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Chapter 1

Introduction

1.1 Computational protein design

Proteins perform many important roles in living organisms. One type of protein,
called an enzyme, catalyzes biochemical reactions that are vital to metabolism. Other
types of protein include signaling proteins, which help coordinate cellular activities.
Structural proteins form scaffolds to maintain cell shape. Mechanical proteins play
a variety of roles such as contraction of muscle fibers. Different proteins can also
coordinate in the form of a structural complex to achieve a particular function.

Proteins are biomolecules made of a sequence of amino acids. There are 20 dif-
ferent amino acids that one can think of as protein building blocks. All amino acids
contain a central alpha carbon atom connected to a hydrogen, an amino group, a
carboxyl group, and a characteristic side chain. The 20 common side chains have
different structural and chemical properties. Small side chains like glycine and ala-
nine only have a few atoms. Large side chains like arginine and tryptophan have
many atoms. Some side chains attract water (hydrophilic) while others repel water
(hydrophobic). Some side chains are positively or negatively charged while others
carry no charge.

Amino acids adjacent in sequence are chemically linked, or “chained”, through
peptide bond formation between the carboxyl group of one amino acid and the amino

group of the following amino acid. This main chain is commonly referred to as a

13



protein’s backbone. The amino acid side chains then project out from the backbone.
The sequence ordering and chemical properties of the side chains determine how the
linear chain will fold into a three-dimensional structure. In turn, the protein’s three-

dimensional structure determines its function.

In computational protein design, we try to find amino acid sequences that fold to
a predetermined structure with desirable properties. Developing novel proteins with
certain catalytic, affinity, specificity, and stability properties is an active area of re-
search in biology with broad applications. For example, Lippow et al. re-engineered
multiple antibodies for significantly improved antigen binding affinity using compu-
tational design [1]. Antibody-affinity is important in the development of therapeutic
agents. Chen et al. used computational design to re-engineer the nonribosomal pep-
tide synthetase enzyme GrsA-PheA to bind substrates for which the wild-type enzyme
has little or no specificity [2]. De novo design of proteins has also been demonstrated
for small sequences. Dahiyat and Mayo computationally designed a 23-residue zinc
finger protein [3]; Kuhlman et al. designed a 98-residue o/ protein with a novel fold
[4]. Additional examples can be found in a recent review of progress in computational

protein design by Lippow and Tidor [5].

We typically begin the computational protein design process by deciding on a
set of desirable properties for a protein whose three-dimensional structure has been
determined experimentally by X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopy. The structure provides three-dimensional coordinates for all
atoms in the protein. We can easily identify the backbone and side chains by com-
bining these coordinates with the protein’s amino acid sequence. The backbone atom
coordinates define a backbone conformation. Similiarly, the side chain atom coordi-
nates define one side chain conformation for each sequence position. The set of side
chain conformations together with the backbone conformation define a global confor-
mation for the protein. Next, we choose sequence positions to consider for mutation.
These choices are typically driven by the set of desirable properties we aim to achieve

in our design.

Once we have a three-dimensional structure and set of mutations, we enter the

14



INPUT
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SEARCH WETLAB
ALGORITHM EXPERIMENTS

PREDICTION

Figure 1-1: The protein design cycle.

protein design cycle shown in Figure 1-1. The input model specifies degrees of freedom
(i-e., allowable backbone and side chain conformations) for the protein’s structure in
our calculations. It also contains an energy function used to evaluate each of the
mutant structures. Next, a search algorithm identifies low-energy structures from
the set of allowable mutations. Promising mutant sequences are then synthesized and
tested to see if they achieve the desirable properties. Finally, the experimental results

are used to validate and refine the input model for subsequent designs.

For the input model, we assume either a rigid or flexible backbone. With a rigid
backbone, mutant amino acid side chains that clash with the backbone are assumed
to destabilize the folded protein, and we typically discard them during the search
procedure. On the other hand, we may allow some discrete or continuous backbone
flexibility in the local three-dimensional neighborhood to accomodate a mutant side
chain. A rigid backbone reduces the problem size because only side chains are allowed
to move in the design. However, a flexible backbone more accurately represents
backbone behavior in proteins. Backbones are not completely rigid, and they are

known to change conformation during events like ligand binding.

We model the conformations of amino acid side chains using a rotamer library.

Side chain rotamer libraries are built by systematically rotating bond angles around



the carbon atoms for a particular amino acid. This search yields a discrete set of pre-
ferred, or low-energy, conformations for each type of amino acid relative to its central
alpha carbon atom and amino group and carboxyl groups. The discrete treatment of
side chain orientations is physically reasonable based on analyses of side chain confor-
mations in proteins with determined structures. It has been shown that a small set
of conformations occur more frequently than others for each type of amino acid [6].
By specifying side-chain rotamers relative to the amino acid’s central alpha carbon
and two backbone groups, we can efficiently insert any rotamer in the library at a

particular sequence position independent of the other positions in the protein.

We can compute the potential energy of a given protein conformation using quan-
tum or molecular mechanics. Quantum mechanical calculations are very accurate but
computationally expensive. Explicit treatment of all atoms in a protein with quan-
tum mechanics is computationally intractable; however, quantum calculations can be
used to evaluate small regions of the protein (e.g., the active site). Conversely, molec-
ular mechanics calculations are approximate but computationally efficient. Molecular
mechanics models use a parameter set and force field to treat all atoms in a protein.
The parameter set provides values for atom properties like net charge and molecular
volume (i.e., van der Waals radius). It also provides a set of standard bond lengths,
bond angles, and improper dihedrals for each amino acid type. These parameter set
values are obtained by fits to experimental and theoretical data from quantum me-
chanics. The molecular mechanics force field is typically comprised of covalent and
non-covalent energy terms. The covalent terms captures energy from bond lengths,
bond angles, torsions, and improper dihedral terms. The non-covalent term captures

van der Waal and electrostatic interactions between all pairs of atoms.

Once we have computed the energy terms for each possible side-chain rotamer in
a design, we want to find the rotamer for each design position that produces the most
energetically favorable protein conformation. For non-trivial designs, this discrete
search problem is too large to solve with brute-force methods. For example, consider
a design with 10 positions. Suppose we allow each position to mutate to any of the

20 amino acids, and each amino acid has 100 possible side-chain rotamers. In this
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example, there are 103 conformations, or possible combinations of rotamers. In prac-
tice, designs can reach the scale of 10%9-10'° conformations (i.e., more combinations
of rotamers than there are atoms in the known universe). Despite the combinatorial
complexity of protein design problems, we can efficiently find exact and approximate

solutions using gnaranteed and non-guaranteed search methods, respectively.

Ideally, we would like to identify the optimal choice of rotamers, or global mini-
mum energy conformation (GMEC), along with an ordered list up from the GMEC.
Given unlimited computational resources and time, guaranteed search methods prov-
ably identify the GMEC. Some guaranteed methods also enumerate all of the con-
formations within an energy threshold of the GMEC. The current standard for guar-
anteed search with enumeration in protein design is Dead-End Elimination (DEE)
with A* search, or DEE/A*. DEE reduces the search space. In addition to taking
advantage of the fact that many rotamer combinations produce unstable protein con-
formations due to van der Waals clashes and unfavorable electrostatic interactions,
DEE identifies rotamers and rotamer combinations inconsistent with being in the
GMEC (i.e., the problem solution) [7-9]. DEE is applied iteratively until no addi-
tional rotamers can be pruned, and then A* search is used to find the GMEC along
with an ordered list in the reduced conformational space [10]. Another more recent
guaranteed method is branch-and-bound rotamer optimization using maximum-a-
posteriori estimation (BroMAP) [11]. BroMAP recursively divides the search space
into subproblems and keeps track of the tightest upper bound. If the subproblem is
small enough in terms of conformational complexity, it’s solved with DEE/A*. Oth-
erwise, the subproblem is statistically bounded and compared to the upper bound
to determine whether it can be eliminated or whether it requires further subdivi-
sion. Although BroMAP uses A* search to solve subproblems, it was not designed
to enumerate conformations up from the GMEC. The final guaranteed method we
mention is Integer Linear Programming (ILP). In ILP, the GMEC search problem is
treated explicitly as an optimization problem with a binary decision variable for each
individual rotamer [12]. Although ILP can exactly solve small protein designs, con-

tinuous problem relaxations are needed for large designs. These relaxations typically
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result in fractional, or approximate, solutions as opposed to integral solutions (i.e.,
the GMEC). Additionally, ILP does not provide an easy or efficient way to enumerate

conformations up from the GMEC.

Non-guaranteed search methods identify conformations that are local minima
based on an optimality criterion. For example, a local minimum might be a con-
formation where we cannot select a different rotamer at any one design position
that reduces the overall energy. One common non-guaranteed search method is self-
consistent mean-field (SCMF) theory, which iteratively refines a probability distribu-
tion over the rotamers at each position [13]. The distribution represents the likelihood
that a particular rotamer belongs to the GMEC. SCMF is a deterministic method,
which means it converges to the same conformation no matter how many times we
run it on a given problem. Other non-guaranteed methods used in protein design
include genetic algorithms [14] and Monte Carlo search [15]. Unlike SCMF, genetic
algorithms and Monte Carlo are non-deterministic methods, which means they can

converge to a different conformation each time we run them on a given problem.

Generally, non-guaranteed search methods are computationally faster than guar-
anteed methods. Search methods like DEE/A* and BroMAP must explicitly consider
the entire conformational space to guarantee global optimality of a conformation,
which requires considerable computational time and resources for large designs. The
decision of whether to trade speed for accuracy in conformational search depends on
one’s design goals. If our goal is to quickly identify some low-energy conformation(s)
or to upper bound the GMEC energy, then non-guaranteed methods are probably the
better choice. However, if we want to reserve experimental resources and testing for
only the lowest-energy conformations, then guaranteed search methods are the better
choice. Additionally, guaranteed methods, particularly those that also enumerate all
conformations within a given energy threshold of the GMEC, play an important role

in the rational protein design cycle.

Suppose we have an order listed of the lowest-energy conformations within a given
threshold of the GMEC. We then analyze the list and select a set of candidate mutant

sequences for synthesis and experimental testing. At a later time, someone experimen-
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tally tests a mutant sequence that was not in our list of the lowest-energy mutations,
and he or she finds that this new sequence is energetically more favorable than any
of our candidates. Assuming the new sequence was represented in our search space,
the finding suggests a deficiency in our input model (i.e., backbone assumption, ro-
tamer library, and energy function). If the input model was accurate, then the new
sequence would have been in the list returned by the guaranteed search algorithm.
If instead we had used a non-guaranteed search for our predictions, then we could
not immediately rule out the search algorithm as the cause. With non-guaranteed
methods, one cannot say definitively that a lower-energy sequence does not exist in
the search space.

As the above example demonstrates, guaranteed search methods with enumeration
are a valuable tool in the rational protein design cycle. By using guaranteed search,
we can be sure our predictions are optimal given our backbone assumption, rotamer
library, and energy function. Discrepencies between computational predictions and
experimental results can help us identify and fix gaps in our input model. By improv-
ing the accuracy of our input model, we improve the accuracy of predictions during
subsequent iterations of the design cycle. In this thesis, we focus our attention on
the application and development of guaranted search methods with enumeration for

computational protein design.

1.2 Our work and contributions

First, we apply computational protein design to address the problem of degradation
in stored proteins. Degradation occurs when a protein undergoes chemical or phys-
ical changes that alter its structure and function. Specifically, we target cysteine,
asparagine, glutamine, and methionine amino acid residues to reduce or eliminate a
protein’s susceptibility to degradation via aggregation, deamidation, and oxidation.
We demonstrate this technique on a subset of degradation-prone amino acids in phos-
photriesterase (PTE), an enzyme that hydrolyzes toxic organophosphates including

pesticides and chemical warfare agents. We use structure-based protein design to
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identify single mutations for Cysh9, Cys227, Met314, Asn38, and Asn265 in PTE.
We also discuss double and triple mutations predicted to significantly improve the
packing stability of the neighborhood around Asn265.

Second, we introduce BroMAP/A*, an exhaustive branch-and-bound rotamer
search technique with enumeration. Hong et al. developed BroMAP (branch-and-
bound rotamer optimization using maximum-a-posteriori estimation), a guaranteed
search method which indentifies the global minimum energy conformation (GMEC)
[11]. We extend the framework of BroMAP to enumerate all conformations within
an energy threshold of the GMEC. We compare performance of BroMAP/A* to
DEE/A*, the current standard for conformational search with enumeration in the pro-
tein design community. When limited computational resources are available, DEE/A*
sometimes fails to find the global minimum energy conformation and/or enumerate
the lowest-energy conformations for large designs. Given the same computational re-
sources, we show how BroMAP/A* is able to solve large designs by efficiently dividing

the search space into small, solvable subproblems.

1.3 Thesis outline

In Chapter 2, we review preparation protocols and degradation pathways for stored
proteins. We discuss how computational protein design can be used to limit degra-
dation and improve the thermodynamic stability of stored proteins. We then apply
this technique to phosphotriesterase and present mutations predicted to reduce its
susceptibility to degradation and improve stability. Chapter 3 focuses on search al-
gorithms for computational protein design. We discuss techniques for exhaustive
search with enumeration and detail our developmental and characterization work on
BroMAP/A*. We compare performance of DEE/A* and BroMAP/A* for a set of
protein design test cases, and we show the advantage of using BroMAP/A* when
limited computational resources are available. Finally, in Chapter 4, we conclude the

thesis with a summary of our findings and suggestions for future research.
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Chapter 2

Protein design for enhanced

storage stability

2.1 Introduction

Proteins are stored in either an aqueous buffer or a lyophilized (freeze-dried) form.
Aqueous formulations are easier to manufacture and to handle by the end-user. How-
ever, the solution must typically be kept at low temperature with minimal agitation
(16, 17]. These conditions can be difficult to guarantee during shipping and extended
storage; thus, aqueous formulations are typically used only for short-term storage in
laboratory settings. Alternatively, proteins can be lyophilized to produce a dry pow-
der that is generally more stable for long-term storage. Lyophilization is a three-stage
process whereby the solvated protein is first frozen to produce large crystals. Then
the frozen protein undergoes primary and secondary drying phases under vacuum to
remove water. Primary drying removes most of the water (= 95%) which is frozen
as ice on the surface of the crystal. Secondary drying removes the remaining liquid
water bound to the crystal.

In both liquid and dry storage formulations, proteins are susceptible to degra-
dation. Degradation can also occur during preparation and manufacturing of the
formulation. We say a protein is degraded when it undergoes chemical or physical

changes that alter its structure and function. Chemical changes to individual amino
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acids or even slight physical changes to backbone conformation can significantly af-
fect folding, three-dimensional structure, and activity. Environmental factors such as
temperature, pH, and ionic strength play an important role in degradation. Certain
conditions may reduce the probablility or frequency of chemical and physical changes

while other conditions may accelerate degradation.

One method of mitigating degradation is the rational design of preparation and
storage protocols for stable aqueous and lyophilized formulations. Given knowledge
of the degradation mechanisms in proteins and the conditions under which they oc-
cur, one can carefully control the temperature, pH, and chemical composition of the
formulation as well as add various stabilizers to limit degradation. This type of ratio-
nal design is commonly used in developing stable protein pharmaceuticals. Reviews
by both Wang and Carpenter ef al. provide extensive guidance on designing stable

aqueous and lyophilized formulations [18-20).

There are two limitations to rationally designing preparation processes and storage
protocols. First, it may be difficult or impossible to limit exposure to certain temper-
ature or pH levels during preparation, particularly for solid-state preparations. For
example, during lyophilization extreme temperature levels are needed for the freezing
and drying steps, and pH extremes often occur during lyophilization. Second, it may
be unreasonable to expect stringent control of environmental factors such temper-
ature, pH, or exposure to air for any type of applied use outside of laboratory or
clinical settings. Ideally, we want the protein to remain stable and active even in the

harshest environmental conditions.

We can use protein design as a tool to overcome these limitations. Suppose we
know a particular type of amino acid is prone to degradation at high pH. Now suppose
we use protein design to identify mutations for each instance of the degradation-prone
amino acid in our target protein. If these mutations maintain or improve the protein’s
thermodynamic stability without affecting its activity, then the protein is no longer
susceptible to the degradation pathway. Additionally, we are no longer restricted to
lower pH levels during preparation and storage of the target protein (assuming high

pH does not affect some other aspect of stability).
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Along with the ability to replace degradation-prone amino acids, protein design
gives us the ability to identify additional mutations to improve the overall thermody-
namic stability of the protein. Any mutations that accelerate folding and/or stabilize
the folded state are beneficial as long as they do not impair the protein’s activity.
For example, a single mutation could result in additional or stronger interactions
with nearby residues compared to wild type, thereby improving local stability. We
could also introduce multiple mutations to repack structurally significant regions of
the protein. In both cases, we improve thermodynamic stability by increasing the
energy required for the protein to go from a folded to an unfolded state.

