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Abstract – Localization of moving ground targets us-
ing acoustic signals obtained by a passive sensor net-
work, made up of acoustic sensor arrays on the ground,
is a difficult problem as the signals are contaminated
by wind noise and hampered by road conditions and
multipath, etc., and are generally not deterministic. It
becomes even more challenging when some of the ve-
hicles are wheeled (e.g., cars) and some are tracked
(e.g., tanks), and are closely spaced. In such cases the
stronger acoustic signals from the tracked vehicles can
mask those from the wheeled vehicles, leading to poor
detection of such targets. A novel detection scheme is
presented, according to which the direction of arrival
(DoA) angle estimates of emitters are obtained by each
sensor array using real data. The full position esti-
mates of targets, obtained following the association of
the DoA angle estimates of the same target from at
least three sensor arrays, are used for target tracking.
However, because of the particular challenges encoun-
tered in multiple ground vehicle scenarios, this associ-
ation is not always reliable and thus, target tracking
using kinematic (DoA angle) measurements only is dif-
ficult and it can lead to lost tracks. In this paper we
propose a new feature-aided multidimensional assign-
ment algorithm, to augment the existing assignment al-
gorithms which use only kinematic measurements, to
improve the association performance, especially in the
case of wheeled vehicles. We present a novel frequency
domain feature extraction technique by implementing a
statistical characterization of the features, in order to
enhance the accuracy of data association. The feature
and DoA angle measurements are used simultaneously,
via a joint likelihood function, in a multidimensional
assignment (MDA) to localize targets.

Keywords: Multidimensional assignment (MDA), feature-
aided MDA, min. variance distortionless response (MVDR).
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1 Introduction
Ground vehicle tracking using acoustic data obtained
from passive sensor networks is a very challenging prob-
lem. Passive acoustic sensors are gaining in popularity
because of their low cost, the ease of deployment, and
the fact that they can be deployed on the ground. As
passive sensors do not emit their own signals like active
sensors, there is no danger of being detected. Passive
acoustic sensors can be used in battlefield monitoring
as well as in surveillance for civilian applications.

In single target scenarios with active sensors, kine-
matic measurements (such as range, bearing, etc.) can
be obtained, which can be used to estimate the trajec-
tory of targets [2]. When a network of passive sensors
is used, however, the range of a target can be obtained
only after associating the direction of arrival (DoA or
line of sight — LoS) angle estimates obtained by at

least three sensors. However, “ghosting” can occur,
especially in the case of road convoys [1]. Data asso-
ciation is difficult when the targets stay close together
over an extended period of time (as acoustic signals
from some targets can fade and then re-appear or can
be masked by stronger signals from other targets), be-
cause one has to associate the DoA estimates from the
same target to obtain its position. Tracking using
DoA angle measurements can be done using various
classification techniques [3, 5], if the identities of signal
sources (targets) are known. However, this is an unrea-
sonable assumption in multiple ground target acoustic
sensor network scenarios, due to the various challenges
discussed earlier. Feature-aided tracking (FAT) tech-
niques are a new and rapidly developing research area,
as they exploit certain properties of the signals, called
features, in addition to the kinematic (DoA) measure-
ments, to alleviate the difficulties encountered in con-
ventional target tracking with kinematic measurements
only.

Many of the algorithms in the literature assume the
presence of a single target [5, 6] and use statistical pa-
rameters, namely the mean and variance of several har-
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monics of the fundamental engine firing rate of each
target for identification and classification. When mul-
tiple targets are present within the surveillance region
of acoustic sensor arrays, the measurements no longer
exhibit the same statistics as they did for the individ-
ual targets. As a result, separate algorithms have to
be developed for localizing ground vehicles in a con-
voy. Feature-aided data association techniques em-
ploy a feature-augmented measurement set, as com-
pared to just kinematic measurements. Possible fea-
tures could be the acoustic signature of targets from
the power spectral density (PSD) of the acoustic sig-
nals. They can be used to augment the kinematic
measurements obtained by each sensor to form an aug-
mented measurement set. The major challenge is the
development of reliable models to extract and charac-
terize features. Section 2 describes the generation of the
PSD of the signals received by the passive sensors using
the minimum variance distortionless response (MVDR)
technique [9], and the detection of DoAs of signals us-
ing the shape of the PSD. Section 3 describes a novel
algorithm used to extract features from the PSD and
their statistical characterization. Section 4 introduces
and describes the target localization problem, i.e., esti-
mation of full position (composite measurements) from
DoA angles augmented by features. The composite
measurements can be assigned to tracks using a dy-
namic assignment algorithm. Section 5 describes the
real scenario and Section 6 provides the target localiza-
tion performance comparison results between the con-
ventional cost and feature-augmented cost based mul-
tidimensional assignment algorithms.

