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Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a
variety of detailed geophysical-process models with many simulations showing significant skill. This
capability supports a wide range of research and applied efforts that can benefit from accurate numerical
predictions. However, the predictions are only as accurate as the data used to drive the models and, given the
large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful
predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model
can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or
inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation
problem that takes advantage of significant reduction of the dimensionality of the model system. We
demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately
using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in
the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if
modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were
assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and
uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved
predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal
parameters while predicting wave heights.
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1. Introduction

The coastal environment is characterized by extreme variability.
Physical variables that exhibit significant spatial and temporal
evolution includewaves, currents, and bathymetry. This is particularly
true in the surf zone, where waves transition from non-breaking to
breaking conditions, transferring momentum to drive currents,
sediment transport, and bathymetric change. Numerous numerical
geophysical models are available that make predictions of these
processes. These process models can also be inherently statistical,
wherein only quantities that are formally averaged over several wave
periods (and, often, averaged over the water column) are simulated.
For instance, temporally averaged statistical properties of waves can
be accurately predicted by SWAN (SimulatingWaves Nearshore, Booij
et al., 1999; Ris et al., 1999) given accurate bathymetry, water levels,
description of the frequency-directional spectra at boundary condi-
tions, and specification of a number of tuning parameters. Similarly,
wave-averaged currents can be predicted by models such as Delft-3D
(Lesser et al., 2004; Reniers et al., 2007) or ADCIRC (Westerink et al.,
2008) that have clearly demonstrated predictive skill. At higher
resolution, wave-resolving Boussinesq models also have excellent
predictive skill (Chen et al., 2003) and an ability to simulate at the
shorter time scales given correspondingly high-resolution time-series
data on themodel boundaries. This increasedfidelitymay be necessary
for predicting sediment transport and bathymetric evolution (Hen-
derson et al., 2004). However, the higher temporal resolution of
Boussinesq models comes with increased computational cost along
with the more demanding specification of boundary conditions.

At the present level of hydrodynamic modeling capability,
improved predictive skill typically depends on improving the
accuracy of model-boundary conditions (Plant et al., 2009), rather
than on refinements of the model parameterizations, indicating that
the geophysical theory governing nearshore processes is relatively
mature. Modeling of sediment-transport processes is an exception to
this statement, where skillful predictions can depend strongly on
choice of model parameterization (Ruessink et al., 2007). Parameter
dependence is primarily due to the use of wave-averaged models that
do not resolve physically important processes such as the details of
the wave boundary layer and higher-than-second-order moments of
the near-bed velocities (Henderson et al., 2004; Hsu et al., 2006).
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These neglected details must be absorbed into the available free
parameters. The bottom line is that the predictive skill of the present
modeling capability will largely depend on uncertainties in model
inputs, model parameters, or both.

Finally, real-world implementation of coastal-process models,
useful to emergency managers, the military, lifeguards, and beach-
goers who need to make decisions based on rapid environmental
forecasts, is becoming a necessity. In this scenario, the fidelity of
boundary and initial conditions required by numerical models may be
so poor that the inadequacies of the input data can only be improved
by additional (and often costly) observations of processes in the
interior of the model domain. This sets up a complex situation where
optimal solutions require the use of some sort of assimilationmodel to
(1) map incomplete and inaccurate data to the boundary conditions,
(2) correct model errors in the interior of the domain, and (3) extend
intrinsic model outputs (e.g., wave height) to related observables
(e.g., video or radar observations, Bell, 1999; van Dongeren et al.,
2008) that can contribute to model improvement. Presently, formal
data-assimilation schemes that have been applied to nearshore
coastal processes have focused primarily on scientific evaluation of
model physics (Feddersen et al., 2004), studying the sensitivity of
inverse solutions to the scale of variability (Kurapov et al., 2007), and
evaluating unknownmodel parameters (Plant et al., 2004; Ruessink et
al., 2007), rather than to solving the operational problem of
inadequate boundary conditions.

The lack of regularly applied data assimilation to nearshore coastal
models is likely due to computational constraints of the state-of-the-
art models, which often perform simulations at computational times
that exceed the simulation time. Furthermore, the coupled wave,
current, and sediment-transport problem is nonlinear and requires
significant model iteration to converge toward the best inverse
solutions (Kurapov et al., 2007). To get an idea for the dimensionality
of the problem, consider a coastal region that might span 100 km2,
with a model resolution of 100 m2, which requires evaluation at
1 million grid positions. At each position, there may be roughly 10
variables of interest (e.g., depth, wave height, energy dissipation, etc.).
The models might have a time step of 1 s, and a forecast would
estimate hourly averaged conditions requiring evaluation of a total of
1010 values to describe the coastal environment. A typical assimilation
scheme might require 10 iterations, pushing the total bookkeeping
load to 1011 values per coastal-process forecast.

Although formal data assimilation is possible, its implementation
is difficult in coastal and surf-zone environments because (1) it is
computationally intensive; (2) it requires specification of often
unknown quantities (such as the model error); (3) it is unwieldy in
the face of a large number of uncertainties; and (4) it is unmanageable
in the face of a large number of observations. Nonetheless, in practical
applications of coastal prediction, forecasts will be expected even
from boundary and forcing data with substandard accuracy (e.g.,
outdated bathymetric survey and hydrodynamic observations, or
forecasts with significant uncertainty). At a minimum, model
initialization will require some form of data assimilation to correct
the imperfect model inputs. For instance, data interpolation of one
form or another is a commonly used (and abused) form of data
assimilation (Ooyama, 1987; Plant et al., 2002). Regardless of
approach, practical applications can be supported only if the data-
assimilation method offers some reduction in observation and model
errors and, most importantly, provides a useful estimate of prediction
uncertainties.