In this chapter, we describe initial steps towards redesigning a protein for improved
storage stability. First we review degradation pathways for proteins and discuss which
amino acids to target with protein design. Then we introduce the protein of interest
for our redesign, phosphotriesterase, and highlight its use for bioremidiation of toxic
organophosphate chemicals. After describing our computational methods, we present
mutations predicted to improve the thermodynamic stability of phosphotriesterase by

reducing its susceptibility to degradation during preparation and storage.

2.2 Degradation of stored proteins

Degradation in proteins can be categorized into chemical or physical mechanisms
[21]. Chemical degradation occurs when an amino acid residue is covalently modified
to produce a new molecule. Physical degradation occurs when the protein’s native
three-dimensional structure is changed. Chemical degradation can lead to physical
degradation and vice versa. In this section we review three degradation pathways
in stored proteins: aggregation, deamidation, and oxidation. Aggregation is a form
of physical degradation often driven by chemical disulfide bond formation between
cysteine residues. Deamidation is a chemical process whereby aspargine or glutamine
residues interact with the protein backbone resulting in either chemical or physical
degradation. Oxidation is a form of chemical degradation resulting generally from

interaction of cysteine or methionine residues with atmospheric oxygen dissolved in
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Figure 2-1: Disulfide bond between two cystine residues.

solution.

2.2.1 Aggregation

Cysteine residues play an important structural role in proteins. Cysteine contains
a thiol group which can be oxidized to form a disulfide bond with a neighboring
cysteine residue as illustrated in Figure 2-1. Disulfide bonds typically stabilize the
three-dimensional structure of proteins. For single polypeptide chains, these bonds
assist in folding by destabilizing the unfolded state through reduced chain entropy.
Disfulfide bonds can also bridge two different polypeptide chains. In both cases,
disulfide bonds between cysteine residues increase the thermodynamic stability of the
protein or complex.

Although cysteines are structurally beneficial in many proteins, they can also
introduce physical instability via aggregation when the protein is in an unfolded or
partially folded state. Aggregation occurs when two cysteine residues that are not
paired in the native three-dimensional structure of a protein form a disulfide bond.
For example, two unpaired cysteine residues on the same polypeptide chain may bond
and prevent the chain from properly folding. Another example is disfulfide bonding
of unpaired cysteine residues from different chains, which can prevent either chain
from properly folding. If multiple cysteines are present, additional chains can also

link in a cascading fashion to form a daisy chain complex of inactive protein.
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Protein concentration, temperature, and pH significantly affect protein aggrega-
tion [18]. Aggregation is more likely for highly concentrated protein formulations in
which many polypeptide chains are in close proximity. High temperatures tend to
induce protein unfolding, which can increase the likelihood of disulfide bond forma-
tion between unpaired cysteines. Finally, ionization of the free thiol group required
for disulfide bond formation is accelerated at high pH (i.e., alkaline) conditions.

To mitigate aggregation using computational protein design, we must consider
the structural role of all cysteine residues in the target protein. Given the three-
dimensional structure of our protein, we can visually inspect all cysteine residues
to determine whether they are close enough to form a disulfide bond. Initially, we
may choose to remove the unpaired or “free” cysteines but keep the paired cystines
forming a disulfide bond. If the paired cystines still result in aggregation, we may
wish to remove them, too. Eliminating structurally significant disfulfide bonds will
likely decrease thermodynamic stability. In this case, we may need to redesign the

neighborhood around paired cystines to reintroduce stability.

2.2.2 Deamidation

Asparagine and glutamine residues are prone to a degradation reaction known as
deamidation. Deamidation of asparagine occurs when the amide functional group
reacts with the nearest carboxyl-side peptide bond nitrogen to produce ammonia
and a cyclic five-membered imide intermediate. Hydroylsis of the intermediate re-
sults in either chemical modification of the original asparagine (i.e., aspartic acid) or
modification of the local backbone conformation (i.e., isoaspartic acid). Figure 2-2
shows the complete deamidation reaction for aspargine. Deamidation of glutamine
follows a similar reaction except it produces a six-membered glutarimide intermedi-
ate because glutamine has an additional methylene group compared to asparagine.
The six-membered intermediate is less energetically favorable than its five-membered
counterpart for asparagine. As a result, deamidation rates for glutamine residues are
slower than for aspargine residues by a factor of roughly 100 [22].

The primary sequence of a protein plays an important role in deamidation. Deami-
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Figure 2-2: Deamidation of asparagine.
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dation rates strongly depend on the amino acid immediately following the aspargine
or glutamine (i.e., carboxyl-side residue). The preceeding amino acid (i.e., amino-side
residue) also affects deamidation; however, the effect of the carboxyl-side residue is 20
times stronger [23]. Large residues such as phenylalanine, tyrosine, and tryptophan
with their aromatic rings sterically hinder the deamidation reaction. Small residues
such as glycine and alanine provide minimal steric protection from deamidation. Sep-
arate work by Capasso and Robinson propose equations to predict deamidation rates
from primary sequence based on fits to experimental measurements of small polype-

tide chains containing asparagine and glutamine [23, 24].

The protein’s three-dimensional structure also affects deamidation rates. Folding
can bring amino acids in close proximity to an asparagine or glutamine which are
not immediately adjacent in sequence. As with primary sequence, these neighboring
residues in three-dimensional structure can sterically hinder the deamidation reaction.
Neighboring residues can also increase deamidation rates; pockets of mostly acidic or
mostly basic side chains can accelerate the deamidation reaction. Robinson proposes
a method to predict deamidation rates from a protein’s three-dimensional structure
based on a fit to 22 proteins with known structure whose deamidation rates have
been measured [25, 26]. However, these predictions are based on a fit to deamidation
measurements under very specific experimental conditions (pH 7.4, 37 °C, and tris-
HCI buffer), which may not generalize to protein conditions during preparation and
long-term storage.

Robinson and Robinson have studied demidation rates under a wide range of
experimental conditions [27]. Demidation rates take on a U-shaped distribution as
a function of pH; rates are highest at pH extremes and lowest at slightly acidic
pH (= 6.5). Temperature also affects the deamidation, increasing its rate 1.2-2
fold per 10 °C in slightly basic environments. For aqueous solutions, phosphate
buffers catalyze the deamidation reaction as opposed to Tris or histidine buffers.

Additionally, deamidation rates were observed to increase with ionic strength.

We can use protein design to prevent deamidation reactions or to decrease its rate.

Ideally, we want to mutate all asparagine and glutamine residues in the target protein
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Figure 2-3: Methionine and its oxidized form.

to eliminate the possibility of deamidation. If we have difficulty finding suitable
mutations for particular positions, we can exploit the effect of primary sequence and
three-dimensional structure on deamidation. For example, we might sterically protect
an asparagine or glutamine from deamidation by mutating the carboxyl-side residue
to a large amino acid like phenylalanine, tyrosine, or tryptophan. We might also

repack the local neighborhood to introduce additional steric hindrance.

2.2.3 Oxidation

Methionine, cysteine, histidine, tyrosine, and tryptophan residues are all prone to
oxidation; however, only methionine and cysteine are easily oxidized by dissolved
atmospheric oxygen. We have already identified cysteine as a residue of interest based
on its role in aggregation, so we focus our discussion here on methionine oxidation.
Atmospheric oxygen reacts with the sulfur atom in methionine to form methionine
sulfoxide. Figure 2-3 shows the native and sulfoxide forms of methionine.

We can think of oxidation as substitution of the non-polar methionine for a larger,
more polar methionine sulfoxide residue. The effect of this substitution depends on
the residue’s local environment. The increased polarity may introduce water to a
hydrophobic neighborhood. The oxygen in methionine sulfoxide may also hydrogen
bond with a nearby residue. Moreover, the added bulk of the oxygen may disrupt

side chain packing. These local changes in chemistry and structure can impact the
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overall thermodynamic stability of the protein.

Methionine oxidation has been observed in proteins in aqueous and lyophilized
protein formulations exposed to atmospheric oxygen during preparation and storage
[28]. To counteract oxidation, vials of stored protein are sometimes sealed with pure
nitrogen instead of oxygen. Light exposure can also affect methionine oxidation rates.
For some proteins such as lyophilized human insulin-like growth hormone (hIGI-I),
exposure to light can increase the oxidation rate by up to a factor of 30 [29].

To mitigate oxidation using protein design, we should consider all methionine
residues in the target protein. In the unfolded state, all methionine residues are
susceptible to oxidation if exposed to atmospheric oxygen. In the folded state, me-
thionine residues on the surface of the protein are more susceptible to oxidation than
those buried in the protein core. Work by Kim et al. highlights this difference between
surface and buried methionines, and it provides an interesting case study on designing
oxidation-resistant proteins [30]. They compared the effect on stability of methionine
oxidation versus mutagenesis for the protein staphylococcal nuclease. Staphylococcal
nuclease contains four methionine residues, three of which are solvent exposed. They
found mutation of the buried methionine was as disruptive as oxidation in terms of
stability, whereas mutation of the solvent-exposed methionines was less disruptive

than oxidation.

2.3 Phosphotriesterase

Phosphotriesterase (PTE) is an enzyme that catalyzes the hydrolysis of a variety of
organophosphorus compounds. It belongs to the amidohydrolase superfamily [31].
PTE was first identified in Flavobacterium extracted from Philippine rice patties
that had been treated with the pesticide diazinon [32]. Shortly thereafter, PTE was
isolated from the soil bacterium Pseudomonas diminuta [33]. Although the natu-
ral substrate for PTE remains unknown, PTE has been shown to hydrolyze toxic
organophosphate pesticides and nerve agents such as tabun (GA), sarin (GB), soman

(GD), and VX [34, 35].
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Figure 2-4: Crystal structure of the homodimeric enzyme phosphotriesterase with
monomers colored red and blue and zinc ions colored grey (coordinates from PDB file
LHZY).

PTE is a homodimeric metalloprotein of known structure (see Figure 2-4) [36].
Each monomer has a binuclear catalytic center. Wild-type PTE contains two zinc
ions per monomer, however PTE retains catalytic activity when the native zinc ions
are replaced by cobalt, cadmium, mangenese, or nickel ions [37]. Figure 2-5 shows
the active site of one monomer where five amino acids coordinate the two metal ions:
Asp301, Hisbb, Hish7, His201, and His230. A carbamylated lysine, Lys169 and a

water molecule bridge the metal ions.

The catalytic mechanism of PTE proceeds via nucleophilic attack on the phospho-
rus center of the bound substrate [38]. The more solvent exposed zinc ion coordinated
by His201 and His230 (rightmost ion in Figure 2-5) coordinates with the substrate
phosphoryl oxygen to bind the organophosphate in the active site. This interaction

weakens the binding of the bridging water to the zinc ion, polarizes the substrate P-O

30



(a) Front view (b) Top view

Figure 2-5: Two views of the phosphotriesterase active site with zinc ions (colored
grey) and bridging water molecule (coordinates from PDB file 1HZY).

bond, and makes the phosphorous center more electrophilic. Nucleophilic attack by
the bridging water on the P-O bond is then assisted by a proton transfer to Asp301.
Finally, a shuttle mechanism from Asp301 to His254 to Asp233 is thought to transfer
the proton to bulk solvent [39].

The insecticide paraoxon is generally accepted as the preferred subtrate of PTE.

L and

Wild-type PTE hydrolyzes paraoxon with a turnover rate ke of ~ 3000 s~
a catalytic efficiency ke /K, of 5 x 107 M1s™! which approaches the diffusion-
controlled limit [37]. This efficiency is remarkable given paraoxon is a non-natural
compound that has only existed since 1950 [40]. The catalytic efficiency of PTE for
organophosphate nerve agents is significantly lower than for paraoxon with Keae /I
of & 1 x 10° M~'s™! for sarin (GB), = 1 x 10* M~'s™! for soman (GD), and ~
1 x 10* M~'s7! for VX [41-43].

PTE is widely recognized for its use as an environmentally friendly bioremidation
tool [44-48]. LeJeune et al. tested wild-type PTE in a blanket fire fighting foam for
wide area chemical decontamination [49]. Yang et al. showed a solid lyophilized form
of PTE can hydrolyze paraoxon vapors in a gas-phase bioreactor [50]. In the biosensor
community, White et al. used PTE binding specificity for toxic organophosphates as

the basis for an optical solid-state detector [51].

PTE has also been studied in the protein engineering community. Cho et al. used
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site-directed mutagenesis to improve hydrolysis of the pesticide methyl parathion
[52]. Gopal et al. also used site-directed mutagenesis to improve specificity toward
and hydrolysis of VX [53]. Hill et al. used directed evolution to identify PTE mutants
with enhanced catalytic properties for sarin (GB) [54]. To overcome problems with
expressing stable PTE, Roodveldt et al. used directed evolution and found a PTE

triple-mutant with a 20-fold increase in functional expression in Escherichia coli [55].

Enhancing catalytic properties and stabilizing expression are key steps toward
engineering PTE as a decontamination tool. Additionally, PTE must be stable under
storage to be of practical use in environmental and military field settings. PTE
degradation via aggregation, deamidation, or oxidation has not been reported in the
literature. This is not surprising because experimental study of proteins takes place
under conditions ideal for stability. It is difficult to predict PTE degradation rates for
field settings where environmental factors such as temperature, pH, and atmospheric

exposure are much harder to control.

Protein design provides an elegant approach to the storage stability problem.
Suppose we use protein design to identify PTE mutations for all of the amino acids
prone to degradation. If the mutations maintain or improve thermodynamic stabil-
ity with respect to wild-type PTE without affecting catalysis, then we completely
eliminate the enzyme’s susceptibility to the aforementioned degradation mechanisms

while maintaining its usefulness as a bioremidiation tool.

Table 2.1 lists the total number of cysteine, asparagine, glutamine, and methionine
residues along with their sequence positions in each PTE monomer. We can heuris-
tically evaluate which residues in each category are most prone to degradation. The
two cysteines do not form disulfide bonds to stabilize the native three-dimensional
structure, so they are of concern for aggregation. For asparagine deamidation, Asn265
is followed in sequence by alanine, which provides minimal steric protection from the
reaction. For methionine oxidation, only Met293 lies on the protein surface; the re-
maining four residues are buried from solvent in the folded protein. In the following
sections, we present computational methods and predictions towards redesigning PTE

for enhanced storage stability. We chose a subset of these degradation-prone residues
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Table 2.1: Amino acids in PTE prone to degradation and the associated mechanisms.

Degradation Total #

Mechanism Residues | Sequence Position

Cys Aggregation 2 b9, 227

Asn Deamidation 6 38, 265, 300, 312, 321, 353

Gln Demidation 10 148, 155, 180, 206, 211,212, 278, 290, 295, 343
Met Oxidation b 138, 293, 314, 317, 325

for initial investigation, and we used structure-based protein design to identify mu-

tations predicted to maintain or improve the thermodynamic stability compared to

wild-type PTE.

2.4 Methods

Our computational methods closely follow those developed by Lippow et al. with the
exception of structure preparation steps specific to phosphotriesterase. For further
details, we refer the reader to supplementary methods in recently published work by

Lippow et al. [1].

2.4.1 Structure preparation

Multiple crystal structures of phosphotriesterase (PTE) from Pseudomonas dimin-
uta exist in the Protein Data Bank. These structures include zinc-containing PTE
with bound substrate analogs diethyl 4-methylbenzylphosphonate (PDB:1DPM), tri-
ethylphosphate (PDB:1EYW), and diisopropylmethyl phosphate (PDB:1EZ2) [56,
57]. The set also includes one high-resolution (1.3 A) zinc-containing PTE structure
(PDB:1HZY) and three high-resolution metal-substituted structures with no sub-
strate analog: manganese-containing PTE (PDB:110B), cadmium-containing PTE
(PDB:1JGM), and zinc/cadmium-containing PTE (PDB:1I0D) [58]. We chose the
high-resolution zinc-containing PTE structure (PDB:1HZY) for our designs because it

best represents naturally-occurring (i.e., zine-binding) PTE under storage conditions,
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in which no substrates are typically present.

To prepare the 1HZY structure for calculations, we removed sodium ions and
all 2-phenylethanol, 1,2-ethanediol, and ethylene glycol molecules remaining from
the crystallization process. We assigned hydrogen-atom positions using the HBUILD
facility in the program CHARMM [59, 60] with the PARAMZ27 all-atom topology and
parameter sets for proteins [61, 62]. The 1HZY structure contains a carbamylated
lysine (Kex) at position 169 that bridges the two zinc ions in the active site of each
monomer. We determined the partial atomic charges for Kex169 with a geometry

optimization and RESP-fitting procedure using the program Gaussian [63].

The 1HZY structure contains 764 water molecules. To eliminate non-bound wa-
ters, we removed all water molecules with fewer than 3 contacts with polar atoms
within 3.3 A (excluding contacts with other water molecules). We also removed any
water molecule with a B-factor greater than 30. This elimination procedure reduced
the total number of water molecules to 65, which we visually inspected to ensure they
were structurally significant.

