individual sensor nodes to re-
trieve data. Instead they simply subscribe to their local
broker for one or more topics in the global name space
and wait for the data to arrive. It is the role of the Fab-
ric to establish the communication channel between the
two brokers, transparently to the Fabric end points.

A Fabric deployment may consist of physical sensors,
software sensors, or any mixture of the two. Software
sensors include data fusion algorithms that, for exam-
ple, aggregate data from a number of other sensors and
publish the results as a new sensor data feed. A sub-
class of software sensors are simulated sensors. These
are software applications that publish generated artifi-
cial sensor readings, or replay pre-recorded sensor data
in the same fashion as a real sensor. By default, appli-
cations running on the Fabric are unable to distinguish
between real and simulated sensor data4, and this makes
simulation a powerful technique for creating a repeatable
experimental framework.

Attaching a new sensor to the Fabric requires one of
the following configurations:

• The sensor runs a Fabric Manager and broker, al-
lowing it to connect directly to the Fabric.

4The Fabric does provide an optional mechanism to distinguish
between replayed and live sensor data.

1396

• The sensor runs as a broker client, connecting to a
more capable utility node in the Fabric that runs a
Fabric Manager and a broker.

• The sensor uses an alternative communication
mechanism, such as a direct serial connection, to
connect to a utility node, whose Fabric Manager
then provides a bridge to the broker.

2.6 Extending the Fabric

The core Fabric provides the minimum set of services
required to implement a distributed bus framework. Ad-
ditional capabilities can be added in the form of plug-
gable modules (“plug-ins”). Several types of plug-in are
available, each intended to augment a specific aspect of
the Fabric’s operation.

2.6.1 Fabric Extension Points

The Fabric is designed to allow major functionality
to be added and allow base functionality to be replaced
without the need to alter the core messaging bus. The
mechanism used is the Fabric Extension Point; an ap-
proach that builds upon the Fabric’s core message pass-
ing functions. All inter-node Fabric communications are
message-based, where each message is a combination of
meta-data, routing information, and payload data. Fur-
thermore, each message is given a type associating it
with a specific extension point. Note that extension
points represent a very different approach from the Fab-
ric plug-in model that we will describe later: exten-
sion points provide the means to fundamentally alter
the behavior of the middleware layer to accommodate
new techniques and methods; plug-ins primarily deliver
sensor feed subscription-based services.

Extension points have access to the core Fabric ser-
vices such as messaging, the Registry, and event handling
(for example, handling sensor disconnection events). As
such they can be fully integrated into, and therefore ex-
tend, the operation of the Fabric. For example, the stan-
dard sensor subscription service provided by the Fabric
is implemented as an extension point and can therefore
be replaced should it be superseded by a future data
dissemination algorithm. Furthermore, this technique
ensures that the Fabric can be deployed onto nodes in
a fully modular fashion, ensuring that the footprint can
be optimized to suit each individual target.

2.6.2 Plug-ins & Message Flow

Messages flowing through the Fabric are available for
processing at each node on their journey. Plug-ins are
small code modules loaded into the Fabric Manager that
perform processing tasks directly on messages as they
flow through the Fabric from publishers to subscribers.

Three types of plug-ins are automatically applied to
messages passing though a Fabric node: node, task and
client plug-ins. They typically perform operations such
as policy enforcement, filtering, transformation, logging,

caching, encryption, or routing, and their application
order is well defined. Node plug-ins are applied to ev-
ery message passing through the node, whereas task and
client plug-ins are applied to either messages for a spe-
cific task, or for a specific client associated with a specific
task, respectively. Since the node plugins are applied to
every message regardless of task or client subscription,
we can reduce the processing overhead by applying each
of these transforms only once before moving on to the
task related, and lastly the client related, application
paths.

The subscription mechanism manages the loading, in-
vocation and unloading of plug-ins, based on their asso-
ciation to the various tasks and clients registered for the
incoming message. Figure 4 illustrates how messages re-
ceived by the broker on a Fabric node are passed to the
message dispatcher, which applies the appropriate plug-
ins based on the currently active subscriptions.

Figure 4: The flow of messages through a Fabric node.

2.6.3 Fablets

These are independent programs running within the
Fabric Manager, with all the freedoms that implies. A
typical application would be to introduce data into the
Fabric from sensors that are not Fabric-aware, or data
fusion algorithms that require access to more than one
Fabric feed.

