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Abstract – This paper discusses the performance
comparison of different algorithms for classification, es-
timation and filtering problems. Two information the-
oretic measures, namely, the empirical mutual infor-
mation and the asymptotic information rate are pro-
posed for simulation based performance evaluation and
algorithm comparison. They can be used as a guide-
line for designing a practical procedure to measure the
performance of different algorithms with limited compu-
tational resources. Other useful performance measures
are reviewed and their relation to the two new mea-
sures discussed. Several practical examples are used to
provide some insights on the inherent difficulty of algo-
rithm ranking and the advantage of using the informa-
tion theoretic measures for algorithm comparison.

Keywords: Performance evaluation, information the-
oretic measure, detection, estimation, filtering.

1 Introduction
Performance evaluation aims to study the behavior

of a system operated by various algorithms and com-
pare their pros and cons based on a set of measures or
metrics each of which usually maps different algorithms
into different real values or partial orders for ranking.
In practical applications, as the system being studied
becomes more and more complex and complicated, the
analytical results regarding the performance of different
algorithms with respect to a particular measure usually
do not have closed forms or they are computationally
intractable. Thus simulation based performance eval-
uation serves as an indispensable tool to measure the

performance of various algorithms. On the other hand,
there are several distinctive issues on how to develop a
good procedure to collect and disseminate information
from the system relevant to performance aspects. Good
measures to reliably rank different algorithms as well
as the assessment on the credibility of the ranking can
also guide the algorithm development especially with
limited computational resources. The issues related to
performance evaluation metrics and algorithm develop-
ment to optimize them are often interrelated and de-
mand an interdisciplinary research on system design,
data analysis, simulation methods, and statistical in-
ference. In this paper, we do not intend to address the
design issues for performance evaluation. Our major
focus is on the performance evaluation of classification,
estimation and filtering problems. The algorithms we
want to compare are the so-called classifiers, estimators,
filters or a combination of the above for joint problems.
A natural measure is the classification error, estimation
error or filtering error which requires some clarification
for different types of problems. With this setting, one
also seeks to develop an algorithm that achieves the
minimum error under a given performance measure.
Different error measures will result in different solu-
tions each of which corresponds to the minimizer of a
particular error measure. However, there is no consen-
sus on which measure is particularly good for algorithm
comparison. One often has to evaluate several measures
and display all of the ranking results for a practitioner
to make a decision based on a certain weighted combi-
nation of different measures in a common metric space.

We want to make a distinction between the algo-
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rithm developer (AD) and the performance evaluator
(PE) since they may use different measures for differ-
ent purposes. Furthermore, we assume that the prob-
lem being studied has a probabilistic structure and each
algorithm provides the statistical inference of this prob-
abilistic model so that the PE will gain certain amount
of information by running an algorithm. With this
problem formulation, we propose two information the-
oretic measures for ranking different algorithms. One
measure is called the empirical mutual information be-
tween the PE and the AD, which depends on the size
of the test data. To have an information theoretic
measure which is independent of the data length, we
propose another measure called asymptotic information
rate, which characterizes the performance improvement
of an algorithm with large data size for performance
evaluation. These two measures are useful and comple-
mentary to some standard and existing error measures,
some of which may not be suitable for the performance
evaluation of joint classification, estimation, and filter-
ing problems. We relate the two information theoretic
measures to classical hypothesis testing, classification,
quantization and estimation problems and provide in-
sights on their usage in some nonstandard settings. Fi-
nally, we give several examples to show the usefulness of
the information theoretic measures for algorithm com-
parison.

2 Performance Comparison Us-
ing Mutual Information Based

Measure
In this section, we formulate performance evaluation

as a statistical inference problem where the PE holds
certain prior knowledge of the system parameters and
the algorithm being evaluated provides additional infor-
mation to reduce the uncertainty of those parameters.
The mutual information quantifies how much the PE
can gain by running a particular algorithm.

