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Solution of BVPs in Electrodynamics by
Stochastic Methods

(Invited Paper)

R. Janaswamy
Department of Electrical & Computer Engineering

University of Massachusetts, Amherst, MA 01002, USA. Email: janaswamy@ecs.umass.edu

Abstract-Field computation by the stochastic differential
equation (SDE) method is demonstrated for electrostatic
and electrodynamic propagation problems by consider-
ing simple examples. The solution to the inhomogeneous
Helmholtz equation is first related to that a Schrndinger
type of equation (parabolic in nature) by means of Laplace
transformation. The SDE method is directly applied to this
parabolic equation. Presence of the imaginary term in the
parabolic equation warrants analytic continuation into the
complex space that is addressed in this paper.

I. Introduction

SDE methods are alternative methods that are available
for field computation and have not been explored to the
full extent yet. Initial efforts for solving the Helmholtz
equation are given in [1] and [2], although the approach
of the latter is limited to low wavenumbers and that of
the former is geared towards determining the transport
amplitude, having found the eikonal by some other
means. Among the principal advantages of the stochastic
method considered in this paper are that (i) it requires no
meshing, (ii) the field at a point can be determined with-
out the knowledge of the field at the neighboring points,
(iii) it is ideal for parallel computation, and (iv) it is very
stable for low frequencies. The primary disadvantage of
the method is that it is not computationally effective on
serial machines compared to the traditional methods. We
first discuss a brief theory of the method and demonstrate
it for electrodynamic case by considering the Schrodinger
type of parabolic wave equation that is encountered in
wave propagation problems over terrain.

II. Theory

A. Brownian Motion

A one-dimensional normalized Brownian motion or
Wiener process is a continuous stochastic process Wt
(Was a function of t), t > °describing the motion
of a particle in a dynamical system and satisfying (i)

978-1-4244-1864-0/07/$25.00 ©2007 IEEE

Wo == 0, (ii) for any°::; to < tl < ... < tn, the random
variables Wtk - Wtk _ 1 are independent, 1 ::; k ::; n, and
(iii) if°::; s ::; t, Wt - Ws is normally distributed with
E[Wt - Ws ] == 0, E[Wt - Ws ]2 == (t - s), where E
stands for expectation [5]. Equivalently, the transitional
probability density function for a particle starting at
position x and ending up at position y in a time interval

. (. ) _ 1 - !x_y!2 1
tIS P t,X,Y - (27T"t)1/2e 2t ,X,Y E R ,t > °
and Ix - yl is the Euclidean distance between x and y.
Hence the variance of the particle displacement increases
linearly with time. An r-dimensional Brownian mo-
tion W t == [Wl, ... ,W[]', where ' denotes transpose,
consisting of r independent, one-dimensional Brownian
motions is defined with respect to the time-homogeneous
transitional density

1
p(t; x, y) = (21ft)r/2 e- 2t ,x,YEW, t > 0, (1)

B. The Ito Formula and the Feynman-Kac Formula

If X t (Xl, Xl, ... , X[)' satisfies the SDE
dXt == Xt) dWt + 1/1(t, Xt) dt, where the ma-
trix (t, x) == {<I>{ (t, x)} and the vector 1/1(t, x) ==

(t, x)}, then for a function f( t, x) differentiable once
in t and twice in x, Ito formula states that [3]

[
8 1 k
at + 2 . <I>i (t, Xt)<I>l (t, Xt)

),k,l=l

a2
r. a ]

8xj 8xk + tPJ
8xj f(t, X t ) dt

+ epj(t X)8 f (t,Xt )dWk (2)
k ,t 8xj t ,

j,k=l

where we have used the following results: E(dW/)
0, E(dW/dt) == 0, E(dW/)2 == dt, E(dW/dWt

k )
0, j =I- k. Ito formula applied directly to the solution



D

A. Electrostatic Potential

Fig. 1. Interior domain D bounded by a boundary aD.

aK
at

Figure 2 shows the electrostatic potential distribution
inside a rectangular region where the potential on the
left wall is specified as 10 volts and the potential at
the other walls is specified as 0 volts. Comparison is
shown between the analytical solution and the stochastic

00

u(x) =JK(t, x)eGk2t/2 dt, (9)

o
where the propagator satisfies the equation

aK Q 2 Q
at==2"V7K,t>O, K(O,x)==2"f(x) (10)

and a is an appropriately chosen complex constant.

III. Example Calculations

aD

Helmholtz equation V7 2u + k2u == - f can be related to
the propagator K via

where TE is the first exit time of Xf from the domain
D (see Fig. 1). Similarly, solution of the inhomogeneous

1
"2 V7 2 K, K(t, x E aD) == 'ljJ(x) (6)

1
K(t == 0+, x) == "2 f(x). (7)

In this case, formula (5) yields the solution of the Poisson
equation as

transformation. For example, the electrostatic potential
u(x) that satisfies the Poisson equation V72u == - f(x)
together with the boundary value can be written
in terms of an auxiliary function K(t,x) as u(x) ==
00JK(t, x) dt. The equation satisfied by K for t > 0 and
o
its initial, boundary values are

u(t, x) = Ex [f(Xf) exp {I c(X;) ds } ], (4)

If the problem in (3) is supplemented with the Dirichlet
condition u(t,x) == g(t,x) on the boundary aD of a
closed domain D, then application of the Feynman-Kac
formula to the extended space-time boundary t == 0 plus
aD yields

u(t, x) = Ex [BT,=t exp {I ds }

exp { (5)

where B[.] is the indicator function for the set [.], Tt,X ==
minis : X;,x E aD}, Tt == min(t, Tt,X), == x,
and the time counter for the stochastic process is taken
as t;,X == t - s. The conditions under which formulas
(4) and (5) hold are discussed in detail in [3]. It is also
reasonable to expect these formulas to be valid for com-
plex spatial coordinates assuming analyticity of fields
[1]. Essentially, what (5) says is that one first starts a
random process at (t, x) having a drift component
dictated by 1/J and a Brownian component dictated by
the matrix '11. If the process hits the boundary aD at
Tt,X before the time t at which the solution in sought,
a partial contribution comes from the boundary value
g(Tt,X, Xt'tXx). On the other hand, if the boundary is

T'
not intercepted before t, then a partial contribution comes
from the initial value The process is then
repeated for multiple realizations starting at (t, x) and an
average taken to yield the solution u(t, x). Even though
the governing equations encountered in electrostatics and
electrodynamics do not necessarily take the form of (3),
they can be made to resemble it [4] by employing Laplace

c. Initial Boundary Value Problem

where £x is the expectation operator conditioned on
keeping x fixed.

u(t,x) of the initial value problem

au 1 T . a2u T. au
at 2 L: afc (x) axj axk +L: 11'1 (x) axj

j,k=l j=l

+ c(x)u, u(O,x) == f(X), (3)

where the matrix {a{} == together with the SDE
dX; == + 1/J(X;)dt, == x E RT
leads to the Feynman-Kac formula



(11)

u(t,x)==
00L sin(knx), (12)

n=O
LJuo(x) sin(knx) dx. (13)
o

If the upper limit in the summation in (12) is truncated
to N and the integral is approximated by a Riemann sum
on a uniform grid of size == L / N, then the relation
between and Uo(kn) will be that of Fourier
sine series [6]. The expression for u(t, x) in (12) can
be analytically continued to complex space by writing
x == + i1]. The boundaries x == 0 and x == L can
also be analytically continued to x == 0 + i1], x == L +
i1] respectively. The field on the analytically continued
upper and lower boundaries is then

au i a2u
at 2koax2 '

where v(t, x) is the true field and ko is the wavenumber.
If u(O, x) == 'uo(x), then the field at any distance along
the guide with kn == n1f / L is given by

:::x:

u(t, 0+ i1]) == i L sinh(knr]) (14)
n=O
x

u(t, L + i1]) == iL( sinh(kn1])
n=O

(15)
which are seen to depend on the axial distance t. Also
note that the field is no longer the same on the upper and
lower boundaries in the complex plane. For the current
problem it is desirable to find the solution (see
Fig. 3). The random process is started at T) and is

For the electrodynamic case, we will consider a problem
where an equation of the type (10) occurs naturally
when (i) paraxial propagation is considered, and (ii)
back scattering is neglected. Consider propagation of
time-harmonic waves inside an infinite parallel plate
waveguide with perfectly conducting boundaries at x == 0
and x == L. This model problem approximately describes
propagation over a conducting ground with a periodic
condition enforced at a large height L. The more general
case of an impedance boundary condition [6] can be han-
dled using the same ideas. Let the axis of the waveguide
be designated as t. Assuming an eiWT convention in the
time variable T and paraxial propagation, the reduced
field u(t,x) == v(t,x)exp (-ikot) satisfies the standard
parabolic equation

B. Propagation Inside a Parallel Plate Waveguide
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solution that is obtained with N r == 3, 000 realizations.
The random process is approximated as == +
y""SJ/y, where "y is a zero mean, unit variance Gaussian
random variable. A good agreement is seen between the
two. The electrostatic solution is rather insensitive to the
time step and the solution shown uses == 0.25
units. l
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observed over a duration T. Equation (11) implies the
governing equation for the random process as ==
Ji/kodWs , with the initial condition == Fig-
ure 3 shows three sample paths of the random process.
The red trace does not hit any boundaries, while the green
and blue traces hit the upper and lower boundary in the
complex plane. If f(xo) == + i1]o), 91(T,1]1) ==
u(T - 71,0+ i1]l), and 92 (T, 1]2) == u(T - 72, L + i1]2),
then the solution can be expressed as

u(T, x) £x{3 sET f(xo) +3 SET1 91(T, TJl)

+ 3 sET2 92(T, TJ2) } (16)

Fig. 4 shows the real and imaginary parts of the analytical
solution U e and the stochastic solution, Un obtained using
(16) for a Gaussian initial field with peak at x == Ht
and standard deviation (]"x. Other parameters used in the
computation are shown in the figure inset. The accuracy
near == 0 and == L can be improved by optimizing the
time step /::}.t and the number of realizations NT. In this
example, we used the exact solution in (12) to provide
us with the boundary conditions on the analytically
continued geometry in the complex plane, and as such,
the SDE solution is redundant. However, we use this
approach solely to demonstrate the ideas of the SDE
method. In more general case, other means may have
to be found for specifying the boundary conditions on
the analytically continued boundaries.

IV. Summary

A theory of solving the Laplace and Helmholtz equations
using the SDE approach has been presented. Favorable

Fig. 4. Field at a distance of 50A from an aperture source.

comparisons for potential calculations in electrostatics
and field calculations in electrodynamics have been
shown by analytical continuation methods. The electro-
static solution is rather insensitive to the time-stepping
/::}.t used for Brownian motion, but the electrodynamic
case needs more careful choice. More complex problems
will be considered in the future.
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Propagation in Tunnels Using the Parabolic Equation and the
ADI Technique

Richard Martelly and Ramakrishna Janaswamy
The University of Massachusetts, Amherst, MA, 01003,

rmartell,janaswamy@ecs.umass.edu

Introduction

The parabolic equation has been shown to accurately model electromagnetic fields
in tunnels for waves which travel within ±15o to the axis of propagation [1]. The
Crank-Nicolson method is a popular finite difference method that has been used to
numerically model radio wave propagation in tunnels. The popularity of the CN
method is due to the fact that it is stable for any discretization in the transverse
plane or along the propagation axis [2]. The major limitation of the CN method is
that it requires the solution of sets of simultaneous equations that may become too
large to efficiently solve for problems with dense meshes. The alternate direction
implicit (ADI) technique is another unconditionally stable FDM which addresses
the problem of computational efficiency. This paper presents results showing the
accuracy of the ADI technique when used to model the parabolic equation for (a)
square (b) circular and (c) semi-circular cylindrical PEC tunnels. For each tunnel,
we compare the numerical solution with the known anlytical solution for different
descretizations along the transverse plane and propagation axis.

Alternate Direction Implicit Method

The alternate direction implicit method is a modification of the Crank-Nicolson
method that can be used to numerically solve for the scalar parabolic equation [2]

∂u

∂z
=

1
2jko

(
∂2

∂x2
+

∂2

∂y2

)
u (1)

where u(x, y, z) is the reduced plane wave solution and is related to the scalar
potential, given by Ψ(x, y, z) = u(x, y, z)e−jkoz [3].The ADI method reduces the
discretized two dimensional problem into a succession of many one dimensional
problems [2] with the formulation(

1− r

4jko
δx

)
ũn+1/2 =

(
1 +

r

4jko
δy

)
un (2)

(
1− r

4jko
δy

)
un+1 =

(
1 +

r

4jko
δx

)
ũn+1/2 (3)

where (δxum,l = um+1,l − 2um,l + um−1,l), (δyum,l = um,l+1 − 2um,l + um,l−1) and
un represents the known field, ũn+1/2 is the unknown virtual field, and un+1 is the
unknown physical field located at m∆x and l∆y in a cartesian mesh. Combined,
Equations (2) and (3) are known as the Peaceman-Rachford equations. The un-
knowns of the intermediate plane can be solved using Ny-1 matrices of rank (Nx+1),
and the unknowns of the n + 1th plane can be solved using Nx-1 matrices of rank

451-4244-0878-4/07/$20.00 ©2007 IEEE



(Ny + 1). Using the Crank-Nicolson method, the size of the matrix generated will
be (Nx + 1)(Ny + 1) and its elements will not be in tridiagonal or in banded form.
As a result, the ADI technique will be more efficient and solve dense mesh problems
faster. One difficulty with the ADI technique is that the virtual ũn+1/2 field has
special boundary conditions which may not be the same as the physical boundary
conditions. For our following examples, however, we employ the same boundaries
for the virtual and physical fields.

Waveguide examples using the ADI method

In the following sections, we will use the ADI method to solve for fields in square,
circular and semi-circular cylindrical waveguide type tunnels with Dirichlet and
Neumann boundary conditions. The waveguides operate at a frequency of 3GHz
and have a unit strength gaussian initial field placed at the center with a standard
deviation of 3.5λ. The square waveguides have 40λ × 40λ(4 × 4m) cross sections
and the radius of the circular waveguides are 20λ(2m). The distance of propagation
for each example is 1000λ(100m). Due to the Nyquist sampling theorem, and the
limitation of the PE, our resolution must be bounded by ∆x = ∆y = 2λ [4]. The
figures show pseudocolor plots of the magnitudes of the analytical and numerical
scalar potentials for waveguides with Dirichlet and Neumann boundary conditions.
The spacings along the transverse plane are ∆x = ∆y = 0.4λ and the propagation
step size is ∆z = 10λ. Table 1 displays the rms error, defined

Erms =

√
1
N

∑
m

∑
l |uFDM

m,l − uanal
m,l |2√

1
N

∑
m

∑
l |uanal

m,l |2
, (4)

where uFDM
m,l is the approximated discretized field, uanal

m,l is the known analytical
field and N is the total number of unknowns. Figures 1 and 2 show good agreement
between the analytical and numerical fields for the rectangular and circular tunnels
with both Dirichlet and Neumann boundary conditions. For the rectangular tunnel,
the Neumann boundary conditions were approximated using 2nd order accurate one-
sided approximations and for the circular tunnel, the Neumann boundary conditions
were approximated by first order interior interpolation. In Figure 3, the Neumann
boundary condition were approximated with first order one sided approximations.
As with the previous two cases, the field patterns are closely matched, however for
the Neumann case the rms error is larger.
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Conclusions

The ADI technique for the electromagnetic propagation in PEC waveguides for
Dirichlet and Neumann boundary conditions is studied and it is found that the field
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patterns of the numerical solutions are closely matched with that of the analytical
solutions. Future work will involve the more irregular shapes and mixed boundary
conditions.
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Table 1: The normalized rms error.
Erms (%) Rectangular WG Circular WG Semi-circular WG

∆x,∆y ∆z Dirichlet Neumann Dir. Neu. Dir. Neu.
0.8λ 5 λ 11.9 10.3 11.4 25.2 12.1 56.4
0.8λ 10 λ 13.7 12.2 13.2 24.2 14.0 55.1
0.8λ 20 λ 19.5 18.0 18.7 21.9 19.7 51.0
0.4λ 5 λ 4.9 4.7 5.0 12.9 5.2 29.1
0.4λ 10 λ 7.3 7.1 7.0 11.9 7.6 27.5
0.4λ 20 λ 14.4 14.2 13.8 12.0 14.6 24.3

Figure 1: The (a) Analytical solution and (b) Numerical approximation of the rect-
angular waveguide with Dirichlet boundary conditions (RMS error = 7.3%) and the
(c) Analytical solution and (d) Numerical approximation of the rectangular waveg-
uide with Neumann boundary conditions (RMS error = 7.1%) .
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Figure 2: The (a) Analytical solution and (b) Numerical approximation of the cir-
cular waveguide with Dirichlet boundary conditions (RMS error = 7.0%) and the
(c) Analytical solution and (d) Numerical approximation of the circular waveguide
with Neumann boundary conditions (RMS error = 11.9%).

Figure 3: The (a) Analytical solution and (b) Numerical approximation of the semi-
circular waveguide with Dirichlet boundary conditions (RMS error = 7.6%) and
the (c) Analytical solution and (d) Numerical approximation of the semi-circular
waveguide with Neumann boundary conditions (RMS error = 27.5%).
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Propagation Prediction in Rough and Branched

Tunnels by the ADI-PE Technique (Invited Paper)

R. Martelly∗ R. Janaswamy†

Abstract — The study of radiowave propagation in
tunnels is important for the development of telecom-
munication systems. The vector Parabolic Equa-
tion (PE) and the alternate direction implicit (ADI)
technique are used to study radiowave propagation
in branched tunnels and in tunnels with rough walls.
Previous work has shown that the ADI-PE method
can accurately predict transmission loss in straight
tunnels with smooth walls and with known electrical
parameters. We extend the analysis of this method
by including the realistic cases of branching tunnels
and tunnels with rough walls. We breifly discuss
the boundary conditions used in each case as well as
compare our results with known numerical or ana-
lytical models. The numerical results obtained for
the branched tunnel case were compared with the
results produced by HFSS and the results for the
rough wall case were compared with known analyt-
ical loss factors. The results show excellent agree-
ment in both cases.

1 INTRODUCTION

The alternate direction implicit (ADI) method cou-
pled with the vector parabolic equation (PE) has
previously been shown to model radiowave propa-
gation in straight tunnels with smooth walls [1, 2].
The PE model assumes the propagating fields are
slowly varying in the direction of propagation and
backscattered fields are ignored. In realistic tun-
nels, over a long distance, higher order propagating
modes attenuate and the lowest order, slowly vary-
ing modes, dominate [3]. The vector PE can ac-
curately solve for the lower order dominate modes
which travel within ± 15o to the axis of propaga-
tion.

The vector PE, as formulated by Popov [2], char-
acterizes the electrical parameters of the tunnel
walls with an equivalent surface impedance and en-
forces the impedance boundary condition [2]. The
Crank-Nicolson method has been traditionally used
to numerically solve the vector PE because it is
an unconditionally stable FDM; but it can also be
computationally intensive [1]. The ADI technique
is also an unconditionally stable implicit FDM
that is significantly more computationally efficient

∗Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA, 01003, US, e-
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†Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, MA, 01003, US, e-
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than the Crank-Nicolson method [1]. ADI intro-
duces slightly more error than the Crank-Nicolson
method but previous work has shown that, for mod-
est discretizations, the ADI and Crank-Nicolson so-
lutions are nearly identical [1]. After a brief discus-
sion on the ADI-PE formulization (section 2), we
continue our analysis of radiowave propagation in
tunnels using the ADI-PE by considering the spe-
cial cases of branched tunnels (section 3) and tun-
nels with rough walls (section 4).

2 ADI-PE Theory

The vector PE, as formulated by Popov [2], defines
the transverse electric fields in terms of a vector
function, W̄ , as shown in equation (1) [2]

(Ex, Ey)T = W̄e−jkoz, (1)

where ko is the free space wave number and z is the
direction of propagation. The vector function, W̄ ,
describes the complex wave amplitude of the plane
wave. The vector PE can then be defined as

2koj
W̄

∂z
=

∂2W̄

∂x2
+

∂2W̄

∂y2
. (2)

When the impedance boundary condition is en-
forced on the tunnel wall, the transverse E fields
are coupled and the value of W̄ at the boundary is
shown to be

W̄=
j

ko

(
nx ny

ny −nx

)(
1/Zs 0

0 Zs

)(
nx ny

ny −nx

)
∂W̄

∂n
. (3)

where nx and ny are the x and y components of
the normal vector on the boundary and Zs is the
normalized surface impedance.

As shown in [1], the ADI-PE can be summarized
by (

1− rx

4jko
δx

)
W̄n+1/2=

(
1 +

ry

4jko
δy

)
W̄n(

1− ry

4jko
δy

)
W̄n+1=

(
1 +

rx

4jko
δx

)
W̄n+1/2, (4)

where rx(y) is the mesh ratio and the difference quo-
tient, δx(y), represent the second order discretiza-
tion of the x and y derivatives.

!"#$%$&'&&$((#)$*+,!+-'*.,,/0',,!/1222
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3 Branched Tunnels

3.1 Branched Tunnel Model

A typical branch tunnel geometry is shown in Fig-
ure 1, where the main tunnel axis is shown as a
solid bold line and the branch tunnel axis is shown
as the long dashed line. The branch angle, θb, is the
angle between the axis of the straight and branch
tunnel. Using this geometry, the branch angle must
be less than 30o to ensure that reflected rays enter-
ing the branch are within our PE limit of ± 15o.
Considering also the rays diffracted from the cor-
ners at the junction, we can arrive at a much more
stringent requirement of θb < 15. Figures 1 and 2
show the incident and reflected ray as it enters the
branch tunnel. The short dashed line markes the
input plane of the branch tunnel. The grazing an-
gle, Ψ, and the angle of the ray entering the branch,
α, are also shown.

Figure 1: The incident and reflected ray entering
the branch tunnel when Ψ ≤ θb.

Figure 2: The incident and reflected ray entering
the branch tunnel when Ψ < θb.

The slope of the branching wall is modeled using
a staircase approximation (see Figure 3a) and the
impedance boundary condition is enforced on all
four walls as outlined in [1] and [2]. The fields along
the planes marking the entrance of the main tunnel

(line C) and the branch tunnel (line B) are solved
simultaneously and then used as the initial fields for
the two separate diverging tunnels. We simulate a
0.9m×1.0m rectangular tunnel with a branch angle
of 15o and operating at a frequency of 900MHz. We
used the far zone field of a unit strength Gaussian
field source as our initial field. The source, with
standard deviation of 0.75λ(wavelength), is placed
at the center of the tunnel entrance. This means we
are only using the lowest order modes as our initial
field [1, 3]. The fundamental mode propagates near
our PE limit at 14.17o.