In this two-part paper, we present a new application of Bayesian
statistical modeling to surf-zone modeling and assimilation. Part I is
devoted to describing the modeling framework and applying it to
several case studies focused on forward modeling. Part II is devoted to
inverse problems and extending the framework to a very flexible set
of assimilation problems. We continue with Part I in Section 2 (Model
formulation) by reviewing Bayes Rule and then developing a specific
application for surf-zone wave modeling. In Section 3 (Application),
we describe a data set used for training the Bayesian network and
provide hindcast and forecast prediction examples. These examples
highlight the role that data and model uncertainty play in affecting
prediction errors. Lastly, in Section 4 (Discussion), we explore the
problem of obtaining required uncertainty estimates and demonstrate
their impact on model skill.

2. Model formulation

2.1. Review of Bayes Rule

In contrast to variational data assimilation, mentioned in the
previous section, we suggest that a Bayesian-inference approach can
be used to combine available measurements with nearshore-process
models tomake statistically robust forecasts. The Bayesian approach is
formally consistent with sensitivity-based variational assimilation
(Wikle and Berliner, 2007). Bayes Rule is

p Fi jOj

� �
= p Oj jFi

� �
p Fið Þ= p Oj

� �
; ð1Þ

where the left-hand side of Eq. (1) is the updated conditional
probability of a particular forecast, Fi, given a particular set of
observations, Oj. The forecast might include both initial and boundary
conditions. The observations might be obtained near the boundaries
or in the interior of the model domain. Variational data assimilation
strives to return the conditional mean value of the solution: Fj̅=Σi p
(Fi | Oj) Fi. A Bayesian approach is more general and strives to estimate
the likelihood of many possible forecasts. The first term on the right-
hand side of Eq. (1) is the inverse of the left-hand side and is the
likelihood of the observations if the forecast is known. This term can
include both model and observation errors. That is, if the model and
measurements were error free, then an observation would be likely
only if it equaled the forecast value. In reality, there are numerous
errors causing spread in the likelihood function.

The next term on the right-hand side of Eq. (1) is the prior
probability of each forecast. This is what is known about the problem
before new data are available. It might be the result of a prior
assimilation cycle or derived from climatology. The mean value
obtained from this distribution is equivalent to the “background” or
“best-guess” solution used in variational ocean data assimilation
(Benett, 2002) or in optimal interpolation (Ooyama, 1987). Finally,
the last term is a normalization factor to account for the total
likelihood of the observations. In variational data assimilation and
optimal interpolation, this term is solved by inverting the data
covariance and is often responsible for large computational costs.
Here, it is estimated through integration over all forecast possibilities.

A primary advantage to the Bayesian approach to data assimilation
is that the probability distribution of the forecast is estimated. This
allows for both data and forecast to have non-Gaussian probability
distributions, which may be crucial to describing strongly nonlinear
nearshore processes. In principle, this means that the Bayesian
approach will lead to more accurate forecast statistics, including
estimates of the most likely forecast and its uncertainty. A possible
disadvantage of the Bayesian approach is that it may increase the
dimensionality of the problem. If each Fi is a single forecast with 1010

quantities to describe it (i.e., the typical numerical model system
mentioned earlier), then the complete Bayesian approach requires
that we track the joint probability of these variables against
observations, which might also be any of the 1010 quantities. The
problem would have exploded to a dimension of 10100!

In practice, however, the utility of the Bayesian approach is most
evident when the problem of interest can be boiled down to a much-
reduced dimensionality. (This statement actually applies to most
other data-assimilation schemes, which, for instance, do not attempt
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to compute the model–data sensitivity at full resolution, Kurapov
et al., 2007.) Here, we will apply three standard approaches to
reducing the problem's dimensionality. First, we forecast along a 1-
dimensional (1-D) slice of the spatial domain, extending from the
shoreline across the width of the surf zone into offshore water depths
where waves do not usually break. Second, we consider only a subset
of the entire spatial domain by focusing on a relatively few locations of
interest. Thirdly, we will consider only a subset of the possible
processes in the surf-zone region that we deem most important,
specifically wave shoaling and breaking.

2.2. A surf-zone Bayesian model

To test our hypothesis that a Bayesian approach to data
assimilation can be exploited in the surf zone, we selected the
wave-evolution model described by Thornton and Guza (1983)
(hereinafter referred to as TG83), which assumes Rayleigh-distribut-
ed wave heights throughout the model domain. Our intent is not to
substantiate a particular approach over another—since numerous
refinements to this model have been developed—but to emphasize
that variations in implementation do not change the essential
elements of this data-assimilation example. The inherently 1-D
TG83 model predicts the evolution of the root mean square (rms)
wave height given estimates at the offshore boundary of the wave
height, wave direction, and wave period. The model does not resolve
the different directions or frequencies that might contribute to a
spectrum of waves, because waves are assumed to be narrowly
distributed around a peak period and direction. Thus, we canwrite the
forecast from this model at any location, xk, as,

Fi xkð Þ = Hkf gi = funct: h0;h1;…;hk;H0;α0; T ;γ;Bf gi
� �

; ð2Þ

where h is the water depth, H0 is the offshore rmswave height, and α0

is the offshore peak-wave direction. Variables with subscript k are
spatially varying. Additional parameters are a peak-wave period (T), a
critical wave-breaking criterion (γ), and a breaking efficiency (B). All
of the inputs can be considered random variables, because even the
model parameters must be estimated from the data (Ruessink et al.,
2003). Therefore, the ith solution is obtained from a particular choice
of inputs. Fig. 1 shows an example of the spatially extensive (in 1
horizontal dimension) input and outputs of this model.