The problems being considered include hypothesis
testing, classification, parameter estimation and filter-
ing. We assume that the PE can generate data re-
peatedly based on the same or different probabilistic
structures to test different algorithms with a predefined
measure. The underlying truth that governs the data
generation can be (1) a statistical hypothesis among
many predetermined ones or (2) a value in the param-
eter space or (3) a time function from the realization
of a random process. The algorithm is supposed to
choose a hypothesis, produce an estimate of the un-
known parameter or a time function of the unknown
process based on the data generated by the PE. The
purpose of the PE is to rank different algorithms us-
ing a set of measures. A fundamental question is what
measures the PE tends to adopt. The measures have to
be applicable to all the aforementioned problems and

possibly joint ones.
To begin with, we consider a classification prob-

lem where the PE has K hypotheses denoted as
{H1, ..., HK}. Each hypothesis can generate a data
sequence {z1, z2, ...} with a certain mechanism condi-
tioned on that particular hypothesis being true. The
data sequence is used by the algorithm to determine
which hypothesis governs the underlying data genera-
tion mechanism. A standard measure is the classifica-
tion error for each hypothesis. However, one can not
directly compare the performance of two algorithms by
looking at two arrays of the classification errors for all
hypotheses. Of course one can use the weighted clas-
sification error as a measure and those weights can be
derived by minimizing a Bayesian risk function if one
has the prior probability of each hypothesis being used
to generate the data [9]. In our formulation, these prior
probabilities are determined by the PE and they are
inherently subjective. However, the choice of probabili-
ties also represents the PE’s belief on which hypothesis
is true without evaluating any algorithm.

Denote by X the discrete random variable with prob-
ability mass function (pmf) P (X) given by

Pr(X = Hi) = pi, i = 1, ..., K (1)

For a data sequence {z1, ..., zN} of length N , denote
X̂N the discrete random variable with pmf indicating
the probability that a particular hypothesis is chosen by
the classifier based on the data sequence of length N .
The probability that hypothesis i is true conditioned on
hypothesis j being chosen by the classifier is denoted by

Pr(X = Hi|X̂N = Hj) = qij , i = 1, ..., K; j = 1, ..., K
(2)

The entropy of X is

H(X) = −
K∑

i=1

pi log pi (3)

The conditional entropy of X given X̂N is

H(X |X̂N) = −
K∑

i=1

pi

K∑
j=1

qij log qij (4)

The mutual information between X and X̂N is defined
as

I(X ; X̂N) = H(X) − H(X |X̂N) (5)

It quantifies the reduction of uncertainty about which
hypothesis is true based on the classification results.
If the classifier always chooses the correct hypothe-
sis, then the mutual information achieves its maximum
H(X). Note that if the classifier always chooses the in-
correct hypothesis when testing two hypotheses, we still
get the maximal mutual information and one can easily
modify the decision of this classifier to achieve zero er-
ror. Thus the mutual information is a good indication
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of the classification performance. If one wants to max-
imize the mutual information over the distribution of
X , then a uniform distribution among the K hypothe-
ses should be used to generate the data sequences, i.e.,
all classes have equal prior probabilities [6].

Another popularly used performance measure to rank
classifier is the classification error. However, this mea-
sure can be misleading as illustrated in [14] (p. 532).
To take the advantage of using both mutual information
and classification accuracy in ranking the classifiers, one
may consider a new measure, namely, the normalized
error to information ratio, given by

αN
eN

I(X ; X̂N )
(6)

where eN is the classification error and αN is a pre-
specified parameter based on the PE’s preference be-
tween having a better classification accuracy and gain-
ing more information. The best classifier should min-
imize the above measure. Note that when no error is
made by the classifier, the mutual information gained
by the performance evaluator becomes irrelevant. This
is reasonable since the PE will gain the maximum in-
formation when the classifier has zero error no matter
what prior distribution among the K hypotheses that
the PE uses.

Next, we consider a parameter estimation problem
where θ is unknown and to be estimated in a parame-
ter space Θ. We use a vector zN to denote the observed
data sequence {z1, ..., zN} of length N . The estimator
uses zN to estimate θ and provides the estimate θ̂N . We
assume that the estimate is in another space Θ̂. The
performance evaluator has prior uncertainty about θ
which is characterized by the probability density func-
tion (pdf) f(θ). The differential entropy of θ is

h(θ) = −
∫

Θ

f(θ) log f(θ)dθ (7)

The differential entropy of θ given θ̂N is

h(θ|θ̂N ) = −
∫

Θ

f(θ|θ̂N ) log f(θ|θ̂N )dθ (8)