2 DoA Detection via Second-
Order Derivative Based

Thresholding
Circular sensor arrays made up of M microphones

arranged equi-distantly, are employed in a passive sen-
sor network on the ground to listen to a convoy of ve-
hicles. Assuming that the convoy is at a sufficiently
large distance from the sensor array, so that the re-
ceived signals from the targets can be approximated by
a planar wavefront, various wideband beamforming al-
gorithms described in [9] can be used to detect signal
sources and estimate their LoS angles with respect to
the known sensor array position.

At each sampling time, an FFT is performed on the
raw acoustic data from each microphone in an array,
and a discrete frequency range from f1 to fnb

with bin
intervals of 1 Hz is chosen for processing, where nb is the
number of bins. The frequency bins are chosen to con-
form to the typical frequencies of the acoustic signals
emitted by engines and other moving vehicle parts. As
a result we have a wide-band processing algorithm that
uses data from nb frequency bins. We denote the FFT
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Figure 1: Power spectral density as a function of LoS
angles and frequency bins obtained from the MVDR
algorithm for one sensor array.

data used for processing at each sample by X(m, fb),
where m ∈ {1, ..., M} represents each microphone and
fb ∈ {f1, ..., fnb

} indicates the frequency bins. The
MVDR algorithm provides, for each sensor array, an
estimate of the power spectral density of the acoustic
signals

P̂ (θd, fb) =
1

a(fb)′R̂(fb)−1a(fb)

θd ∈ {θ1, ..., θD} and fb ∈ {f1, ..., fnb
} (1)

and
a(fb) = {X}′fb

V (2)

with {X}fb
denoting the column of the matrix X cor-

responding to fb, V denoting the steering matrix [9],
and

R̂(fb) =
1

M

M
∑

m=1

X(m, fb)
∗X(m, fb) (3)

The DoA angles of the acoustic signals are estimated
by detecting peaks in the spectrum, illustrated in Fig-
ure 1. Peak detection can be performed by applying
a thresholding algorithm, using the average of the es-
timated power spectrum in (1) over all the frequency
bins corresponding to an LoS direction θ,

P̂ (θ) =
1

nb

nb
∑

b=1

P̂ (θ, fb) (4)

For each sensor array s, is(k) DoA angle estimates are
obtained at time k.1

The thresholding algorithm used in the present work
to detect DoAs from acoustic signals received by a sen-
sor array is described next. Figure 1 shows an example
of the estimated PSD at a particular scan for a sensor
array. DoAs are detected at each scan, using a thresh-
olding algorithm applied to the PSD of the acoustic

1The time index k is omitted in the future for simplicity.
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signals received by each sensor array. At each angle θ

in the steering vector (see Ch.2, [9]), the PSD as a func-
tion of the angle can be obtained by averaging over all
the frequency bins (it is denoted by P̂ (θ) in (4)), and
is illustrated in Figure 2(a). The first derivative of the
average estimated power, d

dθ
P̂ (θ), for a particular angle

θd (where d ∈ {1, ..., ns}, and s and k are the array and
scan indices, respectively) is shown in Figure 2(b). A
DoA detection is made at angle θd if a positive peak is

detected at θd in − d2

dθ2 P̂ (θ), shown in Figure 2(c). In
the example shown in the figure, the DoA angles de-
tected are 85 ◦, 57 ◦ and 102 ◦, arranged in decreasing
order of their corresponding amplitudes.
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Figure 2: The thresholding used to detect DoAs from
a particular sensor array at a certain scan: (a) average
power spectrum as a function of angles only, (b) the first
derivative of the function in (a), and (c) the negative
of the second derivative of the function in (a).