The waves shoal offshore from the outer sandbar and then begin to
break, decreasing in height until they reach the shoreline. The change
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Fig. 1. Wave height (dashed line) simulation over measured bathymetry (solid line).
Vertical lines mark reduced Bayesian network's sample locations.
in the wave-height profile will depend on the offshore wave height,
period, direction, and the underlying bathymetry. Using the numerical
TG83 model, it is not possible to make a prediction unless all of these
variables are known. In particular for our case, the bathymetry must
be known at approximately 500 locations in order to provide 1-m
model resolution across the domain. The dimensionality of the full
model is, 4⁎500+3, which includes the spatially varying fields of
input bathymetry and output wave height, direction, and dissipation,
plus the wave period and two model parameters.

2.3. Reduced model

We expect that the utility of wave-model forecasts does not
necessarily rely on providing all of the output predictions possible
from the model (O'Reilly and Guza, 1998). For instance, accurate
prediction of the wave height very near the beachmight be necessary,
rather than at all locations in the model domain. Or, if a higher-
resolutionmodel is to be initialized from a low-resolutionmodel, only
the data at the boundary of the high-resolution model are required.
From this point of view, the unused model details are irrelevant. This
implies that our data-assimilation problem should only retain a
forecast at a small subset of locations. For the surf-zone example, we
choose to retain information at our model's boundary, at an
intermediate location, and at one location close to the shoreline. We
have, in an ad hoc way, just reduced the spatial dimensionality from
500 locations to only 3.

The Bayesian versions of this reduced model inputs and outputs
are

Fi = h0;H0;h1;H1;h2;H2; T ;α0;γ;Bf gi
and
Oj = ĥ0; Ĥ0; ĥ1; Ĥ1; Ĥ2; ĥ2;T̂ ; α̂0; γ̂; B̂

n o
j
:

ð3Þ

The spatial locations are given by subscripts (0 for the offshore
boundary, 1 for the intermediate position, and 2 nearshore). A
variable with a circumflex indicates that it is an observation (which
can be derived from any number of sources, including other models)
and the others are predictions. We have included the model
parameters γ and B as both observations and predictions. However,
without calibration data, these values will be obtained from a prior
distribution. Initially, we choose to constrain these parameters to
γ=0.34 and B=0.8 (Haines and Sallenger, 1994) in order to focus
attention on the remaining variables. We will loosen this constraint
when we discuss parameter sensitivity later.

A schematic diagram of the Bayesian network representing the
reduced model is shown in Fig. 2. This follows a hierarchical approach
(Ihlera et al., 2007), which considers only a subset of the total joint
correlations that are possible for this system. The network variables
are grouped both spatially (from left to right) and by process (top to
bottom). The arrows connecting specific variables or groups of
variables represent joint correlations between those variables. These
correlations will be estimated from measurements or from model
predictions as part of the training or calibration process. Although it is
entirely possible to represent correlations between each variable and
all other variables, we have chosen to take advantage of a further
reduction in model dimensionality by representing only a few of the
most important correlations (each is labeled with a number). The
choice of which correlations to retain is guided by our knowledge of
the wave-evolution processes. For example, we know that the wave
height at location x1 depends on the wave height at x0 (correlation
#5), and additional relationships are expected for the water depths at
x0 and x1 (correlations #7 and #8), wave direction and period
(correlation #2), and the model parameters (correlation #4).

In addition, we know that other processes contribute to correla-
tions that would not be represented by the wave model, but would be
expressed in the observations. For instance, wave height, direction,
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and period can be correlated to each other (#1 and #2) due to
constraints associated with fetch and storm characteristics. Water
depths are correlated to each other (#11 and #12) due to mass
conservation and coherent variations associated with sandbars.

The Bayesian network of the reduced model in the assimilation
problem has several useful properties, including that it

(1) it achieves a necessary reduction in dimensionality;
(2) it focuses a detailed forecast model on variables and locations

of interest;
(3) it estimates forecast uncertainty;
(4) it can be used to inversely estimate boundary conditions for a

detailed forecast model (to be shown in Part II); and
(5) it can assimilate diverse inputs, including depth, wave height,

wave direction, and dissipation (andmore, as wewill also show
in Part II).

Nonetheless, the Bayesian network still relies on detailed
numerical estimates and/or observations because the joint probability
that relates p(F | O) to p(O | F), p(F), and p(O) must be estimated
through training based on, essentially, Monte Carlo simulation. The
proposed efficiency in the Bayesian approach is in the fact that once all
relevant scenarios have been encountered, the detailed numerical
model used in the “training” process can be discarded. This is
particularly powerful in the nearshore environment where dynamics
periodically return to similar beach states (Plant et al., 2006;Wright et
al., 1985) and even to identical bathymetric profiles at regular
intervals (Ruessink and Kroon, 1994; Wijnberg and Terwindt, 1995).
Rather than re-computing the same inputs with a detailed model to
get nearly the same outputs, the Bayesian approach stores not only
the functional mapping between input and output, but also the
uncertainty in the output due to uncertainty in the input.