In practice, the PE can only concentrate on a parameter
space of finite support especially when the likelihood
function Λ(zN |θ) does not have a parametric form. For
convenience, we assume that the prior pdf is proper
and the above differential entropies always exist. In
this case, the mutual information between θ and θ̂N is
defined as

I(θ; θ̂N ) = h(θ) − h(θ|θ̂N ) (9)

Similarly, for a random process θ(t), an algorithm
should provide the estimate θ̂N (t) and we can define
the average entropy of θ(t) as

h∗(θ(t)) = lim
t→∞

∫ t

−∞ h(θ(u))du

t
(10)

The average mutual information between θ(t) and θ̂N (t)
is defined as

I(θ(t); θ̂N (t)) = h∗(θ(t)) − h∗(θ(t)|θ̂N (t)) (11)

The major issue of the above generalization of the
mutual information measure from hypothesis testing
and classification problems to estimation and filtering
problems is that the PE needs to evaluate the integral
accurately when applying the mutual information mea-
sure which requires the knowledge of the continuous pdf
f(θ|θ̂N ) or f(θ(t)|θ̂N (t)). In practice, estimating a con-
tinuous pdf using a finite number of realizations is an
ill-posed problem and one has to assume certain prop-
erties (e.g., smoothness, finite dimensional parametric
family) of the pdf in order to obtain a unique solu-
tion. Alternatively, if we modify the estimation and
filtering problems so that the original probability mea-
sure is approximated by another measure defined in a
finite partition of the parameter space, then the PE
only needs to evaluate the pmf of θ or θ(t) in a finite
discrete space, which makes the algorithm comparison
feasible via computer simulations. We will explain this
idea next.

3 Empirical Mutual Information

and Asymptotic Information
Rate

In this section, we convert the performance evalua-
tion of a class of estimation and filtering problems into
a classification problem with tolerable distortion of the
mutual information based on a properly chosen distor-
tion metric. We call the resulting measure empirical
mutual information which can be applied to algorithm
comparison without the ill-posed issue in density esti-
mation.

A distortion measure is a mapping d : Θ × Θ̂ → R+

from the set of parameter-estimate pairs into the set of
nonnegative real numbers. A commonly used distortion
measure is the squared error given by

d(θ, θ̂) = ||θ − θ̂||2 (12)

Note that the Euclidian distance between the parame-
ter and its estimate is also a metric since the parameter
space is usually a metric space. A distortion measure
is said to be bounded if

max
θ∈Θ,θ̂∈Θ̂

d(θ, θ̂) < ∞ (13)

In most cases, the parameter space and the estimate
space are the same. We are interested in the partition
of the parameter space with a desired distortion bound.
An M partition of Θ, i.e., Θ = Θ1 ∪ · · · ∪ ΘM and
Θi ∩ Θj = φ, ∀i �= j, is said to be dM bounded if

max
θ0,θ1∈Θi

d(θ0, θ1) ≤ dM , i = 1, ..., M (14)

876



For a bounded parameter space and a bounded dis-
tortion measure, one can choose an appropriate value
dM to have a finite partition of the parameter space
being dM bounded. A particular subset Θi of the pa-
rameter space represents a hypothesis i while θ̂ ∈ Θi

represents the estimator chooses the correct hypothe-
sis when θ ∈ Θi. A good distortion measure often has
the property that dM can be made arbitrarily small
even when M is finite. The partition of the parameter
space and the associated distortion measure are com-
monly treated in quantization theory for designing the
best partition of the parameter space and the presen-
tative value of each region to minimize the expected
conditional distortion measure [7, 6]. Here our focus is
to convert the estimation and filtering problem into a
classification problem so that the mutual information
measure can be evaluated to compare the performance
among different estimators. One may argue that there
exist several good performance measures for the estima-
tion problem such as the mean square error, efficiency,
consistency and unbiasedness [15, 1]. However, these
measures require that the PE has the knowledge of the
likelihood function of the data sequence being gener-
ated or the prior distribution of the parameter which
may not be available for some practical problems.