3.2 Comparison of numerical results to
HFSS

For our ADI simulation, we used discretizations
(within the tunnel junction) of ∆x = 0.060 λ,∆y
= 0.054λ and ∆z = 0.013λ. The cross-sectional
coordinates are indicated by x and y, while the ax-
ial coordinate in the main tunnel is denoted by the
z-axis. To validate our results, we compared our so-
lutions with HFSS [6] and plot the magnitude of the
Ey field along the main and branch tunnel axis. In
the HFSS simulation, we used radiation boundary
conditions to terminate the tunnel and symmetry
planes to reduce computational labor.

HFSS is a full wave simulator and, unlike the
ADI-PE, solves for backscattered waves as well
as waves traveling in the forward direction. The
backscattering is seen as fluctuations in the axial
field in Figure 3b near the diverging tunnels. The
tunnel has a dielectric constant of 5 and conduc-
tivity of 0.1 S/m. A high conductivity was chosen
so there will be appreciable loss in the small tunnel
dimensions allowed in HFSS. As we can see from
Figure 3b, there is strong agreement in the axial
field intensity along the main and branch tunnel
axis between the ADI and HFSS. The figure also
shows that there is about a 10 dB drop when going
from the main to the branch tunnel (at the point
marked C in Figure 3b).

Although the ADI-PE was used to simulate
a tunnel with a relatively small electrical cross-
section (2.7λ×3λ), the ADI-PE is capable of han-
dling larger tunnels at higher frequencies without
running into memory problems on an average (2 GB
RAM) PC [1].

4 Tunnels with Rough walls

4.1 Surface roughness model

Surface roughness is the local variation of the tun-
nel wall relative to a mean surface level [4, 5]. In
this study we consider random surface deviations
in an otherwise smooth wall. For the purpose of
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Figure 3: (a) Geometry of the branch tunnel. (b) The axial field intensity of the main tunnel from ADI
(blue, solid), HFSS (dark green, dashed), the branch tunnel from ADI (red,*) and HFSS (light green,
dot).

numerical computations we assume the random de-
viations to be Gauassian distributed. A Gaussian
distribution of the surface level can be character-
ized by a root-mean-square height deviation σh and
correlation length, l [4, 5]. Smooth tunnels have a
typical RMS height deviation of 0.01 m and rough
surfaces, such as those found in coal mine tunnels,
have a RMS height deviation of 0.1 m [4]. The loss
of the Ex field in a rectangular tunnel is given by
equation (5) [4]

Lrough = 4.343π2h2λ2

(
1
d4
1

+
1
d4
2

)
z ( dB) (5)

where d1 and d2 are the tunnel dimensions in the x
and y axis, respectively.

Small scale roughness can be characterized by re-
placing the rough surface with a flat impedance sur-
face that produces an equivalent specular reflection
coefficient. The equivalent impedance for horizon-
tal polarization is given by [5]

Zeq=


Zs−j(koσh)2

√
π

2kol , kol<<1
Zs+(koσh)2 sin Ψ, kol>>1,Ψ>> 1√

kol

Zs+(koσh)2Γ
(

3
4

)√ −2j
πkol , kol>>1,Ψ<< 1√

kol

(6)
where Zs is the surface impedance for the smooth
wall, Γ(·) is the Gamma function, and Ψ is the graz-
ing angle. Due to the PE angle limitation of ± 15o,
the maximum slope angle θ of the rough surface

and the grazing angle must satisfy the following re-
lationship

2θ + Ψ ≤ 15o (7)

where Ψ is defined as shown in Figure 4. As we
can see from Figure 4, the angle of the specular
reflection of the incident ray, denoted by ξ, will
depend on the height deviation of the roughness.
The roughness angle, θ, is related to σh and l by
tan θ = σh/l.

Figure 4: The geometry of the rough surface.

4.2 Comparison of numerical and analyti-
cal solutions

We consider a rectangular 4.26m×2.10m tunnel
and a circular tunnel with radius of 2 m. The fun-
damental EHx

11 mode is used as the initial field of
the rectangular tunnel and the fundamental TE01

mode generated by a loop ring excitation is used as
the initial field for the circular tunnel. Both tunnels
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operate at a frequency of 1 GHz and the dielectric
constant and conductivity of the tunnel wall are
taken as εr=12 and σo = 0.02 S/m, respectively.

Tables 1 and 2 summarize the mode attenua-
tion factors (MAFs), or the loss in dB/km, of the
smooth and rough tunnels with rectangular and cir-
cular cross-sections, respectively. In real tunnels, as
in our simulations, the lowest order mode will de-
termine the MAF over a long distance. We used
equation (5) as our analytical loss factor for both
the rectangular and circular tunnel. As we can see
from equation (5), the loss due to roughness is a
function of wavelength. To notice an appreciable
loss at 1 GHz, we need to assume the walls are as
rough as cave walls. Therefore, we used a RMS
height of 0.1 m (0.33λ) and a correlation length of
2.5m (8.33λ) for both tunnels.

The grazing angle of the fundamental mode of
the rectanglular and circular tunnel is 4.56o and
5.25o, respectively. The roughness angle is 2.29o

and equation (7) is satisfied. The ADI is simulated
using discretizations of ∆x = 0.284 λ, ∆y = 0.14λ
and ∆z = 4 λ for the rectangular tunnel and ∆x =
∆y =0.44λ and ∆z = 1.67λ for the circular tunnel.
As we can see from Table 1, the excess loss due to
roughness for the rectangular tunnel is about 7 dB
when using either equation (5) or the ADI-PE. Sim-
ilarly, Table 2 shows the same close agreement in
numerical and theoretical excess loss for the tunnel
with circular cross-section. In this case, the excess
loss due to roughness is about 16 dB.

Rectangular Tunnel ( dB/km)
4.26m×2.10 m

Analytical ADI-PE
w/o Roughness 31.0 29.5

Roughness 38.0 36.6

Table 1: Analytical and Numerical MAFs.

Circular Tunnel ( dB/km)
Radius = 2.0 m

Analytical ADI-PE
w/o Roughness 11.0 10.1

Roughness 27.0 26.1

Table 2: Analytical and Numerical MAFs.

The accuracy of the results suggests that the
equivalent surface impedance, along with ADI-PE,
is an adequate model for determining loss due to
surface roughness. Unlike the ADI-PE, a finite el-
ement method would be limited to low frequencies

and electrically small tunnel cross-sections and the
equivalent Crank-Nicolson code would require sig-
nificantly larger matrices [1].

5 Conclusions

The ADI-PE method has been shown to accu-
rately model branch tunnels and tunnels with rough
walls. For branch tunnels, even at the PE limit,
there is good agreement between the ADI-PE and
with commerical simulation codes such as HFSS.
Also, the additional loss created by tunnels with
rough walls is correctly modeled using equivalent
impedances. The ADI-PE method compares well
with known theoretical roughness loss factors.
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Abstract
The diffusion and Schrödinger propagators have been known to coexist on a
lattice when a particle undergoing random walk is endowed with two states of
spin in addition to the two states of direction in a 1+1 spacetime dimension.
In this paper we derive explicit expressions for the various transitional
probabilities by employing generating functions and transform methods. The
transitional probabilities are all expressed in terms of a one-dimensional integral
involving trigonometric functions and/or Chebyshev polynomials of the first
and second kind from which the spacetime continuum limits of the diffusion
equation and Schrödinger equation follow directly.

PACS numbers: 03.65.−w, 05.40.Fb

1. Introduction

There has been a lot of interest in the recent past to understand quantum mechanics in the
context of classical statistical mechanics. On the one hand, Brownian motion provides a
microscopic model of diffusion and provides an unambiguous interpretation of the diffusion
equation. On the other hand, a similar physical interpretation is lacking for the Schrödinger
equation, whose wave solution is a complex quantity without a physical reality. Because
classical diffusion cannot account for the self-interference pattern that is so intrinsic to quantum
behavior, several theories have been put forward recently to understand the microphysics of
quantum behavior. Nelson [1] derived the Schrödinger equation starting from Newtonian
mechanics and by assuming that a particle is subject to an underlying Brownian motion
described by a combined forward-in-time and a backward-in-time Wiener processes. A
detailed account of Nelson’s original idea of stochastic mechanics and its subsequent
refinement is given in [2–5]. Nottale [6] and Ord [7] advanced the idea that spacetime is
not differentiable but is of a fractal nature, suggesting that an infinity of geodesics lie between
any two points and, thereby, providing a fundamental and universal origin for the double
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Wiener process of Nelson. These ideas are elaborated in the monograph [8]. El Naschie [9]
too considered a fractal spacetime with a Cantorial structure and argued that quantum behavior
could be mimicked by combining this fractal spacetime with a diffusion process. A totally
different paradigm was recently introduced by Ord [10], who by considering a symmetric
random walk on a lattice, showed that both the diffusion equation and the Schrödinger equation
occur as approximate descriptions of different aspects of the same classical probabilistic
system. By considering a 4-state random walk (4RW) on a discrete lattice, wherein a particle
is endowed with two states of direction and two states of spin, Ord [10–12] has shown that
both diffusion and Schrödinger propagators coexist on a lattice and that either can be obtained
from a distinct projection of the same random walk. It is too early to speculate as to which of
Nelson’s or Ord’s model will duplicate the true quantum behavior under a variety of situations.
This can only be ascertained through additional work on both models. It may be mentioned
that the combination of displacement and spin have also been used previously in [13, 14]
to study dynamics of a quantum particle in spacetime. However, the important distinction
between the Ord model and the one considered in [13, 14] is that the states describing the
direction of motion are independent of those describing the spin states in the former model.
There is also an intrinsic notion of memory embedded in the Ord’s model.

The Schrödinger type of equation is encountered under the guise of parabolic wave
equation, or simply parabolic equation in the solution of boundary-value problems in several
branches of applied physics such as acoustics [15], optics and classical electromagnetic wave
propagation [16]. In such boundary-value problems, inhomogeneities of the propagating
medium caused by the varying index of refraction of the intervening material take the place
of the potential field experienced by a quantum particle. The standard parabolic equation
is resulted when one extracts paraxial propagation along a preferred direction from the full
Helmholtz equation. In addition to providing a microscopic model for the Schrödinger
equation, the 4RW model considered by Ord is also attractive in the solution of stochastic
differential equations associated with these parabolic type of equations, carried out by
employing only real random processes. Because walks modeling the Schrödinger equation
in the 4RW model traverse only real space, no analytical continuation of boundary data into
complex space is required that would otherwise be demanded [17, 18] when solving these
boundary-value problems.

Ord does not provide explicit expressions for the various transitional probabilities, but,
instead, discusses the continuum limits directly from the governing difference equations. For
a variety of reasons, it is desirable to obtain closed-form expressions (or those involving
integrals) for these transitional probabilities. In this paper, we provide analytical expressions
for the transitional probabilities associated with the 4-state random walk in 1+1 dimension
in spacetime by using a transform approach. Our work here is partly motivated by the
desire to have expressions for the transitional probabilities while solving the aforementioned
boundary-value problems using the parabolic equation in a homogeneous medium. Using
these expressions, it is further shown that in the continuum limits as the mesh size shrinks to
zero in both space and time, one directly recovers the diffusion equation and the Schrödinger
equation. Thus, the main contributions of the paper are to (i) elucidate methodology for
obtaining the closed-form expressions for the various transitional probabilities of the 4RW,
and (ii) establish the continuum limits of the diffusion and Schrödinger equations describing
the dynamics of particles obeying the 4RW. The methodology presented in this paper is
most suitable for describing quantum dynamics of a free-particle, although the 4RW model
itself has been extended in the presence of a potential field [19]. The paper is organized
as follows: section 2 gives a brief introduction of the random walks considered in [10, 12].
Section 3 introduces the generating functions and the 2D transforms considered in this paper.
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Table 1. Various states in random walk.

State Direction Spin

1 Right +1
2 Left +1
3 Right −1
4 Left −1

Section 4 provides expressions for the various transitional probabilities as well as discusses
the derivation of the diffusion equation and the Schrödinger equation as continuum limits of
these probabilities.

2. Multistate random walks

Consider the 4RW model proposed by Ord and Deakin [12], where a particle undergoes random
motion in discrete spacetime (x = m�, t = sε), with x denoting space and t denoting time,
and � and ε denoting the spatial and temporal steps, respectively. At every point the particle
is endowed with two independent binary properties, its direction of motion (right or left) and
its spin or parity (±1). The particle is assumed to change its direction with every collision,
but change its spin only every other collision. The four states of the particle corresponding
to the four combinations of direction and spin are indicated in table 1. Note that the particle
can execute any direction of motion irrespective of the spin, in contrast to the model used in
[13, 14]. However, there is an intrinsic assumption of memory in Ord’s model that arises from
keeping track of the parity of collisions. If pµ(m�, sε)�,µ = 1, . . . , 4, is the probability
that a particle is in state µ at the spacetime point (m�, sε),m = 0,±1,±2, . . . , s = 0, 1, . . . ,

then the transitional relations considered in [12] were of the form

p1[m�, (s + 1)ε)] = αp1[(m − 1)�, sε] + βp4[(m + 1)�, sε]

p2[m�, (s + 1)ε)] = αp2[(m + 1)�, sε] + βp1[(m − 1)�, sε]

p3[m�, (s + 1)ε)] = αp3[(m − 1)�, sε] + βp2[(m + 1)�, sε]

p4[m�, (s + 1)ε)] = αp4[(m + 1)�, sε] + βp3[(m − 1)�, sε],

(1)

where α + β = 1. Here, α is the probability that a particle maintains its direction at the next
time step, whereas β is the probability that it will change its direction at the next time step.
The Markov-chain character of the transitional probabilities is evident from definitions in (1).
From the total probability theorem, the probability that a particle is somewhere on the lattice
at a given time is equal to 1 and is represented mathematically by

4∑
µ=1

∞∑
m=−∞

pµ(m�, sε)� = 1. (2)

Ord [10] has shown that the diffusion and Schrödinger propagators coexist on the lattice
and that both behaviors are embedded in equations (1). To affect a separation of the
diffusive behavior from the wave-like behavior, the following linear transformation is
used: q1(m�, sε) = 2s/2[p1(m�, sε) − p3(m�, sε)], q2(m�, sε) = 2s/2[p2(m�, sε) −
p4(m�, sε)], w1(m�, sε) = [p1(m�, sε) + p2(m�, sε) + p3(m�, sε) + p4(m�, sε)], and
w2(m�, sε) = [p1(m�, sε) + p3(m�, sε)] − [p2(m�, sε) + p4(m�, sε)]. The quantity
q1� (without the weight factor 2s/2) indicates the expected difference in the number of
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particles of opposite spin arriving at (m�, sε) while moving to the right. Similarly, q2�

refers to the expected number of particles arriving at (m�, sε) while moving to the left.
Also, w1(m�, sε)� is the probability that a particle leaves (m�, sε) in either direction
and in any spin state, and w2(m�, sε)� is the difference in the probabilities that a particle
leaves (m�, sε) to the right and the left. Introducing the shift operator E±1

x pµ(m�, sε) =
pµ[(m ± 1)�, sε], a time-advancing operator Etpµ(m�, sε) = pµ[m�, (s + 1)ε], and the
vector p = [p1, p2, p3, p4]T , where the superscript T denotes transpose, the transitional
relations in (1), which are of the form Etp = Sxp, get transformed into

Et

(
w1

w2

)
= 1

2

( (
Ex + E−1

x

) −(
Ex − E−1

x

)
(α − β)

(
Ex − E−1

x

)
(α − β)

(
Ex + E−1

x

)
)(

w1

w2

)
, (3)

Et

(
q1

q2

)
= 1√

2

(
2αE−1

x −2βEx

2βE−1
x 2αEx

) (
q1

q2

)
. (4)

Thus the variables (w1, w2) get decoupled from (q1, q2). Essentially, this decoupling results
from block-diagonalizing the matrix Sx and describing the system in terms of its eigenstates.
The physical significance of this transformation is touched upon in [11, 12]. Note that
wj and qj need not strictly be probabilistic quantities (meaning �0), but we will continue to
describe them as ‘transitional probabilities’ with the understanding that the actual probabilistic
quantities, namely, pµ, can be easily recovered from these using the inverse relations.

3. Generating functions and transforms

We are interested in the solutions of (3) and (4) for the special case of a symmetric random
walk with α = β = 0.5. In this case we have a set of linear difference equations and
the solution can be obtained conveniently using transform methods [20, 21] and appropriate
generating functions. The key step here is to pick a suitable transform consistent with the
nature and domain of definition of the problem. We denote the 2D transform L, consisting
of a Fourier transform in space (owing to the unbounded nature of the spatial coordinate) and
the z-transform [22] in time (the z-transform can be arrived from the discretized version of a
Laplace transform and is suitable for discrete functions defined on a half-line), of a discrete
function v(m�, sε) as V (kx, z) and define

V (kx, z) = �

∞∑
m=−∞

∞∑
s=0

v(m�, sε)zs e−imkx� ≡ Lv(m�, sε). (5)

The inverse relation can then be obtained as

v(m�, sε) = 1

4π2i

∫ π/�

kx=−π/�

∮
Cz

V (kx, z)

zs+1
eimkx� dkx dz ≡ L−1V (kx, z), (6)

where the identities∫ π

kx�=−π

ei(n−m)kx� dkx� = 2πδn
m (7)

∮
Cz

zr−s−1 dz = 2π iδr
s (8)

are used to derive (6). Here δn
m is the Kronecker’s delta and Cz is a closed contour around the

origin in the complex z-plane that encloses only the singularities at the origin. The present
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analysis, consisting of the z-transform along the time axis and Fourier transform along the
spatial axis, is most suitable for studying linear difference equations with constant coefficients
such as encountered in the study of free-Schrödinger equation by the 4RW model. Other
suitable methods must be devised for studying particle motion in the presence of a potential
field. Note that V (kx, z) is periodic in kx with a period 2π/�. Using the definition in (5), it
can also be shown that

Lv[m�, (s + 1)ε] = z−1 [V (kx, z) − V0(kx)] (9)

Lv[(m ± 1)�, sε] = e±ikx�V (kx, z), (10)

where V0(kx) is the Fourier transform of the initial distribution v(m�, 0):

V0(kx) = �

∞∑
m=−∞

v(m�, 0) e−imkx�. (11)

Note that the periodicity property of V0(kx) implies that V0(π/�) = V0(−π/�).

4. Transitional probabilities

Having defined the required transforms, we will now derive expressions for the transitional
probabilities w1, w2, q1 and q2. Because of the decoupling afforded in (3) and (4), it is
sufficient to consider the diffusive and wave-like behaviors separately.

4.1. Diffusive behaviour

The diffusive part of the particle motion is governed by the discrete functions w1 and w2 as
will be evident shortly. Let W1(kx, z) and W2(kx, z) be the 2D transforms of w1(m�, sε) and
w2(m�, sε) and ϒ1(kx) and ϒ2(kx) be the transforms of the initial distributions w1(m�, 0)

and w2(m�, 0), respectively. From the definition of w1 in terms of pµ,µ = 1, . . . , 4, and
relation (2), it is seen that ϒ1(0) = 1. On applying the transform L to the set (3) and making
use of the properties (9) and (10), it is easy to see that W2(kx, z) = ϒ2(kx) and

W1(kx, z) = ϒ1(kx) − iz sin(kx�)ϒ2(kx)

1 − z cos(kx�)
(12)

=
∞∑

n=0

zn cosn(kx�) [ϒ1(kx) − iz sin(kx�)ϒ2(kx)] (13)

where (13) has been obtained by using the series expansion of [1 − z cos(kx�)]−1. Such a
series converges uniformly provided that |z cos(kx�)| < 1 and this can always be insured by
choosing an appropriate Cz in (6). In other words, the contour Cz is chosen such that the
zeroes of the function 1 − z cos(kx�) lie outside it. Substituting this into (6) and making use
of (8), we finally arrive at

w1(m�, sε) = 1

2π

∫ π/�

−π/�

coss(kx�)[ϒ1(kx) − i�(s − 1) tan(kx�)ϒ2(kx)] eimkx� dkx, (14)

where �(·) is the Heaviside step function. For a given ϒ1(kx) and ϒ2(kx), integral (14) may be
computed efficiently by the application of the inverse fast Fourier transform (iFFT) algorithm
[22]. However, for special values of ϒ1(kx) and ϒ2(kx), the integral may be evaluated in

5
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Figure 1. Calculated values of w1(m�, sε) for ϒ1(kx) = 1, ϒ2(kx) = 0.

a closed form. For example, with w1(m�, 0) = 1
�

δ0
m,w2(m�, 0) = 0(�⇒ ϒ1(kx) =

1, ϒ2(kx) = 0) and m and s even, (14) reduces to ([23], 3.631–17)

w1(m�, sε)� = 1

2s

(
s

(s − m)/2

)
, m � s. (15)

The right-hand side of (15) gives the probability of finding a particle at m in s steps, given that
it started at the origin at s = 0, in a symmetric, discrete-time, 1D random walk. The result can
be obtained directly from combinatorial analysis and is available in standard texts ([24], p 75),
([25], p 16). Figure 1 shows a plot of w1(m�, sε)� for s = 20, 30 and 40, where the data at
discrete m has been connected by smooth lines for the sake of visual clarity. The plots clearly
exhibit the diffusive behavior of w1, wherein w1 spreads out in space with a diminishing peak
value as s increases. Using the identity

∑∞
m=−∞ exp(±imx) = 2πδ(x),−π � x � π , where

δ(·) is the delta function, it may be easily verified from (14) that
∑∞

m=−∞ w1(m�, sε)� = 1.
Also note that w1 > 0. Hence w1� behaves like a true probability mass function.