3. Application

3.1. Bayesian-network discretization

We constructed a representation of Eq. (1) and Eq. (2) with the
reducedmodel Eq. (3) using a numerical implementation of a Bayesian
network called Netica (Norsys, 1990–2007).We have already justified
the spatial simplifications of the reduced model. An additional level of
simplification is required to represent the continuous physical
processes with a small number of discrete states. That is, a continuous
range of natural wave heights, H, will be represented with a finite
distribution of values, Hn, ranging from some minimum value (e.g.,
0 m) to a reasonable maximum value (e.g., the maximum observed
value or a fraction of deepest water depth, since we know that wave
height will be limited to this by breaking). It is not necessary to have
constant intervals (Hn+1−Hn≠Hn−Hn−1). The design of this
discretization requires balancing a number of competing interests.

(1) The intervals should be as wide as possible to minimize
computational effort.

(2) The intervals should be narrow enough to resolve the expected
uncertainty and provide forecast utility. For instance, if the
expected rms prediction error were σH, then the interval
should be no larger than σH.

(3) The intervals need to be wide enough to collect at least a few
“hits” from the available data and Monte Carlo simulations. The
objective is to approximate the joint probabilities of interest by,
essentially, compiling histograms. If an interval contains only a
small number of samples, the histogram is not well con-
strained. In practice, we seed all of the joint probabilities with a
uniform distribution so that poorly constrained intervals will,
at worst, return a uniform distribution as a result.

Constraint #2 suggests that the network resolution should be as
detailed as possible while supporting constraints #1 and #3. This is
not necessarily the case. There are intrinsic errors, such as model
error, that can be easily captured by preventing the intervals from
shrinking unnecessarily. Thus, constraint #2 can be interpreted to
mean that the intervals should be no finer than about σH as well.
Additionally, this constraint can be interpreted from a practical point
of view, and the interval should be no finer than what is necessary for
the appropriate interpretation of the results. For example, an
application to beach safety might require only estimating whether
the wave height exceeds a critical value. Then, only two bins are
required, split at the critical value. We adhere to these design
guidelines using an adaptive method, described in the next section.

3.2. Training data set

The proposed Bayesian network could be developed for any
arbitrary location. We selected the Army Corps of Engineers Field
Research Facility (FRF), in Duck, NC. At this site there is a long time
series of bathymetry and wave observations. These data are sufficient
to drive a forward model of wave shoaling and breaking
corresponding to a large range of prediction scenarios. We emphasize
that locations with less extensive data sets could also work within this
modeling concept, but that the source data from this location are well
established and easy to obtain. Fig. 3 shows histograms of daily-
averaged data for the period 1980 to 1996, using essentially the same
data set as that analyzed by Plant et al. (1999). The wave data were
measured approximately every 3 h. The bathymetry was measured
approximately monthly and was interpolated to a daily interval using
an objective interpolation scheme. The computational domain of the
TG83 mode extended offshore to the 8-m contour where wave data
were measured. The measured bathymetry was spatially interpolated
to 1-m intervals across the domain. The measured inputs and model
parameters (γ and B) were inputted to the TG83 model, and the
output wave-height predictions were stored at offshore, intermediate
and onshore locations. Note that the purpose of the modeling exercise
at this stage is to obtain data to be used to estimate correlations both
among and betweenmodel inputs and outputs. Although this could be
accomplished with synthetic data, the field data set provides accurate
prior probabilities for the input and output variables. The interpola-
tion scheme produced smooth results in both space and time and
filtered out some short spatial and temporal variability. A potential
impact of this is that some wave conditions may be paired with some
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profile conditions that are not fully consistent with nature. If this
problem is significant, new observations may be identified as being
inconsistent (highly improbable) or, more likely, this simply adds to
predicted uncertainty.

Using the observations and corresponding simulations, we initially
assigned minimum bin widths to each variable. These widths were
σh=0.25 m, σH=0.2 m, σT=2 s, σα=15°. The binswere then altered
such that each would contain 20% of the data (e.g., five bins if the data
were uniformly distributed). If this initial scheme produced bins that
were narrower than the minimum value, the bin width was increased
such that there might be fewer than five bins for a variable. The
histograms shown in Fig. 3 reflect the resolution that resulted using
this scheme.

The observation/simulation results were read into Netica, which
assimilated these data into tables representing the joint probability of
the wave model and input data. Initially, the joint probabilities were
given a uniform distribution. Then, these distributions were updated
to yield the maximum likelihood probabilities, given the available
data. That is, the data were used to solve an inverse model for the
Bayesian network itself, treating each joint probability as an unknown
parameter. There were 15,435 unknown joint probabilities. These
were constrained with 39,037 observed and simulated values. Since
we assume that the probabilities of adjacent intervals are somewhat
correlated, there is no requirement that the number of inputs exceeds
the number of unknown network variables. And, we expect that many
scenarios are unlikely (for instance, shallow depths at all locations
would not occur), such that the initial uniformdistribution adequately
initializes these unobserved states. Furthermore, it is possible to
assimilate data with missing values for some of the variables. For
instance, there were numerous occasions where the wave direction at
the offshore boundary was unknown. These cases simply distribute
their probability over all possible values of wave direction while
constraining the joint probability of the remaining non-missing
variables.

