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Abstract – An individual sensor’s information output is 
often insufficient for an application, with ambiguities that 
require refinement or corroboration by fusion with 
information from other sensors. Fusion of multiple 
information sources is performed to create an information 
product of higher quality of information (QoI) that supports 
more effective intelligence, surveillance, and 
reconnaissance (ISR). In this paper we present an 
approach to determining the QoI attributes (metadata) 
relevant to tracking and classification of multiple vehicles, 
and the necessary weighting (qualifying) terms, as 
information derived from multiple acoustic sensors is fused. 
Field trial data is used to validate the conclusions.  

Keywords: Quality of information (QoI), sensor fusion, 
intelligence, surveillance and reconnaissance (ISR/ISTAR), 
tracking, classifier. 

1 Introduction 
Information quality has been studied extensively in the 
context of data collected and stored in data warehouses [14, 
15], and it covers issues such as accuracy, timeliness, 
completeness, consistency, etc. On the other hand, quality 
of information (QoI) for sensor networks has attracted 
significantly less attention; however, there is an increased 
interest in the area lately [16, 17]. QoI pertains to the 
capability of assessing how well information available to an 
end-user (an analyst, a decision maker, or a computer 
process) can be used to reconstruct portions of the real 
world that are of interest. As stated metaphorically in [18], 
QoI can broadly be viewed as the ability of a painter to 
paint, using the information collected, desired aspects of the 
real world accurately and timely enough for viewers of the 
painting to perform their tasks that relate to the painted 
world at desired levels of effectiveness.  

A decision-maker generally requires a well-founded method 
for ascribing confidence and importance to intelligence 
provided by a wide spectrum of sources. In this paper we 
consider sensor intelligence (SENSINT) provided by a 
trusted sensor network as accurately timed streams of 
location and classification information pertaining to 
multiple targets.  The confidence estimates we require must 

come from some combination of prior analysis of the 
response of the sensing service, projections of the potential 
target types and behaviors (assuming a quiet environment in 
this case), and the measurements from the sensors, 
themselves. The novel analysis provides a method for 
generating a simple, effective summary of the QoI emitted 
by the sensor network.  This comes from using the 
relationship between the quality of the data (QoD) and the 
resultant QoI to guide the derivation of simple QoI 
qualifiers that dictate which information sources should be 
used in a simple but effective tactical framework.  The 
experimental results comprise tracking and classification of 
multiple vehicles moving in inhomogeneous groups.   We 
discuss the potential benefits of derived QoI summaries for 
a decision-making task, and outline some of the further 
work in which we intend to explore them. 

2 Background 
To generate comprehensive situational awareness in a 
location of interest, several sensors of multiple modalities 
are deployed. Each sensor provides partial information 
about the situation; often imperfections such as bias, 
envelope limits, and susceptibility to environmental or 
tactical compromise impact the fundamental validity of that 
information. Such imperfect information must be fused in a 
suitable manner to achieve reasonable understanding of the 
situation. Fusion is intended both to complete constraint in 
the measurement task, and to improve the quality of 
information (QoI), with the goal of increasing its value (the 
value of information, or VoI) to the application or other 
recipients [1-3]. The modeling performed as part of 
synthesizing a fusion process (e.g. location+Gaussian noise 
motivates weighted averaging) may be rendered irrelevant 
if the source behaviours do not comply with the modeling 
assumptions.  If fusion is performed without understanding 
the limitations of the sensors involved, the QoI may, in fact, 
deteriorate.   QoI provides a framework for reasoning about 
sensor network performance and enables deployment of 
sensors for optimal utility [3]. 

The precise methods for use of QoI estimates are 
application specific [3]. Often, the user has a notion of what 
is acceptable (better QoI) and what is unacceptable (poorer 
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QoI).  Intuitively, fusion of information is guided by this 
notion of good and bad, applying varying weight to each 
item of information in the derivation of the appropriate 
conclusion.   When it comes to calculation, the semantics of 
the problem and available assets enable us to specify a 
suitable class of fusion functions for using the available QoI 
attributes (in operation, these are provided as metadata 
accompanying the information [3]), and the particular 
circumstances give the qualifiers necessary to achieving the 
best result in terms of QoI for the particular instantiation. 

The meaning of an information product is generally a 
probabilistic constraint on the potential states of the aspects 
of ground truth instrumented by the combined intelligence 
sources.  For example, a tracking information product will 
state that the locations of the target that could have given 
rise to the tracker’s estimate are distributed in some 
manner, for example as a mean and a variance. 