We are also interested in the continuum limits � → 0, ε → 0,m → ∞, and s → ∞
such that �2/2ε = D > 0,m� → x, sε → t . Using the results lim �→0

s→∞
[coss(kx�)] =

exp
(−k2

xDt
)
, lim �→0

s→∞
[coss(kx�) tan(kx�)] = 0 in (14), we arrive at

w1(x, t) = 1

2π

∫ ∞

−∞
ϒ1(kx) e−k2

xDt eikxx dkx. (16)

This is the well-known solution of the diffusion equation ∂w1/∂t = D∂2w1/∂x2 in an
unbounded medium with an initial spectral content ϒ1(kx) (see, for example, [26]). For an
impulsive initial condition, ϒ1(kx) = 1, and one recovers the Green’s function w1(x, t) =
exp(−x2/4Dt)/

√
4πDt . The function w1(m�, sε) given in equation (14) is the discrete

version of w1(x, t) and is seen to depend not only on ϒ1(kx), but also on ϒ2(kx). The latter
contribution arises entirely from the discrete nature of space and vanishes in the continuum
limit. To summarize, the quantity w1(m�, sε)� that describes the probability that a particle
leaves (m�, sε) in either direction and in any spin state describes the diffusion process for a
symmetric 4RW.
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4.2. Wave-like behaviour

The wave-like behavior of the particle motion is governed by the discrete functions q1 and q2.
The governing equations in this case are repeated below from (4):

Et

(
q1

q2

)
= 1√

2

(
E−1

x −Ex

E−1
x Ex

)(
q1

q2

)
. (17)

Our objective here is to derive closed-form expressions for the transitional probabilities q1

and q2. Let Qj(kx, z) be the L transforms of qj (m�, sε), and let 
j(kx) be the Fourier
transforms of the initial distribution qj (m�, 0), j = 1, 2. On applying the L transform to
(17) and making use of properties (9) and (10) and carrying out some algebraic manipulations,
we get[

Q1(kx, z)

Q2(kx, z)

]
= 1

(1 − √
2z cos(kx�) + z2)

[
1 − z√

2
eikx� − z√

2
eikx�

z√
2

e−ikx� 1 − z√
2

e−ikx�

][

1(kx)


2(kx)

]
. (18)

To permit evaluation of the integral with respect to z in the inverse transform, we need to
express Q1 and Q2 in a separable form with respect to kx and z. To this end, we make use of
the identity ([23], 8.945.2)

1

1 − 2tx + t2
=

∞∑
0

Un(x)tn, (19)

where Un(·) is the Chebyshev polynomial of the second kind of order n, in (18) to arrive at

Q1(kx, z) =
∞∑

n=0

Un

(
cos kx�√

2

)
zn

[(
1 − z√

2
eikx�

)

1(kx) − z√

2
eikx�
2(kx)

]
(20)

Q2(kx, z) =
∞∑

n=0

Un

(
cos kx�√

2

)
zn

[
z√
2

e−ikx�
1(kx) +

(
1 − z√

2
e−ikx�

)

2(kx)

]
. (21)

As with the diffusive case, the contour Cz in the inverse transform is chosen such that the
zeroes of the denominator function (1 −√

2z cos(kx�) + z2) lie outside it. Equations (20) and
(21) may be substituted into the definition of the inverse transform (6) and the integral with
respect to z evaluated by making use of (8). For reasons that will become clear shortly, we
are interested in the composite discrete function ψd(m�, sε) = q2(m�, sε) + iq1(m�, sε),
which will be compared directly with the solution of the Schrödinger equation. The expression
for ψd is

ψd(m�, sε) = 1

2π

∫ π/�

−π/�

{
Us

(
cos kx�√

2

)
[
2 + i
1(kx)]

+ Us−1

(
cos kx�√

2

)
[(e−iπ/4
1(kx) − eiπ/4
2(kx)) cos(kx�)

+ (e−iπ/4
1(kx) + eiπ/4
2(kx)) sin(kx�)]

}
eimkx� dkx. (22)

As in section 4.1, the integral in (22) may be evaluated efficiently by employing the iFFT
algorithm. In the special case of 
1(kx) = 0, 
2(kx) = K2, a constant, the expression
provided in (22) can be further simplified. Making a change of variable y = cos(kx�)

7
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and using dy/
√

1 − y2 = −dkx�, cos(m cos−1 y) = Tm(y), where Tm(·) is the Chebyshev
polynomial of the first kind of order m, we can show that

ψd(m�, sε)� = K2

π

∫ 1

−1

1√
1 − y2

{
Us

(
y√
2

)
Tm(y) − 1√

2
Us−1

(
y√
2

)

× [Tm−1(y) + iTm+1(y)]

}
dy. (23)

From the even and odd properties of Chebyshev polynomials, it can be deduced that for
s = 2r and m = 2n − 1 (or vice versa), the integral in (23) vanishes implying that
ψd [(2n − 1)�, 2rε] = 0 in this special case.

Other interesting identities can be derived starting from (22). Using the relation
Us(1/

√
2) = Us[cos(π/4)] = sin(sπ/4) + cos(sπ/4), one can readily see that

∞∑
m=−∞

ψd(m�, sε)� = e−iπs/4 [
2(0) + i
1(0)] . (24)

Hence, unlike w1�, the quantities q1� and q2� can be of alternating signs and do not represent
true probability mass functions.

Ord [11] has shown that eight different continuous functions are embedded into the
discrete functions q1 and q2. We will focus on the continuous function that would result
from choosing x = 2n�, n = 0,±1,±2, . . . , and t = 8rε, r = 0, 1, 2, . . . , in the discrete
functions q1 and q2. We show that ψd satisfies the Schrödinger equation for m = 2n, s = 8r in
the limit as � → 0, ε → 0, n → ∞, r → ∞ such that �2/2ε = D. The following identities
[23, 27] involving Chebyshev polynomials will be utilized in subsequent development:

zUs−1(z) = Us(z) − Ts(z) (25)

d

dz
Ts(z) = sUs−1(z) (26)

Ts

(
1√
2

)
= cos

(
πs

4

)
, (1 − z2)T ′′

s (z) − zT ′
s (z) + s2Ts(z) = 0 (27)

Us−1

(
1√
2

)
=

√
2 sin

(
πs

4

)
, (1 − z2)U ′′

s (z) − 3zU ′
s(z) + s(s + 2)Us(z) = 0, (28)

where a prime denotes differentiation with respect to the argument. For the purpose of
investigating the continuum limits, we would like to cast (22) in a form more suitable for
asymptotic analysis. The last term in (22) involving Us−1(·) can be replaced with dTs(·)/dkx

on using the second relation (26) to yield
sin kx�√

2
Us−1

(
cos kx�√

2

)
= −1

s�

d

dkx

Ts

(
cos kx�√

2

)
. (29)

This term is then integrated by parts and simplified using the periodicity condition 
j (π/�) =

j (−π/�), j = 1, 2. A convenient expression for the evaluation of ψd(m�, sε) is then
obtained as

ψd(m�, sε) = 1

2π

∫ π/�

−π/�

eimkx�

{
[
1(kx) − i
2(kx)]Us

(
cos kx�√

2

)

+ (1 + i)

([
1 + i

m

s

]

2(kx) +

[
i +

m

s

]

1(kx)

)
Ts

(
cos kx�√

2

)

+
1 + i

s�
[
′

2(kx) − i
′
1(kx)]Ts

(
cos kx�√

2

)}
dkx, (30)
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which is also more amenable to asymptotic analysis than (22). In the special case of

1(kx) = 0, 
2(kx) = K2 and for m/s → 0 (small spatial locations and large times) we
move on using (25) that

ψd(m�, sε) = K2

2π

∫ π/�

−π/�

eimkx�

[
Ts

(
cos kx�√

2

)
− i

cos kx�√
2

Us−1

(
cos kx�√

2

)]
dkx. (31)

We now perform an asymptotic analysis for small kx� in (31) and show that ψd(2n�, 8rε)

satisfies the Schrödinger equation. To this end, we note the following Taylor series expansions
which are obtained by making use of (26)–(28):

cos kx� ∼ 1 − k2
x�

2

2
+

(kx�)4

4!
+ · · · (32)

Ts

(
cos kx�√

2

)
∼ cos

(
πs

4

)
− k2

x�
2s

2
sin

(
πs

4

)
− (kx�)4s2

4!

×
[

3 cos
( sπ

4

)
− 4

s
sin

( sπ

4

)]
+ · · · (33)

1√
2
Us−1

(
cos kx�√

2

)
∼ sin

(
πs

4

)
+

k2
x�

2s

2

[
cos

(
πs

4

)
− 1

s
sin

(
πs

4

)]

+
(kx�)4

4!

[
(10 − 3(s2 − 1)) sin

(
πs

4

)
− 10s cos

(
πs

4

)]
+ · · · (34)

Inserting (32)–(34) into (31) and choosing s = 8r,�2 = 2Dε, sε = t, m� = x, s → ∞,

m → ∞,� → 0, ε → 0, we arrive at the desired result:

ψd(x, t) = q2(x, t) + iq1(x, t) ∼ K2

2π

∫ ∞

−∞

(
1 − iDk2

xt − k4
xD

2t2

2!
+ · · ·

)
eikxx dkx

= K2

2π

∫ ∞

−∞
e−iDk2

x teikxx dkx. (35)

Equation (35) is the spectral representation of the Green’s function corresponding to the
Schrödinger equation ∂ψ/∂t = iD∂2ψ/∂x2 with the impulsive initial condition ψ(x, t =
0+) = K2δ(x). It has the exact solution

ψ(x, t) = K2√
4π iDt

eix2/4Dt . (36)

To reinforce to the reader that the plots of the transitional probabilities (q1, q2) do resemble
the solutions of the free Schrödinger equation, we show in figure 2a comparison of the real,
	, and imaginary, 
, parts of the exact solution (36) of the Schrödinger equation with the
partial solution (q1, q2) of the 4RW. The numerical solutions shown in the figure for ψd are
on a discrete spacetime (x = m�, t = sε) and have been computed using (31) with the
iFFT algorithm [22] with size s = 213 = 8192. It is seen that the 4RW produces solutions
of oscillatory type with both positive and negative excursions for the expectations q1 and q2,
which are in excellent agreement with the analytical results for small m

s
. This is in contrast to

the quantity w1 shown in figure 1, which, behaving like the solution of the diffusion equation,
decays exponentially in space and always remains positive.
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Figure 2. Comparison of the exact solution of Schrödinger equation with the discrete
solution of a 4RW for an impulsive initial condition. (a) q2(m�, sε), 	{ψ(m�, sε)} and (b)
q1(m�, sε), 
{ψ(m�, sε)}.

5. Summary

By considering a multistate random walk on a discrete lattice, expressions have been derived
for the various transitional probabilities using the concept of generating functions. A 2D
transform involving Fourier transformation in space and the z-transformation in time is
employed to accomplish this. The transitional probabilities governing particle motion are
expressed in terms of integrals involving trigonometric functions in the case of the diffusion
equation, and involving Chebyshev polynomials of the first and second kinds in the case
of the Schrödinger equation. Closed-form expressions have been given for particular cases
of the initial conditions. The continuum limits of the diffusion equation and Schrödinger
equation have been shown to follow directly from these transitional probabilities through
the performance of appropriate asymptotic analysis. The present analysis consisting of the
z-transform along the time axis and Fourier transform along the spatial axis is most suitable
for studying linear difference equations with constant coefficients. In the 4RW model, this
would correspond to the free Schrödinger equation. The important extension of this analysis to
higher dimensions is worth exploring and would be taken up in the future. The incorporation
of a smooth potential field in the Schrödinger equation into the 4RW model has already been
addressed by Ord in [19] and the study of its transitional probabilities will be taken up in a
separate paper using a different approach.

Acknowledgments

This work was funded in part by the US Army Research Office under ARO grant W911NF-
04-1-0228 and by the Center for Advanced Sensor and Communication Antennas, University
of Massachusetts at Amherst, under the US Air Force Research Laboratory Contract FA8718-
04-C-0057.

References

[1] Nelson E 1966 Derivation of the Schrödinger equation from Newtonian mechanics Phys. Rev. 150 1079–85

10



J. Phys. A: Math. Theor. 41 (2008) 155306 R Janaswamy

[2] Nelson E 2001 Dynamical Theories of Brownian Motion 2nd edn (Princeton, NJ: Princeton University Press)
web edition at http://www.math.princeton.edu/nelson/books.html

[3] Nelson E 1985 Quantum Fluctuations (Princeton, NJ: Princeton University Press)
[4] Nagasawa M 1993 Schrödinger Equations and Diffusion Theory (Boston: Birkhauser)
[5] Nagasawa M 2000 Stochastic Processes in Quantum Physics (Boston: Birkhauser Verlag)
[6] Nottale L and Schneider J 1984 Fractals and non-standard analysis J. Math. Phys. 25 1296–300
[7] Ord G N 1983 Fractal spacetime: a geometric analogue of relativistic quantum mechanics J. Phys. A: Math. Gen.

16 1869–84
[8] Nottale L 1995 Scale relativity, fractal space-time and quantum mechanics Quantum Mechanics, Diffusion and

Chaotic Fractals ed M S El Naschie, O E Rossler and I Prigogine (New York: Elsevier)
[9] El Naschie M S 1995 Quantum measurement, information, diffusion and cantorian geodesics Quantum

Mechanics, Diffusion and Chaotic Fractals ed M S El Naschie, O E Rossler and I Prigogine (New York:
Elsevier Science)

[10] Ord G N 1996 The Schrödinger and diffusion propagators coexisting on a lattice J. Phys. A: Math. Gen.
29 L123–8

[11] Ord G N and Deakin A S 1996 Random walks, continuum limits, and Schrödinger’s equation Phys. Rev.
A 154 3772–78

[12] Ord G N and Deakin A S 1997 Random walks and Schrödinger’s equation in (2+1) dimensions J. Phys. A:
Math. Gen. 30 819–30

[13] Aharonov Y, Davidovich L and Zagury N 1993 Quantum random walks Phys. Rev. A 48 1687–90
[14] Aslangul C 2005 Quantum dynamics of a particle with a spin-dependent velocity J. Phys. A: Math. Gen. 38 1–16
[15] Jensen F B, Kuperman W A, Porter M B and Schmidt H 1994 Computational Ocean Acoustics (New York:

Springer)
[16] Levy M F 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: IEE Press)
[17] Budaev B V and Bogy D B 2002 Application of random walk methods to wave propagation Quart. J. Mech.

Appl. Math. 55 206–26
[18] Janaswamy R 2007 Solution of BVPs in electrodynamics by stochastic methods IEEE Applied Electromagnetics

Conf. vol 1 (Kolkata, India, 19–20 Dec. 2007)
[19] Ord G N 1996 Schrödinger’s equation and discrete random walks in a potential field Ann. Phys. 250 63–8
[20] Montroll E W 1965 Random walks on lattices-II J. Math. Phys. 6 167–81
[21] Barber M N and Ninham B W 1970 Random and Restricted Walks (New York: Gordan and Breach)
[22] Rabiner R R and Gold B 1975 Theory and Application of Digital Signal Processing (Englewood Cliffs, NJ:

Prentice-Hall)
[23] Gradshteyn L S and Ryzhik I S 2000 Table of Integrals, Series, and Products 6th edn (New York: Academic)
[24] Feller W 1970 An Introduction to Probability Theory and Its Applications vol II 2nd edn (New York: Wiley)
[25] van Kampen V G 2007 Stochastic Processes in Physics and Chemistry 3rd edn (New York: North-Holland)
[26] Barton G 1989 Elements of Green’s Functions and Propagation (New York: Oxford University Press)
[27] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)

11



IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, 2009 23

Transparent Boundary Condition for the Parabolic
Equation Modeled by the 4RW
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Abstract—Transparent boundary condition in a 2D-space is pre-
sented for the four-state random walk (4RW) model that is used
in treating the standard parabolic equation by stochastic methods.
The boundary condition is exact for the discrete 4RW model, is
of explicit type, and relates the field in the spectral domain at the
boundary point in terms of the field at a previous interior point
via a spectral transfer function. In the spatial domain, the domain
of influence for the boundary condition is directly proportional to
the “time” elapsed. By performing various approximations to the
transfer function, several approximate absorbing boundary condi-
tions can be derived that have much more limited domain of influ-
ence.

Index Terms—Generating function, parabolic equation, random
walk, Schrödinger equation, transform methods, transparent
boundary condition.

I. INTRODUCTION

P ARABOLIC EQUATION (PE) is used widely in several
areas—including radiowave propagation, underwater

acoustics, fiber optic propagation, etc.—to study propagation of
unidirectional waves in a variety of environments [5], [8], [11].
Its form is very similar to the Schrödinger equation in which
the wavefunction, temporal variable, and the potential take the
respective places of the reduced field, the axial coordinate, and
the modified refractive index of the PE. When solving the PE or
Schrödinger equation in unbounded regions by differential or
difference equation methods, one has to first restrict the region
to a finite size and simulate an unbounded region by imposing
boundary conditions on the truncated domain. If these boundary
conditions exactly simulate an unbounded exterior region as far
as the interior problem is concerned, they are termed as exact or
transparent boundary conditions. Transparent boundary condi-
tions can be devised for the original partial differential equation
or to its discretized version, and this has been done by several
works in the past: [2], [4], [9], [10], [13], and [1]. ([1] and [4]
contain many works outside the traditional electromagnetic area
where such development took place.) For a number of reasons,
there is an interest to treat the PE by stochastic techniques,
wherein the desired field is obtained by performing averages
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over several realizations of Brownian motion or its discrete
counterpart of random walk traversing the problem domain
[6]. A direct application of stochastic techniques to the PE as
done in [3] necessitates analytical continuation of fields and
boundary data, only possible for very limited problems, that is
highly undesirable. The four-state random walk (4RW) model,
originally developed by Ord [12] to provide a macroscopic
model for the Schrödinger equation, alleviates this limitation
and results in the same second-order accurate discretization
scheme for the PE as the Crank–Nicolson scheme. Numerical
schemes are currently being developed using the 4RW model
to study wireless propagation problems in open domains, and
it is the purpose of this letter to derive transparent boundary
conditions for this model by considering 2D propagation in a 1

1-dimensional space. Detailed numerical solutions for prop-
agation over terrain and rough surfaces, and in inhomogeneous
atmosphere by the 4RW model will be presented in a future
paper. In the next section, we begin with a brief introduction
of the 4RW model, followed by the development of the exact
boundary condition.

II. TRANSPARENT BOUNDARY CONDITION FOR 4RW

Consider the standard parabolic equation in the reduced field
variable :

(1)

which constitutes a narrow angle approximation to the
Helmholtz equation for time-harmonic waves ( time
convention in the normalized time variable ) with wavenumber

propagating in the - plane, where is the op-
erating wavelength and is a complex-valued function
proportional to the modified refractive index (or potential
for the Schrödinger equation) of the medium. Because this
work relies heavily on the random walk literature pertaining
to the Schrödinger equation, we shall refer to as the “time”
coordinate even though it represents the axial space coordi-
nate in wave propagation problems. The variable represents
the lateral spatial coordinate and . Presence of the
first-order derivative in time enables the solution of (1) to
proceed with the specification of initial conditions at . It
is assumed that all sources at initial time are confined to the
region (Region I) and that the potential assumes a
constant value for (Region II). Our interest
is to derive an artificial boundary condition imposed at
for a discretized version of (1) that simulates free space as far as
Region I is concerned. For simplicity and no loss in generality,
we first consider the case of and discuss the solution
for the nonzero case at the end. For treatment by stochastic

1536-1225/$25.00 © 2009 IEEE
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methods, (1) is discretized as per the 4RW model, which,
like the Crank-Nicolson finite-difference scheme, results in a
second-order accurate (in space and time) scheme [12]. For a
particle moving on a discrete lattice and subject to random col-
lisions, the transitional probabilities in the 4RW at the discrete
space–time point are of the form [7], [12]

(2)

where ,
, and

, , is the probability that a particle is
in state at the space-time point , ,

. The particle changes its direction of motion with
every collision but changes its parity or spin at every other
collision. The combination of two directions of motion and two
states of spin constitutes the four states in the model. It has
been shown in [12] that such a 4RW encompasses the diffusion
as well as Schrödinger equations and that is
the Schrödinger wave function in the discrete case. The rela-
tionship between the temporal and spatial steps of the form

implied in the 4RW model assures the aforemen-
tioned second-order accuracy in space. For waves propagating
within about the axial direction, the lateral space step is
usually restricted to [8], resulting in , values
which are consistent with those used in the normal finite-differ-
ence or Fourier split-step schemes [8] used to solve the PE.

The operators and in (2) are, respectively, the
spatial and temporal advancing operators and are defined
mathematically as and

. It is assumed in (2) that
the random walk is nonpersistent and the probabilities that a
particle maintains or changes its direction at the next time step
are the same. For brevity we will denote as simply

. As in our previous studies, we will assume that the
number of right-going particles is the same as those going to the
left at time and focus on deriving transparent boundary
conditions for the wave function . The boundary at

separates Region I from Region II and it is further
assumed for convenience that for .
Consider a discrete function and its temporal transform

as defined in [7]

(3)

The quantity may be thought of as the discrete version
of the Laplace transform of . The inverse relation is defined as

(4)

where is a closed contour around the origin in the com-
plex -plane that encloses only the singularities at the origin.
The symbols and denote the temporal transform and its
inverse respectively. The transformed variable is also
referred to as the generating function within the random walk
community [14]. If and are two temporal (and

causal) functions with respective generating functions
and , the following shift and convolution properties, re-
spectively, can be readily established:

(5)

(6)

Applying the temporal transform to (2) and making use of the
shift property (5), and carrying out some algebraic manipula-
tions, we arrive at the following equations for the generating
function in terms of initial data:

(7)

where is the discrete averaging operator.
The right-hand side in (7) is identically zero for Region II, and
a knowledge of the general solution in this region permits the
derivation of transparent boundary condition. A general solution
of (7) in Region II will be of the form with

constant. The function is then determined from (7) as

(8)

We are interested in the solution that remains bounded for large
in Region II, which imposes the condition . Due to

the presence of the radical sign, the function defined by (8) will
be multiple-valued, resulting in two branches of the solution.
These two solutions will cross over in the complex plane unless
care is taken to define each analytically by considering a double-
sheeted complex plane. The two sheets intersect at the branch
cuts defined by the curve so as to separate the proper
solution from the improper one . It is
more illuminating to first study the branch cuts in a transformed
complex plane , in which the branch points
occur at . In the -plane, the branch points occur at

, . With these branch cuts, the
top sheet of the complex -plane is chosen such that

at . A straightforward but tedious
analysis reveals that the branch cut in the -plane is given by the
semicircle , with the real part . The branch cuts in
the - and - planes are shown in Fig. 1. We denote the proper
branch by the symbol and the other branch by the symbol

. For the purpose of numerical calculations, one may set
. Clearly .

The proper solution in Region II is now given by
, which implies that

(9)

Equation (9) is the frequency domain representation of the trans-
parent boundary condition that simulates free space for the in-
terior region . The function may be interpreted as
a transfer function, which relates the input and output functions

and , respectively. For the purpose of numer-
ical implementations, it is necessary to prescribe the boundary
condition in the temporal domain. From Fig. 1, it is clear that
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the function is analytic near the origin. The inverse trans-
form of involves integration around the closed contour

and is facilitated by performing a Taylor series expansion
of near the origin. The infinite series representation of

can then be easily determined as

(10)

where

(11)

Making use of the relation

where is the Kronecker’s delta, we arrive at the corre-
sponding temporal function

(12)

Finally, a “time”-domain transparent boundary condition is ob-
tained by using the convolution property (6) in (9)

(13)

where is the interger-valued floor function of
. Obviously, the summation term will only exist when

. Note that the presence of a term in the series rep-
resentation of results in a delayed field in
the temporal representation of the boundary condition. Equation
(13), consisting of a finite series, is the exact discrete boundary
condition for terminating the computational domain of the 4RW
model and is based on an infinite series representation of the
transfer function in a region analytic about the origin. Further-
more, it is of explicit type wherein the field at is expressed
in terms of the historical field at , . It is also
seen that the number of terms in (13) will increase linearly with
. To reinforce to the reader its accuracy, we place initial sources

, with constant
and and compare the exact solution of the field as de-
termined from the expressions in [7] with the solution
obtained by substituting the exact solution into the right hand
side of (13). Note that the earliest “time” at which an impulse
placed initially at will arrive at is .
The two solutions plotted in Fig. 2 for are seen to be
virtually on top of each other.