We resolved crystallographic nitrogen/oxygen uncertainties for asparagine and
glutamine and we selected protonation states for histidine to optimize hydrogen bond-
ing in the local environment. We visually inspected the neighborhood of all asparagine
and glutamine residues and did not find better hydrogen bonding by exchanging the
nitrogen and oxygen compared to the THZY coordinates (i.e., no Asn or Gln residues
were “flipped”). For protonation of the seven histidine residues in the 1HZY struc-
ture, we used Hsd55, Hsd57, Hsel23, Hse201, Hsd230, Hsp254, and Hse257 where
Hsd, Hse, and Hsp refer to protonation of N4, protonation of N, and doubly proto-
nated histidine, respectively. We chose protonation states for Hsdb5, Hsd57, Hse201,
and Hsd230 based on their known roles coordinating the binuclear metal ions in the
active site. We chose double protonation for Hsp254 based on its proposed coordina-
tion with Asp301 in shuttling excess protons to bulk solvent during hydrolysis. For
Hsel23, protonation of N, allowed hydrogen bonding with the oxygen of Glu148. For
Hse257, protonation of N, allowed hydrogen bonding with oxygen of Asn300. For

both Hsel23 and Hse257, there were no potential hydrogen bonds within 5 A for
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protonation of N,.

2.4.2 Conformational space

Our discrete rotamer library was based on the backbone-independent library by Dun-
brack and Cohen (May 2002) expanded by £10° in the x; and y, angles [64]. Before
expansion, three histidine rotamers were added for an unsampled ring flip, and two
aspargine rotamers were added to increase sampling of the final dihedral angle rota-
tion. Serine, threonine, and tyrosine hydroxyls were sampled every 10°. Our modified
library contains a total of 4,025 side-chain rotamers. For crystallographic waters, we
used a novel water library containing 61 rotamers. The first 60 rotamers correspond
to fixing the oxygen atom based on its crystal structure coordinates and placing
hydrogen atoms to create symmetric water molecule rotations. The final rotamer
corresponds to removal of the particular water molecule from the structure [1].

For the design of single mutations, we chose one asparagine, cysteine, or methio-
nine position and allowed it mutate to 18 other amino acids (excluding proline). We
allowed rotamer flexibility for the local neighborhood of side chains around the mu-
tant position. To redesign methionine residues, which have a long side chain, we
allowed flexibility for any position within 5 A of at least one side-chain atom of the
target methionine. To redesign aspargine and cysteine residues, which have shorter
side chains compared to methionine, we used a distance of 4.7 A to select flexible
positions. We added the wild-type side chain to the rotamer library for all mutant
and flexible positions using the complete Cartesian coordinates of the side chains from
the crystal structure. For higher-order mutations (double, triple, etc.), we took the

union of the flexible neighborhoods around each mutant position.

2.4.3 Enmergy function and model

We determined folding stability for conformations using a hierarchical two-stage en-
ergy model. For both stages, we assumed a fixed backbone given by the 1HZY

crystal structure. We used a “low-resolution,” pairwise-additive energy function to .
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calculate terms for all possible conformations of each sequence. We then identified
the lowest-energy conformations of each sequence using conformational search. Fi-
nally, we reevaluated the lowest-energy conformations using a more accurate but
more computationally expensive “high-resolution” energy function. This two-stage
approach allowed us to trade accuracy for speed early in the design procedure, and
it limited expensive computations to only the most promising mutations selected by

conformational search.

For low-resolution energy evaluation, we used the CHARMM PARAM27 molec-
ular mechanics force field with a 4r distance-dependent dielectric constant and with
no cut-offs for non-bonded interactions. We included all available energy terms (i.e.
bond, angle, Urey-Bradley, dihedral, improper, Lennard-Jones, and electrostatic).
Our objective function for each conformation was the energy difference between the
folded and unfolded state assuming a fixed backbone. For the unfolded state, we
treated each side chain as being infinitely separated. The total energy of the un-

folded state was the sum of energies from these isolated side chain compounds.

For high-resolution energy evaluation, we used a Poisson-Boltzmann continuum
electrostatics model with implicit solvation to replace the distance-dependent elec-
trostatics term from low-resolution evaluation. We used the PARSE parameters for
partial atomic charges and radii [65]. We used a dielectric constant of 4 for the protein
and for explicit water, and a dielectric constant of 80 for implicit solvent regions. We
solved the linearized Poisson—Boltzmann equation using a locally modified version of
the the DELPHI program [66]. We included a solvent-accessible surface area (SASA)
term, calculated using the analytical surface routine in CHARMNM, to capture the

nonpolar component of the solvation free energy.

We also used a second model for the nonpolar component of the solvation free
energy. This model separately considered cavity formation and solute—solvent van
der Waals interactions. The cavitation term was linearly proportional to the solvent-
excluding surface area, calculated using the program MSMS [67]. For continuum van
der Waals interaction, we used the energy framework of Levy et al. with modifications

for the CHARMM TIP3P water model and PARAM27 all-atom parameters [68]. We
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used a C++ program developed by Lippow et al. to solve the integration using

atom-centered spherical volume elements [1].

2.4.4 Conformational search

During low-resolution energy evaluation, we eliminated all side-chain rotamers that
clashed either with the rigid backbone atoms or with the side chains of positions not
given conformational flexibility. Clashes were determined by examining the singleton
energy of every possible rotamer. If a rotamer’s singleton energy exceeded the lowest
singleton energy at that sequence position by at least 50 kcal/mol, then we removed
it from the search space.

We used dead-end elimination followed by A* search (i.e., DEE/A* [7-10]) on
the low-resolution energies to find the global minimum energy conformation (GMEC)
for each sequence. We kept only sequences whose GMEC energy was within 1000
keal /mol of the lowest-energy sequence, excluding any sequence whose GMEC energy
was greater than 100 kecal/mol. We used a 100 kcal/mol upper bound because a
positive value for the objective function (i.e., the energy difference between the folded
and unfolded state) means external energy is required to induce protein folding. Small
positive values are allowed to account for any inaccuracies in our low-resolution energy
model, but 100 kcal/mol is a high enough external energy requirement to rule out the
sequence. To illustrate these thresholds, if the lowest-energy sequence in our design
had a GMEC energy of ~1000 kcal/mol, then we kept all sequences whose GMEC
energies were less than 0 kcal/mol. On the other hand, if the lowest-energy sequence
had a GMEC energy of 100 kcal/mol, then we only kept sequences whose GMEC
energies were less than the 100 keal/mol upper bound.

For each of the selected sequences, we kept up to 10 kcal/mol of lowest-energy
conformations from the ordered-list returned by A*. Because of the additional 10°
torsional sampling in our rotamer library, some of these conformations were not nec-
essarily qualitatively different. We grouped conformations that only differed by a 10°
dihedral angle rotation of one rotamer. If a particular sequence had fewer than 50

qualitatively different low-energy conformations within 10 kcal/mol of the sequence
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GMEC energy, then all of its conformations were selected for high-resolution en-
ergy evaluation. Otherwise, we selected the 50 lowest-energy conformations for high-

resolution evaluation.

2.4.5 Design of mutations

For our initial PTE designs, we chose the following subset of five degradation-prone
amino acids from Table 2.1: Cys59, Cys227, Asn38, Asn265, and Met314. Both Cysb9
and Cys227 are unpaired or “free”, and they are the only cysteine residues in PTE.
Both Asn3d8 and Asn265 lie on the protein surface. Asn38 is of particular concern
because it is followed in sequence by alanine, which provides minimal steric hindrance
to the deamidation reaction. Finally, Met314 lies in a solvent-exposed pocket near
the protein surface, making it susceptible to oxidation by atmospheric oxygen.

For each of the five target amino acids, we performed independent single mutation
designs. In each design, we considered the lowest-energy conformation for each mutant
sequence after high-resolution evaluation. We filtered mutant sequences based on the
predicted change in electrostatics from our high-resolution continuum electrostatics
model. We eliminated any mutant sequence predicted to decrease electrostatic energy
by greater than 2.0 kecal/mol compared to wild type. Electrostatic penalties greater
than 2.0 keal/mol indicate poor interaction with the local neighborhood as opposed
to a deficiency in the modeling the side chain orientations (i.e., the resolution of
dihederal angles in our discrete rotamer library).

For the remaining sequences, we calculated the folding stability relative to wild
type based on our two models for the nonpolar component of solvation free energy.
Both calculations included additive van der Waals and geometric (i.e., energy from
bonds, angles, dihedrals, and impropers) terms from low-resolution energy evaluation
along with the continnum electrostatic term from high-resolution evaluation. One

calculation, AAG?&}EIA, included the solvent-accessible surface area (SASA) term from

. . . . "\ 1 . . .
high-resolution evaluation. The other calculation, AAGEYPY included the cavitation
and continuum van der Waals correction terms from high-resolution evaluation.

To select promising mutations, we tried to balance electrostatic and packing con-
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tributions to folding stability. Ideally, a mutation should have improved electrostatic
and packing interactions compared to wild type; however, this rarely occurs in prac-
tice. We allowed for a tradeoff between small electrostatic penalities of less than
1.0 keal/mol and improved packing, and vice versa. If a mutation decreased folding
stability by less than 5.0 keal/mol but significantly improved electrostatics by greater
than 2.0 keal/mol, then we attempted to repack the local environment by allowing
mutation of neighboring residues. Our goal in this case was to maintain favorable
electrostatics compared to wild type while reintroducing stability.

As previously mentioned, phosphotriesterase is a homodimer (i.e., a protein com-
prised of two monomers identical in sequence). The monomers are labeled chain A
and chain B in the 1HZY crystal structure. When solving for the crystal structure,
Benning et al. noted better ordering in the electron density map corresponding to
chain B [58]. For each of the target residues, we performed separate, independent
designs on each chain and compared the results. Energies and predictions presented
in the following section correspond to designs on chain B. Although the energies dif-
fered slightly between the two chains, our recommended mutations would not change

if instead we had presented predictions from designs on chain A.

2.5 Results and Discussion

Here we present results from our designs on Cysb9, Cys227, Asn38, Asn265, and
Met314 in phosphotriesterase. For all candidate mutations, we provide tables that list
predicted packing stability relative to wild type for both solvation models, AAGEASK
and AAGEYRY and the electrostatic contribution, AAGeie, from high-resolution en-
ergy evaluation'. In all tables, these three terms are measured in keal/mol. Negative
values correspond to favorable electrostatics or packing stability of the mutant rela-
tive to wild type. Positive values correspond to unfavorable electrostatics or packing

stability of the mutant relative to wild type. We highlight promising single muta-

IThe full set of energy terms from low-resolution and high-resolution evaluation can be found in
Appendix A.
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Table 2.2: Candidate mutations for Cysb9.

| Mutant | AAGe: | AAGPESA | AAGEYDW |
Ala +0.25 +2.62 —0.88
Asn +1.52 +2.48 +2.15
Gly +0.40 +4.93 +8.61
Ser +0.83 +4.46 +5.70

tions to eliminate Cys59, Cys227, Asn38, and Met314 as well as double and triple

mutations to eliminate Asn265.

Table 2.2 lists the predicted change in electrostatic and packing stability for four
Cysb9 mutations. Other mutations were eliminated during search and filtering mainly
due to clashes with Leu79 and Phe73 and unfavorable electrostatic interaction with
Ser61. Of the four possible mutations, Cysb9Ala and Cysb9Gly pay the lowest electro-
static penalties compared to wild type. However, substitution of cysteine for a smaller
alanine or glycine residue leaves a gap in the local neighborhood; both mutations pay
a van der Waals penalty. Cysb9Asn pays an electrostatic penalty of ~ 1.5 kcal/mol.
Additionally, a mutation to asparagine introduces a new residue prone to deamidas
tion. This particular mutation is problematic because it is followed in sequence by

Gly60, which provides minimal steric protection from deamidation.

The most promising mutant from this set is Cysb9Ser. Cysteine and serine are
structurally similar with the difference being cysteine contains a thiol group while
serine contains a hydroxyl group. Figure 2-6 shows the mutant and wild-type residues
along with their flexible neighborhoods. For both cysteine and the serine mutant, the
flexible neighborhoods adopt the same conformation. The only difference between
conformations is that the ~-OH group of serine points toward the local hydrophobic
pocket formed by Leu66, Leu79, and Leull2, whereas the —SH group of cysteine is

oriented away from the pocket.

Table 2.3 lists the predicted change in electrostatic and packing stability for five
Cys227 mutations. As seen with Cysb9, the electrostatically favorable alanine and

glycine mutations leave a void in the local neighborhood. However, the alanine mu-
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Figure 2-6: Two perspectives of the Cys69Ser mutation.
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Table 2.3: Candidate mutations for Cys227.

| Mutant | AAGee: | AAGE | AAGHRY

Ala —-1.51 —1.00 —3.54
Gly —-1.79 +2.06 +3.81
Leu +1.34 +16.84 +14.43
Ser —0.65 +0.96 +1.70
Val —2.04 +43.25 +42.72

tation is prediced to improve packing stability. The significant destabilizing effect of
Cys227Leu and Cys227Val are the result of a clash with a methyl group of Leu297
and a clash with the methylene group of Leu249, respectively.

The most promising mutant from this set is Cys227Ser. Figure 2-7 shows the
mutant and wild-type residues along with their flexible neighborhoods. Both neigh-
borhoods adopt similar conformations except Leu297 slightly shifts for the Cys227Ser
mutant, presumably to make a weak electrostatic interaction between its methyl group
and serine’s oxygen. As with Cys59Ser, the —OH group of serine points towards a
local hydrophobic pocket formed by Ile167, Leu297, and Phe357, while the —SH group
of cysteine is oriented away from the pocket.

Of the two cysteine to serine mutations, Cysb9Ser is predicted to have a more
destabilizing effect on PTE than Cys227Ser. Cys59Ser makes less favorable electro-
static interactions than wild type, and it is predicted to decrease packing stability by
~ b keal/mol. On the other hand, Cys227Ser is predicted to improve electrostatics by
more than 0.5 keal/mol while paying a packing penalty of = 1.3 keal/mol compared
to wild type. Both mutations are in hydrophobic pockets that include a phenylalanine
and multiple leucine residues.

Table 2.4 lists the predicted change in electrostatic and packing stability for pos-
sible Met314 mutations. The electrostatically favorable mutations to Leu, Ser, Thr,
and Val all pay significant van der Waals penalties; these residues are too small to fill
the void left by removing the larger methionine residue. A methyl group of nearby
Leu303 (~5 A from Cp of position 314) blocks Lys, Phe, Trp, and Tyr mutants from

filling the void. Instead, the side chains of these mutant residues point out into
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Figure 2-7: Two perspectives of the Cys227Ser mutation.
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Table 2.4: Candidate mutations for Met314.

| Mutant | AAGgec l AAGSASA l AAGCVDW

total total
Ala —2.84 +5.43 +6.83
Arg +0.33 +7.83 +12.42
Asp —6.37 +7.54 +14.03
Gln +0.29 +0.63 +0.61
Gly —4.22 +8.33 +13.77
Hsd +0.76 +5.25 +10.28
Ile +0.60 +6.14 +6.42
Leu -3.04 +5.17 +7.82
Lys +1.29 +10.93 +15.56
Phe +0.85 +7.50 +13.97
Ser —2.27 +8.19 +11.25
Thr —0.40 +8.46 +11.41
Trp +0.11 +0.82 +6.52
Tyr +1.31 +6.96 +13.67
Val —0.04 +10.57 +12.64

solvent. Similarily, the negatively charged side chain of Met314Asp points out into
solvent to make a favorable electrostatic interaction, but it too pays a large van der

Waals penalty.

The most promising mutant from this set is Met314GIn. Figure 2-8 shows the
mutant and wild-type residues along with their flexible neighborhoods. For both me-
thionine and the glutamine mutant, the flexible neighborhoods adopt the same confor-
mation. For Met314Gln, the carbonyl functional group points toward the methylene
group of Phe306, and its amide functional group points toward the negatively charged
Asp318. Overall, the electrostatics of Met314Gln are less favorable by ~ 0.3 kecal /mol,
and both high-resolution solvation models predict a decrease in packing stability of
~ 0.6 keal/mol compared to wild type. Mutation from methionine to glutamine makes
position 314 prone to deamidation. However, Met314Gln is followed in sequence by
the negatively charged Asp315, and deamidation rates are extremely slow, on the
order of 10* days, for GInAsp peptides [69)].

Table 2.5 lists the predicted change in electrostatic and packing stability for possi-

ble Asn38 mutations. Of the electrostatically favorable mutations, Ala, Gly, Ser, and
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Figure 2-8: Two perspectives of the Met314Gln mutation.
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Table 2.5: Candidate mutations for Asn38.

| Mutant | AAGee | AAGEAS [ AAGYDVY |
Ala -—1.80 -0.11 —3.86
Gln +0.65 —2.69 —2.48
Gly —2.27 +3.62 +3.29
Hse +0.72 —2.06 —1.88
Ile +0.22 +11.61 +10.70
Leu -0.13 +0.19 —1.28
Met —0.08 —4.79 —4.21
Phe +1.27 —3.99 —4.15
Ser —0.80 +1.30 +1.91
Thr +0.42 +0.87 +1.15
Tyr +1.17 —4.99 —4.90
Val -0.77 +5.08 +4.66

Val are too small to fill the void left by removing the larger aspargine residue. The
larger Phe and Tyr mutations make poor interactions with solvent; each pays an elec-
trostatic penalty of greater than 1 kcal/mol. One promising mutant from this set is
Asn38GIn. Although mutations to Hse and Thr have similar electrostatics, Asn38GIn
is predicted to make better van der Waals interactions with the local neighborhood.
In fact, both high-resolution energy models predict an increase in packing stability

by &= 2.5 keal/mol for Asn38GIn compared to wild type.