Selection of sensor modalities also depends on the notion of 
good QoI desired for intelligence, surveillance, and 
reconnaissance (ISR) [3]. As a result, video (imaging) 
sensors are the dominant sensors deployed for gathering 
ISR, because the information quality is regarded as obvious 
to the user. We are looking for an effective, pragmatic 
approach to fusion with the QoI in a sensor network by 
fusing only the sensor outputs, which we can quickly assess 
as resulting in high QoI.  This selection process includes an 
example of QoI qualifiers that provide guidance on how 
information and associated QoI should be fused. 

In this paper we explore the QoI in a multiple target 
tracking scenario. We formulate simple but effective 
guidelines for fusing direction of arrival (DOA) angle 
information of a target from different sensors to estimate 
the location of the target.  In the signal processing literature, 
several bounds are given for achievable location accuracy. 
For example, the Cramer-Rao bound (CRB) [4, 5] identifies 
the overall accuracy that can be obtained for a set of sensors 
with identical noise statistics. We do not have a simple, 
computationally frugal way of determining the true 
achievable accuracy if the noise statistics change during the 
course of sensor usage.  If we can formulate a fusion policy 
that guarantees the true information quality is sufficiently 
close to the CRB, then the CRB is a candidate QoI 
approximator [5]. Intuitively, the best quality may be 
achieved if the sensors with minimal noise characteristics 
are used. A policy based on this intuition dictates the usage 
of sensors with high signal to noise ratio at any given time.  

In the case of vehicle tracking using a Kalman filter, we do 
not have a simple CRB. When we address a joint purpose of 
tracking and classification, the accuracy components of QoI 
are estimated probability distributions of location and 
vehicle type. 

Rather than presenting a decision-maker with panoply of 
information quality indicators, he/she may be better served 
with one overall QoI indicator for each target, tailored to 
his/her specific decision task.  This will require an ante hoc 
analysis of the range of situations within which decisions 

are to be made.  This means that the information quality 
indicator is conditional on some description of the 
circumstances. Intuitively, the more detailed this 
description, the more effective we would expect a quality 
indicator to be.  We will analyze this presumption in a 
follow-on paper.  For now, we simply demonstrate that it is 
possible to summarize the information quality from a 
sensing service to give an indicator function that trends 
positively with a correct decision. 

This paper suggests an estimate of a suitable overall QoI 
value from individual QoI values generated by the various 
intelligence sources—in our case the angle estimator, 
tracker, classifier, etc. To aid in the derivation and 
exploitation of fusion for QoI, we use the following 
problem statement: 

Problem statement: Identify any heavy tracked vehicle 
approaching the northbound gate and intercept it. The 
sensor suites available to track and identify the vehicles are 
acoustic sensors.  

In section 3 we present the architecture for the tracking and 
classification of multiple targets using sensor fusion for 
QoI. In section 4 we present the QoI-based fusion to 
achieve better quality of tracking and classification of 
multiple vehicles using acoustic sensor arrays. We also 
discuss issues involved in achieving better QoI. In section 5 
we present the discussions and further work. Section 6 
presents conclusions. 

3 Framework for simple QoI guided 
sensor fusion 

There are six acoustic sensor arrays deployed in the middle 
of the track, as shown in figure 1. Each acoustic sensor 
array consists of seven microphones with six of the 
microphones placed on the vertices of a regular hexagon 
(circular array), and the seventh microphone placed at the 
center of the array. Each array is capable of determining the 
direction of arrival (DOA) of an acoustic signal that may be 
emanating from a vehicle using hyper-spectral techniques, 
such as minimum variance distortionless response (MVDR) 
or multiple signal classification (MUSIC) algorithms [6].  
The target set consists of one heavy tracked vehicle, one 
light tracked vehicle, one heavy wheeled truck, and one 
light wheeled truck. Initially, all the vehicles are stationed 
on the north end of the track and idling. A test-run consists 
of the heavy tracked vehicle followed by the heavy wheeled 
truck, the light wheeled truck, and then the light tracked 
vehicle, traveling at 16 to 32 Km/h with a separation of 
100-200m between them. Acoustic signals from the 
vehicles are analyzed to determine the DOAs and their 
classification at 
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Figure 1. Tracking scenario with acoustic sensors 

each sensor array. Figure 2 shows the overall scheme for 
processing the information to determine the individual 
tracks and classification of the vehicles.  