We assume that, for any given value θ ∈ Θ, the PE
can generate a data sequence of length N and evaluate
the estimator using θ̂N . For any subset Θi of the M
partition of Θ, the distortion is dM bounded. The prior
distribution of θ being in one of the M partitions is
given by

Pr(θ ∈ Θi) = pi, i = 1, ..., M (15)

The conditional probability Pr(θ ∈ Θi|θ̂N ∈ Θj) is
given by

Pr(θ ∈ Θi|θ̂N ∈ Θj) = qij , i = 1, ..., M ; j = 1, ..., M
(16)

The empirical entropy H(θ) is given by

H(θ) = −
M∑
i=1

pi log pi (17)

The empirical conditional entropy of θ given θ̂N is

H(θ|θ̂N ) = −
M∑
i=1

pi

M∑
j=1

qij log qij (18)

The empirical mutual information between θ and θ̂N is

I(θ; θ̂N ) = H(θ) − H(θ|θ̂N ) (19)

This empirical mutual information depends on the data
length N . The approximation accuracy to the true
mutual information depends on the partition and the
proper choice of dM . The maximum empirical mutual

information can be achieved when the estimator always
chooses the correct region among the M partitions if the
true value of θ is in that region. If the performance eval-
uator has additional knowledge about the construction
of the estimator in an analytic form, then the asymp-
totic performance using uniform quantization can also
be evaluated [6].

For the estimation of a random process, i.e., a filter-
ing problem, the PE can choose a sequence of unknown
parameters θS = {θ1, ..., θS} at t1, ..., tS as the repre-
sentative points (samples) of the process and evaluate
the distortions at those times based on the M parti-
tions of θi (i = 1, ..., S). Assuming that at any time
ti the M partition of θi is dM bounded, the empirical
average mutual information is approximated by

I(θ(t), θ̂N (t)) ≈ 1
S

I(θS ; θ̂S
N ) (20)

In the above definition, we also assume that a data
sequence of length N is generated at each time ti
(i = 1, ..., S). Clearly, the empirical mutual informa-
tion between θi and θ̂i depends on N . If {θ1, ..., θS} are
independent, then we have

I(θ(t), θ̂N (t)) ≈ 1
S

S∑
i=1

I(θi; θ̂i,N ) (21)

To have a performance measure independent of N ,
we will focus on the asymptotic information gain as N
increases. In a classification problem, the information
gain from one additional observation is I(X ; X̂N+1) −
I(X ; X̂N). However, as N goes to infinity, the infor-
mation gain can approach to zero. Denote by ∆IN the
information gain by using N + 1 observations instead
of N observations. For an estimation problem, we have

∆IN = I(θ; θ̂N+1) − I(θ; θ̂N ) (22)

For a filtering problem, we have

∆IN = I(θ(t); θ̂N+1(t)) − I(θ(t); θ̂N (t)) (23)

The mutual information can be computed using the em-
pirical mutual information with dM bounded partition.
If there exists a value β such that

0 < lim
N→∞

N−β∆IN = C(β) < +∞ (24)

then we define the asymptotic information rate as β and
the gain as C(β).

For an unknown parameter θ with Gaussian prior
distribution being observed under additive white Gaus-
sian noise, we have β = 1 and and C(β) = 0.5 [8].
For a target with white noise acceleration motion being
observed by N sensors with position measurements un-
der additive white Gaussian noises independent across
sensors, in the steady state, the centralized estimator
yields β = 0.75 while the distributed estimator using
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track-to-track fusion without any feedback has β = 0
[5]. Clearly, a larger value of β indicates a better rate
of information gain in the asymptotic regime. If two
algorithms have the same rate β, the one with a larger
C(β) is expected to have a better performance for large
N . To estimate the asymptotic information rate em-
pirically, the PE needs to compute the increase of the
mutual information due to an additional observation as
a function of N and uses the log plot to find the slope
within a certain range for large N . We will elaborate
this with additional illustrative examples in the next
section.

4 Illustrative Examples
Example 1 (classification) [14]: Consider a classi-
fication problem where the PE provides input x to the
AD and the AD outputs y(x) so that the PE can com-
pare y with the true class value t. The PE used 100
testing samples to evaluate three classifiers A–C with
the confusion matrix as below. We can see that both
classifiers A and B have the same error rate of 10% and
classifier C has a larger error rate of 12%. However,
classifier A simply guesses that the outcome is 0 for
all cases while classifier B makes no error when declar-
ing y = 0 and has a 50% chance being correct when
declaring y = 1 as opposed to the prior probability
P (t = 1) = 0.1. Clearly, the PE knows that the mutual
information from classifier B is larger than that from
classifier A. Using normalized error to information ratio
measure, no matter what αN the PE chooses, classifier
A will always be the worst while classifier B is better
than classifier C.