Figure 2-9 shows the mutant and wild-type residues along with their flexible neigh-
borhoods. For both asparagine and the glutamine mutant, the flexible neighborhoods
adopt the same conformation. Mutation from asparagine to glutamine still leaves po-
sition 38 prone to deamidation. However, deamidation rates are significantly slower
for glutamine as discussed in Section 2.2.2. Additionally, the first methylene group of
Argl64 is likely to sterically hinder formation of the six-membered intermediate for
the longer glutamine residue (~4 A between Cj of positions 38 and 164).

The second promising mutant is Asn38Leu. Figure 2-10 shows the mutant and
wild-type residues along with their flexible neighborhoods. For both asparagine and
the leucine mutant, the flexible neighborhoods adopt the same conformation. Substi-

tution of the hydrophilic asparagine side chain for the hydrophobic leucine is predicted
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Figure 2-9: Two perspectives of the Asn38GIn mutation.
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Figure 2-10: Two perspectives of the Asn38Leu mutation.
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Table 2.6: Candidate mutations for Asn265.

| Mutant | AAGaee | AAGERR" | AAGETIW

total
Ala —1.02 +0.36 —2.57
Arg +1.19 —-2.17 —0.02
Asp +0.09 +1.18 +2.09
Gln +1.92 —0.70 —1.20
Gly —1.35 +2.58 +3.37
Hsp —0.80 —0.30 +3.12
Ile +0.74 +0.07 +0.14
Leu —-0.14 —0.79 —1.20
Lys —2.60 —0.11 +3.42
- Met +0.53 —2.39 —2.67
Phe —0.25 —1.79 +1.19
Ser +0.14 +2.39 +3.06
Thr +0.88 +0.98 +1.35
Trp +0.70 —2.40 +2.55
Tyr —0.22 —1.91 +1.87
Val +0.49 +0.53 +0.29

to slightly improve electrostatics. In terms of packing stability, our high-resolution
continuum electrostatics model predicts a =2 0.2 kecal/mol decrease in stability, while
our high-resolution van der Waals correction predicts a = 1.3 keal/mol improvement

in stability compared to wild type.

Table 2.6 lists the predicted change in electrostatic and packing stability for pos-
sible Asn265 mutations. In terms of favorable electrostatic stability, Asn265Lys is the
most promising mutant based on its 2.6 kcal/mol improvement over wild type. Fig-
ure 2-11 shows the Asn265Lys mutant and wild-type residues along with their flexible
neighborhoods. The electrostatic improvement results from interaction of the posi-
tively charged lysine mutant with the neighboring negatively charged Asp264. For
Asn?265Lys, the two high-resolution energy models predict different changes in pack-
ing stability compared to wild type. The high-resolution calculation that includes
a solvent-accessible surface area (SASA) term predicts a slight, &~ 0.1 kcal/mol, im-
provement in packing stability. On the other hand, the calculation that includes

cavitation and continnum van der Waals correction terms predicts a ~ 3.5 keal/mol
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Figure 2-11: Two perspectives of the Asn265Lys mutation.
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Table 2.7: Candidate mutations for Leu262 in the background of Asn265Lys.

| Mutant | AAGee [AAGESR | AAGEETY ]
Ala —1.49 +1.02 +1.55
Arg +1.14 —0.94 +3.33
Gln +1.04 +1.20 +2.66
Glu +0.89 +2.76 +2.69
Gly -1.18 +2.21 +7.74
Hsd +0.51 —1.68 -0.31
Ile -1.33 +27.30 +30.05
Lys —1.04 +1.52 +6.92
Phe —2.00 —1.92 +2.71
Ser —0.70 +3.92 +7.79
Thr +0.07 +2.74 +6.16
Trp - —0.64 —4.02 —0.23
Tyr +0.60 —3.01 —1.71
Val —1.21 +37.29 +40.25

decrease in packing stability. In figure 2-11, we see that Arg319 in the flexible neigh-
borhood changes orientation to reach out into solvent, thereby improving SASA for
the Asn265Lys mutant structure. We also see the mutation from asparagine to ly-
sine at position 265 leaves a gap in the vicinity of Leu262 and Val316. To maintain
favorable electrostatics and improve packing stability, we independently considered
mutations to Leu262 and Val316 in the background of Asn265Lys to fill the afore-
mentioned gap.

Table 2.7 lists the predicted change in electrostatic and packing stability for pos-
sible Leu262 mutations in the background of Asn265Lys. Of the electrostatically
favorable mutations, Gly, Ile, Lys, and Val all decrease folding stability relative to
wild type by more than 5 kcal/mol. The four most promising mutants from this set
are Hsd, Phe, Trp, and Tyr, which are all larger residues than leucine. Figure 2-12
shows these mutants along with Asn265Lys. Hsd and Tyr both have improved pack-
ing stability relative to wild type, but their electrostatic interactions are less favorable
than wild type by = 0.5 keal/mol. The Phe mutant maintains significantly favorable
electrostatics; however, the high-resolution energy calculation that includes cavitation

and van der Waals correction terms predicts a decrease in packing stability relative
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Table 2.8: Candidate mutations for Val316 in the background of Asn265Lys.

[ Mutant | AAGee. | AAGEESE [ AAGOYRW |

total total
Ala —1.01 +1.98 —0.08
Asp +0.43 +2.15 +3.50
Glu +1.81 +0.53 +0.83
Gly —1.20 +6.71 +8.57
Hse +0.18 +0.24 +2.48
Ile +0.37 —0.78 —0.78
Leu —1.89 —0.48 +1.76
Phe —1.02 —0.46 +3.27
Ser +0.12 +2.83 +4.64
Thr +0.46 +1.20 +2.31
Trp +0.91 —3.52 —0.28
Tyr —0.84 —1.40 +2.55

to wild type. Lastly, the Trp mutant is predicted to improve both electrostatic and
packing stability relative to wild type.

Table 2.8 lists the predicted change in electrostatic and thermodynamic stabil-
ity for possible Val316 mutations in the background of Asn265Lys. The five most
promising mutants from this set are lle, Leu, Phe, Trp, and Tyr. Figure 2-13 shows
these mutants along with Asn265Lys. Leu, Phe, and Tyr all maintain improved
electrostatics relative to wild type. For these three mutants, our high-resolution en-
ergy calculations that include a solvent-accessible surface area (SASA) term predict
improved packing stability relative to wild type; however, the high-resolution calcu-
lations that include cavitation and continuum van der Waals correction terms predict
a decrease in packing stability. On the other hand, for the Ile and Trp mutants,
both high-resolution calculations predict improved packing stability at the cost of
less favorable electrostatics compared to wild type.

Finally, we considered a triple mutation comprised of all pairwise combinations of
the set Leu262(Hsd, Phe, Trp, Tyr) with the set Val316(lIle, Leu, Phe, Trp, Tyr) in the
background of Asn265Lys. Table 2.9 lists the predicted change in electrostatic and
thermodynamic stability for the twenty combinations of Leu262 and Val316 mutations

in the background of Asn265Lys. None of the triple mutant structures have improved
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Figure 2-12: Four Leu262 mutations in the background of Asn265Lys.
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Figure 2-13: Five Val316 mutations in the background of Asn265Lys.
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Table 2.9:
Asn265Lys.

Candidate mutations for Leu262 and Val316 in the background of

Leu262 | Val316
Mutant | Mutant | AAGee | AAGEAS | AAGERY
Hsd Ile +0.82 —1.59 —-0.91
Hsd Leu +1.17 +0.67 +2.51
Hsd Phe +1.87 —1.16 +2.22
Hsd Trp +3.72 —5.29 —2.18
Hsd Tyr +2.06 —-2.13 +1.42
Phe Ile +0.87 —2.69 —2.24
Phe Leu +1.51 —1.09 +0.05
Phe Phe +1.67 —2.68 +0.21
Phe Trp +3.59 —5.95 —3.83
Phe Tyr +1.86 —3.64 —0.57
Trp Ile +3.44 —3.47 —2.97
Trp Leu +2.85 —4.51 —4.47
Trp Phe +0.65 —4.69 —1.07
Trp Trp +2.57 —7.75 —4.57
Trp Tyr +0.80 —5.65 —1.82
Tyr Ile +0.89 —4.00 —3.52
Tyr Leu +1.93 —1.80 —1.30
Tyr Phe +1.72 -3.96 =107
Tyr Trp +3.65 —7.23 —5.10
Tyr Tyr +1.92 —4.91 —1.85

(1]
(1]




electrostatics relative to wild type, but many of them are predicted to significantly
improve packing stability. Figure 2-14 shows the five triple mutants with the best
electrostatics: Leu262Hsd-Val316lle, Leu262Phe—Val316Ile, Leu262Trp-Val316Phe,
Leu262Trp-Val316Tyr, and Leu262Tyr—Val316lle. All five mutations have electro-
statics less favorable than wild type by 0.6-0.9 keal/mol. Of the five, Leu262Trp-
Val316Phe and Leu262Trp—Val316Tyr have greatest improvement in packing stability
relative to wild type. Figure 2-15 shows the five triple mutants predicted to im-
prove packing stability relative to wild type by greater than 5 kcal/mol by either or
both high-resolution energy models: Leu262Hsd-Val316Trp, Leu262Phe-Val316Trp,
Leu262Trp—Val316Trp, Leu262Trp—Val316Tyr, and Leu262Tyr-Val316Trp. For these
five mutations, electrostatics are predicted to be at least 2.5 keal/mol less favorable
than wild type, except for Leu262Trp—Val316Tyr, whose electrostatics are less favor-
able than wild type by only 0.8 keal/mol. Of the twenty triple mutations, Leu262Trp-
Val316Phe and Leu262Trp-Val316Tyr provide the best trade-off between destabilizing
electrostatics and significantly improving packing stability.

In summary, we performed computational designs to replace Cysb9, Cys227,
Asn38, Asn265, and Met314 in PTE with amino acids less prone to degradation un-
der storage. For Cysh9, Cys227, and Met314, we recommend Cysb9Ser, Cys227Ser,
and Met314GIn mutants, respectively. For Asn38, we recommend Asn38Gln and
Asn38Leu mutants. For Asn265, we recommend Asn265Lys, which is predicted to
significantly improve electrostatics at the cost of decreased packing stability com-
pared to wild type. We also recommend triple mutations from the set Leu262(Hsd,
Phe, Trp)-Asn265Lys-Val316(Trp, Tyr), which are predicted to significantly improve
packing stability compared to wild type.

This computational design analysis has shown the multi-component nature of
design and demonstrated that replacement of single amino acids often reduces packing
stability with neighboring residues. Multiple mutations appear computationally to
be capable of restoring packing stability. We await results of experimental testing to
evaluate the effectiveness of these particular computational designs. This evaluation

will also inform future computational designs for improved protein storage stability.

o6



ARG A1

(a) Leu262Hsd-Val316lle

ARG A1

il

(e) Leu262Tyr—Val316Ile

Figure 2-14: Leu262 and Val316 mutations in the background of Asn265Lys.
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Figure 2-15: Leu262 and Val316 mutations in the background of Asn265Lys.

a8




Chapter 3

Branch-and-bound rotamer search

with enumeration

3.1 Introduction

The goal of computational protein design is to identify amino acid sequences that
fold to a predetermined structure with desirable properties. In this chapter, we focus
on search algorithms used in the protein design cycle. Specifically, we introduce
BroMAP/A*, a new guaranteed search method for protein design. BroMAP/A*
extends our branch-and-bound guaranteed search method (developed by Hong et al.
[11]) by allowing enumeration. Given a matrix of single and pairwise energies with
associated residue boundaries, BroMAP/A* returns a gap-free ordered list of the
lowest energy conformations. This ordered list plays an important role in the protein
design cycle. Analyzing the lowest energy conformations for structural and chemical
similiarities improves predictions for synthesis and testing. Additionally, comparison
of the ordered list to known low-energy conformations can help identify deficiencies
in the input model (i.e., backbone assumption, rotamer library, and energy function).

The current standard for guaranteed search with enumeration in protein design is
Dead-End Elimination (DEE) with A* search [70, 71]. DEE is a set of mathematical
criteria that identify rotamers and rotamer combinations inconsistent with being in

the ordered list of the lowest energy solutions [7-9, 72, 73]. After these rotamers

=
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and rotamer combinations are eliminated, A* acts on the reduced conformational
space. A* is a best-first search technique that always follows the least-cost path from
a starting node to a goal node representing the global minimum energy conformation
(GMEC) [10]. Once A* reaches the GMEC, the ordered list of conformations is
generated by a reverse walk along the least-cost path. Each node visited during the
reverse walk represents the next lowest energy conformation in the search space. The
walk terminates after enumerating all conformations within a predetermined energy

threshold of the GMEC.

DEE/A* solves many protein design problems; however, it sometimes fails to iden-
tify the GMEC and/or enumerate the lowest energy conformations for large designs.
In these cases, the remaining conformational space after DEE is too large for system-
atic search with A*. To determine the least-cost path, A* must retain the best-first
search tree in memory. For complex search spaces, like those generated by difficult
protein design cases, the best-first tree may contain an exponential number of nodes.
If the number of nodes exceeds machine memory, then A* cannot complete the least-
cost path. As an added complication, one cannot determine a priori if DEE/A* will
fail based on the design’s conformational complexity (assuming the conformational

search space is larger than machine memory).

One way to resolve the memory issue is to replace A* with Iterative Deepening
A* (IDA*) [74]. IDA* uses iterative depth-first search with a cutoft to save memory.
With each iteration, the cutoff is increased, and the path length grows. IDA* only
retains the seach tree up to the intermediate goal node based on the current cutoff,
whereas A* must retain the entire search tree in memory. However, at each iteration,
IDA* must rebuild the least-cost path up to the intermediate goal node from the
previous iteration. Although IDA* has much lower memory requirements than A*,
its computational expense is much greater. In practice, we find that IDA* is too
slow for large designs. These cases usually require visiting an exponential number of
nodes in the least-cost paths, which translates to an exponential number of iterations
in IDA*,

An alternative approach to the memory issue is to subdivide the original search
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problem into small, manageable pieces for A* search. Two frameworks for the sub-
division are divide-and-conquer and branch-and-bound. Georgiev et al. developed
DACS, which uses traditional DEE/A* in a divide-and-conquer framework [75]. If
DEE/A* cannot solve a particular design, DACS partitions the search space into sub-
problems whose union equals the original space. Each subproblem is then processed
with DEE/A*, and subproblems that cannot be solved are again partitioned. The
recursive partitioning continues until all subproblems have been solved. Divide-and-
conquer methods such as DACS are able to solve large designs with limited memory

resources; however, they must explicitly treat the entire search space with DEE/A*.

Branch-and-bound methods use statistical bounds on rotamers and rotamer pairs
to guide subproblem creation and processing. Rotamers are distributed into subprob-
lems based on their likelihood of belonging in the ordered list of the lowest energy
conformations. Subproblems that are more likely td contain conformations in the or-
dered list are processed first in a depth-first manner. Solutions to these subproblems
provide an upper bound on the GMEC, which can then be used to eliminate sub-
problems whose lower bound is outside the energy range of the ordered list. Unlike
divide-and-conquer methods, branch-and-bound methods avoid performing DEE/A*
on subproblems that provably do not contain any conformations in the ordered list,

which reduces ecomputational expenses.

Hong et al. developed BroMAP (branch-and-bound rotamer optimization using
MAP estimation), a branch-and-bound method for protein design that can solve for
the GMEC but not for an ordered, gapless list of near optimal solutions. They showed
that BroMAP had similiar run-time performance to traditional DEE/A* across a large
set of protein design test cases, and it solved many cases where DEE/A* failed. We
have extended that work to allow enumeration of the lowest energy conformations
with BroMAP. We call this new method BroMAP/A*. Given the same amount
of computational resources, BroMAP/A* returns the gap-free ordered list for protein
design cases where DEE/A* fails, which makes it a valuable tool in the protein design

cycle.

In the following sections, we present our developmental and characterization work
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on BroMAP/A*. First we review theory for DEE/A* and BroMAP, and we de-
scribe modifications that allow enumeration of the lowest energy conformations in
BroMAP/A*. Then we describe the implementations, computational resources, and
protein design test cases used to compare BroMAP/A* and DEE/A*. Our results
show a the clear advantage c;f using BroMAP/A* over traditional DEE/A* to enu-

merate the lowest energy conformations within limited computational resources.

3.2 Theory

A protein’s function is determined by its three-dimensional structure, which in turn
is determined by its amino acid sequence. In one common mode of computational
protein design, a set of sequence design positions is chosen for a protein whose three-
dimensional backbone structure is pre-selected. The goal is to determine the amino
acid type and side chain placement for each design position that will result in a three-
dimensional structure with desirable properties, often expressed as an energy to be

minimized.