It is possible to derive a hierarchy of approximate boundary
conditions by considering various approximations to the
transfer function . For example, one may perform a
rational approximation to the function and obtain suc-
cessively higher order boundary conditions. A zeroth order
boundary condition is obtained by using and

Fig. 1. Branch cuts in the complex � � � and � planes defining ��� ���� � �.
The branch points in the �-plane occur at � � � and � � �� and those in the
�-plane at � � � , � � �� � � � � �. Branch cuts are shown as wiggly
lines.

Fig. 2. True field in unbounded medium and that obtained from (13). (a) Real
part of ���� 	�. (b) Imaginary part of ���� 	�.

reads . A better approximation uses
and results in the boundary condition

. Approximations
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in terms of special functions such as Legendre polynomials are
also possible.

It is straightforward to handle the case with nonzero
by writing the solution of (1) as

, resulting in
with . The boundary condition (9) con-
tinues to be valid for the quantity . The spectral domain
boundary condition in terms of the actual field becomes

. In the temporal domain we get the
corresponding equation

(14)

Obviously, (14) reduces to (13) for (or ).

III. CONCLUSION

Transparent boundary condition has been presented for the
4RW model used to represent a PE in stochastic methods. The
boundary condition, given in the form of a finite series, involves
specification of the field at a boundary point in terms of the his-
torical field at immediate interior points. Several approximate
boundary conditions can be derived from it based on a rational
or other approximations to the transfer function.
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An ADI-PE Approach for Modeling Radio
Transmission Loss in Tunnels

Richard Martelly and Ramakrishna Janaswamy, Fellow, IEEE

Abstract—Alternate direction implicit (ADI) method is used
to study radio wave propagation in tunnels using the parabolic
equation (PE). We formulate the ADI technique for use in tunnels
with rectangular, circular and arched cross sections and with lossy
walls. The electrical parameters of the lossy walls are charac-
terized by an equivalent surface impedance. A vector PE is also
formulated for use in tunnels with lossy walls. It is shown that the
ADI is more computationally efficient than the Crank Nicolson
method. However, boundary conditions become more difficult to
model. The boundary conditions of the ADI intermediate planes
are given the same boundary conditions as the physical plane and
the overall accuracy is reduced. Also, when implementing the ADI
in tunnels with circular cross sections the order at which the line
by line decomposition occurs becomes important. To validate the
ADI-PE, we show simulation results for tunnel test cases with
known analytical solutions. Furthermore, the ADI-PE is used to
simulate real tunnels in order to compare with experimental data.
It is shown that the PE models the electric fields most accurately
in real tunnels at large distances, where the lower order modes
dominate.

Index Terms—Alternate direction implicit (ADI), parabolic
equation, radio wave propagation in tunnels.

I. INTRODUCTION

T HE growth of mobile communication systems in recent
years has led to increasing interest in the research of radio

wave propagation in tunnels. The methods that have been tra-
ditionally used to model radiowave propagation in tunnels are
modal analysis, geometrical optics and the parabolic equation
(PE) approximation.

The modal analysis method and the geometrical optics
method both have unacceptable limitations and cannot always
be used to solve for the fields in real tunnels [3]–[5]. The modal
approach uses a simple field representation comprised of one
dominate mode and an infinite number of higher order modes.
This representation is not always applicable to real tunnel
environments with arbitrary geometries. Also, it is difficult to
determine eigenfunctions for real tunnels [4]. The geometrical
optics method approximates the field as rays reflected along
the direct path of propagation. The geometrical optics method
becomes difficult to use for problems at long range because
of the large number of reflected waves, and the method fails
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Fig. 1. Tunnels with (a) rectangular, (b) circular and (c) arched profiles.

completely in caustic regions. By comparison, the standard
parabolic equation has been shown to accurately model electro-
magnetic fields in tunnels for waves which travel within
to the axis of propagation [2].

Research has been done on the parabolic approximation of
radiowave propagation in tunnels by Popov and Zhu [4] and
Noori et al. [5]. The traditional numerical technique used in pre-
vious works is the Crank Nicolson method. The popularity of
the Crank Nicolson method is due to the fact that it is stable for
any discretization in the transverse plane or along the propaga-
tion axis [2]. The major limitation of the CN method is that it
requires the solution of sets of simultaneous equations that may
become too large to efficiently solve for problems with dense
meshes. The alternate direction implicit (ADI) technique was
developed to address the problem of computational efficiency.
The ADI method has been used extensively in previous works to
solve the PE in the form of the heat transfer equation [19]–[22]
and in electromagnetics to directly solve Maxwell’s equation
using the FDTD method [23]–[25].

In this paper we use PE together with the ADI technique to
study transmission loss inside tunnels. In Section II, we show
how the PE can be used to solve for fields in tunnels with per-
fectly conducting walls. In this case, we can use a scalar PE and
enforce simple Dirichlet or Neumann boundary conditions on
the wall. To model waves in tunnels with lossy walls, we must
use a vector parabolic equation, as discussed in Section III. A
brief introduction of the CN method is given in Section IV. As
discussed in Section V, the ADI maintains the unconditional sta-
bility of the CN method while reducing compuational labor. We
develop the ADI to deal with straight tunnels with rectangular,
circular and arched profiles, as shown in Fig. 1.

For validation purposes, in Section VI, we examine the ac-
curacy of the scalar parabolic equation when used to solve for
fields in (a) square (b) circular (c) semi-circular cylindrical PEC
tunnels. Then we examine the accuracy of the vector parabolic

0018-926X/$25.00 © 2009 IEEE
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equation when used to solve for fields in (d) square and (e) cir-
cular cylindrical tunnels with impedance walls in Section VII.
Finally, in Section VIII we compare the ADI simulation results
with published measured data for the case of (f) arched cylin-
drical tunnels.

II. SCALAR PARABOLIC EQUATION

The parabolic equation is an approximation of the Helmholtz
equation that assumes wave propagation in predominantly one
direction [2]. The PE can be obtained from the Helmholtz
equation

(1)

where is either the electric or magnetic scalar potential and
is the free space wave number. We choose a solution for the

scalar potential with a fast varying phase term in the direction
factored out

(2)

where is the reduced plane wave solution. The re-
duced plane wave is slowly varying along the direction and
we can make the following assumption,

(3)

Physically, the reduced plane wave represents the lower order
modes which travel predominantly along the -axis. Substi-
tuting the plane wave solution into (1), the standard PE follows:

(4)

The PE reduces the 2nd order derivative into a first order
derivative and, as a result, the PE is easier to implement numer-
ically using finite differences. As shown in [7], the relative error
epression of the PE can be shown to be

(5)

where the angle is the angle of propagation measured from
the axis. The level of accuracy will determine the range of
angles over which the PE is valid. For this paper, we adopt the
traditional angle range of . For the angle of 15 the relative
error is 0.00058. The PE is only valid for waves traveling in the
positive direction at angles within and back scattered
waves are ignored [2].

In Section VI, we use the PE to solve for fields in PEC waveg-
iudes. For these examples, we choose our initial fields so that
only modes propagating within are significant. The scalar
PE can only be used for tunnels with PEC walls. In Section III,
we discuss the modifications that must be made to the PE to deal
with tunnels with non-PEC walls.

III. VECTOR PARABOLIC EQUATION

The scalar PE is only valid in cases where the transverse mag-
netic and electric fields can propagate independantly of each
other. This is the case when studying perfect electrically con-
ducting (PEC) waveguides. If Dirichlet boundary conditions are
enforced on the waveguide wall, the propagating field will be of
the TM type, and if Neumann boundary conditions are enforced,
then the field will be of the TE type.

In realistic tunnels, the walls are typically made up of some
lossy material such as concrete and rock. The PE approxima-
tion has been shown to model realistic tunnels very accurately
over large distances [4]. This is because higher order modes are
more severely attenuated over large distances due to multiple re-
flections. Lower order modes, which propagate at small angles
relative to the axis, make the most significant contribution to the
field over large distances.

Also, in the case of realistic tunnels, there will exist, in gen-
eral, coupling between the TM and TE modes. Unlike the PEC
case, we cannot solve the TE and TM modes independently. We
must now develop a vector PE that will take coupling effects
into account. Formulation of a vector PE for tunnels with lossy
walls and a radius of curvature, , was done by Popov and Zhu
[4]. For this paper, we consider only straight tunnels with infi-
nite radius of curvature. Although we will not repeat the details
here, we will briefly discuss the vector PE derivation. In [4], the
electrical parameters on the tunnel walls are approximated by
the Leontovich impedance boundary condition [27]

(6)

where is the outward normal on the tunnel wall and is the
relative surface impedance. For a wall with relative permittivity

and conductivity (in S/m), is approximately [18]

(7)

where , , is the complex permittivity
and relative conductivity, respectively. Here we use the grazing
angle approximation for the surface impedance because the rays
that make the significant contributions to the field at large dis-
tances propagate at small angles relative to the axis of propaga-
tion.

Starting with normalized Maxwell’s equations

and

(8)
where is the intrinsic impedance, is in , is in
and is the normalized magnetic field and is in . We
can define a six component vector

(9)
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We can then use the following asymptotic ansatz

(10)

where

(11)

and is the tunnel width [26]. The eikonal is a general second
order polynomial of and the vector amplitude is an asymp-
totic series in powers of . Directly substituting the ansatz into
Maxwell’s equation and equating terms of the same order of

, we can define the eikonal and find the vector PE [4] for the
straight waveguide

(12)

where is the attenuation function which describes the
complex wave amplitude of the approximate plane wave

propagating along the waveguide axis. is
related to the electric field transverse to the direction of prop-
agation by

(13)

Substituting the ansatz into the IBC [see (6)], and equating like
terms, we get [4], [28]

(14)

where and are matrices defined by

(15)

where and are the unit normal vectors. The impedance
boundary condition describes the effects of grazing angle reflec-
tion, selective mode absorption and depolarization on the wave-
guide walls [4]. The Crank–Nicolson method has been widely
used to model both the scalar and vector PE. In Section IV, we
will briefly introduce the Crank–Nicolson method as it will di-
rectly lead to the ADI technique.

IV. CRANK–NICOLSON METHOD

The Crank–Nicolson method has been widely used to model
electromagnetic wave propagation in tunnels [3]–[5]. The main
feature of the Crank–Nicolson method is its stability for any
mesh ratio [11], [17]. The enumeration scheme of the marching
planes for the Crank–Nicolson method is shown in Fig. 2. The
coordinates of the mesh points on the , and axes are denoted
by , and , respectively. The field points on the
and the marching planes are explicitly solved, but the field
points on the intermediate plane are never explicitly calculated.
The Crank–Nicolson descretization of the standard PE is given
by (16), shown at the bottom of the page, which can be re-written
as

(17)

where and are the mesh ratios,
and

(18)

(19)

The Crank–Nicolson method is implicit, unconditionally stable,
and second order accurate in , and [9]. The Crank–Nicolson
difference scheme is centered about the midpoint between the

and marching planes. The field points
of each successive marching plane must be solved in consecu-
tive order at propagation steps of until the field at the desired
range is solved. The major limitation of the Crank–Nicolson
method is that it becomes computationally intensive in cases that
require a very large mesh. As Equation (16) shows, the size of
the matrix generated for a problem with mesh points along
the axis and , mesh points along the axis will be
(in Fig. 2, ). The elements of the matrix will
not be in tridiagonal form. Furthermore, even though the matrix
will be sparse, the elements cannot be arranged in such a way
to confine the elements to a narrow region [10]. Although the
computation time will depend on the speed of the computer, in
general the technique may be too time consuming when dealing
with problems that require high resolution and a large number
of propagation steps. The alternate direction method was devel-
oped to address this difficulty [9].

V. ALTERNATE DIRECTION IMPLICIT METHOD

The alternate direction implicit method is a modification
of the Crank–Nicolson method that uses smaller tridiagonal
matrices. The ADI method can be derived directly from the

(16)
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Fig. 2. The marching planes of the three-dimensional Crank–Nicolson method.

Crank–Nicolson method by adding to
(17)

(20)

where represents the order of error. The error introduced
by the new error term is and can be ignored because it
is of the same order as the truncation error. Equation (20) above
can be re-written in factor form

(21)

We can split (21) in a way that allows us to solve for the un-
known field line by line (direction by direction)

(22)

(23)

Combined, (22) and (23) are known as the Peaceman–Rachford
method [8], [9], [17] and is equivalent to (21) (easily verified
by multiplying both sides by ). Fig. 3 shows
schematics of the line by line decomposition of the planes within
one propagation step. For this example, the unknowns of the
intermediate plane can be solved using one matrix and the
unknowns of the plane can be solved using one matrix.

One difficulty with the ADI technique, is that it has special
conditions for boundary values in the plane. The and
the planes are physical planes and the intermediate

Fig. 3. The line by line decomposition of the planes using the ADI method.

plane may be considered a virtual plane which may not have the
same boundary conditions as the physical plane. Adding (22)
and (23), we arrive at an expression for the intermediate plane
in terms of the physical planes

(24)

(25)

Equation (24) can only be satisfied if the boundary values
are known for each propagation step. If we impose the same
boundary conditions on the intermediate plane as the physical
plane, then , and the overall
accuracy will be first order [9]. As with the Crank–Nicolson
method, the ADI method is also unconditionally stable [9],
[10], [17], [29].

Tunnels with rectangular cross sections are the simplest for
ADI to handle because one matrix can be used to solve for the
field along the axis and one matrix for the field along the
axis. However, for a circular case, there will need to be
matrices to solve for the field along the axis and
matrices to solve for the field along the axis. The Taylor series
approximation is used to approximate the curved boundary [10]
and different ADI matrices must be used for each line. The size
of the matrices will depend on the number of mesh points along
a line of the circle.

Another complication arises when enforcing Neumann-type
boundary conditions. Using the technique outlined in Morton
[10], we can derive a first order normal derivative using interpo-
lation in order to express boundary mesh points in terms of inte-
rior mesh points. As a result, the Neumann boundary condition
may couple two lines in one dimension and increase our number
of unknowns. This makes the order in which the line by line de-
composition occurs important. For a circle, the line by line de-
composition must begin at the center line where the boundary
values are reflected inward and there is no coupling. This makes
the complete solution of the center line possible without the in-
troduction of new unknowns. The lines directly adjacent to the
center line must be solved next and so on until the field along
the plane is solved completely. In order to avoid increasing the
number of unknowns and the size of the ADI matrices, the lines
must be solved in successive order.
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TABLE I
THE NORMALIZED RMS ERROR FOR THE RECTANGULAR, CIRCULAR AND SEMI-CIRCULAR

CYLINDRICAL WAVEGUIDES WITH DIRICHLET AND NEUMANN BOUNDARY CONDITIONS

VI. PEC WAVEGUIDE EXAMPLES USING THE ADI METHOD

In this section, the analytical solutions of simple PEC waveg-
uides are used to measure the accuracy of the ADI approach.
Our analysis will consider three test cases: the (a) square, (b)
circular and (c) semi-circular cylindrical PEC waveguides.

All simulations are done using a unit strength Gaussian with
standard deviation placed at the center of the transverse

plane as the initial field and operating at a frequency of 3 GHz.
The magnetic and electric scalar potentials are simulated by en-
forcing either the Dirichlet or Neumann boundary conditions.
In test case (a), the waveguide cross-section is and
in test cases (b) and (c) the radius is . All test cases are sim-
ulated up to a distance of 100 m.

Under these parameters, only modes propagating within
make significant contributions and, therefore, the PE ap-

proximation is valid. Furthermore, because of the PE limitation,
Nyquist’s theorem restricts the descretizations, and , to
be less than . This is shown by considering the transverse
wavelength at 15 [7].

Table I displays the rms error

(26)

where is the approximated discretized field, is the
known analytical field and is the total number of unknowns.
The analytical solutions used in Sections VI-A–C are obtained
in the traditional ways outlined by Harringtion [1] and other
texts.

A. Test Case (a): Rectangular Waveguide With Dirichlet and
Neumann Boundary Conditions

Fig. 4(a)–(b) show the analytical and numerical solutions for
the rectangular waveguide with Dirichlet boundary conditions.
Fig. 4(c)–(d) show the analytical and numerical solutions for the
rectangular waveguide with Neumann boundary conditions. It
is clear from these figures that there is very good agreement be-
tween the analytical and simulated field patterns. Table I shows
that for transverse descretizations, , and
marching step size, , the rms error is within 5%.

Fig. 4. The (a) analytical solution and (b) numerical approximation of the rect-
angular waveguide with Dirichlet boundary conditions (RMS error � ����)
and the (c) analytical solution and (d) numerical approximation of the rect-
angular waveguide with first order Neumann boundary conditions (RMS error
� ����) .

B. Test Case (b): Circular Cylindrical Waveguide With
Dirichlet and Neumann Boundary Conditions

Fig. 5(a)–(b) show the analytical and numerical solutions
for the circular waveguide with Dirichlet boundary conditions.
Again, there is good agreement between the analytical and
numerical field patterns. Table I shows that for transverse
descretizations, , and marching step size,

, the rms error is within 5%. Fig. 5(c)–(d) show the
analytical and numerical solutions for the circular waveguide
with Neumann boundary conditions, using first order interior
interpolation. There is good agreement between the analytical
and numerical field patterns but the rms error increases to
12.9%. The rms error for the Neumann case is greater than the
Dirichlet case because both the boundary conditions and the
interpolations are first order.

C. Test Case (c): Semi-Circular Cylindrical Waveguide With
Dirichlet and Neumann Boundary Conditions

Fig. 6(a)–(b) show the analytical and numerical solutions
for the semi-circular waveguide with Dirichlet boundary
conditions. As with the previous test cases, there is very
good agreement between the analytical and simulated field
patterns. Table I shows that for transverse descretizations,



1764 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 6, JUNE 2009

Fig. 5. The (a) analytical solution and (b) numerical approximation of the cir-
cular waveguide with Dirichlet boundary conditions (RMS error � ����) and
the (c) analytical solution and (d) numerical approximation of the circular wave-
guide with Neumann boundary conditions (RMS error � ������).

Fig. 6. The (a) analytical solution and (b) numerical approximation of the semi-
circular waveguide with Dirichlet boundary conditions (RMS error � ����)
and the (c) analytical solution and (d) numerical approximation of the semi-
circular waveguide with Neumann boundary conditions (RMS error� ���	�).

, and marching step size, , the rms
error is about 5.2%.

Fig. 6(c)–(d) show the analytical and numerical solutions for
the semi-circular waveguide with Neumann boundary condi-
tions. There is very good agreement between the field patterns
in both cases. However, Table I shows for
and , the rms error is very large (29%). Fig. 7 shows
the analytical (solid-line) and simulated (dashed-line) fields at

. As shown in the figure, the error is concentrated near
and the field pattern is preserved. Like in the circular

Neumann case, the rms error can be improved by decreasing
the mesh descretizations. Also, we can see from Table I the error
grows slightly as the step size is decreased with fixed mesh de-
scretizations. This is because the field is converging towards a
field not exactly matching the analytical solution.

Fig. 7. The magnitude of the analytical (blue, solid) and simulated (red,
dashed) field at � � � for PEC tunnel with semi-circular cross-section and
Neumann boundary conditions.

Although the ADI method can produce larger errors than the
CN method, for the examples considered, the fields generated
by both codes are nearly identical. Keeping the descretizations
the same, the error between the two methods is less than 1%. A
discussion on the accuracy of the ADI method can be found in
[30].

VII. IMPEDANCE WAVEGUIDE EXAMPLES

USING THE ADI METHOD

Tunnels with impedance walls can be very difficult to solve
and, aside from some special cases, closed form solutions may
not exist [6], [14]. In Sections VII-A and B, we will consider
lossy tunnels with known analytical solutions. We will con-
sider two such cases, the rectangular tunnel with small surface
impedance and the circular tunnel with a linear dipole located
at its center.

A. Rectangular Tunnel

Exact analytical solutions for the fields in rectangular tunnels
with lossy walls do not exist [6], [14]. In [6], a lossy tunnel is
treated as an imperfect metal waveguide with the relative surface
impedance of a good conductor

(27)

If the magnitude of the relative surface impedance is much less
than unity, then perturbation techniques can be used to derive
approximate fields [6]. Unlike the perfect waveguide case, pure
TE and TM modes will not always propagate within the im-
perfect waveguide. Instead, there will exist hybrid
and modes that are coupled TE and TM modes. The

mode is a TE mode with a small TM component,
and the mode is a TM mode with a small TE com-
ponent.

In the case of the rectangular tunnel, the impedance matrix
, shown in (15), becomes diagonal because the normal

vectors, and , disappear alternatively on the tunnel wall.
Therefore, the transverse reduced field components
and in the orthogonal plane are decoupled
and can be solved independently [4]. The hybrid fields that are
solved numerically will depend on the boundary conditions
enforced on the waveguide walls.
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Fig. 8. Rectangular waveguide profiles displaying the boundary conditions for
the � field of the�� mode and the � field of the� � mode in the trans-
verse plane.

Consider the simple example of a rectangular waveguide
, , with three PEC walls and one impedance

wall located at , where the normal vectors are and
. Fig. 8 shows the boundary conditions at the three PEC

walls for the [Fig. 8(a)] and the [Fig. 8(b)] hybrid
modes with the and fields given by [6, Eq. (36)].

Let us consider the case of the mode propagating
in the waveguide at a frequency of 1 GHz with a wall of
impedance, . Good conductors have large
conductivity, and for this case the equivalent conductivity
is 556 S/m. Fig. 9(a) shows the magnitude of the analytical
solution of in the origin plane of and Fig. 9(b)
shows the magnitude of the analytical solution of at the
distance of . Fig. 9(c) shows the magnitude of the
simulated , using the analytical field in the origin plane
as the initial field. The discretizations along the transverse
plane are , and along the propagation
axis, . We can see that there is strong agreement
between the analytical field and the simulated field in the
transverse plane. The field pattern doesn’t depend on distance
because a single mode was used as the initial field. The ADI
simulation produced the same pattern throughout the step by
step simulation. For this case, this difference between the mode
attenuation factors (MAFs) of the analytical and numerical
solution is 2.36 dB/km.

Now, let us consider the case of the mode propa-
gating in the waveguide at a frequency of 1 GHz with a wall
of impedance, . For this case the equivalent
conductivity is 0.62 S/m. Fig. 9(d) shows the magnitude of the
analytical solution of in the origin plane of . Fig. 9(e)
shows the magnitude of the analytical solution of at the axial
distance of . The distance of 5 km was chosen so that
there would be noticeable attenuation along the axial direction.
Fig. 9(f) shows the magnitude of the simulated field, using
the analytical field in the origin plane as the initial field. The
discretizations along the transverse plane are the same as in the

example, and . Again,
as in the example, we can see that there is strong agree-
ment between the analytical and the simulated field patterns in
the transverse plane. Also, the magnitudes of the analytical and
simulated fields show that the simulated field captures the atten-
uation of the field along the direction.