Classifier A Classifier B Classifier C
y 0 1

t=0 90 0
t=1 10 0

y 0 1
t=0 80 10
t=1 0 10

y 0 1
t=0 78 12
t=1 0 10

Next, we assume that the classifier can output a ‘?’
indicating that it is not sure whether the input should
belong to any of the two classes. The PE wants to
compare classifiers D and E with 100 testing samples
and the confusion matrix is shown as below. Both clas-
sifiers D and E have 6% error rate and 11% rejection
rate (‘?’), however, one should not conclude that they
have the same classification performance. Classifier E
is just the classifier C in disguise: When C declares
y = 1, E will toss a coin with equal chance declaring
y = 1 and y =?. Classifier D is more informative than
classifier B: it makes no error when declaring y = 0 and
has a 60% chance being correct when declaring y = 1.
Again, using normalized error to information ratio, no
matter what αN the PE chooses, classifier D is always
better than classifier E. It is in line with our intuition
that classifier B performs better than classifier C.

Classifier D Classifier E
y 0 ? 1

t=0 74 10 6
t=1 0 1 9

y 0 ? 1
t=0 78 6 6
t=1 0 5 5

Note that the most informative classifier to the PE
does not necessarily provide the best classification ac-
curacy. However, the information theoretic measure is
meaningful especially when the AD does not provide
the PE the statistical model that the classification al-
gorithm is built upon but the classifier itself.
Example 2 (hypothesis testing): Consider a binary
detection problem with the observation sequence given
by zi = θ + wi, i = 1, ..., N . The signal θ is modeled by
the following two simple hypotheses H0: θ = 0 vs. H1:
θ = 1. The noise sequence is white and wi follows the
double exponential distribution with the pdf

p(w) =
1
2
e−|w| (25)

One detector uses the likelihood ratio test that com-
putes the test statistic

T1N =
N∑

i=1

ui (26)

where

ui =




1 zi > 1
2zi − 1 0 ≤ zi ≤ 1
−1 zi < 0

(27)

Another detector uses the sign test

T2N =
N∑

i=1

sign(zi − 0.5) (28)

and compare with the threshold 0. The sign test is
not optimal but it only assumes that the noise pdf is
symmetrical around zero. The performance evaluator
has equal prior probability on the two hypotheses and
wants to compare the two detectors using the informa-
tion theoretic measure. Figure 1 shows the empirical
mutual information as a function of the total observa-
tions N . We can see that the likelihood ratio detector
has a slightly better performance than the sign detec-
tor and the performance gap decreases as N increases.
When N approaches infinity, both detectors achieve the
maximum information of 1 which implies no detection
error. Note that, under small N (low SNR regime), the
sign detector has the mutual information close to that
of the likelihood ratio detector. This is consistent with
the standard analysis that the sign detector is locally
optimal [9]. In this example, we can see that the sign
detector does not lose performance by much compared
with the optimal likelihood ratio detector.
Example 3 (parameter estimation): A coin has
a probability p of coming up heads which is unknown.
The performance evaluator tosses the coin N times and
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Figure 1: Comparison of the empirical mutual informa-
tion between the likelihood ratio detector and the sign
detector.

M heads have occurred. If the performance evaluator
has a uniform prior (corresponding to a Beta distribu-
tion with parameters B(1, 1)) on p, then the posterior
of p is B(M + 1, N − M + 1) where B(m, n) denotes
Beta distribution with pdf

f(x) =
Γ(m + n)
Γ(m)Γ(n)

xm−1(1 − x)n−1 (29)

The mutual information is the difference of the differ-
ential entropy between the prior and the posterior on p.
This Bayesian procedure requires that the performance
evaluator has the knowledge of the likelihood function
and the inference on p is summarized by the whole pos-
terior density.