3.3. Prediction example

Once the Bayesian network is “trained” on the available observa-
tions and simulations, we can use it to make forward and inverse
predictions (the latter will be described in Part II). The purpose of the
forward prediction is to demonstrate the accuracy of the reduced
model relative to the original model as well as to illustrate how
degraded or inaccurate input data affect the uncertainty of the output
prediction.

3.3.1. Prior prediction
The first example of the Bayesian-network prediction has already

beendemonstrated in Fig. 3. It is theprior prediction,which is available
beforewe constrain and update the networkwith specific case data. In
this situation, the prior prediction captures our understanding of the
likelihood of particular outcomes based on climatology. For instance,
some variables actually change very little (e.g., the water depth at the
seaward boundary), whereas others are extremely variable (the wave
height at the seaward boundary). Data will be compared to this prior
set of distributions via Eq. (1). The immediate value of the prior is to
identify the consistency of the data. Data that are consistent with the
prior will lead to increased certainty for all of the variable's
distributions. Data that are inconsistent will result in very uncertain
distributions. Thus, the prior is useful for evaluating the quality of the
data as well as for updating the predictions.

3.3.2. Forward prediction
The next example of the Bayesian network (Fig. 4) demonstrates its

ability to reproduce specific predictions, given data describing



Fig. 6. Prediction with inconsistent depth inputs.

Fig. 5. Comparison of Bayesian prediction with increased offshore wave height
uncertainty.b

a

Fig. 4. Comparison of Bayesian network prior prediction (red histograms) and updated
prediction (cross-hatched histogram) to (a) detailed input bathymetry (blue lines) and
(b) detailed wave shoaling and breaking predictions (green lines).
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boundary conditions. Using the Bayesian network, we reproduce the
simulations shown in Fig. 4 with offshore wave height known to be in
the range of 0.4 to 0.8 m, period of 6 to 10 s, unknown direction, and
water-depth distributions centered on 5.5, 3.8, and 1.5 m at the
offshore, intermediate, and onshore locations. Given this information,
the predicted wave height (shown without bathymetry in Fig. 4b) at
the intermediate location is most likely to be in the range of 0.4 to
0.6 m (60% likelihood), but there is some likelihood for values in the
range of 0.6 to 0.8 m (40%). At the onshore location, there is more
confidence for the 0.4 to 0.6 m range (80%), with the remaining 20%
likelihood falling in the 0.6 to 0.8 m range. In all cases, the prediction
that was obtained by updating the Bayesian network (black histo-
grams) has a significantly narrower distribution than the prior
distribution (red histograms), and the updated predictions are, as
expected,more consistentwith the results from the TG83wavemodel.

The next forward prediction (Fig. 5) replaces the well-constrained
input wave height at the offshore boundary with more uncertain
information. The input wave height was updated with an input
probability distribution that was uniformly distributed over the range
of 0 to 1 m. This is meant to illustrate the effects of measurement error
or, alternatively, forecast uncertainty if one was initializing the wave
model with output from a numerical weather prediction. This
example also indicates the utility of having a so-called “informative”
prior distribution. Even though the offshore boundary data were
inputted with uniform distributions, the updated probability dis-
tributions (Fig. 5) of the offshore wave height are very similar to the
priors. The Bayesian network “knows” that moderate wave heights
are more likely than either extremely high or low values and corrects
the inaccurate input data.

The result of the increased input uncertainty is the increased
prediction uncertainty at the landward locations. Specifically, the
wave-height prediction at the landward location has degraded to just
50% likelihood for values in the 0.4- to 0.6-m range, compared to 80%
likelihood in the previous example. While the prediction uncertainty
at the landward-most location has increased, it is clear that the 0.4- to
0.6-mestimate is farmore likely than anyother value. This result is due
to the wave-breaking processes that act to reduce the wave-height
variability close to shore. Thus, uncertainty in some input variables
does not necessarily have the same impact on all output variables.

The next prediction example (Fig. 6) illustrates the Bayesian
networks' ability to identify inconsistent data. In this case, the
offshore wave conditions used in the first example were applied, but
unlikely depth observations were provided as input (depths at all
three locations were set to the shallowest levels with 100% certainty).
The result is somewhat degraded certainty of the wave height at the
intermediate location (i.e., roughly 50% likelihood for both 0.4- to 0.6-
and 0.6- to 0.8-m levels). However, at the onshore location, the wave-
height prediction probability is distributed uniformly over all

image of Fig.�5
image of Fig.�4
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possibilities, which is worse than the uncertainty associated with the
prior prediction. This increase in uncertainty indicates that this
specific input scenario is one that has no prior information. Either the
Bayesian network must be trained to encompass this new (perhaps
unrealistic) input, or it demands that the data be inspected for errors.

3.3.3. Field evaluation
The previous examples compared the Bayesian network to the

model output and data that were used to train it. This hindcast simply
demonstrated how the Bayesian network responds to different types
of input and demonstrates that it can recover the detailed TG83model
prediction. Next, we compare the Bayesian predictions to new field
observations of surf-zone wave heights. The Bayesian network was
not trained with these new surf-zone measurements, relying on the
previous training as before.