Fig. 9. The magnitudes of the analytical and numerical fields of the
(a–c) �� and (d–f) � � mode.

Fig. 10. Cross-section of a circular tunnel with lossy walls and a linear source
located at the center.

The main advantage of the ADI method over the
Crank–Nicolson method is the use of smaller ADI matrices. In
the rectangular case, and fields are decoupled and each
field can be treated as a scalar PE problem. As with the previous
scalar PE problems, if there are and mesh points along
the and dimensions, respectively, the Crank–Nicolson
matrix will be a sparse matrix of rank . However,
the ADI method will only require 2 matrices of rank and

, respectively.

B. Circular Tunnel

Next, we use the ADI-PE to solve for the field in a lossy tunnel
with a circular cross-section of radius (shown in Fig. 10). The
tunnel is treated as a hole in a lossy dielectric medium where
the interior is free space and the exterior is characterized by

, with . Fig. 10 also shows the linear
dipole current source with dipole moment P (in amp-meters),

, located at the center of the tunnel
in the plane. The derivation of the electric

fields produced by this source is well known and the details are
given in [14] and [15].
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Fig. 11. (a)–(b) Axial distribution of the analytical (blue, solid) and simulated
(red, dashed)� field intensity for the�� modes;� � ��, � � ����,
��� � � ��	, � � ��, � � 
	
� ���.

As with the imperfect rectangular waveguide, the lossy cir-
cular tunnel will produce hybrid modes. For the special case of
the centered linear source, the only possible hybrid modes are

and [14], [15]. The transverse electric field com-
ponents are shown in [15, Eq. (95) and (96)].

For our ADI simulations, we consider a smooth, straight
tunnel of radius 2 m and 1 km in length. We choose our
electrical parameters to match the parameters studied in the
published work of Dudley and Mahmoud [15]. We choose

and and P/a = 1 amp. In this case,
is the dominant mode and attenuates least over the

axial distance of the guide. The MAF of the mode is
2.77 dB/100 m [14]. In a lossy tunnel, higher order modes will
attenuate more than the dominant mode and, for large axial
distances, the field intensity will correspond to the intensity of
the mode.

Fig. 11(a)–(b) shows the analytical field intensity (in dB) as
a function of axial distance at for about (a)
and (b) (in blue). The first two modes are
plotted because the angles of propagation, with respect to the z
axis, are below the parabolic approximation limit of . The
angles of the modes are calculated using

(28)

The complex terms are calculated using the procedure
outlined in [15, (Eq. 76)]. The ordering of the first three
modes, according to angle, is , and

. We can see from Fig. 11 that the field inten-
sity can be divided into a near-zone and a far-zone [14]. The
near-zone is characterized by rapid variations due to higher
mode interactions. The far-zone is smoother and more linear
because the higher order modes disappear due to attenuation.
In the far-zone the slope corresponds to the MAF of the
mode. For our analysis we define the as a function of
axial distance

(29)

The analytical solution for the and modes at
the plane is used as the initial field for the ADI simula-
tion and the discretizations along the transverse plane and the

Fig. 12. (a)–(b) Analytical transverse� and� field distribution at a distance
of 1 km for the�� modes, respectively. (c)–(d) Numerical transverse�
and � field distribution with �
 � 
	


�,�� � 
	


�,�
 � �	�����.

axial direction are and .
As shown in Fig. 11, the analytical and simulated results are in
very good agreement. In the far-zone , where the
field becomes more linear the doesn’t exceed .
As we can see from Fig. 11, the trend and shape of the analyt-
ical result is captured in the simulation. Fig. 12 compares the
magnitudes of the and field distribution in the transverse
plane. We can see that the magnitudes and field patterns are in
close agreement between the analytical [Fig. 12(a)–(b)] and nu-
merical [Fig. 12(c)–(d)] results.

Unlike the rectangular case, the impedance matrix
(15), is not diagonal and the and fields have to be solved
simultaneously. As a result, we have to solve a true vector PE
and the size of both the Crank–Nicolson and ADI matrices in-
crease. If there are and mesh points along the and
dimensions, respectively, the Crank–Nicolson matrix will be a
sparse matrix of rank , double the size of the
scalar PE case. The ADI method will require matrices
that are at most size and matrices that are at most
size . When dealing with large problems, the memory re-
quired to perform calculations with the Crank–Nicolson matrix,
even with use of the sparse command in MATLAB, might be-
come too computationally intensive for an average PC.

VIII. COMPARING ADI SIMULATIONS WITH

EXPERIMENTAL DATA

Finally, we consider the case of real tunnels and compare
ADI simulations to measurements shown in published results.
Our first example is the Massif Central tunnel in south-central
France studied in the published work of Dudley, Lienard, Mah-
moud, and Degauque [14]. The tunnel is straight and 3.5 km
in length with smooth walls composed of large blocks of stone
or concrete. The roughness is estimated to be in the order of a
centimeter. The transverse dimensions of the tunnel are given in
Fig. 13. The experiment performed by Dudley et al. consisted
of a transmitting and receiving antenna placed vertically at a
height of 2 m and horizontally at one-quarter the width of the
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Fig. 13. The profile of the Massif Central tunnel.

tunnel , shown as an “ ” in Fig. 13. The trans-
mitting power was 34 dBm and the frequencies of 450 MHz
and 900 MHz are studied. Half-wave vertical dipoles are used
for 450 MHz,and vertically polarized wide-band horn antennas
(with a gain of 7 dBi) are used for 900 MHz.

The research team of Dudley et al. [14] uses an equivalent
rectangular tunnel (see Fig. 13) in order to characterize the
Massif Central tunnel. The dimensions of the rectangular tunnel
are shown in Fig. 13 and the electrical parameters are chosen
to be and . The theoretical attenuation
constant of the dominant mode of the equivalent rectangular
tunnel is given by [13] and [14]

(30)

where is the horizontal length and is the vertical length,
given by and . The attenuation of
the dominate mode in the equivalent rectangular tunnel corre-
sponds to the attenuation of the measured field in the Massif
Central tunnel. Figs. 14 and 15 show the field intensity in dBm
as a function of axial distance (in blue) as measured by the re-
search team of Dudley et al. [14]. The MAF of the equivalent
rectangular tunnel and the experimental data are shown in the
first two rows of Table II.

The ADI simulations are done using the actual arched cross-
section of the Massif Central tunnel and the equivalent rectan-
gular tunnel (Fig. 13). The electrical parameters are chosen to
match the parameters of the research team. At this point, it is
important to discuss possible sources of error in the simulation
of real tunnels. One possible error may be the incorrect predic-
tion of electrical parameters of the tunnel walls. If a real tunnel
is made up of dry cement and stone, the parameters will depend
on the materials used to mix the cement and its percentage of
water content. One source estimates the parameters of dry con-
crete to vary from and
and for wet concrete, and
[16]. In addition, the electrical parameters will also change with
frequency. For the equivalent rectangle, this isn’t a problem be-
cause the parameters have been fixed in [14].

The initial field used in the simulations may not represent the
actual antenna field used in measurements. However, even with
an incorrect initial field, the field in the far zone, where lower

Fig. 14. The electric-field intensity in dBm and the corresponding least square
fit line of the (a) Massif Central tunnel (blue, solid), (b) the ADI solution using
the equivalent rectangular profile with � � � and � � ���� ��� (red,
dashed), (c) the ADI solution using the arched profile with � � � and � �

���� ��� (green, circle) and (d) the ADI solution using the arched profile with
� � �� and � � ���� ��� (black, asterisk) as a function of axial distance
and operating frequency of 450 MHz.

Fig. 15. The electric-field intensity in dBm and the corresponding least square
fit line of the (a) Massif Central tunnel (blue, solid), (b) the ADI solution using
the equivalent rectangular profile with � � � and � � ���� ��� (red,
dashed), and (c) the ADI solution using the arched profile with � � � and
� � ���� ��� (green, circle) as a function of axial distance and operating
frequency of 900 MHz.

order modes dominate, the correct attenuation will be obtained.
This allows us some flexibility when setting up our simulations.
So long as the lower order modes are illuminated, different ini-
tial fields will yield the same MAFs in the far zone. This dis-
crepancy is accounted for by offsetting the vertical axis of the
simulation data so the least square fitted lines intersect at the
far zone point. Instead of having the dipole inside the tunnel en-
trance, as in the Massif Central experiment, we set up the dipole
30 m away from the tunnel opening. This allows us to use the
far field expressions for the dipole and avoid solving more com-
plicated field patterns. We do not know the value of the field
along the boundary wall in the initial plane. If we use the free
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TABLE II
THE EXPERIMENTAL, THEORETICAL AND SIMULATED MODE ATTENUATION

FACTORS FOR THE MASSIF CENTRAL TUNNEL

space values along the boundary, the error will be in the form of
high oscillations in the MAFs in the far zone. We can eliminate
these oscillations by filtering off the field at the boundary with
a unit gaussian with (450 MHz) and
(900 MHz). We don’t expect an exact match between the simu-
lated results and the measured results in the near zone where the
parabolic approximation is not satisfied. However, we expect, in
the far-zone, the E-field and the field attenuation to be correctly
modeled by the simulation. Figs. 14–15 show the simulated field
intensity in dBm of the tunnel with an arched cross section (in
green, circle) and the equivalent rectangle (in red, dashed). The
MAFs of the simulations are computed from the slope of the
least square fit line using data in the far zone. The MAFs of the
simulations and the far zone ranges are shown in Table II.

In Fig. 14, for the 450 MHz case, we can see that there is
good agreement between the simulated rectangular tunnel and
the measured data. Table II shows the discrepancies of the MAFs
of the measured data, the equivalent rectangle and the simu-
lated rectangle are about 2 dB/km. The discrepancy of the sim-
ulated results for the arched shape tunnel and the measured data
is about 11 dB/km. This is believed to be the result of using
an incorrect electrical parameter. Increasing the magnitude of
the electrical parameters for the arched shape will increase the
attenuation of the tunnel. This is shown in Fig. 14, where the
black curve is the simulation for and .
In Fig. 15, for the 900 MHz case, we see that there is more
agreement among all the simulations. As Table II shows, the dis-
crepancies among all the simulations are within 1 dB/km. The
good agreement may be due to the frequency dependant nature
of the electrical parameters. At 900 MHz, the electrical parame-
ters used for the equivalent rectangle may be in better agreement
with the actual electrical parameters of the tunnel wall.

Our second example is a railway tunnel in Japan studied in the
published work of Chiba, Inaba, Kuwamoto, Banno, and Sato
[12]. The tunnel is straight and 1.47 km in length and also made
up of concrete. The cross-section of the tunnel is arched shaped
and has two 3.9 m lanes separated by a notch. Fig. 16 shows
the dimensions of the tunnel cross-section. The measurement
team used half-wave dipole antennas for the transmitters and re-
ceivers and the antennas were placed at a height of 3.6 m above
the ground and 30 m from the tunnel opening with a transmitting

Fig. 16. The profiles of the (a) Japanese National Railway tunnel and (b) the
equivalent circular tunnel.

Fig. 17. The (a) MAF of the Japanese National Railway tunnel (blue, solid), (b)
the electric-field intensity and least square fit line of the ADI solution using the
equivalent circular profile (red, asterisk) and (c) the electric-field intensity and
least square fit line of the ADI solution using the arched profile (green, circle)
as a function of axial distance with an operating frequency of 470 MHz.

power of 1 W. The measurement team characterized the tunnel
with an equivalent area circular cylindrical waveguide of radius
4.2 m. The electrical parameters of the equivalent circular cylin-
drical tunnel were chosen so that the attenuation of the dominant
mode will correspond to the attenuation of the measured field.
The theoretical attenuation constant is given by (31), shown at
the bottom of the page, where is the root of the th
Bessel function. The MAF of the equivalent circular cylindrical
tunnel is defined, and . Figs. 17 and 18
show the theoretical MAF of the dominant mode of the equiva-
lent circular cylindrical tunnel (blue).

The ADI simulations are done using the arched shape cross
section (Fig. 16) and the equivalent circular cross section. As

(31)
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Fig. 18. The (a) MAF of the Japanese National Railway tunnel (blue, solid),
(b) the electric-field intensity and least square fit line of the ADI solution using
the equivalent circular profile (red, asterisk) and (c) the electric-field intensity
and least square fit line of the ADI solution using the arched profile (green,
circle) as a function of axial distance with an operating frequency of 900 MHz.

TABLE III
THE EXPERIMENTAL, THEORETICAL AND SIMULATED MODE

ATTENUATION FACTORS FOR THE RAILWAY TUNNEL

before, the electrical parameters are chosen to match the pa-
rameters of the research team. Figs. 17 and 18 show the sim-
ulated field intensity of the tunnel with an arched cross-section
(in green, circle) and the equivalent circle (in red, asterisk). The
field intensity is shown in dB such that .

In Fig. 17, for the 470 MHz case, we can see that there is
reasonable agreement between the attenuation of the simulated
equivalent circular cylindrical tunnel and the theoretical atten-
uation. As with the previous tunnel, the simulation is least ac-
curate in this frequency range. As we increase the frequency
there is greater agreement between the theoretical MAF and the
simulated fields. As before, we can see from the figures that in
the 470 MHz and 900 MHz cases, the two mode interactions are
present in the far zone [14]. Table III summarizes the theoretical
MAF, the simulated equivalent circular cylindrical tunnel and
the tunnel with an arched cross section MAFs. The discrepancy
between the theoretical MAF and the equivalent circular cylin-
drical tunnel is about 1 dB/km and lower for both frequencies.
The discrepancy between the theoretical MAF and the tunnel
with arched cross section about 6.5 dB/km for 470 MHz and
3.3 dB/km for 900 MHz.

A. Usage of CPU Time and Memory

In this section, we briefly examine the computation time
and memory usage of the Crank–Nicolson and ADI method.
Table IV shows a side by side comparison of the execution time
and CPU memory of the Crank–Nicolson and ADI method

TABLE IV
THE CPU MEMORY AND COMPUTATIONAL TIME FOR � � �� AND

2000 MARCHING STEPS FOR THE TUNNEL WITH RECTANGULAR

PROFILE AND DIRICHLET BOUNDARY CONDITIONS

for the case of a PEC tunnel with a rectangular profile with
resolution and using 2000 marching steps.
The execution time refers to the time it take MATLAB to
perform the one Backslash command and multiplied by the
number of loops. This accounts for any variation in codes by
only recording the time it takes to invert the matrices. For
the Crank–Nicolson method, the Backslash command was
performed after the memory saving Sparse command was used.
As we can see from Table IV, ADI runs mush faster and takes
significantly less memory than the Crank–Nicolson method.

To continue the comparison between the Crank–Nicolson
method and the ADI, we will breifly address the issue of
stability. Following the discussion in [29], on the stability of
the ADI, solving for a step/wavenumber independent bound on
the amplification matrix becomes difficult because the ADI-PE
matrices contain off-diagonal terms that make finding eigen-
values difficult. For the PEC waveguide, numerical tests have
shown that the ADI amplification matrix is normal and bounded
by unity and the von Neumann condition is sufficient. When
the impedance boundary condition is applied, the matrices are
no longer normal, but the amplification matrix is still bounded
by unity for various discretizations and steps. For examples
considered in the paper, we have not encountered instability
when applying the IBC to the ADI-PE. The CN is uncondition-
ally stable and less sensitive to boundary conditions. However,
for modest discretizations, we were able to get very good
agreement between the CN and ADI solutions, which would
imply that the ADI is also stable with the IBC.

IX. CONCLUSION

We have presented the ADI method for use in solving the
parabolic equation for radiowave propagtion in tunnels. We have
shown that because the ADI technique uses smaller matrices
than the widely used Crank–Nicolson method, it reduces the
computational labor of an average PC.

Using analytical models, we have shown that the ADI
method, in combination with the parabolic approximation, can
simulate the attenuation and field patterns in tunnels whose
electrical parameters are known. Our simulation results also
verify the use of the grazing angle impedance approximation
on the tunnel walls.

In the case of actual tunnels, our ADI-PE approach com-
pares well with published experimental data for the 900 MHz
frequency in the far zone for the Massif Central tunnel. The
tunnel’s far zone is the region where rapid oscillations cease and
the lowest order modes dominate. The descrepancies in mea-
sured and simulated results may be attributed to lack of knowl-
edge of the tunnel’s electrical parameters. Simulated ADI-PE
results for equivalent tunnel profiles, where electrical parame-
ters are defined, show high accuracy.
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The four-state random walk �4RW� model, wherein the particle is endowed with
two states of spin and two states of directional motion in each space coordinate,
permits a stochastic solution of the Schrödinger equation �or the equivalent para-
bolic equation� without resorting to the usual analytical continuation in complex
space of the particle trajectories. Analytical expressions are derived here for the
various transitional probabilities in a 4RW by employing generating functions and
eigenfunction expansions when the particle moves on a 1+1 space-time lattice with
two-point boundary conditions. The most general case of dissimilar boundaries
with partially reflecting boundary conditions is treated in this paper. The transi-
tional probabilities are all expressed in terms of a finite summation involving trigo-
nometric functions and/or Chebyshev polynomials of the second kind that are char-
acteristics of diffusion and Schrödinger equations, respectively, in the 4RW model.
Results for the special case of perfectly absorbing boundaries are compared to
numerical values obtained by directly counting paths in the random walk
simulations. © 2009 American Institute of Physics. �DOI: 10.1063/1.3122768�

I. INTRODUCTION

The four-state random walk �4RW� model, wherein a particle undergoing random walk is
endowed with two states of direction �in a one-dimensional case� and two states of spin or parity,
was considered by Ord and Deakin1 to arrive at a macroscopic model for the Schrödinger equation
and physically interpret its wavelike solutions. It was shown in that paper that both the traditional
diffusion equation as well as the Schrödinger equation were embedded in the same physical
model. The usual diffusion process is contained in the overall sum of all particle paths irrespective
of their direction and parity, while the wavelike behavior of the Schrödinger equation is contained
in the differences in densities of the right-going particles or left-going particles with opposite
parity. The 4RW model owes its existence to the Feynman chessboard model as elaborated in Ref.
2 and is also useful in solving practical electromagnetic, acoustic, and optical boundary value
problems for the complex field amplitude when a stochastic approach is used to treat the govern-
ing parabolic equation. �In the applied sciences area, the parabolic equation is sometimes referred
to as the parabolic wave equation.� The standard parabolic equation used in such time-harmonic
problems contains partial derivatives with respect to the spatial coordinates only, where the spatial
coordinate along the axial direction takes the place of the time variable in the time-dependent
Schrödinger equation. Furthermore, the potential function present in the Schrödinger equation is
replaced by the medium refractive-index term in the parabolic equation. The parabolic equation is
obtained when the Helmholtz equation describing the true field is subject to a one-way propaga-
tion with a subsequent application of the paraxial approximation.3,4 Normally one needs to resort
to analytical continuation of boundary data, as is done in Ref. 5, when the parabolic equation is
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solved numerically using a stochastic approach. The resulting random walks will then traverse a
complex-valued space, which, in turn, calls for analytical continuation of boundary data and the
spatial geometry.6 However, the 4RW model permits a solution to these problems without such
analytical continuations.

In a previous paper,7 the author developed expressions for the various transitional probabilities
for the 4RW on a discrete lattice for spatially unbounded case. In addition to detailing a method
for arriving at the transitional probabilities, the results presented therein could also be useful in
determining other stochastic quantities of interest such as the first passage time probabilities,
expected number of visits to a given site, and maximum excursions of a random walk on a line for
various linear combinations of these probabilities. In developing numerical schemes for solving
boundary value problems with complex geometries, it is desirable to have analytical solutions for
simpler geometries to facilitate validation against benchmark problems.8 The traditional way to
discretize the Schrödinger equation or the diffusion equation for numerical treatment by the finite
difference method is to employ a central difference formula in the spatial coordinates. An example
of this is the implicit Crank–Nicolson scheme, which, for the diffusion equation, can be identified
with the traditional two-state random walk, where the particle is endowed with two directions of
motion only. Analytical results for the traditional two-state random walk with perfectly absorbing
and/or reflecting boundaries have been treated in number of works including Refs. 9 and 10.
Separately, the case of the telegraph equation with partially reflecting boundaries is studied in Ref.
11. No such analytical results are yet available for the 4RW model and it is the purpose of the
present paper to provide analytical results for a benchmark initial-boundary-value problem in 1
+1 space-time dimension for the model. To this end, we extend the results in Ref. 7 by considering
two-point boundary conditions for the 4RW model and derive analytical expressions for various
transitional probabilities. Setting aside the fact that the 4RW model has a physical basis in the
Feynman chessboard model and that various transitional probabilities are related to the solution of
the continuous Schrödinger equation, it is not at all obvious at the outset from the governing
difference equations that an analytical solution is possible for the said boundary value problem,
particularly for the wavelike solutions. The transform approach utilized in this paper will reveal
the presence of the discrete Laplacian operator that is embedded in these equations and will clearly
demonstrate why such a solution is still possible, while paving the way for eigenfunction expan-
sion. This will be elaborated in Secs. II and III. The most general case of partially absorbing and
dissimilar boundaries is considered in this paper. Results for the special cases of perfectly absorb-
ing and perfectly reflecting boundaries are also provided in the paper. The results presented here
correspond to the solution of the discrete form of the diffusion equation as well as to the real and
imaginary parts of the discrete Schrödinger equation.

In Sec. II, the 4RW model is briefly reviewed, and the problem under investigation is defined.
In Sec. III, the solution to the 4RW model subject to the general boundary conditions is developed
using the concept of generating functions and eigenfunction expansion. Expressions are provided
for the special cases of perfectly reflecting and perfectly absorbing boundaries and the results for
the latter are compared to numerical simulations obtained by directly counting paths. Finally,
conclusions and topics of further research are given in Sec. IV. It may be noted parenthetically that
it is not our purpose here to evaluate other various models that have been put forward to physically
interpret the Schrödinger equation, a topic that is immensely interesting in its own right.