If the performance evaluator does not have the com-
plete knowledge of the likelihood function and the al-
gorithm developer only provides a point estimate on p,
then the posterior density can not be fully specified. In
this case, the empirical mutual information is helpful
for performance comparison. Let us assume that one
estimator gives p̂1 = M

N and another estimator gives
p̂2 = M+1

N+2 . The performance evaluator desires to have
|p− p̂| ≤ 0.1 as the distortion bound. Five possible val-
ues {0.1, 0.3, 0.5, 0.7, 0.9} of p are used to generate N
tosses to evaluate the performance of the two estima-
tors. Figure 2 shows the empirical mutual information
as a function of N for the two estimators. We can see
that for small N , the maximum likelihood estimator
p̂1 (Estimator 1) has slightly larger mutual information
than the other estimator p̂2 (Estimator 2), which is the
Bayesian predictive probability that the next toss will
be a head after seeing M heads in N tosses. Note that
the result does not say that p̂1 yields better estimation
accuracy than p̂2, however, the performance evaluator
can interpret it this way: “If p can only take five possi-
ble values, I will gain more information from estimator

p̂1 than from estimator p̂2.” If the performance evalu-
ator chooses αN=1, then the normalized error to infor-
mation ratio also reveals that p̂1 performs better than
p̂2. In fact, the assumptions made in p̂1 seems closer to
the performance evaluation procedure and the results
are as expected.
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Figure 2: Comparison of the empirical mutual informa-
tion between the two estimators.

Example 4 (joint classification and estimation):
Consider a communication problem with the following
observation equation

zi = ηxi + ni, i = 1, ..., N (30)

where xi ∈ {−1, 1} is the message to be transmitted;
η ∈ (0, +∞) is an unknown fading coefficient; and
ni ∼ N (0, σ2) is the additive white Gaussian noise.
Given the observation sequence, one has to decode
the message {xi} and estimate the fading parameter
η jointly. In communication, one often cares only the
decoding performance, however, some joint classifica-
tion and estimation problems with similar setup may
require to evaluate the decision and estimation errors
simultaneously. Assume that the message sequence is a
Markov chain with known transition probability, then
the maximum likelihood estimate of both {xi} and η is

{x̂i}, η̂ = arg min
{xi},η

N∑
i=1

(zi−ηxi)2− logP (xi|xi−1) (31)

which is computationally prohibitive if one has to exam-
ine all possible message sequences. An efficient method,
denoted by Algorithm A, makes the decision first using

x̂i = sign(zi) (32)

and then estimate η using least squares assuming that
each decoded message is correct. Alternatively, Algo-
rithm B performs the estimation directly with

η̂ =

√√√√ N∑
i=1

z2
i /N − σ2 (33)
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and the classification of the message is made by

{x̂i} = argmin
{xi}

N∑
i=1

(zi − η̂xi)2 − log P (xi|xi−1) (34)

using Viterbi algorithm. By applying empirical mu-
tual information measure, we found that Algorithm B

is better than A when P (xi|xi−1) =
[

0.9 0.1
0.1 0.9

]
, N

and σ2 are large enough. This confirms with our in-
tuition that incorrect decision using the sign detector
also leads to poor estimation accuracy of the fading pa-
rameter. Thus the proposed measure can also be mean-
ingful to evaluate algorithms developed for other joint
classification and estimation problems with more com-
plex structure where classification or estimation perfor-
mance alone may not be the only focus by the PE.
Example 5 (joint classification and filtering):
Consider a dynamic system with state equation

xk = Fjxk−1 + vk−1 (35)

where F1 =
[

1 0
0 1

]
and F2 =

[
1 1
0 1

]
. The noise

vk ∼ N (0, Q) is white Gaussian sequence with Q =[
1
3

1
2

1
2 1

]
σ2

v. The observation model is

zk = Hxk + wk (36)

where H =
[

1 0
]

and wk ∼ N (0, σ2
w) is white

Gaussian sequence independent of vk. We are inter-
ested in sequentially estimate the state xk and clas-
sify the dynamic model Fj . Denote by Mk the model
at time k and assume that the model sequence Mk

is a Markov chain with transition probability matrix

P (Mk|Mk−1) =
[

0.9 0.1
0.1 0.9

]
. The system is of linear

Markov jump type which can be extended to handle
maneuvering target tracking [2] and joint target classi-
fication and tracking [4] problems.