The new field datawere obtained as part of the Duck94 experiment
(Birkemeier and Thornton, 1994). We used the data from 17 pressure
sensors (Fig. 7) that measured wave heights (Elgar et al., 1997;
Gallagher et al., 1998). Bathymetry data were obtained by interpola-
tion of daily surveys. Tides observed on a nearby pier were used to
correct the bathymetry to obtain depth estimates appropriate to each
observed wave height. As before, the offshore wave conditions and
depths at all locations were used to update the Bayesian network and
obtain forwardpredictions of thewaveheights at the intermediate and
b

a

Fig. 7. Instrument locations and bathymetry on (a) 04 and (b) 24 October 1994.
landward locations. We focus the remainder of our analysis on the
Bayesian prediction of the wave height at the onshore location only.

We assume, initially, that all of the data are error free—at least to
the level of precision required to specify the Bayesian network's
inputs. Fig. 8 shows a comparison of the observed and predicted wave
heights at the onshore location. The predictions track the observed
wave height variations that are associated with changes in water
depth (tide) and offshore wave height. The skill of the Bayesian
network's mean prediction is 79% with a mean error of −0.04 m (i.e.,
an under-prediction) and rms error of 0.15 m. (The skill was defined
as 1−σe

2 /σo
2, where σe

2 mse is the mean-square error between
Bayesian predictions and the observations and σo

2 is the variance of
the observed nearshore wave height.) The most likely prediction has
about the same mean and rms errors and skill (−0.05 m, 0.14 m, and
80%, respectively). However, it is clear from Fig. 8 that the prediction
skill is not uniformly accurate. During the second half of the time
series (when the bathymetric surveys indicated strong alongshore
variability), the prediction systematically underestimated the obser-
vations. In fact, a more serious error lies in the predicted uncertainty
(indicated by the width of the shadings), which does not include the
observations and, hence, is under-predicted during the period with
the highest waves.

Calculation ofwave heights using the original TG83wavemodel for
this interval shows that the tendency for under-prediction of the
highest wave heights is actually an intrinsic numerical modeling error
and is not due to the Bayesian re-formulation. We will demonstrate
that this systematic error can be reduced by allowing for uncertainty in
the model parameters, which have been held constant so far. Fig. 9
shows a comparison of observed and predicted wave heights at the
onshore prediction location. The mean prediction error of the wave
model (labeled TG83)was−0.03 m; the rms errorwas0.07 m, and the
prediction skill was 97%. The improved skill and roughly 7 cm of
reduced rms errorwere obtained at the expense of providing the entire
bathymetric profile to the TG83 model—rather than just the
bathymetry at the three locations required by the reduced Bayesian
network—and numerically solving a differential equation for each new
set of observations (no matter how slightly they may have changed).

The high-resolution numerical model cannot do anything to
identify systematic prediction errors (such as errors associated with
the high waves at the end of the study period). On the other hand, we
demand that the Bayesian network predicts both best estimate (e.g.,
mean and most likely) values and uncertainties. The point of tracking
uncertainty is to alert users of the predictions to situationswhen there
is a high probability of prediction error. Unfortunately, for the second
half of the data set, there is a serious failure in the Bayesian prediction
to identify prediction uncertainty because the Bayesian network was,
naively, based on an inaccurate wave model.

4. Discussion

4.1. Quantifying Bayesian-prediction skill

The Bayesian-assimilation approach turns the typical model-
evaluation procedure on its head. Typically, a model is calibrated to
make its best prediction through tuning of parameters in order to fit a
hindcast prediction through a cloud of observations. The assumption
is that the model–data mismatch will be used to evaluate the
probability distribution of tunable parameters and prediction errors.
The Bayesian-network prediction already includes the probability
distributions. Thus, it is possible to evaluate the network with each
independent observation. This is done by evaluating the likelihood of
an observation, given the updated prediction. The likelihood is

Lj = p Fi jÕj

� �
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126 N.G. Plant, K.T. Holland / Coastal Engineering 58 (2011) 119–130
where Õj is the subset of observables that are made available to the
Bayesian network for prediction and O′j is the independent observa-
tion that was withheld from the prediction. For instance, Õj might
include the bathymetry at all locations as well as the wave height at
the offshore location, and O′j might be the wave height at the onshore
location.
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Fig. 9. Comparison of predicted and observed wave heights.
An approach to testing the Bayesian-network prediction is to
compare it to a competing model. One such competing model is the
prior probability, which is determined before the network is updated
with specific observations. If the likelihood of the data is increased
under the updated network, then it will have a positive log likelihood
ratio:

LRj = log p Fi jÕj
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A likelihood ratio exceeding 1 indicates a significant improvement
in the prediction. This will result if the Bayesian network confidently
predicts a distribution centered on the observation. A ratio less than 0
is worse than the prior prediction. This can result in the case of a
confident prediction that misses the verification data (such as the
high-wave prediction errors). Thus, the likelihood ratio simulta-
neously tests the skill of the best prediction (which could be the mean
or mode of the distribution) and tests the skill of the uncertainty
prediction by penalizing both overly certain and uselessly uncertain
predictions.