 

Figure 2: Architecture for Tracking and Classification of 
multiple vehicles 

There are three major modules in the architecture for the 
vehicle tracking application, namely, (a) Estimation of 
target coordinates (Target tracks) using DOAs of targets 
from different sensor arrays,  (b) Kalman filtering, and (c) 
classifier. In figure 2, the “DOA Estimation” module 
generates six (number of mics in the array minus one) DOA 
angles per sensor array. The DOA angle corresponding to 
the strongest signal is listed first, followed by the others 
according to their signal strengths. Notice that there are 
only  

Figure 3: Output of a sensor array showing four angle 
tracks corresponding to four vehicles 

four vehicles; despite this, each sensor array generates six 
DOA angles, two of which are artifacts. It is possible that 
some of the artifacts are due to the signals reflected by a 
nearby building or an unknown acoustic signal source in the 
vicinity. A typical output of DOAs generated by a sensor 
array is shown in figure 3. One can clearly see four 
different angle tracks. As the target comes close to the 
closest point of approach (CPA) of a sensor array, the 
target’s signal becomes the strongest and its DOA will be 
listed first irrespective of its order among the vehicles, 
which can be seen clearly in figure 3. Each sensor array 
outputs its metadata information as follows:  

Time Sensor 
coords 

DOA1 CLS1 SNR1 DOA2 … 

Table 1: Metadata from a sensor array 

The metadata consists of time-stamp, sensor coordinates, 
DOA1 corresponding to the strongest signal, its 
classification, and its SNR, followed by the DOA2 
corresponding to the 2nd strongest signal, its classification, 
its SNR, etc. The DOAs from the sensor arrays are used to 
generate the target coordinates and tracks in the module 
“Target Tracks” in figure 2. Initially, there will be several 
false tracks that will die out shortly after the targets move. 
Bank of Kalman filters [6] are used to track the target 
tracks. The predicted coordinates of each target are used to 
generate the expected DOAs of each target, which are used 
for track association, as shown in figure 2. Note that track 
association will not happen until tracks are formed clearly. 
Classifier output is also used to assist the target tracks.  

4 QoI based fusion of DOAs to 
estimate target location 

If there are only two sensor arrays, then the only option is to 
use both the DOAs from both the sensor arrays to estimate 

the position [7, 8] of the target. However, if multiple arrays 
are present, then there are several ways one can determine 

the target location. Figure 4 shows the geometry for 
localization using DOAs. To make the presentation suitably  

 

Figure 4: Geometry for Localization 

self-contained, localization formulation [8] is presented 
here. Let iP  represent the location of ith sensor array, while 

iU  and ˆ
iU represent the unit vectors in the direction of DOA 
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and its normal, respectively, and 0P is the location of the 
target. Then from the geometry [9], 

1 1 1

2 2 2
0

ˆ ˆ

ˆ ˆ

ˆ ˆ
n n n

U U P

U U PP

U U P

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                               (1) 

a linear equation (1) can be solved for target position 0P  
using least squares methods. If the signal to noise ratio 
(SNR) at all sensor arrays is more or less the same, then use 
of all DOAs from all the sensors in (1) would result in best 
estimate of the target location. CRB gives the error limit on 
the localization based on the SNR [4, 5]. This bound could 
be used to measure the quality of location estimation 
(indicator of QoI) on the localization. If the SNR at some of 
the sensor arrays is widely different, then use of all DOAs 
in (1) would result in poor estimation of target location. To 
estimate the SNR at each sensor array, let us consider the 
propagation loss in acoustic signal ‘S’ that is inversely 
proportionate to the square of distance 

 2
AS d=                                     (2) 

where ‘A’ is the signal strength at the source and ‘d’ 
denotes the distance between the source and the sensor. For 
the track shown in figure 5, the ratio between the closest 
and the farthest distance for a sensor array is approximately 
15, which results in a difference of 23 db in SNR between 
the sensor array that is closest to the target and the sensor 
array that is farthest. This results in DOA accuracy from 2º 
to 10º. Realistic estimation of the CRB and, hence, the 
quality of target location estimation, is not possible. So, 
blind use of equation (1) does not provide a meaningful 
estimate of target location (that is, good QoI), as seen in 
figure 5. 