1397

2.7 Policy

As a direct result of the collaboration between teams
within the ITA program, the Fabric has been policy
enabled with the Watson Policy Management Library
(WPML), allowing authorization and obligation policies
to be enforced on messages routed between nodes. Fig-
ure 5 illustrates how the WPML, along with the plug-in
architecture of the Fabric, enables dynamic deployment
and configuration of policies. WPML builds on a widely
accepted policy architecture that consists of four basic
elements: a policy management tool, policy repository,
policy decision points, and policy enforcement points.
WPML employs the Common Information Model Sim-
plified Policy Language (CIM-SPL) [7][8] and the Apache
Imperius policy engine [9] to specify and execute declar-
ative rules that control the Fabric message flows.

Figure 5: WPML architectural overview.

A policy is a condition-action pair, where the speci-
fied action is executed if the condition evaluates to true.
Both the condition and action can be defined over sensor
data (e.g. the bytes of an image) flowing over the fab-
ric, or over metadata describing the message (e.g. the
organizational affiliation of the client of the message).

The two main types of policies are authorization (e.g.
allow/disallow access to a sensor data feed) and obli-
gation (e.g. downgrade the quality of the sensor data
feed). A policy repository (PR) stores policies that are
available for execution; these may be activated or deacti-
vated based on mission requirements. A policy decision
point (PDP) is a logical entity which evaluates appli-
cable policies in the repository to message data and/or
metadata and returns the result to a policy enforcement
point (PEP), a logical entity that is tasked with mak-
ing a decision, e.g. whether or not to grant a requesting
client access to a sensor data feed. The PEP requests
the decision from the PDP and enforces the response
received.

Figure 6 illustrates a policy used to implement autho-
rization utilizing client affiliation in order to allow or dis-
allow access to high-resolution imagery by U.S. clients.
The example policy, when activated, has the effect of
downgrading the resolution of images destined to U.S.
affiliated clients by 50%.

Import Class
com.ibm.watson.pml.pep.IAuthorizer:authorizer;
Import Class
com.ibm.watson.pml.fabric.runtime.IFabricMessageRuntime:fabricMessageRuntime;
Import Class
com.ibm.watson.pml.fabric.messaging.messages.IImageMessage:imageMessage;

Strategy Execute_All_Applicable;
Policy {

Declaration {
}
Condition {

fabricMessageRuntime.getClient().getAffiliation() == "UK"
}
Decision {

authorizer.allow()
}

}:1;

Figure 6: Policy example.

3 A Coalition Case Study
Civilian and military coalition operations often require

that two or more organizations form an ad-hoc partner-
ship to achieve a common goal. Each participating or-
ganization operates under a set of inherent restrictions,
often stated as a set of security and legal policies, which
might have to be combined and harmonized across the
coalition. One of the key aspects of coalition operations
is the reliance on fusion, dissemination and sharing of in-
formation originated from an ad-hoc heterogeneous and
disparate network of ISR/ISTAR assets, such as human
intelligence, unattended sensors (fixed or mobile), data
extraction, fusion and correlation providers, and network
elements, belonging to the participating coalition orga-
nizations. The dissemination and sharing of information
in such environments is subject to a set of organization
specific and common policies.

The scenario for this case study involves two coali-
tion countries, the United States (U.S.) and the United
Kingdom (U.K.). Both countries will participate in an
ISR/ISTAR operation and will share information from
their specialized sensors. The goal of the operation is to
identify, locate and photograph the source of an acous-
tic event, and make all the sensed data (including the
imagery) available to the command and control sites of
both countries.

The U.S. will contribute: a set of unattended ground
sensors (US:UGS) [10] capable of reporting the line of
bearing (LOBR) of an acoustic event; an unmanned
aerial vehicle (US:UAV) to provide a communications
link between the UGS and the rest of the Fabric;
and a data fusion application (US:Analytics) to fuse
the information from the UGS, calculate and publish
the most likely location (US:LOCR) of the acoustic
event. The U.K. will contribute a high-resolution camera
mounted on an unmanned aerial vehicle (UK:Reaper),
which is controlled/commanded from an analytics ap-
plication (UK:Analytics) that based on the US:LOCR
data calculates the pan, tilt & zoom (PTZ) commands
(UK:CamCmd) to be issued to the camera. Upon re-
sponding to the PTZ commands, the high-resolution
camera will be commanded to photograph the location

1398

of the acoustic event and make the imagery (UK:Image)
available on the Fabric. All the sensed data and imagery,
subject to policies, is made available for consumption to
personnel at the command and control centers of each
country.

