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ABSTRACT

This paper introduces a pattern recognition and computer vi-
sion approach to mitigating false alarms in synthetic aperture
radar (SAR) coherence change detection (CCD) images. In
this paper, we perform an automatic detection of roads in SAR
CCD images. The approach is based on a curve tracing algo-
rithm originally proposed by Steger with modifications to bet-
ter suit the goal of curve detection in SAR CCD images [1].
In our technique, the traditional Steger’s method is used to de-
tect curve points, and cubic splines are used to approximate
the original curve. To detect roads more accurately, prepro-
cessing and outlier removal techniques are performed along
with the curve detection.

Index Terms— SAR, CCD, change detection, curve de-
tection, regression splines

1. INTRODUCTION

Synthetic aperture radar (SAR) coherence change detection
(CCD) is a scnsitive change detector that is capable of de-
tecting scene changes that arc on the order of a radar wave-
length, which is much smaller than the spatial resolution of
SAR images. SAR CCD uses a traditional technique called
interferometry that utilizes magnitude and phase information
in two (or more) SAR images collected from nearly identical
geometries to detect small (sub-wavelength) changes in eleva-
tion between collections [2]. These small elevation changes
result in a low coherence (estimated using the (wo datasets) in
the specific areas of change. This sensitive detector is capa-
ble of detecting small ground disturbances such as tire tracks.
Change is detected in arcas of low coherence between the
two SAR images, but unfortunately, low coherence can re-
sult from phenomenon other than change (at least change of
interest) such as radar shadows and vegetation that “changes”
as a result of weather conditions. While some attention has
been devoted to improving coherence calculations and estab-
lishing frameworks by which certain false alarms may be dis-
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criminated from actual change, little or no research has been
devoted to using known pattern recognition and computer vi-
sion techniques to identify change of interest such as long,
thin tire tracks amid the numerous false alarms. The purpose
of this paper is to address this problem by introducing a new
algorithm o detect curved lines (such as roads) in SAR CCD
images using a computer vision and pattern recognition ap-
proach. The rest of the paper is organized as follows. Section
2 provides a background on SAR CCD and a survey of work
done in the field, and Section 3 describes our new curve de-
tection algorithm for SAR CCD images. Section 4 contains
the results of our algorithm applied to sample images, and
Section 5 concludes the paper.

2. BACKGROUND

The sensitive detection capabilities of SAR CCD (as de-
scribed above) have utility in applications such as aircraft
search and rescue where the size of the aircraft is smaller than
the radar resolution [3], and detection of vehicle movements
due to ecarth disturbance caused by tire tracks [4]. The abil-
ity of SAR CCD to detect subtle scene changes makes the
detection of foot prints and small objects (smaller than radar
resolution) possible.

In order to detect such small changes, false alarm rates
should be driven down through improved CCD processing
and pattern recognition techniques. [5] characterized pro-
cessing requirements for high coherence over areas of non-
change. Once two SAR images are properly aligned, cal-
culation of coherence is straightforward [5]. Several modi-
fications to the standard coherence metric [2] have been pro-
posed. One suggestion includes using the mean backscatter
power ratio (standard in non-coherent change detection) in
addition to coherence to reduce false alarms caused by low
radar return [6]. Similarly, [7] proposed a new set of basis
vectors for coherence correlation in an attempt to create fea-
tures that can be used to discriminate between low coherence
areas of change and non-change. One such feature identifies
areas of low radar return (radar shadows), and the combina-
tion of low radar return and low coherence was identified as a
region likely to cause a false alarm [7].



Our approach differs from the above in that we want to
detect features of interest such as long thin lines indicative
of tire tracks and roads. The following section describes the
computer vision and pattern recognition techniques used to
separate the linear areas of low coherence from other arcas of
low coherence.