Figure 3 shows the DoA angle estimates obtained by
the sensor array from Figure 1. In a typical ground
vehicle tracking scenario where the targets are moving
in a convoy on road or off-road conditions, there are
a variety of extraneous factors which affect the acous-
tic signal, such as road conditions, sound generated by
moving parts, wind, etc. This results in numerous false
alarms, i.e., power detections in frequency-angle bins
not directly due to the engine or moving parts of the
targets. There are also missing DoA angle estimates
(missed detections) due to signal attenuation or the
possible masking of signals from wheeled vehicles by
those from the tracked vehicles, especially when the
targets are closely spaced in a convoy. As a result, the
quality of the data association is low if just the DoA an-
gle estimates are used as measurements. Therefore, the
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Figure 3: DoA angle estimates for one sensor array.

power spectrum will be exploited to generate features
which could enhance the accuracy of data association.
Motivated by this, a new feature extraction procedure
is described in the next section.

3 Feature Extraction
In most feature-aided tracking applications the am-

plitude of the PSD peaks are used as features; how-
ever, due to signal attenuation and masking in the case
of multiple vehicle road convoys, they are not reliable
as features. The location and the spread of the peaks
carry more useful information about the signal source,
compared to the amplitude, because they are not as af-
fected by signal attenuation. In this paper we propose
a statistical modeling of the distribution of the power in
the frequency bins at each detected DoA angle and use
a Gaussian mixture model (GMM) to extract feature
vectors instead of just scalar features. This method en-
ables the use of the location and the sharpness of the
peaks in the power spectrum as features.

The MVDR algorithm obtains an estimate of the
power spectrum P̂ (θd, fb) as a function of both fre-
quency bins (fb) and LoS azimuth angles (θd), as
shown in (1). For each sensor s, the power spectrum
along each DoA angle θsis

(where s ∈ {1, ..., S} and
is ∈ {1, ..., ns}), P̂ (θsis

), is used to declare detections
in certain directions and to extract features correspond-
ing to each detected angle at scan k.

3.1 Fitting of a Gaussian Mixture
Model (GMM)

The observed data d(x) (the estimated power spec-
trum in a particular DoA direction x) is modeled as

d(x) = y(x; β) + ǫ(x) (5)

where y(x; β) is the fitted parametric model, β is the
parameter vector and ǫ(x) is the fitting error. The ob-
jective is to estimate the parameters of the model such
that the error (noise) is minimized in a statistical sense.
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Figure 4: Gaussian mixture model fitting to extract fea-
tures: (a) feature data from sensor array 1 (DoA angle
θ1, peak locations: [40,15,36,49]), (b) feature data from
array 2 (DoA angle θ2, peak locations: [78,40,117,15])
and (c) feature data from array 3 (DoA angle θ3, peak
locations: [40,18,37,14]).

The nonlinear least squares (NLLS) method is used
to estimate the parameters of a nonlinear model — a
GMM — used to fit the data. Gaussian mixture mod-
eling is useful for peak finding applications. This model
is given by

y(x; β) =
n

∑

l=1

αle
−

1

2

(

x−µl

σl

)

2

(6)

where β = [(α1, µ1, σ1), ..., (αn, µn, σn)]′ is the parame-
ter vector of the GMM such that αl is the weight (am-
plitude), µl is the location and σl is the width of the
peak of component l, and n is the number of compo-
nents of the GMM. The NLLS method can be used to
estimate the parameters of the GMM which best fit the
observed data in (5). Figure 4 illustrates the GMM fit-
ting results when applied to power spectrum data for
certain DoA detections obtained by three sensor arrays
at a particular time. A GMM with n = 4 components
was used to extract the location, width and the ampli-
tude of the peaks from the power spectrum data. A
larger n was found to lead to excessive uncertainty in
the feature model.

From the example illustrated in Figure 4, one can see
that there are n = 4 frequency peaks from each of the
S = 3 sensors, corresponding to three detected DoA
angles θ1, θ2 and θ3 (subscripted by the sensor index).
These peak locations (arranged in decreasing order of

amplitudes) form a matrix of dimension n × S

L =









40 78 40
15 40 18
36 117 37
49 15 14









(7)

The peak location matrix given in (7) illustrates that,
for the three sensor arrays in Figure 4, the peak loca-
tions are not necessarily matched across the S sensors,
i.e., a peak location is not necessarily grouped with
other peak locations in the S − 1 lists (columns), in
its immediate neighborhood. For example, in (7), the
first row is [40 78 40]. The location of the peak in the
second column (at 78 Hz) is not close to the location
of the peaks in the first and third columns (at 40 Hz).
Hence, in order to properly group peak locations across
lists (sensors), each peak location should be matched to
other peak locations (in the other lists) in such a way
that each matched S-tuple of peak locations consists of
peak locations which are close to each other. If a peak
is located in such a way that it cannot be matched to
any other peaks in the remaining lists, it is matched to
a dummy element which indicates a missed peak detec-
tion. This matching of peak locations, which leads to
“matched” feature vectors, is described next.