3.1 ARL Wireless Emulation Lab

For this case study we deployed the scenario on a
mobile ad-hoc network (MANET) emulation environ-
ment, the Wireless Emulation Laboratory (WEL) [11],
hosted at the U.S. Army Research Laboratory (ARL).
The WEL provides a controlled, repeatable emulation
environment for the analysis of algorithms, protocols,
and applications pertaining to MANETs. The WEL sup-
ports several areas of research including coalition war-
fare, network science and network security for MANETs.
These areas of research are facilitated by a suite of soft-
ware tools running in the WEL ranging from exper-
iment/scenario design to real-time network emulation
and visualization (Figure 7).

The real-time emulation software is based on the Mo-
bile Ad-hoc Network Emulator (MANE) originally de-
veloped by the Naval Research Laboratory [12]. MANE
only emulates the physical and MAC layers and there-
fore offers the flexibility to support a broad range of net-
work applications such as the ITA Sensor Fabric. The
software controls network connectivity between nodes
by forwarding and/or corrupting packets according to
a user specified mobility and propagation loss model.
MANE contains multiple propagation models including
range-dependent, free-space loss, and Terrain-Integrated
Rough-Earth Model (TIREM).

Figure 7: WEL architecture overview.

To implement the scenario described below we used
four unattended ground sensors (UGS), one acoustic
event generator, one high-resolution camera and five
Fabric nodes deployed on the WEL.

3.2 Scenario deployment

Our deployment used a subset of the WEL consist-
ing of 25 test nodes in a wireless mesh configuration,

five of which hosted Fabric nodes, analytic applications
and policies. Figure 8 illustrates the scenario setup and
coalition affiliations. The four US:UGS were bridged
to node AG which acts as an auto discovery client.
Node A (US:UAV) is a Fabric node configured as an
auto discovery server and provider of communication
to the rest of the Fabric. When the four US:UGS
are discovered, they are added to the Fabric Registry
and their US:LOBR data feeds made available for con-
sumption on the Fabric bus. Node B (US:Analytics),
consumes US:LOBR data provides a US:LOCR feed.
Node C (UK:Analytics) consumes US:LOCR data, cal-
culates the required PTZ parameters and publishes
them (UK:CamCmd). Node D (UK:Reaper) consumes
UK:CamCmd, uses the PTZ parameters to point the
camera to the source of the acoustic event, photographs
the site and makes the imagery (UK:Image) available on
the Fabric. The U.S. and U.K. command and control
centers (US:CmdCtrl and UK:CmdCtrl) are connected
to node E (USUK:CmdCtrl) which manages and controls
the dissemination of information to the two coalition
partners. At the command and control center of each
country, a Fabric application consumes and displays the
US:LOBR, US:LOCR and UK:Image data. The avail-
ability of the information to each country is controlled
through access policies that are evaluated by the Fabric
at the USUK:CmdCtrl node.

Figure 8: The coalition scenario.

4 Conclusion
We have produced the basis for a middleware for sen-

sor networks which facilitates universal access to intel-
ligence data from any connected point on the network,
which monitors and controls connected assets, and has
built-in resilience to failures. It is capable of spanning
the network from the data centre to deployed sensors and
personnel, and maximising the availability and utility of

1399

intelligence data through task planning services, analy-
sis applications (including fusion algorithms and agents),
human analysts, and mobile personnel.

Messages are propagated efficiently to minimise the
use of valuable network bandwidth, with algorithms
(such as data fusion, transformation, filtering, and pol-
icy enforcement) delivering in-network processing of
data. The capabilities of the Fabric can also be ex-
tended through programming interfaces (including Web
interfaces) for application or algorithm development, as
demonstrated by our example. The Fabric Registry pro-
vides management services for Fabric assets by tracking
nodes, data sources (hardware assets and software ser-
vices), users, tasks, and deployed algorithms; and also
managing the visibility of, and access to, intelligence
data feeds. These features make the Fabric useful both
in real network deployments and as a tool for simula-
tion and research; the current development version of
the Fabric will be available mid-2009 from the IBM al-
phaworks site (http://www.alphaworks.ibm.com/).