SARCCD image

Preprocessing

Curve Paint Detection

Linking

Final Road/Track

Fig. 1. Overall flow of our road detection algorithm,

3. CURVE DETECTION ALGORITHM

Our proposed curve detection algorithm is composed of sev-
cral steps, as indicated in Fig. 1. To detect curves, we first pre-
process an image by smoothing and applying a threshold to
exclude false alarms before the extraction of curvilinear fea-
tures. The curve points are extracted from the preprocessed
SAR CCD images in accordance with Steger’s method [1].
The next step is linking the curve points to form contiguous
curves using a novel cubic spline fitting method, which pro-
duces the final road/track. These steps are described in more
detail below.

3.1. Preprocessing

Examples of SAR CCD images used for the proposed method
are given in Fig. 2. These images are 4096 x 4096. To ex-
tract curve points more accurately, two steps of preprocessing
are performed: smoothing and thresholding. In the smooth-
ing process, the input image is convolved with a filter bank
that contains four first order derivative of Gaussian filters in
different orientations, 0°, 452, 90°, and 135°. Smoothing the
image with the filter bank reduces noise and unwanted de-
tails and textures. From the four filtered images, the norm of
gradient is computed and then a 30 percent threshold level be-
(ween minimum and maximum intensity of the image is used
lo improve the signal to noise ratio.

3.2. Detection of Curve Points

In this paper, we are using an adapted version of Steger’s
method for finding curvilinear structures in 2-dimensional

Fig. 2. Example SAR CCD images containing roads and false
alarms caused by vegetation and radar shadows.

images [1]. Steger states that curvilinear structures in a
2-dimensional image can be modeled as curves, s(t), that ex-
hibit a characteristic 1D line profile (shown in Fig. 3). Let the
direction perpendicular to s'(¢) be n(t). The 1D line profile
of a curve point is characterized by a vanishing first deriva-
tive and the largest absolute value in the second derivative.
Thus, at a curve point, the first derivative in the direction n(t)
should vanish and the second directional derivative should
be of large absolute value. A pixel in an image is classified
as a curve point if the first derivative along n(t) vanishes
within a unit square centered around the pixel. Computation
of the direction, n(t), for a pixel can be tackled by finding
the eigenvector that corresponds to the maximum absolute
eigenvalue of the Hessian matrix of the pixel. The Hessian
matrix consists of the partial derivatives, ryz, rzy,, ry. and
ryy, of the image after convolving with a Gaussian smoothing
kernel. This full detection process is performed for each pixel
to find all the pixels that lie on a curve.
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Fig. 3. Classification of curve points.

In Fig. 3, two points, P1 and P2, and their directional vec-
tors are shown as an example. The directional vector at a
pixel point represents the direction of greatest curvature, It is
computed by finding the eigenvector that corresponds to the
greatest eigenvalue of the Hessian matrix at each pixel. In
Fig. 3, the point P1 is declared a line point because the first



directional derivative vanishes within the current pixel. How-
ever, the point P2 is not declared a line point because the first
directional derivative does not vanish within the pixel bound-
ary of P2.

3.3. Linking of Curve Points

After individual curve points have been extracted using Ste-
ger’s method, they need to be linked to form curves. Steger
proposes a local linking algorithm that uses the orientation
information of three neighboring pixels obtained in the clas-
sification step and joins curve points appropriately to form
curves. However, this method is not sufficient with SAR
CCD data due to its noisy nature (especially after filtering
and thresholding). The ideal curve tracing algorithm in SAR
CCD data should incorporate both local and global structure.
We propose a global linking algorithm and outlier removal
method that uses cubic splines to approximate the SAR CCD
curve points. Cubic splines are piecewise polynomials with
continuous first and second derivatives at the knots (the points
where the pieces meet), which allows them to flexibly model
complex curves. Though splines are often used for interpo-
lation, we are using them here in a smoothing or regression
sense. The objective is to find knots that minimize the sum of
squared distances between the detected curve points and the
spline defined by the knots.

Once curve point detection is done on individual block
images, we can stitch the partitioned images back together.
The result is shown in the left of Fig. 4, where we observe
that curve detection false alarms are still present within the
overall image.

Fig. 4. Outlier removal using spline interpolation.