3.2 Matching the Location of Peaks via
Assignment

The peak location vectors, estimated by the GMM
algorithm, corresponding to each of the detected DoA
angles θ1i1 , θ2i2 , ..., θSiS

are

Φp
1i1,...SiS

= [φp
1i1

, φ
p
2i2

, ..., φ
p
SiS

]

=















⊘ ⊘ . . . ⊘
µ1

1i1
µ1

2i2
. . . µ1

SiS

µ2
1i1

µ2
2i2

. . . µ2
SiS

...
...

. . .
...

µn
1i1

µn
2i2

. . . µn
SiS















(8)

where µl
sis

is the location of the l-th component (peak)

of the GMM (6) used to fit P̂ (θsis
) and ⊘ indicates

the dummy element2 that signifies missed detection of
a peak. The matching of peak locations across lists
is done based on the solution of an assignment prob-
lem formulated using costs attached to all the possible
candidate S-tuples of peak locations in (8). Costs are
derived based on a likelihood ratio for each candidate
S-tuple.

2Indexed by zero, and shown as the top row.
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3.2.1 Likelihood Function Derivations for Cost

Calculation

The likelihood a candidate S-tuple of peak locations
µi1,...,iS

from (8), is from the same target is

Λ (κ(t)) = p (µi1,...,iS
|κ(t)) =

S
∏

s=1

[

1 − P
D

f
s

][1−δf
s ]

·
[

P
D

f
s
p

(

µl
sis

|κ(t)
)

]δf
s

(9)

where

δf
s =

{

0 if µl
sis

= ⊘ in (8)
1 otherwise

(10)

is the peak location indicator, P
D

f
s

is the probability

of detection of the frequency peak and κ(t) represents
the (unknown) true peak location, if the acoustic sig-
nal is from a target t. As the identity of target t is un-
known, we use a generalized likelihood function Λ (κ̂(t))
instead of the likelihood function given in (9), where
the peak locations are assumed to be uncorrelated and
distributed as follows

p
(

µl
sis

| κ̂(t)
)

= N
(

µl
sis

; µ̂l(t), (σl
sis

)2
)

(11)

with

µ̂l(t) =

∑S

s=1 µl
sis

δf
s

∑S

s=1 δ
f
s

(12)

and κ̂(t) = [µ̂l(t), ..., µ̂n(t)]′, the estimated target peak
location vector. The standard deviation of the peak
location µl

sis
is σl

sis
, from (6). The indexing of µ and

σ is augmented to indicate the peak index l, the sensor
s it originated from, and the index is of the detection
from sensor s.

The likelihood that the S-tuple of peak locations are
all false alarms is

Λ (κ(t) = 0) = p (µi1,...,iS
|κ(t) = 0) =

S
∏

s=1

[

1

V
f
s

]δf
s

(13)
where V f

s is the volume (in the frequency space) of
sensor array s.

3.2.2 Cost of Matching of the Peak Locations

Across S lists

The cost of matching a candidate S-tuple of peak
locations µi1,...,iS

is the negative log-likelihood ratio
(NLLR) obtained from the likelihood functions (9) and
(13)

cm
i1,...,iS

=

S
∑

s=1

[δf
s − 1] ln[1 − P

D
f
s
]

−δf
s

[

ln
(

P
D

f
s
V f

s

)

+ ln p
(

µl
sis

| κ̂(t)
)

]

(14)

A multidimensional assignment algorithm is solved (see
[1, 4, 7]), to obtain the following S-tuple of feature

vectors corresponding to the S-tuple of detected

DoA angle estimates θ1i1 , θ2i2 , ..., θSiS

Φ1i1,...SiS
= [φ1i1 , φ2i2 , ..., φSiS

]

=













µ
j11
1i1

µ
j21
2i2

. . . µ
jS1

SiS

µ
j12
1i1

µ
j22
2i2

. . . µ
jS2

SiS

...
...

. . .
...