To convert the problem to a discrete space for optimization, only a finite number
of fixed side chain placements, called rotamers, is allowed for each amino acid type. A
global conformation of the protein is defined by choosing one rotamer for each design
position. Consider a design with n positions, and let m = {my, my, ..., m, } represent
one conformation of the protein where m; represents a rotamer choice at position i.
Assuming an energy function with only pairwise additive interactions contributing to
the goal energy function, the value of the energy of conformation m can be calculated
g gy ; & _
from
n n—1 n
_ self pair
E"l - ZE172,~ = Z EJrli,JT?j‘ (31)
i=1 i=1 j=i+1
where Ef,'flf denotes the self energy of the rotamer at position ¢, including interactions

with fixed atoms in the system, and EPYT, = denotes the interaction energy of the
rotamers at mobile positions 7 and j. These energies can be computed for the set of

all wild-type and mutant rotamers using a molecular modeling package.
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Given Equation 3.1, finding the GMEC can be formulated as a discrete optimiza-

tion problem [7],

GMEC = ’17*1111111 By= 112.51}‘} (Z E 4 z Z f,’fii“;nj), (3.2)

i=1 j=i+1
where M denotes the set of conformations defined by all possible combinations of
rotamers at the n positions. In terms of theoretical complexity, the GMEC optimiza-
tion problem is NP-hard. Pierce and Winfree proved the decision form of the GMEC
problem (i.e., is there a rotamer at each position such that F,, < C for a specified
constant C) is NP-complete using a reduction from the satisfiability (SAT) problem
[76].

Enumerating the conformations is an even more difficult optimization problem.
Full enumeration of the conformational space is not practical (nor desirable) for most
designs, so the amount of enumeration is typically limited by an energy threshold,
ecut- Let G be the global minimum energy in the conformational space. A guaranteed
search method with enumeration must return a gap-free ordered list of all conforma-
tions whose energy is in the range [G, G + ecy]. The GMEC optimization problem in

Equation 3.2 is equivalent to the case where e, = 0.

3.2.1 DEE/A*

Next we review various Dead-End Elimination (DEE) criteria and A* search in the
context of solving the optimization problem with enumeration. The DEE criteria
identify rotamers and rotamer combinations that are mathematically inconsisent with
being in the ordered list of the lowest energy conformations based on an energy
threshold, e.,. A* search returns the gap-free ordered list of all conformations whose

energy is within e, of the global minimum energy.

Traditional Singles DEE

A trivial extension to the simple yet power DEE criterion of Desmet et al. removes

rotamers that are guaranteed not to be in the ordered list [7]. For example, consider
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the DEE single rotamer elimination criterion. Let m$ and m! represent two different
rotamer choices for position . If for some m there exists an m! such that the following

condition is met:

Eff%f + > min (Eﬁf?fm;) & Ef:%f + 3 max (Eﬁgin?) + €cuts (3.3)
Jd# i#

then m; cannot be in the ordered list, and it can be pruned from the search space.

One can think of rotamers s and ¢ as competitors at position i. If the lowest energy

rotamer s can produce when combined with the remaining conformational space is

greater than the highest energy rotamer ¢ can produce plus the energy threshold, then

rotamer s cannot possibly belong to any conformation at position 7 in the ordered

list.

When checking if rotamer s can be eliminated by some other rotamer at position
i, the left-hand side of Equation 3.3 does not ‘change. Similiarly, the right-hand side
does not change when checking if rotamer ¢ can eliminate some other rotamer at
position . To avoid redundant computations, the left-hand side and right-hand side
of Equation 3.3 can be computed once and stored for each single rotamer. For a design
with n positions and p rotamers on average per position, each side of Equation 3.3

requires O(pn) pairwise evaluations. There are O(pn) single rotamers, so the cost of

one round of Traditional Singles DEE is O(p®n?) pairwise evaluations.

Goldstein Singles and Pairs DEE

Goldstein developed a more powerful DEE single rotamer elimination criterion by
simply rearranging the terms in Equation 3.3 [8]. Again, if for some m; there exists
an m! such that the following condition is met:

self self . air air
E;‘ff - E?ﬁﬂ + Z [m;}n (Ega?.m;-’ - Epf )] > Ecut, (3-4)

u
put my,m
a7

then m{ cannot be in the ordered list, and it can be pruned from the search space. The

Goldstein criterion measures whether the total energy is increased or decreased by
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choosing rotamer ¢ over s at position i when combined with the remaining conforma-
tional space. If the total energy is always decreased by at least the energy threshold
in choosing rotamer ¢, then rotamer s cannot belong to any conformation at position
¢ in the ordered list. For a design with n positions and p rotamers on average per
position, Equation 3.4 requires Q(pn) pairwise evaluations for each combination of
two rotamers at the same position. There are O(p?) rotamer combinations for each
of the n positions, so the total cost of one round of Goldstein Singles DEE is O(p*n?)
pairwise evaluations. One round of Goldstein Singles DEE is more expensive than
Traditional Singles DEE because the left-hand side of Equation 3.4 is unique for each

combination of two rotamers.

Goldstein also proved this mathematical formulation for calculating how rotamer
choices affect the total energy can be used to eliminate higher-order rotamer combina-
tions (i.e., pairs, triplets, quadruplets, etc.) [8]. For example, consider the Goldstein
rotamer pairs elimination criterion. Let (m§, m{) and (m{, m}) represent two different
pairwise rotamer combinations for positions ¢ and j. If for some rotamer pair (m;7, m¥)
there exists a different rotamer pair (m!, m.}') such that the following condition is met:

(Eself s Eself E[Jan ) N (Erss%f + Ese]‘_f +Epdll ) e

ms m m3;,m? my
; E m mJ

1 palr pair pair pair -
Z n}a]:n [(Em sy + E’”u ’”u) (Em my ¥ Em m )] > €cut; (3‘))
ki

then the pair (mg,m) cannot be in the ordered list, and it can be pruned from the
search space. If the total energy is always decreased by at least the energy threshold
in choosing rotamer ¢ at position ¢ and rotamer v at position j, then rotamers s and
u cannot both belong to any conformation at positions 7 and j, respectively, in the
ordered list. To be clear, pairwise elimination is not equivalent to eliminating both
single rotamers using Equation 3.4. Elimination of the pair (m;, m}) means that if any
conformation in the ordered list contains rotamer s at position 7, then no conformation
can contain rotamer u at position j, or vice versa. For a design with n positions and

p rotamers on average per position, Equation 3.5 requires O(pn) pairwise evaluations

for each combination of two rotamer pairs. For any two positions, there are O(p?)
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ways to choose two out of the p? rotamer pairs. There are O(n?) pairs of positions to
consider, so the total cost of one round of Goldstein Pairs DEE is O(p®n?) pairwise

evaluations.

Split-DEE

One limitation of Traditional and Goldstein singles DEE is that rotamer ¢ must
“outperform” rotamer s across the entire conformational space in order to prune
it. Pierce et al. developed a means of splitting the conformational space such that
multiple rotamers at position i can be used to eliminate rotamer s [9]. The simplest
formulation of Split-DEE uses one split position (s = 1). Consider some position k
i, which has K rotamers. Suppose the space is split into I equally sized partitions;
that is, each partition contains exactly one rotamer from position k. If for some m;
there exists an m! in each partition such that the following condition is met for each
rotamer v at split position A:

Eself EwselfJr Z [111111( pair Epau J)] (Ep’ill . EDan )> Ceut s (36)

m? m; mi,m} mt,m my,my, m! my
JJFkFE

then m; cannot be in the ordered list, and it can be eliminated from the search space.
For rotamer s at position ¢, if there is always some other rotamer choice for position
i that decreases the total energy by at least e, in every partition, then rotamer s
will never be chosen. For a design with n positions and p rotamers on average per
position, one round of Split-DEE with one split position requires O(p*n?) pairwise

evaluations, which is the same cost as one round of Goldstein Singles DEE [9].

Multiple positions can be also be used for Split-DEE. For Split-DEE with two
positions (s = 2), consider two positions h and k, which have H and K rotamers,
respectively. The space is split into H x K equally sized partitions; that is, each
partition contains exactly one rotamer from position i and one rotamer from position

k. If for some m$ there exists an m! in each partition such that the following condition
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is met for all rotamers v and w at split positions h and k:

self sclf : pair pair
E??I Em Z |:nl“ln (Emf,m}‘ - EJ]‘]}J“;}‘)] +
JJFhFRFA
(BRR = BT )+ (BRR — EPS" L) > ecus (3.7)
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then m; cannot be in the ordered list, and it can be eliminated from the search space.
For a design with n positions and p rotamers on average per position, one round of
Split-DEE with two split positions requires O(p n?) pairwise evaluations [9]. As the
number of split positions increases, the number of partitions grows combinatorially,

and Split-DEE evaluation becomes more costly.

Goldstein Magic Bullet Pairs Elimination

Testing all possible rotamer pairs with the Goldstein Pairs DEE criterion, as described
in Equation 3.5, is computationally expensive. For a design with n positions and p
rotamers on average per position, Goldstein Pairs DEE requires O(p°n®) pairwise
evaluations to check all possible rotamer pairs. Through inspection of typical design
problems, Gordon and Mayo found the number of dead-ending pairs is usnally much
smaller than the total number of pairs considered during Goldstein Pairs DEE [73],
They also observed that certain rotamer pairs, called “magic bullets”, tend to elimi-
nate most of these dead-ending pairs. Together, these observations form the basis for
Goldstein Magic Bullet Pairs Elimination.

One of the most effective magic bullets is the rotamer pair for which the maximum
interaction energy is least [73]. For a pair of positions, i and j, the magic bullet

correponds to the rotamer pair identified by the following minimization:

arg min E:‘f,lf D e Epa" u+ Z max (Elk;”m! + Epar )] (3.8)
ERT, i

m m; m my mi
ko kFiE]

After finding the magic bullet rotamer pair, all other rotamer pairs for positions i
and j are compared to the magic bullet using the Goldstein Pairs DEE criterion

from Equation 3.5. For a design with n positions and an average of p rotamers
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per position, comparing all other rotamer pairs for positions ¢ and j to the magic
bullet with Goldstein Pairs DEE requires O(p®n) pairwise evaluations. Finding the
magic bullet for positions i and j requires O(p*n) pairwise evaluations. Goldstein
Magic Bullet Pairs with one magic bullet for each of the O(n?) possible pairs of
positions requires a total of O(p472.3) pairwise evaluations, which is less than the
O(p°n?®) pairwise evaluations required to test all rotamer pairs with one round of

(Goldstein Pairs DEE.

Logical Singles-Pairs Elimination

After applying DEE singles and pairs criteria, additional single rotamers can be logi-
cally eliminated as pointed out by Lasters et al. [72]. For example, consider rotamer
r at position 7. Suppose that all of the pairwise combinations between rotamer r at
position ¢ and each rotamer at another position j have been eliminated by a DEE
pairs criterion such as Goldstein Magic Bullet Pairs. Any conformation that contains
rotamer 7 at position ¢ must interact with position j. Since every pairwise combina-
tion of rotamer r at position ¢ with position j is inconsisent with being in the ordered
list, rotamer r at position 7 cannot belong in the ordered list.

Logical elimination is also possible when a position has only one rotamer. For
example, suppose position j has only one rotamer. Any conformation in the ordered
list must contain that rotamer at position j, because no other choices are possible.
If the pairwise combination of some rotamer r at position ¢ and the one rotamer at
position j has been eliminated by DEE pairs criteria, then rotamer r at position i

cannot belong in the ordered list.

Position Unification

Higher-order DEE criteria, which test all possible rotamer pairs, triplets, etc., are
often cost prohibitive due to the combinatorial nature of the GMEC problem. Gold-
stein introduced the concept of position unification, which allows for selective use
of higher-order DEE criteria [8]. Unification involves merging the rotamers at two

different positions into a new, unified position. Subsequent DEE pairs comparison
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between the unified position and any other position is equivalent to performing a
triplet comparison in the non-unified search space. Similiarly, a DEE pairs compari-
son between two different unified positions is equivalent to a quadruplet comparison
in the non-unified search space.

Position unification involves a trade-off between storage and eliminating power.
Consider unification of positions 7 and j, which each have R; and R; rotamers, respec-
tively. Before unification, R; + R; storage is required for the single rotamers. After
unification, R; X R; storage is required, since rotamer pairs in the non-unified space
become single rotamers in the unified space. Now consider a third position k& with
Ry rotamers. Before unification, Ry x (R; + R;) storage is required for the rotamer
pairs between positions 7 and k and between positions j and k. After unification,
Ry x (R; x R;) storage is required for the rotamer pairs between the unified position
and position k.

There is no mathematically optimal criterion to choose positions for unification
based on single rotamers and rotamer pairs. The effectiveness of a unified position in
subsequent elimination depends on higher-order rotamer interactions, which are not
captured in the individual pairwise energies. Therefore, heuristic criteria are used to
select positions for unification. For example, one may choose to unify strongly inter-
acting positions after initial DEE by considering the fraction of eliminated rotamer

pairs for all pairwise combinations of positions [8].

A* Search

The DEE criteria discussed above eliminate rotamers and rotamer pairs that provably
cannot belong in the ordered list of the lowest energy conformations. However, DEE
does not necessarily eliminate every rotamer and rotamer pair that does not belong
in the ordered list. After DEE has reduced the search space, brute-force enumeration
can be used to generate the ordered list if the reduced space is sufficiently small.
More elegantly and efficiently, A* is used to expand the conformation tree in order of
conformational energies [10]. A* is a best-first search technique that always follows

the least-cost path from a starting node to a goal node representing the global mini-
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mum energy conformation (GMEC). Once A* reaches the GMEC, the ordered list of
conformations is generated by a reverse walk along the least-cost path.

Ideally, DEE significantly reduces the conformational space such that the A*
search tree can fit in machine memory, in which case A* returns the gap-free ordered
list. When the A* search tree becomes too large for memory, the problem cannot be
solved. Two factors that affect the complexity of the reduced conformational space
are the underlying design problem and the user-specified energy threshold for enu-
meration, eq,;. When the lowest energy conformations are driven by higher-order
interactions between positions, such as three or more positions forming an energet-
ically favorable pocket in the protein, branching in the A* search tree produces an
exponential number of nodes, which exhausts memory [10]. The effect of the second
factor, eqy, is more obvious. As eqy increases, fewer rotamers and rotamer combina-
tions are inconsistent with being the ordered list of the lowest energy conformations;

hence, they cannot be eliminated with DEE.

3.2.2 BroMAP

BroMAP is a branch-and-bound method for finding the global minimum energy con-
formation (GMEC) by dividing the search space into small, solvable subproblems
based on available computational resources [11]. BroMAP maintains a global upper
bound U, which is the lowest energy of any conformation found so far. To be clear, U
is the closet known value of the GMEC energy, and the GMEC energy is always less
than or equal to U at any point during processing. Starting with the original search
space, BroMAP recursively performs the following steps until all subproblems have

been processed:

1. Select a subproblem from the queue.

2. Can the subproblem be fully solved with limited time and memory? If so,
(a) compute the minimum energy; (b) if the minimum energy is less than the

current global upper bound U, then update U; (c) return to step (1).
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3. Compute a lower bound and an upper bound on the minimum energy for this

subproblem. If the upper bound is less than U, then update U.

4. If the lower bound exceeds the current global upper bound U, then discard (i.e.,

prune) the current subproblem and return to step (1).
5. When possible, exclude ineligible conformations from the search space.

6. Pick one residue and split its rotamers into two groups; define two child sub-

problems based on this split.

7. Add the child subproblems to the queue and return to step (1).

Statistical Bounds

BroMAP uses statistical bounds for subproblem creation, elimination, and processing.
To calculate these bounds, the GMEC optimization problem in Equation 3.2 is formu-
lated as a maximum-a-posteriori (MAP) estimation problem. For a random vector,
x = (x1,T9,...,2,), and a probability distribution that maps each x in the sample
space X’ to a probability p(x), find the assignment x* such that x* € argmaxy,  p(x).

Consider a design with n positions. For each position, assign a discrete random
variable, z;, that ranges over R;, the set of allowable rotamers at position i. Then,

define a probability distribution p(x) over X = R; x Ry x ... x R, as follows:

p(x) = = exp{—e(x)}, (3.9)

n n—1 n
for a normalization constant Z and e(x) = Zei(ﬂ:j) + Z Z eij(zi, z;), where
i=1 i=1 j=i+1
ei(r) = B for r € R; and e;(r,s) = ENy's for (r,s) € R; x R;. Note that e(x)
i L :
is just a rephrasing of Equation 3.1 in terms of the discrete random variables. The
MAP assignment x that minimizes the energy, e(x), maximizes the probability, p(x).
Finding the optimal MAP assignment is equally as difficult as finding the GMEC in

the original optimization problem. However, many efficient approximation algorithms

exist for MAP estimation.
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BroMAP uses an adapted form of the tree-reweighted max-product algorithm
(TRMP) on subproblems to compute lower and upper bounds on the energy by
bounding the probability. TRMP, developed by Wainwright et al., is a well known
technique for MAP estimation using max-product belief propogation [77]. TRMP
treats the MAP estimation problem as an undirected graphical model, and it com-
putes bounds by building tree distributions with edge-based reparameterization up-
dates. Hong et al. adapted TRMP to compute bounds for rotamers and rotamer
pairs in the GMEC problem based on work by Kolmogorov [78]. Full mathematical
details including proofs for adapted TRMP can be found in the original description
of BroMAP [11]. In BroMAP, TRMP efficiently computes lower and upper bounds
for entire subproblems; that is, the energy of any conformation in a subproblem is
guaranteed to be in the range of the bounds. Additionally, TRMP computes bounds
for all individual rotamers and rotamer pairs in a subproblem. The bounds for a
particular rotamer specify the energy range for any conformation in the subproblem

that contains the rotamer.