In SAR CCD images, due to the small number of signifi-
cant data points, outliers can have a large influence and may
cause serious bias in the estimation process. To reduce the
influence of outliers on curve detection, we perform linking
in three steps: (1) fitting a provisional cubic spline to all data
points in the stitched image, (2) removing data points that fall
far from the spline curve, and (3) fitting a final cubic spline to
the remaining points,

Finding the best-fitting spline for a given set of data points
can be formulated as a nonlinear optimization problem where
the decision variables are the knot locations. Because the ob-
jective function does not have an obvious closed form, we

approximate its partial derivatives with centered differences,
and then minimize the objective function with gradient de-
scent. Here we use the iRprop algorithm [8], a first-order
method that adapts individual step sizes for each parameter
being optimized using only the sign of the partial derivative.

To seed iRprop with a good initial solution, we apply k-
means clustering [9] to the detected curve points and use the
cluster centroids as the initial knot locations. However, the
clusters that k-means oulputs are not necessarily ordered in
a spatially meaningful way. We rectify this by reordering
the knots using 2-opl, a traveling salesman problem heuristic
[10]. The iRprop method then refines the knot locations start-
ing from these good initial estimates. Fig. 5 shows a spline
curve before and after fine-tuning.

In the first step of the linking process, we fit a spline with
five knots (five clusters in the k-means initialization) in order
to obtain the general trend of the curve. In step 2, the ten per-
cent of the curve points that fall farthest from the spline are
defined as outliers and removed from the data. Fig. 4 shows
detected curve points before and after outlier removal. Fi-
nally, we fit a spline with 10 knots (10 clusters in the k-means
initialization) to find a more accurate representation of the
curvilinear feature. This final spline is used to represent the
road from the original SAR CCD image.
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Fig. 5. Spline interpolation. ((a) Initial spline interpolation.
(b) Final spline interpolation.)

4. EXPERIMENTAL RESULTS

We applied our algorithm to SAR CCD images collected in
Yuma, AZ in April 2008 using Boeing’s Ku-band Compact
Radar and a King Air 300 aircraft, This radar has .25 meter
range and cross-range resolutions. The CCD images, shown
in Fig. 2, were constructed using SAR images that were col-
lected at least one day apart.

Fig. 6 shows examples of the results obtained with our
approach. Based on visual inspection of the resulting images,
we can observe high probability of detection and low proba-
bility of false alarm in Fig. 6 (a). Detected curve points are
denoted as blue dots and refined knots are denoted as magenta
asterisks. There are not enough curve point detections to form
a contiguous line, but there are enough points to learn the gen-
eral trend of the line through linking. One main advantage of



approximating the road using cubic splines is that the method
is robust to sparse data that contains a small amount of signif-
icant information. As shown in Fig. 6 (a), the locations of the
knots are not limited to specific coordinates of detected curve
points, but are estimated by gradient descent optimization.
Since splines are defined piecewise, they are able to model
complex curves in real SAR CCD images such as roads and
tracks. However, the first knot is not necessarily connecled to
the last knot and this explains the discontinuity in the circular
road in Fig. 6 (b). From Fig. 6 (b), it appears that the straight
roads are detected almost perfectly but non-linear roads suffer
from minor digressions and discontinuities.

Fig. 6. Resull of curve detection on SAR CCD images. ((a)
Detected curve points and refined knots. (b) Final detection.)

5. CONCLUSIONS

In this paper, we propose an automatic road detection method
in SAR CCD images. Our method treats roads in SAR CCD
images as curvilinear structures and detects the curve points
on those roads. We finally use a gradient descent optimiza-
tion method to minimize error in cubic spline curve fitting to
extract the road using global information in detected curve
points. Road detection on SAR CCD images has never been
explored in the field of image processing and we are the first

ones to apply such an algorithm on SAR CCD data. Exper-
imental results show that the proposed method can extract
roads with reasonable accuracy even with SAR CCD noise
and false alarms. Future work may include automatically
choosing the number of knots, dealing with closed curves,
and handling scenes containing multiple curves.
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