µ
j1nm

1i1
µ

j2nm

2i2
. . . µ

jSnm

SiS













(15)

where µ
jsq

sis
∈ {⊘, µl

sis
} and q = 1, ..., nm. Each element

µl
sis

in the s-th list of (8) appears exactly once in the
s-th column of (15), while ⊘ appears nm − n times in
each column of (15). It has to be noted that nm could
vary with each S-tuple of DoA angle estimates being
considered, while n remains the same as it is a GMM
fitting design parameter and is fixed.

The illustrative example presented next corresponds
to the same triplet (S = 3) of DoA angle estimates
θ1, θ2, θ3, which gives rise to the peaks illustrated in Fig-
ure 4. The triplet of peak location vectors of length
n = 4 are as shown in (7). The triplet of feature vec-

tors, each of length nm = 7, obtained after performing
the matching of peak locations as described above is

Lmatched =





















40 40 40
15 15 14
36 ⊘ 37
49 ⊘ ⊘
⊘ 78 ⊘
⊘ 117 ⊘
⊘ ⊘ 18





















(16)

4 Target Localization by
Feature-Aided MDA

One of the most important issues in multisensor-
multitarget (MSMT) tracking is data association. Re-
cently, a class of algorithms called multidimensional as-
signment (MDA) algorithms (also known as S-D as-
signment) have been developed to solve the data asso-
ciation problem using an assignment approach [1, 7].
The present paper uses the MDA approach to solving
the data association problem. This approach, desig-
nated as Multisensor Information Configuration III in
[1], requires a static association of measurements to
measurements, across sensor arrays at each time k, re-
sulting in complete position estimates called “compos-
ite measurements”. If the DoA angle measurements
are augmented by features, the result will be feature-
augmented composite measurements.

In the feature-aided MDA problem, at time k, we
are given S lists of feature-augmented measurement
vectors from S passive sensors gathering data in a
surveillance region. The position of each sensor array
s = 1, ..., S is denoted by xs (the sensor array posi-
tions are assumed to be fixed throughout the track-
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ing scenario3). An S-tuple of DoA angle measurements
Zi1,...iS

can be augmented with an S-tuple of feature
vectors Φi1,...iS

= {φ1i1 , ..., φSiS
}, where each angle

measurement θsis
has its own corresponding feature

vector φsis
, to form an S-tuple of feature-augmented

measurement vectors

Za
i1,...iS

= [Zi1,...iS
, Φi1,...iS

]′ is ∈ {0, 1, ..., ns} (17)

where is = 0 represents the dummy measurement or
a missed detection. Generalized likelihood ratio based
costs are generated for assigning each such S-tuple.

The generalized likelihood that the S-tuple Za
i1,...iS

consists of feature-augmented measurement vectors
from a target t is

ΛG
A(t) = p

(

Za
i1,...iS

| t
)

= p ([Zi1,...iS
, Φi1,...iS

] | (x̂t, ϕ̂t))
(18)

where x̂t is the ML estimate of the position of target
t and ϕ̂t is the estimated feature vector of target t.
Assuming that the angle measurement errors and the
feature vectors are independently distributed, we have

ΛG
A(t) = p (Zi1,...iS

| x̂t) p (Φi1,...iS
| ϕ̂t) = ΛG

K(t)ΛG
φ (t)
(19)

where ΛG
K(t) and ΛG

φ (t) represent the kinematic and
feature generalized likelihood functions, respectively.

The generalized likelihood that an S-tuple of kine-
matic (DoA angle) measurements Zi1,...,iS

are from a
target t with ML position estimate x̂t, is given by

ΛG
K(t) = p(Zi1,...,iS

| t) =

S
∏

s=1

{

[1 − PDs
]1−u(is)

·[PDs
p(θsis

| x̂t)]
u(is)

}

(20)

where u(is) is the DoA detection indicator function and
PDs

is the probability of detection of a bearing measure-
ment, by sensor array s. Each DoA angle measurement
is assumed to be normally distributed with the follow-
ing pdf

p(θsis
| x̂t) = N (θsis

; h(x̂t,xs), σ
2
sis

) (21)

where h is the measurement function.
The generalized likelihood that an S-tuple of feature-

vector measurements Φi1,...,iS
corresponding to an S-

tuple of angle measurements Zi1,...,iS
are from a target

t, with feature estimate ϕ̂t, is given by

ΛG
φ (t) = p (φ1i1 , φ2i2 , ..., φSiS

| ϕ̂t) (22)

where φsis
is the feature vector (15) corresponding to

the DoA angle measurement θsis
from the s-th list

φsis
= [µ1

sis
, µ2

sis
, ..., µnm

sis
]′ (23)