II. 4RW MODEL

For a particle moving on a discrete lattice and subject to random collisions, the transitional
probabilities considered in Ref. 7 at the discrete space-time point �x=m� , t=s�� are of the form

Et�w1

w2
� =

1

2
��Ex + Ex

−1� − �Ex − Ex
−1�

0 0
��w1

w2
� , �1�
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Et�q1

q2
� =

1
�2
�Ex

−1 − Ex

Ex
−1 Ex

��q1

q2
� , �2�

where q1�m� ,s��=2s/2�p1�m� ,s��− p3�m� ,s���, q2�m� ,s��=2s/2�p2�m� ,s��− p4�m� ,s���,
w1�m� ,s��= �p1�m� ,s��+ p2�m� ,s��+ p3�m� ,s��+ p4�m� ,s���, w2�m� ,s��= �p1�m� ,s��
+ p3�m� ,s���− �p2�m� ,s��+ p4�m� ,s���, and p��m� ,s���, �=1, . . . ,4, is the probability that a
particle is in state � at the space-time point �m� ,s��, m=0, �1, �2, . . ., s=0,1 , . . .. The particle
changes its direction of motion with every collision, but changes its parity or spin at every other
collision. The combination of two directions of motion and two states of spin constitute the four
states in the model. It has been shown in Refs. 1 and 12 that such a four-state random walk
simultaneously encompasses the diffusion as well as Schrödinger equations. The quantities w1 and
w2 pertain to the diffusion process, while q2 and q1 correspond to the real and imaginary parts of
the Schrödinger wave function in the discrete case. We will refer to �1� as the diffusion equation
and to �2� as the Schrödinger equation even though they are really the respective discrete coun-
terparts of the traditional diffusion and Schrödinger equations. The operators Ex and Et are,
respectively, the spatial and temporal advancing operators and are defined mathematically as
Ex

�1p��m� ,s��= p���m�1�� ,s�� and Etp��m� ,s��= p��m� , �s+1���. It is assumed in Eqs. �1�
and �2� that the probability that a particle maintains its direction at the next time step remains the
same as the probability that it will change its direction at the next time step and that the probability
of remaining at the same location at the next time step is zero. If the number of right-going
particles is the same as those going to the left at time t=0, then w2�0 and Eq. �1� reduces to the
simpler equation

Etw1 = Dxw1, �3�

where Dx= �Ex+Ex
−1� /2 is the discrete averaging operator. The averaging operator in �3� owes its

existence to the presence of the Laplacian operator in the continuous diffusion equation �w1 /�t
=D1�

2w1 /�x2 when the spatial and temporal step sizes are subject to the condition �=�2�D1. As
such, most of the well-posed issues that pertain to the continuous case13 will be carried over to the
discrete case. In particular, Eq. �3� will be well posed with two-point Robin type of boundary
conditions and the solution will exist.

The difference equations �1� and �2� are assumed to be valid in the region 0�m�� and s
�0 and they are supplemented by an initial condition at s=0 and boundary conditions at m
=0,�. We will adopt the abbreviation v�m ,s� to denote the discrete function v�m� ,s��. The
boundary conditions we are interested in are of the form

pj�0,s� − �1pj�1,s� = 0 and pj��,s� − �2pj�� − 1,s� = 0, j = 1, . . . ,4, �4�

where the constants �1 and �2 are assumed to be real and positive. These are the discrete versions
of the general Robin type of boundary conditions for the continuous case. The case of purely
absorbing boundaries at m=0,� is characterized by �i=0, i=1,2, while the purely reflecting case
is characterized by �i=1, i=1,2.9,14 The general case corresponds to partially absorbing and
partially reflecting boundaries with different degrees of absorption at the two ends. Our interest is
to obtain analytical solutions to �1� and �2� on a discrete space-time lattice �m� ,s�� subject to the
boundary conditions in �4�. In contrast to the diffusion equation �3�, it is not clear at the outset
whether a solution will exist for �2� under the boundary condition �4�, setting aside the fact that it
is tied to the Schrödinger equation. This is because of the presence of the spatial shift operators
that are neither symmetric �as in the operator Dx� nor asymmetric �as in an operator of the form
Vx= �Ex−Ex

−1��. Recall, for instance, that the diffusion equation with a drift term, whose discrete
counterpart will have neither a symmetric nor an asymmetric spatial operator, will not always have
a solution even with Neumann type of boundary conditions. However, we will demonstrate in Sec.
III that the temporally transformed equation corresponding to �2� will indeed contain the averaging
operator and the existence question will be set to rest. Because of the linearity of Eqs. �1� and �2�,
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a convenient solution can be obtained by using generating function and integral transform tech-
niques as outlined in Refs. 7 and 15.

III. SOLUTION BY GENERATING FUNCTIONS

In the following, we assume complete symmetry between the right-moving and left-moving
particles so that w2�0. Consider a function v�m� ,s�� and its temporal transform v̂�m� ,z� as
defined in Ref. 7,

v̂�m�,z� = 	
s=0

�

v�m�,s��zs � Tv . �5�

The quantity v̂�m� ,z� may be thought of as the discrete version of the Laplace transform of
v and is simply referred to as the z-transform. The inverse relation is defined as

v�m�,s�� =
1

2	i



Cz

v̂�m�,z�
zs+1 dz � T−1v̂ , �6�

where Cz is a closed contour around the origin in the complex z-plane that encloses only the
singularities at the origin, i=�−1, and the symbol T denotes the temporal transform. The trans-
formed variable v̂�m� ,z� is also referred to as the generating function within the random walk
community.9 Applying the temporal transform to �2� and �3� and making use of the shift property
of the T transform �T�Etv1�=z−1�v̂1�m� ,z�−v1�m ,0��� and carrying out some simplifications, we
arrive at the following equations for various generating functions in terms of the initial conditions:

�1 − zDx�ŵ1�m�,z� = w1�m,0� , �7�

�1 − �2zDx + z2�q̂1�m�,z� = q1�m,0� −
z

�2
Ex�q2�m,0� + q1�m,0�� , �8�

�1 − �2zDx + z2�q̂2�m�,z� = q2�m,0� −
z

�2
Ex

−1�q2�m,0� − q1�m,0�� . �9�

The characteristic operators that appear on the left hand sides of �7�–�9� are generic to the diffu-
sion and the Schrödinger equations under the 4RW model and are seen to be completely indepen-
dent of the boundary conditions. A remarkable feature of the spatial dependence of these operators,
which is not entirely evident in the initial Eq. �2� describing the transitional probabilities, is that
they all involve only the averaging operator Dx that is the discrete counterpart of the Laplacian
operator in the continuous case. Such a relation has already been alluded to in Sec. II. Both the
diffusion and the Schrödinger equations contain the Laplacian operator as far as the spatial vari-
ables are concerned, and the transformation from the continuous case to the discrete case for a
given order of accuracy is not unique. Employing a central difference formula for the spatial
operator will lead to Crank–Nicolson type of discrete equations,8 which, like the 4RW model,
result in a spatially second order accurate schemes. The important point to note from �9� is that the
unknown variable contains only the averaging operator Dx and that any other asymmetries that
arise from Ex or Ex

−1 alone are contained only on the right hand side, operating on the known initial
conditions. A formal solution to Eqs. �7�–�9� can be affected by using the inverse relation �6� and
evaluating the integrals in the complex z-plane after expanding the reciprocal of the characteristic
operators in a Maclaurin series. �Recall that the contour integral in the inverse operator in �6� is a
closed loop of vanishing size around the origin�. The procedure is similar to that outlined in Ref.
7 and will involve Chebyshev polynomials of the second kind for the wave functions q1 and q2.
The result is
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w1�m,s� = Dx
sw1�m,0� , �10�

q1�m,s� = Us�Dx

�2
�q1�m,0� −

1
�2

Us−1�Dx

�2
�Ex�q2�m,0� + q1�m,0�� , �11�

q2�m,s� = Us�Dx

�2
�q2�m,0� −

1
�2

Us−1�Dx

�2
�Ex

−1�q2�m,0� − q1�m,0�� , �12�

where Us�x� is Chebyshev polynomial of the second kind of order s and argument x. The formal
solution given in �10�–�12� are general enough and are valid for all appropriate boundary condi-
tions. The presence of the operator Dx

s in the diffusion variable w1�m ,s� is not surprising at all.
Indeed, in free space, �10� directly generates the characteristic function coss 
 of the probability
w1 when w1�m ,0� is expanded in a Fourier series with transform variable 
. By the same token,
the appearance of the polynomials Us�·� and Us−1�·� is intrinsic to the Schrödinger equation in the
4RW model, as already indicated previously. Note that the operators Dx �or any power of it� and
Ex commute and the order of these terms on the right hand sides of �11� and �12� is not important.
To complete the solution, we must now expand the unknown functions in terms of eigenfunctions
of the Dx operator that are consistent with the boundary conditions at m=0,�. In free space, the
appropriate eigenfunctions are plane waves with a continuous wavenumber as adopted in Ref. 7
�or said in other words, the unknown function is represented in terms of its Fourier transform or
series�.

For the boundary conditions indicated as in �4�, we seek an expansion of a spatial function
v�m� in terms of exponential and/or trigonometric functions. An exponential function of the form
v0�m�=rm is a valid eigenfunction provided that the base r=�1

−1=�2. Clearly this is only possible
in the special case of ��1�2ª�g=1, where �g denotes the geometric mean of �1 and �2. In such
a case, Dxv0�m�=0.5��1+�2�v0�m�ª�a ·v0�m�, where �a, being the arithmetic mean of �1 and
�2, is the eigenvalue pertaining to v0�m�. When �g�1, such an exponential function will not exist.
We will denote the presence of this exponential function by employing the Kronecker symbol ��g

1 .
A harmonic function of the form

uj�m� = Aj sin�kjm� + Bj cos�kjm�, j = 1,2, . . . �13�

is also a valid eigenfunction provided that

Bj�1 − �1 cos kj� = Aj�1 sin kj �14�

with the spatial frequency kj given by

sin�kj�� − 2�a sin�kj�� − 1�� + �g
2 sin�kj�� − 2�� = 0. �15�

Equations �14� and �15� are obtained by enforcing the boundary condition �4� at the two ends. A
trivial solution of Eq. �15� is kj =0. There will be a total of ��−1� nontrivial solutions of �15�, thus
constituting a total of � distinct eigenfunctions �including the function v0�m�� to represent the
solution of �9� and �12� at the points m=0, . . . ,�. Making use of �14� in �13� allows us to extract
a bare eigenfunction v j�m� �i.e., without the coefficient Aj and other common factors� in the form

v j�m� = sin�kjm� − �1 sin�kj�m − 1�� , �16�

with the spatial frequency set by �15� for a given �1, �2, and �. It can be easily verified that
Dxv j�m�=cos kj ·v j�m� so that the eigenvalue of v j�m� with respect to the averaging operator is
cos kj. Furthermore, the eigenfunctions v j�m� with distinct kj as well as v j�m� and v0�m� are
mutually orthogonal, i.e.,
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m=1

�−1

vi�m�v j�m� = 0, i, j = 1, . . . ,� − 1, i � j , �17�

	
m=1

�−1

v j�m�v0�m� = 0, j = 1, . . . ,� − 1. �18�

The following normalization results can also be readily established for the functions v0�m� and
v j�m�:

	
m=1

�−1

v0
2�m� =

�1
−2��−1� − 1

1 − �1
2 ª 1/a0 �19�

and

	
m=1

�−1

v j
2�m� =

sin�kj��
sin kj

��1 cos�kj�� − 2�� −
1

2
�1 + �1

2�cos�kj�� − 1��� +
��1 + �1

2�
2

− �1� cos kj

− �1
2 sin2�kj�� − 1�� ª 1/aj . �20�

Gathering all of the above results, an arbitrary function v�m� satisfying the boundary condition �4�
will admit a spectral representation of the form

v�m� = A0v0�m���g

1 + 	
j=1

�−1

Ajv j�m� , �21�

where the coefficients A0 and Aj of the basis functions v0�m� and v j�m� can be obtained in terms
of the function v�m� via the orthogonality conditions and normalization relations �17�–�20�,

A0 = a0	
m=1

�−1

v0�m�v�m� , �22�

Aj = aj 	
m=1

�−1

v j�m�v�m�, j = 1, . . . ,� − 1. �23�

With this spectral representation, it is clear that

Dxv�m� = A0�a · v0�m���g

1 + 	
j=1

�−1

Aj cos kj · v j�m� . �24�

Hence, the presence of Dx in the spatial domain is accounted for by multiplying the spectral basis
function term by its respective eigenvalue. In particular,

Dx
sv�m� = A0�a

s · v0�m���g

1 + 	
j=1

�−1

Aj coss kj · v j�m� �25�

and

Us�Dx

�2
�v�m� = A0Us� �a

�2
� · v0�m���g

1 + 	
j=1

�−1

AjUs� cos kj

�2
� · v j�m� . �26�

Having laid out the formulation for the general case, we will now consider two interesting special
cases which will merit a separate discussion.
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A. Totally absorbing boundaries

In this case �1=�2=0, which precludes the exponential solution v0�m�. Equation �15� implies
a solution kj =	j /�, j=1, . . . ,�−1. The eigenfunctions v j�m� will be reduced to sin�	jm /�� and
aj =2 /� from �20�. In this case, one gets the discrete sine transform16 representation for a function
satisfying Dirichlet boundary conditions,

v�m� = 	
j=1

�−1

Aj sin� j	m

�
�, Aj =

2

�
	
m=1

�−1

v�m�sin� j	m

�
�, j = 1, . . . ,� − 1. �27�

B. Totally reflecting boundaries

For totally reflecting boundaries at both ends, �1=�2=1, which dictate that �g=�a=1. Equa-
tion �15� indicates a solution kj = j	 / ��−1� , j=1, . . . ,�−1. The exponential function now reduces
to a constant function v0�m�=1. The normalization constants a0 and aj are obtained from �19� and
�20� as

1/a0 = �� − 1�, 1/aj = 2�� − 1�sin2� 	j

2�� − 1�� . �28�

An unknown function v�m� satisfying perfectly reflecting conditions at the two ends can then be
expressed as

v�m� = A0 + 	
j=1

�−1

Aj�sin� 	jm

� − 1
� − sin�	j�m − 1�

� − 1
�� = A0 + 	

j=1

�−1

2Aj sin� 	j

2�� − 1��cos�	j�m − 1
2�

� − 1
�

ª A0 + 	
j=1

�−1

Cj cos�	j�m − 1
2�

� − 1
� �29�

with the coefficients given by

A0 =
2

� − 1 	
m=1

�−1

v�m�, Cj =
2

� − 1 	
m=1

�−1

cos�	j�m − 1
2�

� − 1
�v�m�, j = 1, . . . ,� − 1. �30�

Equations �29� and �30� constitute the discrete-cosine-transform �Ref. 16� representation of a
function satisfying Neumann type of boundary conditions at the end points.

C. Solution for general case

The results given in �25� and �26� will now be used to determine the Green’s function13 of the
diffusion equation �10� and the Schrödinger equations �11� and �12�. The linearity of the governing
equations with respect to the initial conditions enables the solution to arbitrary initial conditions in
terms of this Green’s function. To this end we consider initial conditions of the form p��m ,0��
= P�0�m

m0, 1�m0��−1, where 	�=1
4 P�0=1. This initial condition corresponds to the case where

the particles are released from the location m0 in a state � with probability P�0. Letting 
1

= �P10− P30� /� and 
2= �P20− P40� /�, it is clear from the definitions that w1�m ,0�=�m
m0,

q1�m ,0�=
1�m
m0, and q2�m ,0�=
2�m

m0. Using the spectral representation given in �21�–�23� for the
functions w1�m ,0�, q1�m ,0�, and q2�m ,0�, we arrive at

w1�m,0� = a0v0�m0�v0�m���g

1 + 	
j=1

�−1

ajv j�m0�v j�m� , �31�
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q1�m,0� = a0
1v0�m0�v0�m���g

1 + 
1	
j=1

�−1

ajv j�m0�v j�m� , �32�

q2�m,0� = a0
2v0�m,0�v0�m���g

1 + 
2	
j=1

�−1

ajv j�m0�v j�m� . �33�

Substituting �31�–�33� into �10� and �11� and recalling relations �25� and �26�, we arrive at the
solution for the general boundary conditions as

w1�m,s� = a0�a
sv0�m0�v0�m���g

1 + 	
j=1

�−1

aj coss�kj�v j�m0�v j�m� �34�

and

q1�m,s� = a0v0�m0���g

1 �
1Us� �a

�2
�v0�m� −


2 + 
1

�2
Us−1� �a

�2
�v0�m + 1�� + 	

j=1

�−1

ajv j�m0�

��
1Us� cos kj

�2
�v j�m� −


2 + 
1

�2
Us−1� cos kj

�2
�v j�m + 1�� , �35�

q2�m,s� = a0v0�m0���g

1 �
2Us� �a

�2
�v0�m� −


2 − 
1

�2
Us−1� �a

�2
�v0�m − 1�� + 	

j=1

�−1

ajv j�m0�

��
2Us� cos kj

�2
�v j�m� −


2 − 
1

�2
Us−1� cos kj

�2
�v j�m − 1�� . �36�

D. Solution for totally absorbing case

We will now provide some numerical results for the special case of totally absorbing bound-
aries at the two ends. In this case, Eqs. �34�–�36� will be reduced to

w1�m,s� =
2

�
	
j=1

�−1

sin�	jm0

�
�sin�	jm

�
�coss�	j

�
� , �37�

q1�m,s� =
2

�
	
j=1

�−1

sin�	jm0

�
�

1Us� cos�	j

�
�

�2
�sin�	jm

�
�

−

2 + 
1

�2
Us−1� cos�	j

�
�

�2
�sin�	j�m + 1�

�
�� , �38�
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q2�m,s� =
2

�
	
j=1

�−1

sin�	jm0

�
�

2Us� cos�	j

�
�

�2
�sin�	jm

�
�

−

2 − 
1

�2
Us−1� cos�	j

�
�

�2
�sin�	j�m − 1�

�
�� . �39�

Because the Green’s functions satisfy reciprocity conditions, it is permissible to interchange m and
m0 in the above expressions without changing the field values. The solution for a continuous space
can be obtained by carrying out the same limiting process as outlined in Ref. 7. For example, Eq.
�37� reduces to the expression for the probability density function of the diffusion process with a
diffusion constant D with two totally absorbing points at x=0 and x=L and an impulsive initial
condition at x=x0,

p�x,t� =
2

L
	
j=1

�

sin�	jx0

L
�sin�	jx

L
�exp�−

	2j2Dt

2L2 � , �40�

a result that is found in many texts including Ref. 9. The results given in �34�–�39� are exact, and
as such, no validation is necessary. Nevertheless, it is interesting to compare the numerical data
they generate with those generated through direct random walk simulations, as the latter will more
likely be employed for more complicated time-dependent boundaries. In such cases, the analytical
results developed here will serve more as a validation check for the numerical results generated
through random walk simulations. The analytical results �labeled “Ana” in the figures� and the
results obtained by counting the fractional number of paths �labeled “Num” in the figures� in the
4RW simulations with initial conditions set at P10=0.5= P20 from the location m0=4 are shown in
Figs. 1 and 2 at s=16 and for �=32. For reference, the solution for Schrödinger equation in free
space is also shown in Fig. 2. For the parameters chosen in Fig. 2, the solution with boundaries
will differ from the free-space case only for 0�m�12, as is clearly seen in the figure. A large
number of realizations �about 108� was needed to arrive at numerically converging results, par-
ticularly for the Schrödinger equation whose solution involves difference in probabilities. Both
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FIG. 1. Comparison of analytical solution for w1�m� ,s��� with that obtained from counting paths in random walk
simulations for totally absorbing boundary conditions.
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figures reveal that the numerical simulated results closely mimic the analytical formulas derived
here. The numerical results also underscore the importance of a good numerical random number
generator, particularly needed for large s, as the sample size grows exponentially with s. The use
of entwined paths described in Ref. 17 is a possible means of getting around this difficulty,
although details have only been demonstrated there for the relativistic case of bounded particle
speed.

E. Appropriateness of the 4RW model to wave propagation problems

It might be worthwhile to comment a little on the relationship between the 4RW model and
the continuous parabolic equation for which the former is being targeted in numerical computa-
tions. For the parabolic equation encountered in a number of wave propagation problems such as
in underwater acoustics, radio wave propagation, and optical wave propagation in fibers, the
governing equation for the field variable � in a homogeneous medium with time-harmonic exci-
tation is of the form

��

�t
=

i

2k0

�2�

�x2 , �41�

where the independent variable t denotes the axial spatial coordinate and the variable x denotes the
lateral spatial coordinate, k0=2	 /� is the wavenumber in the medium, and � is the wavelength of
the time-harmonic excitation. Equation �41� describes two-dimensional wave propagation in the
t-x-plane subject to the approximation that all waves travel within an angle of 
= �15° about the
axial direction.3 It can be shown that the maximum step size � in the lateral direction is restricted
by ��� / �2 sin 
max�, where 
max is the maximum angle of propagation with respect to the t-axis.
As 
 is restricted to a value less than 15° for the parabolic approximation to be valid, we may take
sin 
max� tan 
max�� /�. We then get the approximate relation

	� � k0�2. �42�

It may be remarked parenthetically that the inequality �42� translates to the condition that the
Schrödinger equation is valid for describing particle motion for nonrelativistic particle speeds with
the normalized speed v /c� tan 
max�0.27 for 
max=15°, where c is the speed of light in free
space. In the 4RW model, the relation between the step sizes of the form �=k0�2 is implied and
this is consistent with the inequality �42� If �=� /�2, then this relation implies that �=	�. Both
of these values are well within the maximum values permitted by the parabolic equation approxi-
mation and it is believed that the 4RW model constitutes a very appropriate discretization scheme
for numerically handling the parabolic equation.
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FIG. 2. �Color online� Comparison of the exact solution of Schrödinger equation with that obtained through counting paths
in random walk simulations.
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IV. CONCLUSIONS

Analytical expressions have been provided for the transitional probabilities of a 4RW model
on a lattice constrained in space with dissimilar boundaries and subject to partially reflecting
boundary conditions. Special cases of perfectly absorbing boundaries and perfectly reflecting
boundaries have been treated. Solution for the transitional probabilities evaluated at time s to the
diffusion process is shown to involve sth power of the averaging operator Dx, whereas those of the
Schrödinger equation involve Chebyshev polynomials of the second kind of order s and s−1 with
argument Dx /�2. These are the general characteristics of diffusion and Schrödinger processes in
the 4RW model irrespective of the boundary conditions. Different boundary conditions will dictate
different choices of the eigenfunctions in which the initial probabilities at s=0 are expanded. The
eigenfunctions in the most general case will involve exponential function as well as harmonic
functions. The exponential function will only exist when the parameters present in the boundary
conditions satisfy certain relationship. While the results presented in this paper should have a
significance of their own for random walk with dissimilar boundaries, it is hoped that they will
also serve as benchmark cases for numerical stochastic methods designed to solve more compli-
cated situations. Although it had not been the major focus of the current paper, numerical imple-
mentation of the random walk solution necessitates the availability of an effective random number
generator to sufficiently populate all portions of the sample space. This is particularly critical for
field evaluated at large times. Extension of these results to higher dimensions and to situations
with a potential field is a topic worthy of further study and will be taken up in the future.
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Angular Correlation Properties
With Random Multiple Scattering

Jie Xu, Member, IEEE, and Ramakrishna Janaswamy, Fellow, IEEE

Abstract—The angular correlation of received fields in multi-
path environments is studied. The focus is put on two-dimensional
(2-D) cases, and the frequently used uncorrelated scattering as-
sumption is tested through full-wave Monte Carlo simulations. The
results show that this assumption is valid for the discrete finite
spectra of the received waves when the scattering objects in the en-
vironments are distributed in complete randomness, either when
they are surrounding the transmit/receive regions or in clusters
away from them. The correlation among wave components from
different angles increases only when the randomness of the scat-
terer deployment is reduced.