The likelihood ratio summed over all observations and predictions
that are shown in Fig. 8 was −1000. That is, even though the mean
predictions were very skillful, the estimate of the uncertainty was not
accurate. The uncertainties were overly confident such that the
observations were more likely to come from the prior network
prediction (which was the same for all sample times) than the
updated prediction. One explanation for this is the omission of
information about input errors. Particularly important are depth
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Table 1
Error and skill statistics for mean wave height prediction at the onshore location.

Update method Mean error
(m)

RMS error
(m)

Skill
(%)

Likelihood
ratio

TG83 model −0.03 0.07 97 n/a
No uncertainty −0.04 0.15 79 −1011
Bathymetric
uncertainty
Uncertainty=1σ −0.04 0.15 83 320
Uncertainty=2σ −0.04 0.15 83 1386
Uncertainty=4σ −0.04 0.16 81 1859
Uncertainty=8σ −0.03 0.16 77 1815
No Bathymetry −0.06 0.20 68 1483

γ uncertainty
Uncertainty=0.05 0.02 0.12 89 2400
Uncertainty=0.1 0.03 0.12 87 2338
Uncertainty=0.4 0.08 0.14 87 2003

Onshore Hrms −0.00 0.07 94 5683
No Offshore Hrms −0.13 0.30 12 −157
Prior −0.13 0.30 0 0
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errors and model errors. Depth errors may result from survey
inaccuracies and alongshore variability. Since the underlying process
model assumed alongshore uniform bathymetry, an obvious solution
is to include alongshore variability as an additional measure of
uncertainty. Model errors might result from using the wrong model-
parameter values.

4.2. Prediction sensitivity to bathymetric uncertainty

To test whether including input uncertainty could improve the
likelihood score, we generated input distributions for the depth data
from the computed residual errors between survey data near the
Duck94 instrument array and the interpolated profile used as input for
both the Bayesian and TG83models. Because the alongshore spacing of
survey data was between 25 and 50 m, residuals were computed from
the data within 100 m of the alongshore position of the array. This
selection of data is somewhat arbitrary, but it balanced a need for
sufficient samples to allow calculation of a meaningful residual error,
yet still remains focused on the location where the waves were
measured. Fig. 10 shows the updated predictions that utilize the input
uncertainty, which was assumed to be normally distributed with
standard deviations that were, on average, 0.65, 0.15, 0.12 m at the
three input locations. The uncertainty in the Bayesian network's
predictions changed most in the second half of the time series, which
corresponds to the development of a crescentic-bar shape (Fig. 7). The
likelihood ratio increased to LR=300 when bathymetric uncertainty
was included, indicating more accurate uncertainty estimation. The
error statistics of the Bayesian mean prediction were unchanged.

Since the local alongshore variability might not represent all of the
impacts of bathymetry errors and it certainly does not represent the
impact of intrinsic modeling errors, it is possible to use bathymetric
uncertainty as a tuning parameter to optimize the prediction accuracy.
We progressively increased the amount of uncertainty input to the
Bayesian network by factors of two and found that the highest
likelihood ratio (i.e., the most improvement over the prior prediction)
was achieved for input uncertainty equal to 4 times the actual values.
The best ratio was LR=1800. This result indicates that, perhaps, the
missing cross-shore detail in the bathymetric variability (due to using
a subset of spatial locations) plus themissing alongshore detail (due to
the assumption of alongshore uniformity) should be included together
in the input uncertainty. Alternatively, the source of prediction error
lies elsewhere (e.g., with the model parameters) and the use of
unrealistically high depth uncertainty is simply a cover-up for the real
problem. In fact, it is clear that a side effect of improving the accuracy of
the Bayesian estimate of uncertainty is to reduce the variability of the
predicted response. For instance, in Fig. 10c, the mean and most likely
predictions do not exhibit a strong tidal modulation for the first half of
the record. And, the Bayesian network continues to under-predict the
wave height in the second half of the record.

Table 1 summarizes the error statistics of the most landward
location for all the updating methods described so far. Three
additional methods are included. One, labeled “Onshore Hrms”, used
the measured surf-zone wave height at the onshore prediction
location as input to the Bayesian network. That is, we showed the
Bayesian network the answer. The purpose of this test is to identify
the degraded skill due to the resolution of the probability bins. As the
bins became coarser, the network would not adequately resolve the
best answer even when that answer was known. In fact, there was
very little degradation of the model skill when compared to the TG83
results: skill reduction from 97% to 94%. This test is also a good
reference since it indicates the maximum possible likelihood score
(=5683).

The method labeled “No Bathymetry” did not include any
bathymetry data as input to the Bayesian prediction—that is, only
the prior information from the training on the historical data set was
utilized. Only the offshore wave observations were used to make
predictions in this case. The method labeled “No Offshore Hrms” used
the bathymetry observations but did not use the measured wave
parameters. Mean and rms errors were highest for the case where the
wave-height observations were omitted, indicating that observations
of bathymetry were of secondary importance. With no update in
bathymetry, the network propagates the known bathymetric uncer-
tainty to the wave-height prediction, scoring well (1483) in the
likelihood-ratio test. If the wave height, direction, and period are not
updated, the “No Offshore Hrms” scenario does not score well in the
likelihood-ratio test (−157) and has poor skill (12%). An outcome of
this comparison is that we can place relative values on updated
bathymetry vs. updated wave observations. In this case, the offshore
wave-height data contribute about six times more than the
bathymetry data to skill improvement. This result depends, of course,
on the duration of the field test, which was long enough to experience
a wide range of wave conditions, but shorter than needed to
experience the full range of bathymetric states.
4.3. Prediction sensitivity to wave-model parameter uncertainty