3The approach can be easily generalized to moving sensors
(see, e.g., [2]).

where µl
sis

(l = 1, ..., nm) represents either a feature
(detected matched peak location) or a dummy (missed
detection of the peak in list s), as described in Section
3.2.2.4

Assuming independence between measurement lists,
(22) can be simplified to

ΛG
φ (t) =

S
∏

s=1

{p (φsis
| ϕ̂t)}

u(is)
(24)

Substituting from (23) in (24), and assuming uncorre-
latedness between the components of the feature vector
φsis

, we have

ΛG
φ (t) =

S
∏

s=1

{

nm
∏

l=1

[1 − PDl
s
]1−δsl

[

PDl
s
p

(

µl
sis

| ϕ̂t

)]δsl

}u(is)

(25)
where PDl

s
is the (nonunity) probability of detection of

the features in list s, while δsl
is the detection indica-

tor function for the feature µl
sis

. The feature vector

component µl
sis

is assumed to be distributed as follows

p
(

µl
sis

| ϕ̂t

)

= N
(

µl
sis

; µ̂l(t), (σl
sis

)2
)

is ∈ {1, ..., ns}
(26)

where

µ̂l(t) =

∑S

s=1 µl
sis

δsl

∑S
s=1 δsl

(27)

The standard deviation σl
sis

of the peak location µl
sis

is obtained from the GMM fitting in (6).
The generalized likelihood that the S-tuple Za

i1,...,iS

consists of feature-augmented measurement vectors
which are all spurious or are unrelated to a target t

is

ΛG
A(t = 0) = p

(

Za
i1,...,iS

| t = 0
)

=
S

∏

s=1

{p (θsis
| t = 0) p (φsis

|ϕ(t) = 0)}u(is)

=

S
∏

s=1

{p (θsis
| t = 0)

·

[

nm
∏

l=1

p
(

µl
sis

|ϕ(t) = 0
)

]δsl







u(is)

(28)

Assuming that the angle and feature vector element
false alarm measurements are uniformly distributed, we
have

ΛG
A(t = 0) =

S
∏

s=1







1

Vs

[

nm
∏

l=1

1

V
f
s

]δl
s







u(is)

(29)

4The length of the feature vector nm varies for each candidate
S-tuple of feature-augmented measurement vectors, as explained
in Section 3.2.2, additional notation is omitted for simplicity.
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Figure 5: A passive sensor network of 4 acoustic sensor
arrays listening to a convoy of 4 wheeled and tracked
vehicles.

where Vs and V f
s are the surveillance volumes in angle

and frequency, respectively, of sensor array s.
The cost of assigning the S-tuple Za

i1,...,iS
is given

by the NLLR obtained from the generalized likelihood
functions (19) and (29), and substitution from (20) and
(25)

ci1,...,iS
= − ln

ΛG
A(t)

ΛG
A(t = 0)

= − ln
ΛG

K(t)ΛG
φ (t)

ΛG
A(t = 0)

(30)

This cost function can be simplified to the following
form:

ci1,...,iS
= −

S
∑

s=1

[1 − u(is)] ln(1 − PDs
)

+u(is) ln [PDs
Vsp(θsis

| x̂t)]

+u(is)

{

nm
∑

l=1

(1 − δl
s) ln(1 − PDl

s
)

+ δl
s ln

[

PDl
s
V f

s p
(

µl
sis

| ϕ̂(t)
)]}

(31)

The most likely set of S-tuples such that each feature-
augmented measurement vector in a list is assigned
to either other measurement vectors, or declared false,
with the constraint that each assigned S-tuple receives
at most only one measurement vector from each list, is
obtained by solving a global S-D optimization problem
using the cost function (31). A Lagrangian relaxation
algorithm is used to solve this problem [1, 4, 7].

5 Scenario
The algorithm developed above was exercised on real

data obtained from a field experiment [5]. Four acoustic
arrays were placed within a path that was traveled by
multiple targets (see Figure 5). All the acoustic sensor
arrays used in the experiment were circular arrays of
microphones.