Eliminating Rotamers in Subproblems

During subproblem processing, Dead-End Elimination (DEE) and TRMP bounds are
used to eliminate rotamers and rotamer pairs that are inconsistent with belonging to
the minimum energy conformation for the subproblem (i.e., the local GMEC). The
DEE criteria discussed in Section 3.2.1 are used without modification to reduce the
conformational space of each subproblem. However, elimination of a rotamer in a
particular subproblem does not extend to elimination of that same rotamer in other
subproblems. The mathematical validity of DEE is local to each subproblem.
Rotamers and rotamer pairs are also eliminated by comparing individual bounds
with the current global upper bound U. Let L(i®) represent the lower bound computed
by TRMP for rotamer s at position i. The total energy of any conformation that
contains rotamer s at position ¢ will be at least L(i°). If L(i°) exceeds the current
global upper bound U, then rotamer s at position 7 cannot belong in the GMEC.

The same criterion applies for rotamer pairs. Let L(i%, j*) represent the lower bound
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computed by TRMP for pairing of rotamer s at position ¢ and u at position 3. If
L(i*%, 7*) exceeds the current global upper bound U, then the pair cannot belong in
the GMEC. As in DEE, rotamer pair elimination by TRMP bounds is not equivalent
to elimination of both single rotamers. Either rotamer s at position 7 and or rotamer
u at position j can belong in the GMEC, both both rotamers cannot simultaneously

belong in the GMEC.

Solving Subproblems

In BroMAP, solving a subproblem means finding the minimum energy conformation
for the subproblem (i.e., the local GMEC). Of the subproblems that can solved with
limited time and memory, most are solved by A* search. However, the local GMEC
can also be found during bounding by TRMP. TRMP includes an optimum specifi-
cation (OS) criterion. If the MAP assignment at TRMP convergence satisfies the OS
criterion, then it is guaranteed to be the optimal assignment. Recall that the opti-
mal MAP assignment maximizes the probability, which minimizes the conformational

energy.

Assuming the subproblem is not small enough for brute-force enumeration, there is
no criterion that guarantees solving the subproblem within limited resources. There-
fore, heuristic criteria are needed to decide whether to attempt A* search. We discuss
the decision criteria in more detail later in this chapter. Subproblem evaluation is
depicted in Figure 3-1. All subproblems undergo an initial pruning stage by DEE
before the heuristic criteria are checked. If the reduced conformational space satisfies
the criteria, then A* search is attempted. If A* search succeeds, then the subproblem
is solved. If A* search fails, or if it is not attempted in the first place, then TRMP
bounds are computed. If TRMP converges to an optimal MAP assignment, then the
subproblem is solved. Otherwise, the subproblem lower bound is checked against the
current global upper bound U to see if the subproblem can be eliminated. If the
subproblem cannot be eliminated, then rotamers and rotamer pairs are eliminated

using TRMP lower bounds before the subproblem is split.
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Figure 3-1: Subproblem evaluation in BroMAP.
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Figure 3-2: Example of subproblem splitting in BroMAP. Position i is the split posi-
tion with TRMP rotamer lower bounds ordered as follows: L(i;) < L(i2) < L(i3) <
L(iy). Rotamers i; and iy are placed in the low child subproblem, and rotamers i3
and 74 are placed in the high child subproblem.

Subproblem Splitting and Ordering

During splitting, the parent subproblem is divided into two child subproblems of equal
complexity using a split position. First, rotamers from the split position are ordered
by their TRMP lower bounds. Then, the rotamers are divided equally into two sets.
The set with higher-valued lower bounds (i.e., rotamers that are less likely to belong
to the GMEC) are placed in the high child subproblem. The set with lower-valued
lower bounds (i.e., rotamers that are more likely to belong to the GMEC) are placed
in the low child subproblem. Figure 3-2 illustrates splitting for a simple example.
BroMAP uses a depth-first tree to order subproblems for evaluation. After a
subproblem is split, the low child is always the next subproblem to be evaluated.
Figure 3-2 illustrates subproblem ordering for a simple example. BroMAP’s initial
depth-first dive continues until a low child subproblem is solved. Solving the low

child provides an update for the global upper bound U, which is used for subsequent



rotamer and subproblem elimination. After the first low child is solved, the most
recently generated high child is evaluated. If the high child is solved or eliminated,
BroMAP proceeds up to the previous level in the depth-first tree; otherwise, the high
child is split. BroMAP terminates when the high child generated by the first split is
solved or eliminated.

Ideally, rotamers in the GMEC are always placed in the low child subproblem
during splitting. When this occurs, the first low child subproblem solved during the
depth-first dive will return the GMEC, and the global upper bound U becomes tight.
BroMAP will then have maximum eliminating power when evaluating high child
subproblems as it proceeds back up the tree of subproblems. High child subproblems
whose lower bounds are nearly tight can be eliminated with minimal processing. On
the other hand, the worst case occurs if the rotamers in the GMEC are placed in the
high child when the first subproblem (i.e., original search space) is split. This can

occur when the TRMP rotamer lower bounds are loose for the split position.

3.2.3 BroMAP/A*

BroMAP/A* extends BroMAP by providing enumeration of all conformations within
an energy threshold, e.,, of the GMEC. Starting with the original search space,
BroMAP/A* recursively performs the following steps until all subproblems have been

processed:

1. Select a subproblem from the queue.

2. Can the subproblem be fully solved with limited time and memory? If so, (a)
enumerate conformations within e, of the minimum energy; (b) if the minimum
energy is less than the current global upper bound U, then update U; (¢) return

to step (1).

3. Compute a lower bound and an upper bound on the minimum energy for this

subproblem. If the upper bound is less than U, then update U.
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Figure 3-3: Example of depth-first subproblem ordering in BroMAP. Numbers inside
of the circles correspond to subproblem indices, and numbers outside of the circles
correspond to the order in which the subproblems are evaluated. In this example,
the initial depth-first dive terminates at subproblem 9, the first low child that can be
solved.
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4. If the lower bound exceeds the current global upper bound U by e.u, then

discard (i.e., prune) the current subproblem and return to step (1).

When possible, exclude ineligible conformations from the search space account-

ot

ing for ecyt.

6. Pick one residue and split its rotamers into two groups; define two child sub-

problems based on this split.

7. Add the child subproblems to the queue and return to step (1).

BroMAP /A* requires modification of the logic used in subproblem evaluation. In
BroMAP, subproblems are solved when A* search finds the GMEC or when TRMP
converges to an optimal MAP assignment. In BroMAP/A*, subproblems can no
longer be solved by TRMP, since TRMP has no enumeration capability. If TRMP
is required for a subproblem, the only two outcomes are subproblem splitting or
subproblem elimination through comparison with the current global upper bound U.
BroMAP/A* subproblem evaluation is depicted in Figure 3-4.

Enumeration also affects rotamer elimination by DEE and TRMP bounds during
subproblem evaluation. As eq, increases, fewer rotamers and rotamer pairs can be
eliminated by DEE during the first step of subproblem evaluation. The DEE-reduced
subproblem search space is larger than if no enumeration is required (i.e., eqy = 0),
and A* search is less likely to be attempted. Enumeration also changes rotamer
and rotamer pair elimination by TRMP lower bounds; the criteria must now account
for ecyt. Let L(i°) represent the lower bound computed by TRMP for rotamer s at
position i. If L(i®) > U + eqy, then rotamer s at position ¢ cannot belong in the
ordered list. The same criterion applies for rotamer pairs. Let L(7%, j*) represent
the lower bound computed by TRMP for pairing of rotamer s at position ¢ and u at

position j. If L(i%, j*) > U + ey, then the pair cannot belong in the ordered list.
J J
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Figure 3-4: Subproblem evaluation in BroMAP/A*.
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3.3 Methods

In this section, we discuss implementation details for DEE/A* and BroMAP/A*. We
also describe the computational environment, limiting resources, and protein design

test cases used to characterize and assess DEE/A* and BroMAP/A* performance.

3.3.1 Implementation
DEE/A*

We used a DEE/A* implementation written in C code by Altman [79]. We ran
DEE/A* with the following options and order:

1. Eliminate singles using Goldstein’s condition [8]. Repeat until elimination is

unproductive.

2. Eliminate using split flags with one split position (s=1) [9]. Repeat until elim-

ination is unproductive.
3. Do logical singles-pairs elimination [72].

4. Eliminate pairs using Goldstein’s condition with one magic bullet [73].

_O‘l

Do logical singles-pairs elimination [72].
6. If unification is possible, perform unification [8], and go to step (1).

7. Perform A* search [10].

For Goldstein magic bullet pairs DEE, we determine one magic bullet for every
pair of positions using Equation 3.8. Then, we use the Goldstein Pairs DEE criterion
from Equation 3.5 to compare all other rotamer pairs with the magic bullet for each
pair of positions.

Recall that position unification transforms rotamer pairs between two positions
into single rotamers for a new unified position. Unification allows for the selective

use of higher-order DEE criteria at the cost of increased storage. For unification, we
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choose the pair of positions with the largest fraction of flagged rotamer pairs (i.e.,
Goldstein’s heuristic criterion [8]). However, we introduced a unification parameter,
Chuni, in the criterion to limit the storage required for rotamer energies and to keep
the cost reasonable during subsequent rounds of DEE. The C,; parameter specifies
a maximum value for the total number of single rotamers after unification. First,
we check the pair of positions with the largest fraction of flagged rotamer pairs. If
unifying this pair produces a total number of single rotamers that exceeds Cl,;, then
we check the pair of positions with the next-largest fraction of flagged rotamer pairs,
and so on. When the value of Cy,; is large, unified positions contain more single
rotamers, more storage is required for rotamer energies, and DEE evaluation after
unification is more expensive. Conversely, when the value of C,,; is small, unified
positions contain fewer single rotamers, less storage is required for rotamer energies,
and DEE evaluation after unification is less expensive.

For each case we considered multiple values for C\,,;: 2000, 4000, 6000, 8000, 10000,
12000, 14000. Each of the seven values corresponds to a seperate DEE/A* run (i.e.,
Cini does change during execution). We also ran DEE/A* with no unification (i.e.,

skip step (6) in the above algorithm).

BroMAP/A*

Our BroMAP/A* implementation is built from C++ code for BroMAP developed
by Hong et al. [11). Both BroMAP and BroMAP/A* use PEBBL, an object ori-
ented branch-and-bound library [80]. PEBBL manages the queue and data structures
for the depth-first subproblem tree. PEBBL also handles many high-level subprob-
lem creation, evaluation, and elimination details. Code for DEE and A* search in
BroMAP/A* subproblem evaluation is based on C code written by Altman [79].

In BroMAP/A* DEE is the first step in subproblem evaluation. For DEE in
BroMAP/A*, we used the same criteria and ordering as the DEE/A* implementation
discussed in the previous section, namely, steps (1) through (6). As with DEE/A*, we
used a unification parameter, Cy,;, to limit the storage required for rotamer energies

after unifying two positions. In our tests of BroMAP/A*, we used a constant value
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of Cyni = 6000 for all subproblems (i.e., only unify two positions if the subproblem

search space after unification contains fewer than 6000 single rotamers).

After DEE, we used a heuristic criterion based on subproblem complexity to de-
termine whether to attempt A* search. If the DEE-reduced subproblem search space
contained less than 10*® conformations and fewer than 300,000 rotamer pairs, then
A* search was attempted; otherwise, TRMP bounds were computed. These values
were based on our prior experience with using DEE/A* for protein design problems.
We have found that A* typically solves problems of this size given the computational

resources we will discuss shortly.

During subproblem evaluation, rotamers and rotamer pairs are eliminated by DEE
and TRMP bounds. DEE never eliminates a rotamer or rotamer pair that belongs to
the local GMEC (i.e., the minimum energy conformation of a subproblem). On the
other hand, rotamers and rotamer pairs that belong to the local GMEC can be elim-
inated by TRMP lower bounds if the local GMEC energy exceeds the current global
upper bound U by at least e.,. Immediate elimination of these particular rotamers
from the subproblem increases the local GMEC energy. To avoid changing subprob-
lem optimal values, we numerically enforced rotamer elimination by the TRMP lower
bound, which was also used in BroMAP [11]. When a rotamer or rotamer pair can
be eliminated by TRMP lower bounds, we set its energy to a very large value. This
technique preserves the local GMEC of the parent subproblem while ensuring that

the rotamers will be eliminated by DEE in the child subproblems.

To choose a position for subproblem splitting, we used a criterion that balances
the need to create low child subproblems that contain rotamers that are more likely to
belong to the GMEC with the need to quickly create solvable subproblems. TRMP
computes lower bounds for all rotamers at each position. For each position, we
computed the difference between the minimum and maximum lower bounds. Then,
we selected the position with the largest difference, along with any other position
whose difference was at least 90% of the largest difference. For example, if there were
four position whose differences were 95, 20, 50, and 100, respectively, then positions 1

and 4 would be selected. Next, we determined which of the selected positions would
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produce the smallest child subproblems. Assuming an equal distribution of rotamers
to the two child subproblems (i.e., a 50/50 split), we calculated the total number
of rotamer pairs that would result from splitting at each of the selected positions.
Finally, we chose the position that produced the smallest number of rotamer pairs.
From the previous example, if splitting at positions 1 and 4 produced 100,000 and
200,000 subproblem rotamer pairs, respectively, then position 1 would ultimately be
chosen for splitting, despite the fact that position 4 had a larger difference in rotamer

lower bounds.

3.3.2 Computational Environment

We tested both search methods on 64-bit Linux workstations with a quad-core 2.8
GHz Intel Xeon E5440 processor and 4 GB of memory. The C/C++ codes for
BroMAP/A* and DEE/A* were compiled using the Intel C/C++ Compiler Version
11.1 for Linux. Both executables were built using the same compiler optimization
flags. All procedures were executed over a single core, and all times reported are

CPU time.

3.3.3 Test Cases

To compare BroMAP/A* and DEE/A*, we chose the same set of 68 design cases
used by Hong et al. to assess BroMAP [11]. These cases were derived from practical

computational designs by Lippow et al. [1].

Each case corresponds to one of three different model systems:

1. FN3: derived from protein Fn3, the tenth human fibronectin type III domain.

It is a 94-residue F-sheet protein with an immunoglobulin-like fold.

2. D44.1 and D1.3: antibodies that bind to different epitopes of hen egg-white
lysozyme (HEL).

3. EPO: human erthropoietin (Epo) protein complexed to its receptor (EpoR).
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Fach case corresponds to one of three types of protein regions:

1. INT: protein—protein binding interface.
2. CORE: protein core (i.e., side chains that are not solvent-exposed).

3. CORE++: protein core plus boundary positions that are partially exposed to

solvent.
Each case uses one of three sets of amino acid types for the design positions:

1. H: hydrophobic amino acids (Ala, Phe, Gly, Ile, Leu, Met, Trp, Val).

2. HP: hydrophobic plus polar amino acids (Ala, Phe, Gly, Ile, Leu, Met, Trp,
Val, His, Asn, Gln, Ser, Thr, Tyr).

3. A: all types of amino acids, excluding Pro and Cys.
Each case uses one of two different rotamer libraries:

1. REG: standard rotamer library, which is based on the backbone-independent
library by Dunbrack and Cohen (May 2002) [64]. The library was supplemented
with three His rotamers for an unsampled ring flip, and two Asn rotamers to

increase sampling of the final dihedral angle rotation.

2. EXP: expanded rotamer library. This library was created by expanding y; and
X2 of the rotamers in REG by +10°. The hydroxls of Ser, Thr, and Tyr were

sampled every 30°.

For all libraries and cases, the crystallographic wild-type rotamer for each design
position was added to the library using the complete Cartesian representation of the
side chain so that its bond lengths and bond angles, as well as torsions, would be
maintained.

The singleton and pairwise rotamer energies were computed using the CHARMM

PARAM22 molecular mechanics force field with a 4r distance-dependent dielectric

84



constant and with no cut-offs for non-bonded interactions [59-61]. All available energy
terms were included in the calculation (i.e., bond, angle, Urey-Bradley, dihedral,
improper, Lennard-Jones, and electrostatic). Side-chain rotamers that clashed with
fixed protein regions were eliminated during case generation. Clashes were determined
by examining the singleton energy of every possible rotamer. If a rotamer’s singleton
energy exceeded the lowest singleton energy at that sequence position by at least 50
kecal/mol, then it was removed from the search space.