Index Terms—Angular correlation, discrete finite spectrum,
random media, uncorrelated scattering assumption.

I. INTRODUCTION

T HE angular spectrum of certain electromagnetic (EM)
field in the presence of a multipath environment is

the complex amplitude of the plane wave components that
consist of the field arriving from different angles at a fi-
nite sized receive volume. Its properties are of special use
to the determination of the multipath richness of the field,
which in turn is crucial to the performance of either the
simpler spatial diversity schemes [1] or the more advanced
multiple-input-multiple-output (MIMO) systems [2]. The mul-
tipath richness depends not only on the angular spread within
which waves are incident onto the receive volume, but also
on the correlation between different angular wave components
[3]. Generally speaking, the wider the angular spread and the
less correlated the angular components are, the more multipath
richness there is in the received field.

The uncorrelated scattering assumption is an angular corre-
lation model frequently adopted by researchers for random mul-
tipath propagation studies [4]–[8]. The term “uncorrelated scat-
tering” here is consistent with the one adopted by a recent study
of Kennedy et al. [8], and it assumes that the scattered wave re-
ceived from different angles are completely uncorrelated. Most
of the time it is further assumed that the angular spectrum is also
zero mean, which will be shown later in this study to be actually
redundant. This uncorrelated angular scattering assumption is
different from the wide sense stationary uncorrelated scattering
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(WSSUS) assumption proposed by Bello [4] on a first look.
However, it was pointed out in [3] that the WSSUS assump-
tion can eventually lead to the uncorrelated angular scattering
assumption, which is the subject of interest here. The mathemat-
ical tractability of this model makes it very popular in the liter-
ature when closed form conclusions and qualitative interpreta-
tions are sought after. Although most researchers agree that this
assumption is only a convenient mathematical idealization, little
work has been done to determine its validity and how well it rep-
resents a true random environment. Therefore, the objective of
this work is to study the autocorrelation of the angular spectra of
scattered EM waves in the presence of discrete random media,
and to investigate the validity and applicability of the uncorre-
lated scattering assumption.

A majority part of this work is carried out by solving scat-
tering problems that represent multipath environments through
surface integral equation based full wave techniques [9], [10].
The operation frequency is chosen to be 3 GHz. For the 2-D
systems under consideration, the scattering objects are mod-
eled by lossy dielectric cylinders of different shapes. The com-
plex dielectric constant is taken to be that of bricks at 3 GHz,

[11], which can be used to approximate building
structures in outdoor environments. Different or multiple di-
electric constants could be used, and it will only influence the
complexity of the numerical calculations. When either the real
permittivity or the conductivity of the material varies, the cor-
responding wavelength changes, which requires different dis-
cretizations on different object surfaces. However, it is believed
that the final conclusions of the study will be independent of spe-
cific values. As will be shown by the numerical results presented
later, the validity of the uncorrelated scattering assumption is de-
termined by the randomness of the scattering object placement.
For more efficient solution of the problems, the fast multipole
method (FMM) is used [12], [13], which can directly results in
the angular spectra of the fields in a finite receive volume. To ob-
tain the correlation information between different angular wave
components, the Monte Carlo simulation technique is utilized,
and the number of realizations that consist the sample pool is
about 500 for every case studied.

The rest of the paper is structured as follows. Section II in-
troduces the basic concepts and mathematical essentials of the
study. Some important practical considerations concerning the
angular spectra are pointed out in Section III. The angular cor-
relation of the scattered waves is then studied through full wave
Monte Carlo simulations, and the obtained results are presented
and discussed in Section IV. Finally Section V concludes this
study. Throughout the work, a 2-D time-harmonic propagation
scenario is assumed. The time convention is adopted,
where is the radian frequency of the waves.

1053-587X/$25.00 © 2009 IEEE
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Fig. 1. Errors in �� � due to ill-posedness of numerical computation. (a) Configuration of a scattering system. (b) Computed coefficients.

II. THEORY

A. Angular Spectrum

Consider a finite obstacle free receive volume in two di-
mensions, and assume that it can be enclosed by an imaginary
circle of radius , which is also obstacle free. It is well known
that the scattered field, which satisfies the 2-D homogeneous
Helmholtz equation, takes the form

(1)

in the circular area irrespective of the sources and scattering ob-
jects outside [14]. In (1), is the Bessel function of the
first kind and of order , is the local cylindrical
coordinate of the observation point with respect to the center
of the circle, is the wavenumber in the back-
ground medium ( is the wavelength), and is the expansion
coefficient for the th cylindrical harmonic. For a given accu-
racy requirement, the series can be truncated into a finite length

, where the factor is a constant number slightly
greater than unity and controls the accuracy of the truncation.
It is indicated in [15] that a sufficient condition to ensure the
convergence of the truncated series is . Notice must be
taken that for the series to converge, it does not require the co-
efficients to approach zero when . As a matter of
fact, it is the exponential decay property of high order
that ensures the convergence [12], [15], [16].

By using the integral representation of the Bessel func-
tions , (1) can be
rewritten as

(2)

where

(3)

(4)

act as the complex amplitudes of the plane wave components
of the received scattered field, and will be distinguished from
each other in this study as the true and effective finite angular
spectra of the field, respectively. It is seen that both spectra are
continuous functions of propagation angle , and all the plane
wave components are considered to be propagating waves. Fur-
thermore, the angular spectra are in the form of Fourier series
whose coefficients are , and it is straightforward
to obtain the cylindrical harmonic coefficients from the
Fourier coefficients of by

(5)

Analogous to representing a periodic time domain signal in
its Fourier series, the different coefficients in (3) and
(4) correspond to different frequencies consisting of the an-
gular spectra. Clearly, the finite spectrum is obtained from the
true one by neglecting all the high frequency contents, i.e.,
assuming for . Since the actual values of
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Fig. 2. Finite angular spectra. (a) Continuous spectra. (b) Discrete spectra.

in this range may not be negligible, the finite spectrum is
not necessarily a close approximation of the true one. However,
because decays exponentially when , the two
spectra produce practically the same field in the receive volume.
Without causing any confusion, the term frequency will be used
throughout the rest of this work referring to the frequency
components of angular spectra.

The true angular spectrum of the scattered field is meaningful
if all orders of are available a priori. On the other hand,
given the field in the finite receive volume only, it is extremely
difficult, if not impossible, to obtain its true angular spectrum,
because the high frequency components produce practically
zero field in the volume and the inverse problem becomes
ill-posed. Physically, a finite aperture only provides limited
angular resolution [17], [18]. In order to appreciate the higher
angular frequencies, the size of the aperture has to be increased.
Due to this reason, what really matters for the scattered field in
the receive volume is the finite spectrum.

B. Uncorrelated Scattering Assumption

In a random environment, the angular spectrum of the field in
a finite receive volume is a random process. The autocorrelation
function of this process is usually called the angular correlation
of the field

(6)

where represents expectation and represents complex
conjugate. The uncorrelated scattering assumption assumes that
the scattered waves from different angles are completely uncor-
related, which can be represented mathematically as

(7)

for nonzero mean . By substituting (3) into both sides of
(7), it is easy to arrive at

(8)

for any and . Then using (8) with , one can find out
that the variance of is zero for any order , i.e.,

(9)

This suggests that the sequence of “random variables” are
actually constants with probability 1, and hence becomes
a deterministic function, which is contradictory to the starting
point that angular spectrum is a random process. The only case
of resolving this contradiction is when the spectrum is a zero
mean process, for which the uncorrelated scattering assumption
takes the form

(10)

where is the angular power spectrum proportional to

, and is the Dirac delta function. One can
easily check (see the Appendix) that the sufficient and neces-
sary condition for (10) is

(11)

which is a function of only the order difference re-
lated to the th Fourier coefficient of the angular power
spectrum. Now one can clearly see that the uncorrelated scat-
tering assumption for the true angular spectrum (zero mean) of
the received field is equivalent to a stationary coefficient corre-
lation of its Fourier series expansion. It is also worth mentioning
here that the Fourier coefficients of the angular power spectrum
completely determines the spatial correlation of the field as sug-
gested in [6].

From this alternative form of the uncorrelated scattering as-
sumption, it can be deduced that the expansion coefficient
may not become negligibly small for large orders almost surely.
Otherwise setting in (11) will lead to

for any finite , which suggests a zero scat-
tered field in the receive volume. However, it is reiterated here
that even though the high frequency components of the true an-
gular spectrum may have significant amplitudes when the uncor-
related scattering assumption is valid, they are of no practical
relevance to the finite receive volume because of the resulting
negligibly small field caused by higher order Bessel functions.

III. PRACTICAL CONSIDERATIONS

Given the field in a finite-sized receive volume, only the
coefficients roughly in the order range
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Fig. 3. ��� � � for systems where 51 cylinders are around the receive volume. (a) Real part. (b) Imaginary part.

can be correctly computed with high confidence.
Noise and numerical errors can easily blow up the higher orders
during the inverse process due to their ill-posedness. One way
of obtaining is to solve the corresponding scattering
problem by the means of surface integral equations [9], [10]
and apply the fast multiple method (FMM) [12], [13], provided
that all the scatterers are separated from the receive volume by
at least a distance that is comparable to the size of the volume
(to roughly ensure the physics of propagating plane waves).
Fig. 1 shows a system with a single circular dielectric scattering
cylinder and the computed coefficients . The radius of
the cylinder is and its dielectric constant is .
The transmitter (TX) is a unit-amplitude electric line source,
and the receive volume (RX) is a circular region whose radius
is taken to be and for two cases. It can be seen from
Fig. 1(b) that for both receive volume sizes the computed higher
order coefficients deviate from the smooth curve formed by the
lower ones, which is a manifestation of the errors incurred. The
positions of the deviation are marked by two ellipses, which
are around and , respectively. These results
suggest that it is unlikely to obtain the true angular spectra by
manipulating the fields in a finite receive region.

In principle, the true spectra can be acquired by measurement
provided that the equipment is ideal, i.e., the receive antenna
has an infinitely narrow beam. However, any practical antenna
only has a receive pattern with finite beam width, which makes
it difficult to resolve the fast oscillating components of the an-
gular spectra. Therefore, it is still difficult to get the true angular
spectra, and the left-hand side (LHS) of (10) cannot be evaluated
directly. To test the uncorrelated scattering assumption, one can
only rely on the stationarity of (11) in the correctly computable
low frequency range as a partial verification.

Due to this inability to determine the true angular spectra, it
is more reasonable to focus on the finite spectra in (4), which
produce practically the same field in the receive volume as do
the true ones. Furthermore, since a finite spectrum excludes all
the higher frequencies, it is also possible to approximate the

Fig. 4. ���� �� � � �� for systems where 51 cylinders are around the receive
volume.

corresponding integration in (2) as a summation of finite terms
following the trapezoidal rule

(12)

where , is a prede-
fined uniform angular grid, is the grid size,
and is the grid number. The grid number here is
taken to be the same as the number of observable frequency
components in the spectrum, and the accuracy is assured as sug-
gested by Rokhlin in his development of the FMM [12] and
the bandwidth consideration mentioned by Chew [16]. The grid
size can also be interpreted as the angular resolution of the
receive volume, and (12) suggests that this resolution is fine
enough to reconstruct the field everywhere inside the volume.
If one further defines , the sequence
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Fig. 5. System with four groups of three cylinders around the receive volume. (a) ���� � ��. (b) �� �� �� � � ��.

constitutes a discrete finite spectrum of the re-
ceived scattered field.

The finite spectrum does not satisfy the uncorrelated scat-
tering assumption because it is easy to check that the correla-
tion between its Fourier coefficients of various orders is not sta-
tistically stationary. Even so, it is still possible that two of its
angular components that are separated far enough are uncorre-
lated or only weakly correlated, which mathematically means

(13)

with . Furthermore, due to the limited angular
resolution associated with the finite receive volume, it is un-
necessary to seek for correlation between angles separated less
than the resolution size . Therefore, it would be interesting
to test if (13) is true for . In the numerical results pre-
sented in Section IV, the angular correlation will only be evalu-
ated among the discrete wave angles . Moreover, for better
illustration of the results, the normalized autocorrelation coeffi-
cient is considered

(14)

Another issue worth mentioning is the relation between the
true and finite angular spectra. Compared to the true spectrum,
even though the finite one ignores all the high frequency compo-
nents for , which might actually have significant
amplitude, it is still possible that the two resemble each other
quite well (see the example that follows). When the discrete fi-
nite spectra are considered, the errors come not only from the
frequency domain truncation, but also possibly from angle mis-
matching, which is also demonstrated by the following example.

When a single plane wave is incident upon a circular re-
ceive volume centered at the origin, the true angular spectrum
is clearly nonzero for only one angle, i.e., ,
where is the incident angle. The corresponding coefficients
are , which are of unit magnitude up to infi-
nite order. Suppose the radius of the receive volume is , the

finite spectrum includes low frequency components.
Fig. 2 shows the continuous and discrete finite angular spectra

and with incident angle and . The
ripples in the continuous finite spectra of Fig. 2(a) are obviously
caused by ignoring the high frequency components. However,
the strong peaks in the figure correctly identify the incident an-
gles. For the discrete finite spectra in Fig. 2(b), when ,
it is correctly indicated that there is only one angular compo-
nent. However, when , all the other components are
also present. This is because is one of the pre-defined
angles while is not. The mismatching between
the incident angle and the uniform grid requires all angular com-
ponents to appear as a compensation.

IV. SIMULATION RESULTS

This section studies a number of different scenarios and the
validity of the uncorrelated scattering assumption is tested. In
the first system studied, a line source transmitter and a circular
receive volume of radius are separated by . Dielectric
scattering cylinders of different shapes are randomly distributed
in a circular ring around the receive volume in a nearly uniform
way, with the only requirement being that the scatterers do not
overlap with each other. The inner radius of the ring is and
the outer radius is . The shapes of the cylinder can be cir-
cular, elliptical, or square, but they all have the same perimeter

. Fig. 3 shows the grayscale plots of the real and imaginary
parts of the correlation when the number of cylinders
is 51 (corresponding to a scatterer area density around 11.5%).
It can be seen that is only a function of the differ-
ence between the two indices and . This stationarity sug-
gests that it is likely that the true angular spectra satisfy the un-
correlated scattering assumption. To accentuate high correlation
with dark grayscale, Fig. 4 shows the amplitude of the simulated
complementary angular correlation of the discrete finite spectra,
i.e., . For the complementary correlation coef-
ficient, values close to zero indicate high correlation. The waves
from two distinct discrete angles are seen to be almost uncorre-
lated, suggesting that (13) is valid. The few weakly correlated
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Fig. 6. System with 36 cylinders distributed around the receive volume in partial randomness. (a) ���� � ��. (b) �� �� �� � � ��.

Fig. 7. System with 24 cylinders distributed in a cluster away from transmit and receive volumes. (a) ���� � ��. (b) �� �� �� � � ��.

spots around the diagonal line may be due to the errors from
the numerical calculation or insufficient number of realizations.
Different number of cylinders are also used to see the effect of
scatterer density. The results are similar to those in Figs. 3 and
4, suggesting that the uncorrelated scattering assumption is not
strongly affected by the scatterer density of the system.

Next, one cylinder of each shape (3 total) are used to form a
group, and such groups of cylinders are distributed in the scat-
tering region. The relative positions of the cylinders within a
group are fixed, but the groups can still be randomly located
and orientated. Fig. 5 shows the results with 4 groups (12 cylin-
ders), and similar observations to before can be made. For this
case, each group can be viewed as one complicated scattering
object.

Then, a system similar to the first one is considered, but the
randomness of the cylinder placement is decreased. Fig. 6 shows
the results with 36 cylinders surrounding the receive volume.
However, among these cylinders, only half of them are ran-

domly distributed, with the other half taking fixed locations
and orientations. It is observed that although the discrete an-
gular spectrum still looks somehow uncorrelated, the correla-
tion is no longer a stationary function, and hence the
uncorrelated scattering assumption is violated.

In another type of system, 24 scattering cylinders are placed
in a circular cluster of radius separated from both the
transmit and the receive volumes. The cluster is in the direction
of 45 to the transmitter and 135 to the receiver, the same
geometry as Fig. 1(a) with the single cylinder replaced by a
cluster. The simulated results are presented in Fig. 7. It can be
seen that the coefficients satisfy the stationarity condition
less as well as the previous cases. The finite discrete angular
spectrum appears to be correlated in the angular range 0 –270
but uncorrelated from 270 to 360 , which is about the angular
range of the actual scattered waves from the cluster. Physically
there should be no angular components whatsoever coming
from the range 0 –270 . It is believed that the seemingly
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Fig. 8. System with 51 cylinders around the transmitter. (a) ���� � ��. (b) �� �� �� � � ��.

Fig. 9. System with 24 cylinders around the transmitter and receiver, respectively. (a) ���� � ��. (b) �� �� �� � � ��.

correlation in this range is due the errors introduced by trun-
cating the series in (4) and angle mismatching discussed in the
previous section. Hence, it is still possible that the uncorrelated
scattering assumption is valid for the true spectrum, and (13) is
true for the discrete finite spectrum.

Next, scatterers are distributed in a circular ring around the
transmit volume instead of the receive volume. The size of
the ring is the same as before. Fig. 8 shows the magnitudes
of and the complementary correlation coefficient

with 51 cylinders as scatterers. Observations
similar to the case of Fig. 7 are also made here, where the
angular range of uncorrelated finite spectrum is correctly iden-
tified at around –20 . The same arguments as the previous
case can be made.

In the last system studied, 24 scatterers each are randomly
distributed in circular rings around both the transmit volume
and the receive volume. The results are shown in Fig. 9, and

the wave components from different angles are observed to be
uncorrelated. A simple comparison with Figs. 4 and 8 reveals
that the wave behavior of the received field in this system is
dominated by the influence of the scatterers immediately around
the receive volume, which is a very reasonable outcome.

V. CONCLUSION AND DISCUSSION

By studying the angular components of the scattered field
in a finite-sized receive volume in the presence of various
scattering environments, the validity of the uncorrelated scat-
tering assumption is investigated numerically through rigorous
full wave electromagnetic simulation. The results about the
stationarity of the spectrum coefficients indicate that it is likely
that the assumption is generally valid for the true spectra in
systems where scattering objects can take their positions and
orientations completely randomly, no matter they are around
the receive volume, the transmitter, or in clusters separated
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from them. In the meanwhile, the results of the correlation co-
efficients among the discrete plane wave components directly
suggest that the discrete finite spectra are also likely to be un-
correlated when the scattering object placement is completely
random. However, as soon as the randomness of the scatterer
placement is decreased, the assumption is observed to break
down in the sense that the correlation of the spectrum expansion
coefficients is no longer stationary. Intuitively, there is a direct
cause-effect relationship between the randomness of the scat-
terer deployment and the validity of the uncorrelated scattering
assumption. In outdoor environments where a large number of
objects can move around freely, this assumption might be a
good model to describe the multipath wave propagation.

The case when the receiver is moving with constant velocity
is of special interest when properties such as space-time cross
correlation and space-frequency cross correlation are desired
[19]. For such cases, the field as a function of the receiver loca-
tion, which in turn is a function of time , can be obtained from
(2) as , where

is the initial location of the receiver, is the
maximum Doppler frequency shift, and is the direction angle
in which the receiver moves at velocity . Similar analysis can
be carried out and the same conclusion about the angular cor-
relation of the wave spectrum can be reached, provided that the
receiver does not move out of the receive volume. Outside the
volume, the starting (1) may not be valid.

Furthermore, even though the study presented here is only
for the received field, the transmit side can be included simply
by considering reciprocity of the systems, and the uncorrelated
scattering assumption can be easily extended to the double-an-
gular domain. Specifically, the field in the receive volume as
the response to some source in the transmit volume can be ex-
pressed as a combination of plane waves arriving at the receive
volume in different angles of arrival (AOA) due to a series of
plane waves leaving the transmit volume in different angles of
departure (AOD). When the scattering objects are distributed in
complete randomness, the coefficients of all these plane wave
components are uncorrelated pairwise. This extended assump-
tion has been successfully applied in a recent work of the au-
thors to develop a statistical propagation model between finite
transmit and receive volumes [20].

APPENDIX

ALTERNATIVE FORM OF UNCORRELATED

SCATTERING ASSUMPTION

It is proved here that the sufficient and necessary condition
for the uncorrelated scattering assumption in (10) is (11). The
necessity is shown first.

Necessity: By substituting (3) in the LHS of (10) and using
the Fourier expansion of the Dirac delta function on the right-
hand side (RHS), (10) becomes

(15)

Matching the Fourier coefficients on both sides and some simple
manipulations will lead to

(16)

which represents the power angular spectrum in a Fourier series.
Using the standard way to calculate the Fourier coefficients, one
arrives at the final form of (11)

(17)

This completes the proof of necessity.
Sufficiency: The LHS of (10) can be represented as

(18)

Substituting (17) into (18), one obtains

(19)

which is exactly (10). This completes the proof of sufficiency.
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Modeling Radio Transmission Loss in Curved,
Branched and Rough-Walled Tunnels With the

ADI-PE Method
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Abstract—We discuss the use of the parabolic equation (PE)
along with the alternate direction implicit (ADI) method in pre-
dicting the loss for three specialized tunnel cases: curved tunnels,
branched tunnels, and rough-walled tunnels. This paper builds on
previous work which discusses the use of the ADI-PE in modeling
transmission loss in smooth, straight tunnels. For each specialized
tunnel case, the ADI-PE formulation is presented along with
necessary boundary conditions and tunnel geometry limitations.
To complete the study, examples are presented where the ADI-PE
numerical results for the curved and rough-walled tunnel are
compared to known analytical models and experimental data, and
the branched tunnel data is compared to the numerical solutions
produced by HFSS.

Index Terms—Alternate direction implicit (ADI), parabolic
equation, radiowave propagation, tunnels.

I. INTRODUCTION

T HE alternate direction implicit (ADI) method coupled
with the vector parabolic equation (PE) has previously

been shown to model radiowave propagation in straight tunnels
with smooth walls [1]. However, due to the rapid growth of
telecommunication systems, different tunnel environments also
need to be studied. Subway and underground road tunnels
typically curve or branch out into side tunnels and have walls
which are not smooth. These tunnel geometries are not always
well described by analytical models and accurate numerical
solutions become important. In real tunnels, it has been shown
that, over a long distance, high order modes are heavily at-
tenuated and low order modes dominate [3]. When tunnels
are treated as imperfect waveguides, these fields represent
waves which travel near the axis of propagation. The PE can
accurately model low order modes for electrically large tunnels
[1], [2]. The standard PE is an approximation of the Helmholtz
equation that assumes fields travel within to the axis of
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propagation. The PE lends itself to numerical discretization
more easily than the Helmholtz equation but does not account
for backscattered fields. Furthermore, the slow varying nature
of low order modes implies the use of implicit finite difference
(FDM) techniques where large discretizations along the axis of
propagation are allowed.