 
Figure 5: All DOAs fused to generate Target Location 

 
Notice that when the sensor arrays and the targets are almost 
in line, even small errors in DOAs result in large errors. 
When the target is close to the mid-range, all sensor arrays 
provide a reasonable estimate of DOAs, resulting in 
estimates that are close to the track—since the arrays farther 
from the target have more error than the ones close to the 
target, the error in estimation of the target location changes 
from large to small, resulting in loops like the one in figure 

5. In figure 6, the target locations are estimated using only 
the DOAs, which are close to the predicted DOAs of the 
expected target location. This process of selected fusion of 
DOAs resulted in better QoI. 
Measure of QoI for Target Location Estimation: At each 
stage in figure 2, one can assign a value to the quality. The 
quality of coordinate estimation depends only on the DOA 
estimation. If these DOAs deviate from the actual values, 
the estimated target coordinates will be in significant error, 
resulting in poor quality. Hence, we propose the QoI to be 
inversely proportional to the difference between the 
estimated DOA, i

eθ , and the actual DOAs, i
aθ , for each 

sensor array ‘i’ and it is given.  

1

1n

t i i
i e a

Q
θ θ=

=
−∑                            (3) 

 

 
Figure 6: Selective DOA fusion for Target Location 

The proposed measure for QoI gives us high confidence if it 
has large value, that is, the estimated values are close to the 
actual values. In reality the actual values may not be 
available or predicted apriori. In such a case, one can use the 
difference between the measured values and the predicted 
values using the predicted coordinates by the Kalman filter. 

 
Figure 7: (a) Estimation accuracy (b) QoI measure 

In figure 7, we presented the distance between the actual 
target location and the estimated position. Figure 7 also 
shows the quality of the target estimation by (3) with the 
upper limit set at 10. Clearly, from figure 7, we note that the 
target coordinates are close to the ground truth when QoI is 
high. 
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4.1 Tracking by Kalman Filters 
The estimated target positions are fed to multiple Kalman 
filters [6] for tracking purposes. Kalman filters estimate the 
dynamic model of each target and update the track 
coordinates using both the model and the input. One of the 
parameters it estimates is the dynamic model of the track, 
which includes the covariance of the data. If the diagonal 
coefficients of the covariance matrix vary by a large 
number, it implies that the track coordinates are changing 
widely, indicating that the quality of information (quality of 
tracking) is not very good. If the coefficient is small, the 
track is following the model closely and the QoI is good. 
Figure 8 shows the output of the Kalman filters for targets 1 
to 4.  

 
 

 
Figure 8: Outputs of Kalman filters for all four targets 

 
Measure of QoI for Kalman Filtered Output: Since the 
coefficients provide us a measure on the variation of the 
coordinates, we propose the QoI of Kalman filtered output 
as  

( )2 2
1,1 2,2

1
kQ

C C
=

+
                            (4) 

where ,i iC is the (i, i) coefficient of the covariance matrix 
for the Kalman filter tracking a particular target. Figure 9 
shows how the QoI defined by (4) relates to the accuracy of 
tracking. 

4.2 Vehicle Classification and its QoI 
In order to aid track association, a multivariate Gaussian 
(MVG) classifier [9-12] is developed for vehicles. The 
acoustic signal of a ground vehicle, ( ),s t  can be modeled at 
any time, t, by a coupled harmonic signal model as 

 )()2cos()(
1

0 tntfkAts
N

k
kk ++=∑

=

φπ         (5) 

where k is the harmonic number, Ak  is the amplitude of the 
kth harmonic, 0f is the fundamental frequency, kφ is the 
phase of the kth harmonic, N is the total number of 
harmonics, and )(tn  is the additive white Gaussian noise. 
The fundamental frequency is usually related to the RPM of 
the motor and determined by the cylinder-firing rate. The 
number of (detectable) harmonics, N, is a function of the 
vehicle type, detection range, and the classification 
algorithm used [11-13]. Figure 10 shows the spectrogram of 
target #1. The harmonics are clearly visible in figure 10. 
Notice also that the frequency changes as the Doppler 
changes. 

 
Figure 9: Coefficients of Covariance Matrix 

 
Figure 10: Spectrogram of target #1 signals  

• MVG Classifier 
Let us assume that we need to classify a pattern 

),( ,2,1 NxxxX =  into one of the R categories, and each 
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pattern is governed by one of the R distinct probability 
density functions ( ), 1, ,p X j j R= , where ( )p X j  is 
the probability of occurrence of pattern X, given it belongs 
to category j. Now, in our case, T

NxxxX ],[ ,2,1= is a 
vector of N harmonic magnitudes, where T denotes the 
transpose. Assuming they obey the normal distribution, then 
the multivariate normal probability distribution of the 
pattern X is given by 