5 Further Work
The Fabric lays the groundwork for many advanced

features, and we will actively extend its capabilities for
both field and research use. As suitable new technolo-
gies are created by the ITA research programme we will
continue to demonstrate their application on the Fab-
ric, with the aim of providing them with an accelerated
route to fielded use. The value of this approach has al-
ready been demonstrated with the distributed/federated
database and policy technologies that are currently being
integrated into the Fabric. In particular we will continue
our focus on the ITA’s policy, security, and networking
technologies. The value of empirical feedback from prac-
tical applications of the Fabric (such as the case study
described above) has also been observed, and we will
continue to use this as a source of new, and refinements
to existing, capabilities. One area of particular interest
is the use of the Fabric on non-IP networks, or more typ-
ically, mixed IP/non-IP networks. We will be targeting
radio networks that implement serial communications:
point to point or multi-point to point (i.e., many sensors
into one node). The intention is to deploy a full Fabric
node at the edge and allow it to connect into the bus.

The Fabric is considered to be a micro service bus.
We will more fully develop its interfaces with the main-
stream enterprise services bus technologies that form
the backbone of SOAs. The goal will be seamless pro-
vision of edge-of-network services, such as those typi-
cally deployed on the Fabric, directly into the enter-
prise. Equally, we will provide users at the network’s
edge with controlled access to enterprise services and
provide a platform for the development of novel solu-
tions that, today, can be complex and expensive using
traditional techniques. Note that while such integration
is already possible via the Fabric, we will be investigating

patterns of use, and identifying technology gaps, towards
fully exploiting this capability.

References
[1] G. Pearson, “A Vision of Network-Centric ISTAR

and the Resulting Challenges,” in Unattended
Ground, Sea, and Air Sensor Technologies and
Applications X, E. M. Carapezza, Ed., vol. 6963,
no. 1. SPIE, 2008, p. 696302. [Online]. Available:
http://link.aip.org/link/?PSI/6963/696302/1

[2] G.Cirincione and J. Gowens, “The International
Technology Alliance in Network and Information
Science a U.S.-U.K. Collaborative Venture,” IEEE
Comms. Mag,, vol. 45, pp. 14–18, March 2007.

[3] M. Gomez, A. Preece, M. P. Johnson, G. de Mel,
W. Vasconcelos, C. Gibson, A. Bar-Noy,
K. Borowiecki, T. L. Porta, D. Pizzocaro,
H. Rowaihy, G. Pearson, and T. Pham, “An
Ontology-Centric Approach to Sensor-Mission
Assignment,” in Proceedings of the 16th Interna-
tional Conference on Knowledge Engineering and
Knowledge Management, 2008.

[4] Really Small Message Broker. [Online]. Available:
http://www.alphaworks.ibm.com/tech/rsmb

[5] G. Bent, P. Dantressangle, A. M. D. Vyvyan,
and V. Mitsou, “A Dynamic Distributed Federated
Database,” in Second Annual Conference of ITA,
September 2008.

[6] Apache Derby. [Online]. Available:
http://db.apache.org/derby/

[7] CIM Simplified Policy Language (CIM-SPL). Spec-
ification DSP0231, Std., Rev. v1.0.0a.

[8] D. Agrawal, S. B. Calo, K.-W. Lee, and J. Lobo,
“Issues in Designing a Policy Language for Dis-
tributed Management of IT Infrastructures,” in
10th IFIP/IEEE International Symposium on In-
tegrated Network Management, 2007.

[9] Apache Imperius Project. [Online]. Available:
http://incubator.apache.org/imperius/index.html

[10] N.Srour and T.Pham, “Acoustic UGS for Todays
Battlefield,” in NATO SET-107 Symposium on Bat-
tlefield Acoustic Sensing for ISR Applications, 2006.

[11] I. N., R. B., G. R., L. B., G. D., H. R., M. K.,
S. L., T. G., and N. B., “A Scalable Testbed For
Emulating Wireless Mobile Ad-Hoc Networks,” in
Military Communications Conference, 2007.

[12] M. J. Chao W. and W. J, “NRL Mobile Network
Emulator.”

1400