Table 3.1 lists the properties and complexity of each test case. In terms of problem
size, the test cases range from small designs, 5 positions and 10° conformations, to

078 conformations.

much larger designs, 41 positions and 1

For each test case, we considered varying amounts of enumeration using e, values
of 0, 1, 3, and 5 keal/mol. We ran BroMAP/A* once for each test case and ey, value.
We ran DEE/A* ecight times for each test case and e, value, one DEE/A* run
without position unification and seven runs using the following unification parameter
Cluni values: 2000, 4000, 6000, 8000, 10000, 12000, and 14000. In total, we performed
272 (68 x 4) BroMAP/A* runs, and 2176 (68 x 4 x 8) DEE/A* runs.

We did not impose a limit on CPU time for any of the runs; however, all runs
had the same physical memory limit of 4 GB. For some test cases, DEE/A* failed
because the storage required for the A* search tree exceeded physical memory. When
this occurred, A* could not complete the lowest-cost path, and no solutions were
returned. We still measured CPU time for these cases (i.e., the time spent on DEE
plus the time for A* to fill up memory). On the other hand, BroMAP/A* always
solved the test case given the same physical memory limit. If A* search failed during
evaluation of a subproblem in the BroMAP/A* tree, the subproblem was recursively

subdivided until it could be solved within the available memory resources.
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Table 3.1: Protein design test cases.

Each column represents (1) No: test

case number, (2) Model: model system, (3) Region: protein region, (4) AA:

amino acid types for the design positions, (5) Lib: rotamer library, (6) n:

number of positions, (7) np: number of design positions (excluding mobile

waters), (8) w: number of mobile water molecules, (9) Singles: total number

of single rotamers, (10) Pairs: total number of rotamer pairs, (11) loggconf:

conformational complexity.

No. Model Region AA Lib n np w Singles Pairs loggconf
1 3 core HP REG 14 14 0 743 2.5 % 10° 23.4
2 fn3 core+ HP REG 20 20 0 1778 1.5 x 109 38.2
3 M3 coret+ HP REG 23 23 0 1894 1.7 x 108 42.8
4 3 coret++ HP REG 25 25 0O 2048 2.0 x 108 46.6
5 fn3 core++ HP REG 27 27 0 2083 2.1 x 10° 49.0
6 fn3 core HP EXP 14 14 0 8774 3.5 x 107 38.5
7 D441 int A REG 7 4 0 476 8.5 x 104 9.4
8 D441  int A REG 70 822 2.8 x10° 14.3
9 D441 int A REG 8 8 0 965 4.0 x 10° 16.3

10 D441  int A REG 9 9 0 1019 4.5 x 10° 18.0
11 D441 int A REG 10 10 0 1133 5.6 x 10° 19.8
12 D441 int A REG 11 11 0 1376 8.4 x 10° 22.3
13 D441  int A REG 16 14 2 2020 1.9 x 108 32.6
14 D441 int A EXp 7 4 0 5026 9.5 x 106 16.5
15 D441 int A BXP 7 5 0 7019 1.9 x 107 18.0
16 D441  int A EXP 7 6 0 7910 2.6 x 107 19.3
17 D441  int A EXP 7 70 8771 3.2 x 107 21.6
18 DL3  int A REG 6 4 2 450 8.3 x 104 18.5
19 DL3 int A RECG 11 8 3 767 2.6 x 10° 18.5
20 D13 int A REG 23 79 1618 1.2 x 10° 36.2
21 D13 int A EXP 6 4 2 3599 4.8 x 109 15.2
22 DI1.3 int A EXP 7 5 2 3616 4.8 x 106 15.2
23 D13 int A EXP 8 6 2 4070 6.3 x 108 17.7
24 D13 int A EXP 11 4 3 4612 8.0 x 10° 21.3
25 D13 int A EXP 11 6 3 4987 9.7 x 10° 22.4
26 D13 int A EXP 11 T8 5461 1.2 x 107 23.3
27 D13 int A EXP 11 T 3 5891 1.4 x 107 24.7
28 D13 int A EXP 11 8§ 3 6365 1.7 x 107 25.7
20 DL.3 core 151 REG 16 16 0 342 5.4 x 107 20.4
30 DL3 core H REG 20 20 0O 430 8.6 x 10! 25.0
31 DI1.3 core H REG 26 26 0 503 1.2 x 10° 30.3
32 D13 core H REG 34 34 0 567 1.5 x 10° 36.7
33 DL3 core HP REG 16 16 0 980 4.4 x 10° 27.6
34 DL3  core HP REG 20 20 0O 1228 7.1 x 10° 33.9
35 DI1.3 core HP REG 26 26 0 1431 9.7 x 10° 41.8
36 D13 core HP REG 34 34 0 1582 1.2 x 109 50.7

(continued)
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Table 3.1 — (continued)

No. DModel Region AA Lib n np w Singles Pairs log,qconf

37 DL3 core H EXP 13 13 0 1844 1.5 x 109 26.5
38 D13 core H EXP 16 16 O 2734 3.5 x 108 35.0
30 D13  core H EXP 20 20 0 3370 5.3 x 106 41.9
40 D13 core H EXP 26 26 0O 3894 7.1 x 108 50.6
41 DL3 core H EXP 34 34 0 4444 9.4 x 108 63.8
42 epo int A REG 5 5 0 466 7.1x 104 8.8
43  epo int A REG 6 6 0 419 6.8 x 10¢ 9.5
44  epo int A REG 11 11 0 1005 4.4 x 10° 19.2
45  epo int A REG 21 11 3 1503 1.0 x 106 31.4
46  epo int A REG 21 15 3 1999 1.9 x 108 36.7
47  epo int A REG 21 18 3 2138 2.1 x 108 39.5
48  epo int A EXP 5 5 0 5001 8.4 x 108 14.2
49  epo int A EXP 6 6 0 4170 6.8 x 106 14.5
50 epo int A EXP 8 8 0 7544 2.3 x 107 23.0
51 epo int A EXP 9 9 0 8724 3.2x 107 26.1
52  epo core H REG 17 17 0 291  3.9x 10* 19.9
53  epo core H REG 22 22 0 395 7.4 x10% 26.5
54 epo core H REG 28 28 O 433 8.9 x L0t 29.7
55 epo core H REG 33 33 o0 573 1.6 x 10° 37.2
56  epo core H REG 41 41 0 727 2.6 % 10° 46.2
57  epo core HP REG 17 17 0 827 3.2x 109 27.7
58 epo care HP REG 22 22 0 1103 5.8 x 105 36.4
59  epo core HP REG 28 28 0 1208 7.0 % 10° 42.0
60 epo core HP REG 33 33 0 1615 1.3 x 106 52.1
61 epo core HP REC 36 36 0 1827 1.6 x 10° 57.6
62 epo core HP REG 38 38 0 1956 1.9 x 10° 61.2
63 epo core HP REG 41 41 0 1999 1.9 x 10° 64.0
64 epo core H EXP 17 17 0 2307 2.4 x 108 33.8
65 epo core H EXP 22 22 0 3006 4.2 x 10° 45.0
66  epo core H EXP 28 28 O 3213 4.8 x 106 50.3
67 epo core H EXP 33 33 0 4322 8.9 x 106 62.9
68 epo core H EXP 41 41 0 5712 1.6 x 107 78.3

3.4 Results and Discussion

Among the 68 test cases, DEE/A* solved 50, 39, 32, and 24 cases for eqy values 0, 1,
3, and 5, respectively. Given the same computational resources, BroMAP/A* solved
every case for all four eq values. Thus, there were no cases DEE/A* solved that

BroMAP/A* was unable to solve. For eqy = 0 (i.e., solving only for the GMEC), the
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Table 3.2: Test cases solved by DEE/A*,

Percentage Solved | Percentage Solved
eeqt | without Unification | with Unification
0 34% (23/68) 74% (50/68)
| 26% (18/68) 57% (39/68)
3 25% (17/68) 47% (32/68)
5 18% (12/68) 35% (24/68)

same test cases were unsolved by DEE/A* here as found in previous computational
experiments by Hong et al. [11]. Additionally, our results show that the number of
cases solved by DEE/A* decreases significantly once enumeration is required.

Position unification was key in the ability of DEE/A* to solve test cases. Table 3.2
summarizes the number of cases solved with and without unification. Compared to
DEE/A* with unification, the number of cases solved by DEE/A* decreased by a
factor of two when unification was not allowed. Overall, DEE/A* run times were
significantly shorter when unification was not allowed. The mean run time across all
cases and e, values was 60 minutes, and the longest run time was 300 minutes. Com-
pared to the run times we will see shortly, DEE/A* without unification is relatively
inexpensive to attempt, but it is unlikely to solve most designs.

Overall, BroMAP/A* solved all of the test cases for the four ey values consid-
ered. However, BroMAP/A* required a significant amount of run time, greater than
one month, for some cases. Table 3.3 lists the test cases and e, values for which
BroMAP/A* required more than one month of running time. These cases represent
particularly challenging designs given the computational resources used in our tests.
DEE/A* did not solve any of these cases. Table 3.3 also lists the total time spent
on failed DEE/A* attempts across all seven unification parameter values. The total
time represents a worst-case scenario where the user attempts DEE/A* with all seven
Cni values in a serial manner, only to find that DEE/A* runs out of memory each
time. For most of the challenging designs, the total time for DEE/A* was on the
order of 14 days.

BroMAP/A* solved 64, 62, 57, and 53 cases for eq, values 0, 1, 3, and 5, re-
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Table 3.3: Summary of test cases solved by BroMAP/A* that required greater than
one month of running time. None of these cases were solved by DEE/A*. The total
time for seven failed DEE/A* attempts, computed as the sum of time for DEE/A*
to run out of memory for each C.,; value, is also listed for each case.

Test Total Time (days) for
Case | eqy | failed DEE/A* attempts
13 0 4.6
46 0 11.9
47 0 14.4
68 0 12.8
13 1 6.3
46 1 12.8
47 1 14.9
62 1 18.6
63 1 20.6
68 1 19.1
13 3 3.7
40 3 14.6
41 3 15.6
46 3 12.2
47 3 16.7
60 3 15.1
61 3 18.7
62 3 17.6
63 3 174
67 3 13.3
68 3 21.8
12 ) 7.4
13 5 4.3
395 5 11.9
39 5 9.5
40 b} 14.9
41 D 16.0
46 b} 10.4
47 b} 17.4
ol D 1.4
60 D 13.2
61 ] 17.4
62 D 17.4
63 D 17.5
67 b} 11.8
68 b} 18.5
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spectively, in less than one month. We focused on these cases for our more detailed
comparison of BroMAP/A* and DEE/A* run time performance. For e. = 0 (i.e., no
enumeration required), Figure 3-5(a) shows the range of DEE/A* run times across all
seven C\,; values compared to BroMAP/A* for each case. DEE/A* run time varied
significantly as a function of C,;, spanning more than two orders of magnitude, for
many cases. For a few cases that DEE/A* solved in less than 10 minutes, the run
times were more tightly clustered. If DEE/A* solved a case for any Cy,; value, then
we plot the minimum run time in Figure 3-5(b). If DEE/A* failed to solve a case
for every Cly value, then we plot the total time for DEE/A* to run out memory in
Figure 3-5(b), computed as the sum of run times for each C,,; value. In comparing
BroMAP/A* to DEE/A*, the former condition for solved cases gives an advantage to
DEE/A*. It assumes the user knows which of the seven Cy,; values will solve a case
in the shortest time. The latter condition for failed cases represents a user who must
serially test all seven Cy,; values with DEE/A* to find that it runs out of memory
each time. Figures 3-6, 3-7, and 3-8 show the same comparisons for eq,; values 1, 3,

and b, respectively.

Among the cases solved by both methods, BroMAP/A* had similar run times to
the best-case DEE/A* run times for all four eq,; values. As eqy increased, DEE/A*
was able to solve fewer cases within limited memory. In nearly all of the cases where
DEE/A* failed, BroMAP/A* successfully enumerated the lowest energy conforma-
tions in less time than it took for DEE/A* to run out of memory across all seven Cly;
values. These result points out an important caveat about using DEE/A*. DEE/A*
is only guaranteed to return the ordered list if the A* search tree can fit in memory.
For nontrivial designs, one cannot determine whether or not DEE/A* will fail with-
out actually running it. Additionally, DEE/A* may not fail quickly. In many of our
tests, DEE/A* ran for days or weeks before it failed. Our results show that for a user
trying to solve one of these cases by repeatedly attempting DEE/A* with different

parameters, that CPU time would be better spent on BroMAP/A*.

In summary, BroMAP/A* is an effective alternative to DEE/A* for enumerating

protein design problems within limited computational resources. BroMAP/A* uses
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TRMP in a branch-and-bound framework to divide complex problems into small,
solvable subproblems. BroMAP/A* provides a valuable search capability for protein
design. It allows one to solve problems with any amount of memory resources. This
capability makes protein design accessible to new users who only have access to the
resources found in a common desktop computer.

Additional work remains to improve BroMAP/A*. The efficiency of BroMAP/A*
is driven by its ability to keep the lowest energy conformations in low child subprob-
lems generated during the initial depth-first dive. For the cases where BroMAP/A*
required more than one month of running time, it would be useful to analyze the
distribution of these conformations among high and low nodes in the tree of subprob-
lems. Understanding why low-energy conformations end up in high child subproblems
would help us develop more accurate statistical bounds and better subproblem split-
ting techniques. These improvements would allow BroMAP/A* to efficiently solve

more difficult protein design problems that cannot be solved DEE/A*.
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(a) Vertical lines show the range of DEE/A* run times across all seven
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solved the test case and an X indicates DEE/A* that failed.
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among the seven Cyy; values. For cases that DEE/A* failed to solve, an X
shows the sum of run times for tests of all seven C\,,; values.

Figure 3-5: For ey = 0, BroMAP/A* and DEE/A* run time performance for test
cases solved in less than one month by BroMAP/A*. Cases 13, 46, 47, and 68 are
not included (see Table 3.3 for details).
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Figure 3-6: For e.,, = 1, BroMAP/A* and DEE/A* run time performance for test
cases solved in less than one month by BroMAP/A*. Cases 13, 46, 47, 62, 63, and
68 are not included (see Table 3.3 for details).
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Figure 3-7: For e.¢ = 3, BroMAP/A* and DEE/A* run time performance for test
cases solved in less than one month by BroMAP/A*. Cases 13, 40, 41, 46, 47, 60, 61,
62, 63, 67 and 68 are not included (see Table 3.3 for details).
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Figure 3-8: For eqy = 5, BroMAP/A* and DEE/A* run time performance for test
cases solved in less than one month by BroMAP/A*. Cases 12, 13, 35, 39, 40, 41, 46,
47, 51, 60, 61, 62, 63, 67, and 68 are not included (see Table 3.3 for details).
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Chapter 4

General conclusions

In conclusion, this thesis presents novel methods and applications in computational
protein design. In Chapter 2, we discuss how to improve the stability of stored
proteins using computational protein design. Specifically, one can target cysteine,
asparagine, glutamine, and methionine amino acid residues to reduce or eliminate a
protein’s susceptibility to degradation via aggregation, deamidation, and oxidation.
One can also repack local regions of the protein to improve thermodynamic stability.
We use computational protein design on the enzyme phosphotriesterase (PTE), and
we provide predictions for a subset of the degradation-prone residues in PTE. We
await results of experimental testing to evaluate the effectiveness of these particular
computational designs. This evaluation will also inform future computational designs
for improved protein storage stability.

Additionally, we point out a general need for experimental protocols that simulate
long-term storage on much a shorter time scale. Consider protein degradation via
deamidation, which may take years to occur. Suppose one has a protein with one
asparagine residue and a redesigned, asparagine-free mutant. It’s impractical to wait
a year or more to compare the stability of the deamidated wild type protein to the
mutant. By manipulating environmental factors such as buffer, temperature, pH, and
ionic strength, one should be able to induce degradation processes that occur during
long-term storage on the order of days or weeks. Reducing the time scale is critical

for the ability to refine predictions through iterations in the protein design cycle.
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In Chapter 3, we introduce BroMAP/A*, an exhaustive branch-and-bound ro-
tamer search technique with enumeration. By efficiently dividing the search space
into small, solvable subproblems, BroMAP/A* can successfully enumerate design
problems for which DEE/A* fails. BroMAP/A* provides a “set it and forget it”
capability for conformational search. Even though BroMAP/A* may take days or
weeks of running time for a particular problem, it will return the ordered list of the
lowest energy conformations upon termination. On the other hand, multiple DEE/A*
attempts may be needed to find the unification heuristic or higher-order DEE criteria
that produce a reduced search space that is solvable by A*. These failures can be
frustrating to the end-user, especially if each DEE/A* attempt requires days or weeks

of running time.

We have identified four main areas where BroMAP/A* can be improved. First,
it would be useful if BroMAP/A* continuously reported an estimated time to com-
pletion as it progresses through the search tree. It’s not immediately obvious how
one might calculate this estimate, but the calculation could be based on information
such as the current depth and branching of the search tree, distribution of solved
subproblems in the tree, subproblem lower bounds, and conformational complexity
of the remaining subproblems. The estimate need not be exact, and it’s more useful
for large designs. For example, an estimated time to completion of 6 months, even
with error bars of +3 months, may drive the end-user to scale back the complexity

of the design for the sake of forward progress.