The Crank-Nicolson method is an unconditionally stable im-
plicit FDM that has been traditionally used to solve for the
vector PE. However, the Crank-Nicolson method can also be-
come computationally intensive when dealing with fine meshes
or when a large number of propagation steps is required [1]. The
alternate direction implicit (ADI) technique is a modification of
the Crank-Nicolson method that reduces computational labor by
solving for the fields one dimension at a time [1], [6]. The trun-
cation error introduced by the ADI modification is of the same
order as the error already introduced by the Crank-Nicolson
method. Previous work has shown, for modest discretizations,
the ADI and Crank-Nicolson solutions are nearly identical [1].

In this paper, we use the vector PE, following the formula-
tion of Popov [2], to solve for fields in specialized tunnel envi-
ronments. For each case, we briefly discuss the ADI formula-
tion as well as the boundary conditions used to characterize the
tunnel wall. In Section II we discuss the curving tunnel and com-
pare the ADI-PE results to known analytical approximations
and published experimental data [7]. In Section III, we study
the branch tunnel and compare our ADI-PE numerical results
to the numerical results obtained using HFSS [13] for a smaller
sample problem. Finally, in Section IV, we formulate a model
for tunnels with surface roughness and compare our ADI-PE re-
sults with known, experimentally verified, analytical solutions.

II. TUNNELS WITH SMOOTHLY CURVED AXIS

A. Curved Tunnel Propagation Model

Let us consider a tunnel with a curved axis. The geometry of a
typical curved tunnel with a rectangular cross-section is shown
in Fig. 1, where is the curved axis, or range, and is the
range dependant radius of curvature. The vector PE was formu-
lated by Popov and was shown to accurately model electromag-
netic propagation in curved tunnels [2].

The vector PE for a tunnel with a smooth curve in the hori-
zontal plane, as formulated in [2], (with time dependence,
where is frequency and is time) is

(1)

0018-926X/$26.00 © 2010 IEEE
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Fig. 1. A typical tunnel with a curved axis.

where is the free space wave number, and is a vector
function that is directly related to the transverse electric field.
The relationship of to the transverse electric field is given by

(2)

where and are the and components of the electric
field, respectively. The vector PE is formulated using asymp-
totic analysis, where it is assumed that and
(where is the wavelength), which means it is only valid for
high frequency propagation and in tunnels with smooth axis of
curvature.

Along the tunnel wall, the impedance boundary condition is
enforced and the transverse fields become coupled, as shown by
(3):

(3)

where and are the and components of the unit
normal vector at the boundary and is the normalized surface
impedance [2]. For a wall with relative permittivity and con-
ductivity (in S/m), we use the grazing angle approximation
for surface impedance [1], [5]

(4)

where , and , is the complex permit-
tivity and relative conductivity, respectively. The discretizations
along the , and axes are represented by , , and ,
respectively.

A Peaceman-Rachford [6] ADI formulation of (1) can be
summarized by

(5)

(6)

where , and . The differ-
ence quotients are and

and

(7)

(8)

Note that when , and become unity and (5)
and (6) reduces to the ADI formulation for the straight axis PE
shown in [1, equations (22) and (23)]. The ADI equations in
(5), (6) represents a marching technique where the transverse
electric field is solved step by step within the tunnel domain [2].
Starting with the known initial field at the plane, the
fields of each successive plane is solved in consecutive order, at
propagation steps of , until the field at the desired range is
solved.

B. Curved Tunnel Field Approximations

Approximate analytical solutions describing fields in curved
tunnels with rectangular cross sections and constant curvature
radii are well known and discussed in [3], [8]. At high fre-
quency, , and for large radii of curvature, , the
fields are best described in terms of Airy functions [3], [8]. As
shown in (3), the and components of the normal vector
vanishes alternatively on the vertical and horizontal walls in
tunnels with rectangular cross sections. As a result, the com-
ponents of the vector function become decoupled and can
be solved independently. The horizontal and vertical polariza-
tions can now be solved separately by enforcing the decoupled
impedance boundary conditions on all four walls. Following the
derivation shown in [2], the vertical component, , of the vector
function is shown to be (keeping the same notation as [2]):

(9)

(10)

(11)

where and are the Airy functions of the first and second
kind, is the propagation constant, ,
and are constant eigenvalues to be found from the boundary
conditions, given by

(12)
For large curvature radii, the vertically polarized fields are

(13)

(14)

where the integers and physically represent field variations
along the and axes and specifies a possible mode. The mode
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TABLE I
ANALYTICAL AND NUMERICAL MAFS FOR THE CURVED TUNNEL WITH

RECTANGULAR CROSS SECTION FOR 950 MHZ

attenuation per unit length can be found from the complex ex-
ponent, , to be [2]

(15)

where

(16)
and . The part of (15) de-
scribes small radii of curvature and the part de-
scribes large radii of curvature (or almost straight tunnels). Mah-
moud and Wait [9] numerically calculated the attenuation fac-
tors for curved waveguides using more precise transcendental
equations. As shown in [2, Fig. 3], the aysmptotic equation (15)
is in very good agreement with Mahmoud and Wait’s numerical
solutions. We will use the aysmptotic equation to validate the
numerical simulations of the ADI-PE.

C. Comparison of the ADI-PE to Analytical Solutions

In this sub-section, we validate the ADI-PE with numerical
examples. We consider a rectangular tunnel with dimensions
of 8 m 4 m and walls with relative dielectric constant,

, and conductivity, . We used the dominant
mode of the vertically polarized field, as shown

by (13) and (14), as our initial field. The discretizations used
for the 950 MHz case were , and

; and the discretizations used for the 1.8 GHz
simulations were , and .

The mode attenuations per unit length, or mode attenuation
factors (MAFs), from (15) and the ADI-PE simulations are tab-
ulated in Tables I and II for different curvature radii.

As shown in Tables I and II, the numerical MAFs closely
follow the aysmptotic solutions over the range of curvature radii.
Furthermore, as the curvature radii decreases, the number of
reflections from the walls along the curved path increases and
so does the loss. The percent error, defined by

(17)

TABLE II
ANALYTICAL AND NUMERICAL MAFS FOR THE CURVED TUNNEL WITH

RECTANGULAR CROSS SECTION FOR 1.8 GHZ

Fig. 2. Percent error of the MAFs of the curved waveguide for 950 MHz (dot,
solid) and 1.8 GHz (circle, solid) for �� � ���� �. The percent error of
the MAFs for 950 MHz (dot,dashed) and 1.8 GHz (circle, dashed) for �� �

����� �. The vertical lines show the region where � � �� for 950 MHz
(solid) and 1.8 GHz (dashed).

is shown in Fig. 2 as a function of , (where is the length
of the diagonal of the rectangular cross section) for 950 MHz
(dot, solid) and 1.8 GHz (circle, solid). The figure also shows the
results for smaller discretizations ( ) with dashed
curves to show that the solutions are convergent. The vertical
lines in Fig. 2 show the region where for the 950 MHz
(solid) and 1.8 GHz (dashed) cases, respectively. The parameter,

, was selected from [2] because it is a wavelength depen-
dent term that must be much less than unity to ensure accurate
results. Furthermore, , is the Fresnel number and is one
of the parameters which govern the diffraction processes in the
waveguide [2]. As Fig. 2 shows, there is less than 5% error in
MAFs over the entire range of considered; even when there
are sharp bends and the condition, , is not satisfied.
Finally, one of the important characteristics of the curved tunnel
is the accumulation of the field near the concave wall at
(the whispering gallery mode). Fig. 3(a) shows the dominant

field as defined by (13) and (14) across the initial
plane at 1.8 GHz. The whispering gallery mode feature can be
seen in Fig. 3(b), where the field generated by the ADI-PE, at
a range of 2000 m for , has an accumulation along
the wall.

D. Comparison of the ADI-PE to Ray Tracing Simulations

In this section, we compare the ADI-PE simulations to the ray
tracing simulations shown in Wang et al. for a curved waveguide
[7]. The geometry of the waveguide (top view) is shown in Fig. 4
and is comprised of two straight sections and a curved section.



2040 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 6, JUNE 2010

Fig. 3. The �� � mode at (a) � � �� and at (b) � � ����� for � � �����

at 1.8 GHz.

Fig. 4. Geometry of the curved tunnel with straight sections.

The axial length of the waveguide is 400 m and the length of
the curved section is 200 m with a radius of curvature of 300 m.
The cross-sectional dimensions of the waveguide are 8 m 6
m. In [7], the transmitter and receivers are vertically polarized
half-wave dipoles operating at a frequency of 1 GHz. The trans-
mitter and receivers are located at the center of the waveguide
at heights of 3 and 1.5 m.

To establish a basis of comparison, we first look at the straight
waveguide. Fig. 5 shows the normalized received power of the
ray tracing simulations (solid) and the ADI-PE simulations
(dashed). The ADI-PE is simulated using the far field expres-
sions of a half-wave dipole in free space placed 30 m outside
the entrance as the initial field. The field is tapered by a unit
Gaussian with standard deviation, to minimize error
associated with using incorrect field values at the walls [1]. The
dielectric constant and conductivity of the waveguide walls are
taken to be the typical values of 5 and 0.01 S/m, respectively.
Simulations show that over the range of acceptable values of
dielectric constants ( ), there is little change in the
received power. The simulations are done with discretizations
of , and . As the figure
shows, the ADI-PE closely models the nulls in the received
power generated from ray tracing simulations. The ADI-PE
results are vertically offset so that the least squares fit line of the
ADI-PE data and the experimental data (in the curved region)
intersect at the start of the curved region (at 100 m).

As discussed in [1] and [3], propagation in straight tunnels
can be characterized by a near and far zone. In the near zone,
rays propagating at large angles make significant contributions
to the field and take the form of rapid oscillations. In the far
zone, these rays are severely attenuated and paraxial rays are
dominant. In the near zone, the PE is not accurate, but so long
as the low order modes are illuminated, the PE will be accurate
in the far zone. The start of the far zone is determined by the
size, shape and frequency of the tunnel [3]. The far zone can
be found by calculating the attenuation constant of each mode.
However, the attenuation constant and amplification term for
each mode may not always be found analytically. If we summed

Fig. 5. Normalized received power from ray tracing (solid) and ADI-PE
(dashed) along the axis of propagation for the straight tunnel.

Fig. 6. Normalized received power from ray tracing (solid) and ADI-PE
(dashed) along the axis of propagation for the curved tunnel.

the equally weighted first 100 modes for the rectangular waveg-
uides using the propagation constant expressions defined by [3,
Eqs. (54) and (55)], we can see that the region before 500 m
is in the near zone. In the range considered here, the contribu-
tions of the high order modes account for the discrepancies in
the ADI-PE and ray tracing results. These discrepancies are in
the form of rapid oscillations in the experimental data along the
axis of propagation. Fig. 6 shows the normalized received power
for the curved waveguide. As shown in the figure, the ADI-PE
closely tracks the received power of the ray tracing simulations
within the curved section.

E. Comparison of the ADI-PE to Experimental Data

In this section, we compare the ADI-PE to experimental data
for the Lin-sen subway tunnel, shown in [7, Fig. 6]. The Lin-sen
subway is comprised of two curved sections with radii of cur-
vature of 455.68 m and 354.74 m, respectively, separated by a
straight section. The straight entrance and exit sections are not
considered here because they do not lie within the same hori-
zontal plane as the rest of the tunnel. The tunnel cross-section is
approximately rectangular with dimensions of 6 m 8 m. The
transmitter is located outside the tunnel and is a vertically po-
larized Yagi-Uda antenna operating at 942 MHz. The receiver
is placed off center at a height of 1.85 m above the ground.

Fig. 7 shows the received power from measurements (solid)
and the ADI-PE simulations. As before, the dielectric constant
and conductivity are assumed to be the typical values of 5 and
0.01 S/m. In this case, the field entering the horizontal section of
the subway is unknown and represents a possible source of error.
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Fig. 7. Experimental data (solid) and ADI results with the ��

(long-dashed),�� (short-dashed) mode and the half wave dipole (dot-solid)
as the initial field for the Lin-sen subway tunnel.

However, we may choose a low order mode as our initial field
because, at large distances, only low order modes dominate [1].
Simulations done for various initial fields show that the

mode of the field (long-dashed), as defined by (13)
and (14), produces solutions that best fits the experimental data.
The discretizations are , and .
As Fig. 7 shows for this initial field, even with our limitations,
there is still good agreement between the ADI-PE solutions and
the measured results. The ADI-PE models the nulls and overall
trend of the received power. The figure also shows the field in-
tensity when the mode (short-dashed) and the
far field expressions for the half-wave dipole (dot-line) are used
as initial field. What this shows is that the field intensity is very
sensitive to the initial field. This is because we are dealing with
a short curved section (approximately 50 m), and high order
modes make significant contributions in to the straight section.
As in the previous example, we are not operating in the far zone
and high order modes make significant contributions. The high
order modes are represented by the rapid fluctuations in the mea-
sured data. The PE approximation does not accurately model
these modes and it is a source of error. These results were ob-
tained in a matter of minutes using a typical PC (1 GB RAM).
By comparison, a typical ray tracing code would require another
simulator to generate the initial field and must track each reflec-
tion and diffraction for each ray and can become computation-
ally intensive.

III. BRANCH TUNNELS

A. Branch Tunnel Model

Let us now consider the case of a straight tunnel that branches
into a side tunnel. A typical branch tunnel geometry is shown
in Fig. 8(a) and (b), where the main tunnel axis is shown as a
solid bold line and the branch tunnel axis is shown as a long
dashed line. The branch angle, , is the angle between the axes
of the straight and branch tunnels. Fig. 8(a) and (b) show the in-
cident and reflected rays as it enters the branch. The short dashed
line marks the input plane of the branch tunnel. The grazing

Fig. 8. The incident and reflected rays entering the branch tunnel when (a)
� � � and (b) � � � .

angle, , and the angle of the ray entering the branch, , are
also shown. In order for the PE approximation to be valid, the
branch angle must be small enough. More precisely, the branch
angle must be less than 30 to ensure reflected rays entering the
branch are within our PE limit of . Also, considering the
rays diffracted from the corners of the junction, we can arrive
at a much more stringent requirement of . Diffracted
rays entering the main tunnel at angles greater than 15 will be
weak when compared to reflected rays and will experience se-
vere attenuation after the tunnel junction.

As in the previous section, we solve the vector PE shown
in (1) with . The slope of the branching wall is
modeled using a staircase approximation (see Fig. 9(a)) and the
impedance boundary condition is enforced on all four walls as
outlined in [1] and [2]. The fields along the planes marking the
entrance of the main tunnel (line C) and the branch tunnel (line
B) are solved simultaneously and then used as the initial fields
for the two separate diverging tunnels.

B. Comparison of ADI-PE Results to HFSS Simulations

In this section we validate the ADI-PE branch model with a
numerical example. We simulate a 0.9 m 1.0 m rectangular
tunnel with a branch angle of 15 and operating at a frequency
of 900 MHz. The initial field is a unit strength Gaussian field
source in the far zone. The source, with standard deviation of
0.75 , is centered 5 m before the tunnel junction (only the re-
gion near the tunnel junction is shown in Fig. 9). This means we
are only using the lowest order modes as our initial field [1], [3].
The fundamental mode propagates near our PE limit at an angle
of 14 with respect to the axis of the main branch.

The ADI-PE simulations are done with discretizations
(within the tunnel junction) of , and

. The cross-sectional coordinates are indicated
by and , while the axial coordinate in the main tunnel is
denoted by the -axis. The -axis discretizations are made
small within the tunnel junction to ensure small step sizes for
the staircase approximation. Outside the junction region, dis-
cretizations along the axis of propagation can be made as large
as a few wavelengths [1]. To validate our results, we compare
our solutions with HFSS [13] and plot the magnitude of the
field along the main and branch tunnel axes in Fig. 9(b). The
HFSS simulations use radiation boundary conditions to termi-
nate the tunnel and symmetry planes to reduce computational
labor. HFSS is a full wave simulator and, unlike the ADI-PE,
solves for backscattered waves as well as waves traveling in the
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Fig. 9. (a) Geometry of the branch tunnel. (b) The axial field intensity of the main tunnel from ADI-PE (solid), HFSS (dashed), the branch tunnel from ADI-PE
(asterisk) and HFSS (dashed).

forward direction. The backscattering is seen as fluctuations
in the axial field in Fig. 9(b) near the diverging tunnels. The
dielectric constant and conductivity of the tunnel walls is 5 and
0.1 S/m, respectively. A high conductivity is chosen so there
is appreciable loss in the small tunnel dimensions allowed in
HFSS. As we can see from Fig. 9(b), there is strong agreement
in the axial field intensity along the main and branch tunnel
axes between the ADI-PE and HFSS. The figure also shows
there is about a 10 dB drop when going from the main to the
branch tunnel (at the point marked C in Fig. 9(b)). Although
the ADI-PE is used to simulate a tunnel with a relatively
small electrical cross-section (2.7 3 ), it is capable of
handling larger tunnels at higher frequencies without running
into memory problems on an average (2 GB RAM) PC [1].

IV. ROUGH-WALLED TUNNELS

A. Rough-Walled Tunnel Model

So far we considered only tunnels with smooth walls, but in
this section we investigate the effects of surface roughness. Sur-
face roughness is the local variation of the tunnel wall relative to
a mean surface level [4], [5]. In this study we consider random
surface deviations in an otherwise smooth wall. For the purpose
of numerical computations we assume the random deviations to
be Gauassian distributed. A Gaussian distribution of the surface
level can be characterized by a root-mean-square height devi-
ation and correlation length, [4], [5]. Smooth tunnels have
a typical RMS height deviation of 0.01 m and rough surfaces,
such as those found in coal mine tunnels, have a RMS height
deviation of 0.1 m [4]. The excess loss of the field due to
roughness in a rectangular tunnel is given by (18)[4]

(18)

where and are the tunnel dimensions in the and axes,
respectively, and is the range. The excess loss is derived by
treating the rough surface as a random process and from ray
tracing techniques, as outlined in [10] and [4]. Equation (18) is

shown in [4] to agree with experimental data taken for coal mine
tunnels for frequencies ranging from 200 – 1000 MHz.

In our model, we treat small scale roughness by replacing
the rough surface with a flat impedance surface that produces
an equivalent specular reflection coefficient. The equivalent
impedance for horizontal and vertical polarization is shown in
(19) and (20), [5]

(19)

(20)

where is the surface impedance of the smooth wall, is
the Gamma function, and is the grazing angle. When taking
into account the effects of roughness, we substitute the surface
impedance in (3) with the equivalent impedance of either (19)
or (20).

Due to the PE angle limitation of , the maximum slope
angle of the rough surface and the grazing angle must satisfy
the following relationship

(21)

where is defined as shown in Fig. 10. As we can see from
Fig. 10, the angle of the specular reflection of the incident ray,
denoted by , depends on the height deviation of the roughness.
The roughness angle is related to the RMS height and correla-
tion length by

(22)
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Fig. 10. The geometry of the rough surface.

TABLE III
ANALYTICAL AND NUMERICAL MAFS FOR THE RECTANGULAR TUNNEL

TABLE IV
ANALYTICAL AND NUMERICAL MAFS FOR THE CIRCULAR TUNNEL

B. Comparison of Numerical and Analytical Solutions

We consider a rectangular 4.26 m 2.10 m tunnel and a cir-
cular tunnel with radius of 2 m. The fundamental mode is
used as the initial field of the rectangular tunnel and the funda-
mental mode generated by a loop ring excitation is used as
the initial field for the circular tunnel. Both tunnels operate at a
frequency of 1 GHz and the dielectric constant and conductivity
of the tunnel walls are taken to be 12 and 0.02 S/m, respectively.

Tables III and IV summarize the mode attenuation factors
(MAFs), or the loss in dB/km, of the smooth and rough tun-
nels with rectangular and circular cross-sections, respectively.
In real tunnels, as in our simulations, the lowest order mode will
determine the MAF over a long distance. We used (18) as our
analytical loss factor for both the rectangular and circular tunnel.
As we can see from (18), the loss due to roughness is a function
of wavelength. To notice an appreciable loss at 1 GHz, we as-
sume the walls are as rough as cave walls. Therefore, the RMS
height is 0.1 m (0.33 ) and correlation length is 2.5 m (8.33 )
for both tunnels.

The grazing angle of the fundamental mode of the rectangular
and circular tunnels is computed using the analytical expres-
sions for the propagation constant, (where represents
propagation in the positive direction), outlined in [4] and [3].
The grazing angle is obtained from plane wave theory by [12]

(23)

and is found to be 4.56 and 5.25 for the rectangular and cir-
cular tunnel, respectively. The roughness angle is found to be
2.29 from (22), and (21) is satisfied. The ADI is simulated
using discretizations of , and

Fig. 11. The field intensity for the straight tunnel without roughness (solid), for
the straight-curved-straight case (dashed), and for the straight-curved-straight
case with roughness (dot-line).

for the rectangular tunnel and
and for the circular tunnel. As we can see from
Table III, the excess loss due to roughness for the rectangular
tunnel is about 7 dB when using either (18) and 6.3 dB when
using ADI-PE. Simulations using a unit strength Gaussian initial
field (where multiple modes are allowed) with
and show much less than 1% difference in MAF.
Table IV shows the same close agreement in numerical and the-
oretical excess loss for the tunnel with circular cross-section.
In this case, the excess loss due to roughness is about 16 dB.
The accuracy of the results suggests that the equivalent surface
impedance, along with ADI-PE, is an adequate model for de-
termining loss due to surface roughness. For completeness, we
look at the case of the curved tunnel with roughness. Fig. 11
shows the field intensity for the rectangular tunnel for the
straight smooth case (solid), the curved smooth case (dashed)
and the curved case with roughness (dot-line) with a radius
of curvature of 1800 m. The curved section is in between two
straight sections marked off by two vertical lines. The MAF of
the curved section with roughness is about 37.7 dB/km. Tunnels
with this type of configuration represents a topic of possible fu-
ture work.

C. Comparison of the ADI-PE to Experimental Data

In this section, we examine a real underground tunnel with
rough walls and a curving axis. The tunnel is approximately
3 m 3 m and the walls are characterized by ,

and with side wall roughness of
[11]. The transmitter is placed at the entrance 1.71 m above the
ground and the receivers are 2.73 m above the ground and op-
erate at a frequency of 2.4 GHz. The data was recorded at every
meter along the length of the tunnel. The curvature of the tunnel
axis is shown in the boxed region in Fig. 12. The experimental
data, shown as the solid line, was provided by the research team
of Moutairou et al. [11].

The numerical simulations were done by computing the radii
of curvature as a function of the tunnel axis and applying rough-
ness for the side walls. A unit strength Gaussian with
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