Alternatively, we could address the prediction errors by consid-
ering model errors. The most straightforward error source is probably
the choice of the two free parameters (γ and B) that control the wave-
breaking process (Fig. 2). Others have shown that the optimal values
of these parameters actually depend on the incident wave conditions
and water depth (Apotsos et al., 2008; Ruessink et al., 2003). To
account for model-parameter uncertainty, we generated new simula-
tions by varying the wave-breaking parameters uniformly (γ=0.17
to 0.68 and B=0.4 to 1.6 in increments that were 10% of the original
values), choosing one combination of parameters at a time and re-
running the wave model for each of the points in the 20-year time
series. This resulted in a total of 1,334,017 simulations that were then
used to re-train a Bayesian network, modified to include the model
parameters as inputs.

Then, the Duck94 data set was used to update and evaluate the
Bayesian-network predictions. Because it has been shown that the
optimal values of the two model parameters are correlated (Roelvink
and Broker, 1993), we chose to only allow uncertainty in the breaking
parameter, γ, and we constrained the other parameter at the original
value (B=0.8). The Bayesian network has, presumably, learned the
correlation between the model parameters; it should be able to cope
with this constraint. The resulting skill, error, and likelihoods from
this sensitivity study are shown in Table 1. The best prediction of the
nearshore wave height was obtained when the uncertainty in γ was
equal to 0.05 (1 standard deviation), or about 10% of the original
parameter value (0.34). The mean and rms wave-height errors were
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lower, and the skill and likelihood ratios were higher than any other
choice of uncertainty values applied to γ. We tried some scenarios
where both bathymetric and γ uncertainties were allowed (not
shown), and these did no better than simply allowing γ uncertainty.

Fig. 10d shows the prediction result for the best-performing
scenario with lowest rms wave-height error, highest skill, and highest
likelihood ratio. There is considerably more variability in the wave-
height prediction uncertainty, compared to the previous examples.
This can be attributed to the addition of the wave parameters (γ and
Β), leading to an increase in the model complexity as well as explicitly
acknowledging them as sources of uncertainty. The resulting wave-
height prediction uncertainty was higher at times when the actual
prediction error was higher; hence, the inclusion of model-parameter
uncertainty not only improved the prediction, but also yielded a more
accurate error estimate. Specifically, when the original model failed to
predict the largest waves, the modified model either improved that
prediction (e.g., period between 15 and 16 October) or updated the
uncertainty such that it included the observations (e.g., the period
between 17 and 19 October). Note also that the smallest wave
conditions at the beginning of the analysis period were also better
predicted.

The wave-breaking parameter was allowed mild uncertainty such
that the input was normally distributed with a mean of 0.34 (the prior)
and standard deviation of 0.05. This allowed the Bayesian network to
attempt to predict an updated parameter value based on the offshore
wave height, period, direction, and water depths. Fig. 11 shows the
sensitivity of the estimated value of g that corresponded to the
nearshore wave-height predictions shown in Fig. 10d. Under low
wave heights (less than about 1.25 m), the most probable value of γ is
about 0.3, but the confidence is not very high (probability ~50%) and a
value of 0.4 is nearly equally likely. However, as the wave height
increased, the optimal value of γ also increased. For wave heights
exceeding 2 m, the optimal value of γ is 0.4 or higher. And, under high
waves, the parameter uncertainty decreased (indicated by a probability
increase), indicating that parameter uncertainty is relatively unimpor-
tant under low wave heights and becomes important when wave
breaking is important. This dependence on wave height has been
demonstrated by others (Apotsos et al., 2008; Roelvink and Broker,
1993; Ruessink et al., 2003). Unlike other efforts to estimate the optimal
parameter values, in our implementation, the prior estimate (γ=0.34)
continues to constrain the updated estimate because we do not allow
large uncertainties in this parameter. In Part II, we explore the problem
of inverse modeling and the impact of loosening this constraint.
5. Conclusions

We demonstrate that results obtained from a detailed forward
model of surf-zone wave evolution are reproduced accurately using a
Bayesian-network modeling approach. We tested the Bayesian
network using both simplified scenarios and then a real-world
prediction example. In the real-world surf-zone example, prediction
skill was about 80% if the model inputs (offshore wave conditions,
bathymetry, and free parameters) were assumed to be perfect. Using
both simplified scenarios and the real-world prediction example, we
show that uncertainty in the input data is accurately transferred to
uncertainty in the predictions. However, if uncertainties in the
boundary and forcing data were not conveyed to the Bayesian
network, overly optimistic prediction uncertainties were computed.
More skillful prediction uncertainties were obtained by including
measured alongshore bathymetric variability as a source of input
uncertainty, but prediction skill under this scheme improved only
marginally. Alternatively, if model-parameter uncertainty is included,
the prediction skill increased substantially (to about 90%), mean and
rms errors were reduced, and the predicted uncertainties were more
consistent with the observations. The Bayesian network has several
advantages. It significantly reduces the dimensionality of the problem,
compared to a detailed model; uncertainty estimates are made for all
predictions, and it is possible to estimate model parameters
simultaneously with making the wave-height prediction.
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