Second, BroMAP/A* can be primed with a global upper bound computed by an
inexpensive non-guaranteed search technique. If one starts with an upper bound close
to the GMEC energy, then many rotamers and rotamer pairs can be eliminated by
TRMP bounds starting with the very first subproblem. Overall, this should reduce
both the evaluation cost and the munber of subproblems. Non-guaranteed methods
like Monte Carlo, greedy search, and genetic algorithms, can return reasonably tight
upper bounds in significantly less time than it takes to solve a problem exactly. It
would be useful to assess the run-time performance of BroMAP/A* as the initial upper

bound approaches the GMEC energy. It would also be useful to analyze changes in
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the overall branch-and-bound search tree as the initial upper bound improves.

Third, BroMAP/A* could benefit from an alternative subproblem splitting crite-
rion. BroMAP/A* currently uses the same subproblem splitting method as BroMAP.
After a design position is chosen for splitting, the rotamers at that position are dis-
tributed equally to the two child subproblems. When solving for the GMEC with
BroMAP, this 50/50 split is sensible. It balances the need to create low child sub-
problems that contain rotamers that are more likely to belong to the GMEC with
the need to quickly create solvable subproblems. However, it’s not clear that a 50/50
split is the best choice for enumeration with BroMAP/A*. With enumeration, it may
be advantageous to distribute rotamers to the low child subproblem based on the
energy threshold, egy, for the ordered list. For example, the low child subproblem
could contain any rotamer at the split position whose lower bound is within eecy: of
the minimum lower bound. As eq.y increases, this criterion would create larger low
child subproblems. However, the smaller high child subproblems would be less likely
to contain rotamers in the ordered list. In turn, high child subproblems would be
more casily eliminated by TRMP bounds. Further analysis is needed to determine if
cost of solving larger low child subproblems is lower than the cost of having to solve
many high child subproblems for a few conformations using the current 50/50 split

method.

Fourth, we point out that the branch-and-bound framework and the indepen-
dence of subproblems in BroMAP/A* allows for parallel processing of high child
subproblems. After the first subproblem is solved exactly in the depth-first dive,
BroMAP/A* could begin processing multiple high child subproblems, starting from
the deepest levels of the search tree. Parallel BroMAP/A* would be most effective
when the first subproblem solved during in the depth-first dive contains the GMEC.
When the GMEC is in a subproblem somewhere in the middle of the branch-and-
bound tree, parallel BroMAP/A* may end up expanding high child subproblems
that would not have been expanded by serial BroMAP/A*. However, the additional
cost is distributed among multiple threads. The most important performance mea-

sure for the end-user is wall time. If the user has access to many processors/cores,
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parallel BroMAP/A* should decrease the wall time required to solve a design.

To conclude, we note that the energy functions used to evaluate protein models
are continually being improved. Looking ahead, protein models will more accurately
reflect nature, and computational design will become more widely adopted as a means
for developing novel proteins. As researchers try to solve new and more complex
problems using computational design, there will be an increased need for efficient and

effective search methods such as BroMAP/A*,
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Appendix A

Energy tables for protein design

predictions

Here we provide the full set of energy terms from low-resolution and high-resolution
evaluation of the mutant structures discussed in Chapter 2. The objective function
for each conformation, AGgding, Was the energy difference between the folded and
unfolded state assuming a fixed backbone. For the unfolded state, we treated each
side chain as being infinitely separated. The total energy of the unfolded state was
the sum of energies from these isolated side chain compounds. Let AGyj,, and
AGH,e represent the energy difference between the folded and unfolded state for
the wild-type and mutant conformations, respectively. The folding stability of the
mutant conformation relative to wild type for each energy term was calculated as
follows:

AAG = AGihyng — AGE (A1)

folding*

For high-resolution evaluation, we used a Poisson—Boltzmann continuum electrostat-
ics model with two different implicit solvation models. One calculation captured the
nonpolar component of the solvation free energy with a solvent-accessible surface area

(SASA) term,

AAGSA = AAG gy + AAGgeo + AAGeec + AAGgsa. (A.2)
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Table A.1: Candidate mutations for Cysb9.

SASA | CVDW
Mutant | VDW .| GEO | ELEC | SASA | CVDW | CAV | total total
Ala +4.60 | —2.37 | +0.25 | +0.15 —0.86 | —2.49 | +2.62 —0.88
Asn —0.40 | +1.45 | +1.52 | —0.09 +0.21 | —0.63 | +2.48 +2.15
Gly +6.98 | —2.83 | +0.40 | +0.38 —1.59 | +5.65 | +4.93 +8.61
Ser +2.72 | +0.82 | +0.83 | +0.10 —0.45 | +1.79 | +4.46 +5.70

Table A.2: Candidate mutations for Cys227.

SASA | CVDW
Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV total total
Ala +2.84 | —2.51 | —1.51 | +0.19 —141 | -094| —-1.00 —3.54
Gly +547 | -1.98 | —1.79 | +0.37| —-1.85|+3.96| +2.06| +3.81
Leu +17.66 | —1.87 | +1.34 | —0.29 +0.91 | —=3.61 | +16.84 | +14.43
Ser +2.47 | -097| —0.65 | +0.11 | —0.87 | +1.72| 4096 | +1.70
Val +46.97 | —1.56 | —2.04 | —0.11 | +0.14 | —0.78 | +43.25 | +42.72

The other calculation separately considered cavity formation and solute-solvent van

der Waals interactions,

AAGSX&I])W = AAG\'([\\' &5 AAcho + AAGC]CC + AAchdw 7 AAGFcaw- (AB)
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Table A.3: Candidate mutations for Met314.

SASA | CVDW
Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV total total

Ala +10.97 | —3.24 | —2.84 | +0.53 | —2.16 | +4.09| +543| +6.83
Arg +7.28 | +0.23 | +0.33 | —0.01 | +3.00 | +1.58 | +7.83 | +12.42
Asp +13.58 | —=0.66 | —6.37 | +0.99 | +0.38 | +7.10 | +7.54 | +14.03
Gln +1.46 | —1.21 | +0.29 | +0.09 | —0.48 | +0.55 | +0.63 | +0.61
Gly +12.84 | —1.06 | —4.22 | +0.77 | —2.75 | +8.95 | +8.33 | +13.77
Hsd +0.70 | —1.34 | +0.76 | +0.13 | +2.01 | +3.15 | +95.256 | +10.28
Ile +6.40 | =0.92 | +0.60 | +0.06 | -0.06 | +0.40 | +6.14 | +6.42
Leu +8.15 | =0.07 | =3.04 | +0.13 | +1.32 | +1.45| +5.17 | +7.82
Lys +10.86 | —1.11 | +1.29 | —-0.11 | +2.94 | +1.58 | +10.93 | +15.56
Phe +6.92 [ -0.79 | +0.85 | +0.53 | +3.83 | +3.16 | +7.50 | +13.97
Ser +11.21 | —1.27 | =2.27 | +0.53 | —-1.83 | +5.42 | +8.19 | +11.25
Thr +9.88 | —=1.31 | —0.40 | +0.29 | —0.65 | +3.88 | +8.46 | +11.41
Trp +1.80 [ —=1.36 | +0.11 | +0.27 | +4.88 | +1.10 | +0.82 | +6.52
Tyr +6.06 | —0.88 | +1.31 | +0.46 | +4.40 | +2.78 | +6.96 | +13.67
Val +11.34 | -0.92 | —-0.04 | +0.19 | —-0.82 | +3.08 | +10.57 | +12.64

Table A.4: Candidate mutations for Asn38.

SASA | CVDW
Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV total total

Ala +322| -194| -1.80 | +041 | -3.53|+019| —-0.11| -—-3.86
Gln -3.33 | +0.19 | +0.65 | —0.20 | —0.29 | +0.30 | —2.69 | —2.48
Gly +5.90 | —0.63 | —2.27 | +0.61 | —4.60 | +4.88 | +3.62 | +3.29
Hse —-249 | -0.03 | +0.72 | =025 | +1.59| —-1.66 | —-2.06 | -—1.88
Ile +9.86 | +1.70 | +0.22 | —-0.17 | —-0.12 | —-0.96 | +11.61 | +10.70
Leu —-0.88 | +1.44 | -0.13 | -0.24 | +0.01 | -1.72| +0.19| -1.28
Met —4.57 | +0.15 | -0.08 | —=0.29 | +0.34 | —0.06 | —-4.79 | —4.21
Phe —5.14 | +0.34 | +1.27 | —0.46 | +2.86| —348| -3.99 | —4.15
Ser +2.06 | -0.30 | —-0.80 | +0.34 | —2.07 | +3.01 | +1.30| +1.91
Thr +0.54 | -0.23 | +042 | +0.14 | -1.25| +1.67| +0.87| +1.15
Tyr —5.89 | +0.23 | +1.17 | —=0.50 | +3.39 | -3.80 | —-4.99| —4.90
Val +5.59 | +0.24 | —0.77 | +0.02 | —0.99 | +0.59 | +5.08 | +4.66
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Table A.5: Candidate mutations for Asn26G5.

SASA | CVDW
Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV | total total

Ala +2.74 | —-1.64 | —1.02 | +0.29 | -1.28 | —1.36 | +-0.36 | —2.57
Arg —2.94 | -040 | +1.19 | -0.02 | +2.17 | -0.04 | =2.17 | -—0.02
Asp +0.76 | +0.17 | +0.09 | +0.16 | +0.11 | +0.96 | +1.18 | +2.09
Gln —2.63 | +0.10 | +1.92 | =0.09 | +0.09 [ —0.69 | —0.70 | —1.20
Gly +4.79 | —1.34 | —1.35 | +049 | —-2.22 | +3.50 | +2.58 | +3.37
Hsp —0.03 | +0.27 | —-0.80 | +0.26 | +1.64 | +-2.05 | —0.30 | +3.12
Ile —0.561 | —0.07 | +0.74 | —0.08 | +0.54 | —0.56 | +0.07 | +0.14
Leu -0.80 | +0.24 | -0.14 | -0.09 | +0.16 | —0.67 | —0.79 | —1.20
Lys +1.82 | +047 | —2.60 | +0.20 | +1.95| +1.78 | —0.11 | +3.42
Met —-3.06 | +0.29 | +0.53 | =0.17 | +0.65 | —1.10 | —2.39 | —2.67
Phe -1.56 | +0.01 | —0.25 | +0.01 | +3.10 | —0.11 | —-1.79 | +1.19
Ser +2.18 | —0.15 | +0.14 | +0.22 | —-0.63 | +1.52 | +2.39 | +3.06
Thr +0.21 | —=0.20 | +0.88 | +0.09 | —0.10 | +0.56 | +0.98 | +1.35
Trp -3.09 | +0.10 | +0.70 | —=0.10 | +5.08 | —0.24 | —2.40 | +2.55
Tyr —2.16 | +0.45 | —-0.22 | +0.03 | +3.65 | +0.16 | —1.91 | +1.87
Val +0.06 | —0.01 | +0.49 | —0.02 | -0.15| —0.12 | +0.53 | +0.29

Table A.G: Candidate mutations for Leu262 in the background of Asn265Lys.

SASA | CVDW
Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV total total

Ala +3.72 | —1.72 | —1.49 | 40.50 | +0.13 | +091 | +1.02( +1l.09
Arg —2.25 | +031 | +1.14 | —-0.13 | +4.47 | -034 | —-094| +3.33
Gln -0.10 | +0.34 | +1.04 | —-0.08 | +1.58 | —=0.19 | +1.20 | +2.66
Glu +1.33 | +0.72 | +0.89 | —-0.19 | +0.63 | —0.88 | +2.76 | +2.69
Gly +5.00 | —2.37 | —1.18 | 40.76:( —0.82 | 4711 | +2.21 | +7.74
Hsd —-2.21 | +0.13 | +0.51 | =0.10 | +2.11 | -0.85| —-1.68 | —0.31
Ile +27.99 | +0.54 | —1.33 | +0.09 | +1.56 | +1.27 | +27.30 | +30.05
Lys +1.94 | +0.59 | —1.04 | +0.02 | +4.41 | +1.01 | +1.52 | +6.92
Phe —-0.65 | +0.73 | —2.00 | —0.00 | +4.60 | +0.03 | —-1.92 | +2.71
Ser +2.68 | +1.53 | —0.70 | +0.42 | +0.72 | +3.57 | +3.92 | +7.79
Thr +2.08 | +0.29 | +0.07 | +0.29 | +1.00 | +2.70 | +2.74 | +6.16
Trp -3.33 | +0.23 | —-0.64 | —0.28 | +5.24 | —1.74 | —4.02 | -0.23
Tyr —3.45 | 4+0.24 | +0.60 | —0.40 | +3.66 | —2.76 | —3.01 =1. %1
Val +37.83 | +0.47 | —1.21 | +0.20 | +40.99 | +2.17 | +-37.29 | +40.25
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Table A.7: Candidate mutations for Val316 in the background of Asn265Lys.

SASA | CVDW

Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV | total total
Ala +299 | -0.18 | —1.01 | +0.18 | —0.29 | —1.59 | +1.98 | —0.08
Asp —0.32 | +2.16 | 4043 | —=0.12 | +1.84 | —0.60 | +2.15 | +3.50
Glu -3.00 | +1.99 | +1.81 | —0.28 | +1.59 | —1.56 | +0.53 | +0.83
Gly +5.36 | +2.15 | —1.20 | +0.39 | —1.21 | +3.46 | +6.71 | +8.57
Hse —1.61 | +2.06 | +0.18 | —0.38 | +2.68 | —0.81 | +0.24 | +2.48
Ile —2.44 | 4+1.66 | +0.37 | —0.37 | +2.48 | —2.84 | —-0.78 | —0.78
Leu —1.15| +2.66 | —1.89 | —0.11 | +2.99 | —0.86 | —0.48 | +1.76
Phe —0.28 | +1.07 | —1.02 | —0.22 | +5.30 | —=1.79 | —0.46 | +3.27
Ser +1.21 | +1.42 | +0.12 | +0.08 | +0.89 | +1.01 | +2.83 | +4.64
Thr —0.62 | +1.37 | +0.46 | —0.02 | +0.88 | +0.20 | +1.20 | +2.31
Trp —6.04 | +2.06 | +0.91 | —0.44 | +6.50 | —=3.71 | —=3.52 | —0.28
Tyr —1.33 | +1.05 | —0.84 | —0.28 | +5.70 | —2.02 | —1.40 | +2.55

Table A.8: Candidate mutations for Leu262 and Val316 in the background
Asn265Lys.

Leu262 | Val316 SASA | CVDW
Mutant | Mutant | VDW | GEO | ELEC | SASA | CVDW | CAV | total total
Hsd Ile —3.86 | +1.83 | +0.82 | —0.39 +3.44 | —3.15 | —1.59 —0.91
Hsd Leu —1.75 | +1.66 | +1.17 | —0.42 +3.36 | —1.93 | +0.67 +2.51
Hsd Phe —3.40 | 4+0.91 | +1.87 | —0.54 +6.00 | —3.16 | —1.16 +2.22
Hsd Trp —-10.02 | +1.71 | +3.72 | —0.70 +7.33 | —4.92 | —5.29 —2.18
Hsd Tyr —4.49 | +0.89 | +2.06 | —0.59 +6.37 | —3.41 | —2.13 +1.42
Phe Ile —4.81 | +1.79 | +0.87 | —0.54 +4.44 | —4.54 | —2.69 —2.24
Phe Leu —5.89 | +3.65 | +1.51 | —0.36 +3.58 | —2.80 | —1.09 +0.05
Phe Phe —4.52 | 4+0.86 | +1.67 | —0.68 +6.94 | —4.74 | —2.68 +0.21
Phe Trp —10.46 | +1.86 | +3.59 | —0.94 +7.96 | —6.77 | —5.95 —3.83
Phe Tyr —5.60 | +0.85 | +1.86 | —0.74 +7.32 | —5.00 | —3.64 —0.57
Trp Ile —8.99 | +2.80 | +3.44 | —0.71 +5.62 | —5.74 | —3.47 —2.97
Trp Leu —-9.93 | +3.16 | +2.85 | —0.59 +3.72 | —4.27 | —4.51 —4.47
Trp Phe —5.47 | +0.82 | +0.65 | —0.68 +8.74 | —5.81 | —4.69 —1.07
Tip Trp —11.23 | +1.82 | +2.57 | —0.91 +9.88 | —=7.61 | —7.75 —4.87
Tip Tyr ~6.52 | 40.81 | +0.80 | —0.74 | +9.15 | —6.05 | —5.65 | —1.82
Tyr Ile —6.04 | +1.75 | +0.89 | —0.61 +4.81 | —4.94 | —4.00 —3.52
Tyr Leu —-7.33 | +4.04 | +1.93 | —0.45 +3.35 | —3.29 | —1.80 —1.30
Tyr Phe —5.76 | +0.83 | +1.72 | —0.75 +7.28 | —5.15 | —3.96 —1.07
Tyr Trp —11.70 | +1.82 | 43.65 | —1.00 +831 | —7.18 | —7.23 —5.10
Tyr Tyr —6.84 | +0.81 | +1.92 | —-0.81 +7.67 | —5.41 | —4.91 —1.85
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