Each sensor array has a field of view of 360 ◦ and
is made up of 7 equi-distant microphones. DoA angle
measurements are estimated at each sample time (1 s),

from the PSD of the acoustic signals received by each
sensor array, as described in Section 2, with a mea-
surement error standard deviation of 2 ◦. The PSD
of the acoustic signals is estimated using an MVDR
beamformer, where a steering vector of length 360 (all
possible angles/directions) is considered. A low-pass
spectrum of 1–120 Hz, divided into bins of 1 Hz each, is
used by the MVDR algorithm.

Figure 6 shows the number of DoAs detected at each
scan for the four sensor arrays used in the scenario. The
measurement lists in both conventional and feature-
aided assignment consist of the same number of DoA
detections per scan. They only differ in whether fea-
ture vectors augment (as described in Section 3) to the
DoA angle measurements or not. One can observe from
the figure that there are false alarms as well as missed
detection in several scans, as there are four targets in
this scenario and the number of detections varies from
2 to 7.

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Scan

N
u

m
b

e
r 

o
f 

d
e

te
c
ti
o

n
s

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Scan

N
u

m
b

e
r 

o
f 

d
e

te
c
ti
o

n
s

(a) (b)

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Scan

N
u

m
b

e
r 

o
f 

d
e

te
c
ti
o

n
s

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Scan

N
u

m
b

e
r 

o
f 

d
e

te
c
ti
o

n
s

(c) (d)

Figure 6: Number of DoA detections at each scan, for
both conventional and feature-aided assignment: (a)
from sensor array 1, (b) from array 2, (c) from array 3
and (d) from array 4.

For target localization using the conventional cost,
an MDA algorithm is solved [1], with DoA measure-
ment probability of detection PDs

= 0.9 and sensor
array surveillance region volume Vs = 360 ◦. For target
localization using the feature-augmented cost (31), an
MDA algorithm is solved at each scan. The probability
of detection of the features is assumed to be PDl

s
= 0.7

and the surveillance volume in frequency is assumed to
be V f

s = 120 Hz (the width of the frequency spectrum).

6 Results
The real data based results shown in Figure 7 show

the comparison between the performance of the con-
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ventional cost and feature-augmented cost based target
localization algorithms. The figure presents the com-
plementary cumulative density function of the number
of detected targets. The localization results obtained
for 50 scans show that the feature-aided localization al-
gorithm outperforms significantly the conventional cost
based algorithm. The figure shows that the conven-
tional cost based assignment algorithm performs poorly
in detecting the full set of targets. This is because the
stronger acoustic signals emitted by the tracked vehi-
cles can mask those from the wheeled vehicles, lead-
ing to missed detection of some DoA angle measure-
ments by one or more sensor arrays. Hence, using only
kinematic measurements for static assignment leads to
the missed detection of some targets.5 Augmenting the
kinematic measurements with feature measurements al-
leviates this problem by adding more information to
the cost function, and hence, resulting in more feasi-
ble solutions to the global assignment algorithm. The
feature-aided target localization algorithm in this par-
ticular example is able to localize all 4 targets, in 32
scans out 50, while the conventional algorithm man-
ages to do the same in 7 out of 50 scans. Overall, the
estimated detection probability for a target composite
measurement (in the absence of ground truth, calcu-
lated as the total number of composite measurements
from 50 scans knowing that there were 4 targets) is
184
200 = 0.92 and 136

200 = 0.68 for the feature-aided and
conventional schemes, respectively.
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Figure 7: Comparison of the estimated probability of
localizing at least n targets out of 4 for the feature-aided
assignment algorithm and the conventional assignment
algorithm (without features).

7 Conclusions
In this paper a data association algorithm to localize

multiple ground targets using acoustic signal data ob-
tained by a passive sensor network, has been solved us-
ing a novel feature-aided multidimensional assignment

5Assigning DoA angle measurements from at least 3 lists is
needed for a detection.

framework. A novel detection scheme has been pre-
sented to detect DoAs and a new technique has been
presented to extract feature vectors, instead of features,
which augment their corresponding DoA angle mea-
surements. An MDA algorithm is solved at each scan,
using feature-augmented likelihood ratio based cost
functions, to obtain composite measurements which are
the full position estimates of targets. It is shown using
real data obtained by a passive sensor network, that the
feature-aided assignment algorithm significantly out-
performs its conventional kinematic counterpart in the
localization of multiple targets, where some targets are
tracked vehicles and the others are wheeled vehicles.
Ongoing work consists of assigning the full position es-
timates of targets obtained by the feature-aided static
assignment algorithm to tracks via a dynamic assign-
ment algorithm.
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