Clearly, the conditional density of the state xk is a
Gaussian mixture

p(xk|Zk) =
2k∑
l=1

p(xk|Mk,l, Zk)P (Mk,l|Zk) (37)

with exponentially increasing components. The proba-
bility P (Mk,l|Zk) of a model history can be obtained
recursively using Bayes’ formula [1]. Consider Algo-
rithm A that always keeps 16 model history sequences
with the largest probabilities, discards the rest of the
sequences, and renormalizes the probabilities. It can be
interpreted as multiple hypothesis tracking (MHT) [2]
with hypothesis pruning. Another Algorithm B com-
bines the histories of models and keeps only the possi-
ble models in the last two sampling periods. Algorithm
B requires 4 filters to operate in parallel and is called

the generalized pseudo-Bayesian of order 2 (GPB2) [1].
Algorithm C uses interacting multiple model (IMM) [1]
and makes decision sequentially according to the ap-
proximate model probability P (Mk|Zk). We assume
that σ2

w = σ2
v = 1 and compute the asymptotic in-

formation rate for Algorithms A–C. Based on the ap-
proximate slope from a state and model sequence of
length 200, we obtained βA = 0.112, βB = 0.088 and
βC = 0.084. This is in line with the existing results re-
ported on the state estimation accuracy [1]: IMM has
comparable tracking error to GPB1 (but with less com-
putational requirement) and MHT with hypotheses of
longer time history can further improve the tracking ac-
curacy. Interestingly, Algorithm B has slightly smaller
average classification error on the choice of the model
at each time than Algorithm C. This is also reflected
from a small difference in their asymptotic information
rates.

5 Relation to Other Perfor-

mance Measures
Mutual information was originally proposed to char-

acterize the capacity of a communication channel [6].
Its extension to evaluate an estimator is usually based
on the Fisher information, which is related to the
Cramer-Rao lower bound of the mean square estimation
error [1]. Another connection between the mutual infor-
mation and mean square estimation error in Gaussian
channel was discussed in [8]. However, these informa-
tion theoretic measures are algorithm independent. For
evaluating the quality of a classifier, a complete error
rate vs. rejection rate curve is usually generated for each
classifier. Some people use the area under this curve
to rank different classifiers [14]. An alternative metric
to classifier ranking in the Neyaman-Pearson paradigm
was proposed in [16]. There exists abundant perfor-
mance measures for the evaluation of estimation algo-
rithms [17, 3, 13]. However, practitioners often use the
mean square estimation error to rank estimation and
filtering algorithms. In addition, if an algorithm also
provides its self assessment on the mean square estima-
tion error, the evaluation of this additional information
often requires the credibility test [11, 12]. There is no
comprehensive measure of the credibility of an estima-
tor except the noncredibility index (NCI) proposed in
[10]. However, NCI can not be easily extended to eval-
uate the credibility of a classifier even when the classi-
fier can provide its self-assessment of the classification
accuracy in terms of the confusion matrix. There are
inherent difficulties in evaluating the performance of
joint classification and estimation algorithms. Estima-
tion error and classification error are often incompatible
and the performance evaluator may not have access to
the precise description of the algorithm but its behav-
ior via testing examples. Thus empirical mutual infor-
mation and asymptotic information rate are important
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indicators for the performance evaluator to meaning-
fully judge an algorithm’s quality or compare the per-
formance among different algorithms through carefully
controlled scenarios. There is no need to treat the deci-
sion and estimation problems separately. On the other
hand, we do not intend to replace the existing perfor-
mance measures or metrics with information theoretic
measures, but to compliment them in the algorithm
evaluation and comparison problems of practical inter-
est.

6 Discussions and Conclusions
In this paper, we studied the performance evalua-

tion using several newly derived information theoretic
measures, namely, the empirical mutual information,
normalized error to information ratio, and the asymp-
totic information rate for classification, estimation and
filtering problems. They serve as a guideline for design-
ing a practical procedure to measure the performance
of different algorithms with limited knowledge of the
parametric model that an algorithm developer is based
upon. Several practical examples including joint deci-
sion and estimation are used for algorithm comparison
and for gaining the insight on some inherent difficul-
ties of algorithm ranking. In most cases, information
theoretic measures do rank the performance of the can-
didate algorithms properly even in the joint classifica-
tion and estimation problem where classification or es-
timation accuracy alone does not provide the complete
picture of algorithm performance.
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