{ }1
1/2/2

1 1( ) exp ( ) ( )2(2 )
T

N
p X X M X M

π
−= − − ∑ −

∑
 (6) 

where the mean, M and the covariance matrix ∑ are defined 
as T

NmmmXEM ],,.[}{ 21==  

1,1 1,

,1 ,

{( )( ) }
N

T

N N N

E X M X M
σ σ

σ σ

⎡ ⎤
⎢ ⎥∑ = − − = ⎢ ⎥
⎢ ⎥⎣ ⎦

,      (7) 

and ( )( ) , , 1,2, , .pq p p q qE x m x m p q Nσ ⎡ ⎤= − − =⎣ ⎦  It is 

assumed that the a priori probability ( )p j  and the N–
variate normal probability function ( )p X j are known for 
each j. That is, we know R normal density functions. Let us 
denote the mean vectors Mi and the covariance matrices j∑  
for 1, , ,j R= then we can write 
 

1

1/2/2

( ) ( )1( ) exp
2(2 )

T
j j j

j
N

j

X M X M
p X H

π

−⎧ ⎫− ∑ −⎪ ⎪= −⎨ ⎬
⎪ ⎪∑ ⎩ ⎭

 
(8) 

for all { }1,2, ,j R∈ where 1 2( , , , )j j j jNM m m m= . We 
used the Matlab function “classify” to classify the targets, 
and the classification results of signals from the direction of 
target #1 are shown in figure 11. While the classifier is 
unable to classify the target correctly most of the time, 
hence it is not good enough for track association. The 
reasons for misclassification could be: (a) varying speeds of 
the vehicle different from the training data set, (b) shift in 
gears can cause abrupt changes in the engine RPM, and (c) 
change in the road conditions compared to the training data. 
The problem is further complicated by the presence of other 
vehicles. We find tracking a dominant frequency from each 
vehicle and its SNR provides a better QoI on the vehicle 
classification. 

Fusion for QoI: In order to isolate the signals from 
individual targets, we perform spatially filtering of the 
signals based on the bearing estimates of each target. We 
extract and record the dominant harmonic and its amplitude 
for each target. We track this dominant harmonic frequency 
for each target and classify the target based on this single 
dominant harmonic. As the target leaves one sensor array 

 
Figure 11: Classification of signals from target #1 direction  

and approaches another, the harmonic frequency is tracked 
on the sensor array that is closest to the target. The fusion of 
the data from different arrays is the key for prolonged 
tracking and accurate classification.  
 

 
Figure 12: Classification of signals from direction of targets 

1 & 2 using dominant frequency tracking 

 
Figure 13: QoI of classifier 

The resulting classifications of two targets are given in 
figure 12. As in figure 11, the different target classifications 
are depicted using different colors:  black for target #1, cyan 
for target #2, green for target #3, and pink for target #4. 
Clearly, tracking dominant harmonics of each target 
provided a better classification and can be used in the track 
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association, as shown in figure 2. From figure 12, one 
notices that for the same track, occasionally target #1 is 
classified as something else. This can be easily corrected 
based on the positions of each target and their continued 
classification. Figure 13 shows how the QoI defined by (9) 
relates to the accuracy of tracking. 

Measure of QoI for Classifier Output: Clearly, the 
dominant harmonic frequency of individual target is used 
for its classification—the natural choice for QoI of the 
classification would be its amplitude or its SNR. The QoI of 
the classifier is defined as 

c hQ S t= −                                      (9) 

where ‘S’ denotes the SNR of the dominant harmonic 
frequency for the target in question, and ht is the threshold. 

4.3 Overall QoI 
In the tracking approach illustrated in figure 2, three 
different key parts are identified—namely, location 
estimator, Kalman filter tracking, and target classifier. For 
each one of these key parts a QoI measure is defined in 
equation (3), (4) and (9). These QoI measurements are 
intended to provide an appropriate level of confidence to 
the observer as to how well each part is working. An 
effective overall QoI estimate for the entire tracking system 
would be highly valuable and would have to be generated 
using the individual QoIs. 

A simple, conservative/pessimistic use of the three location 
qualities would adopt the minimum quality. However, since 
each is an approximation, we intuitively recognize that this 
will generally be pessimistic, and so actual opportunities 
(that would have been recognized from a god's-eye view) 
will be missed.  For this reason, we explore a simple QoI 
re-estimator that emits a linear combination of the three. 
We seek to increase the effectiveness of the information 
source by producing a good QoI estimator for a specific 
decision-making scenario.  Success will be indicated by a 
statistically significant benefit to using a QoI combinator 
over using the worst.  Of course, we can design an 
experiment that favors a combinator.  In fact, we do so, but 
note that the experiment is realistic. 

As well as QoI attributes, themselves—falling generally 
under accuracy, timeliness, and trust types—we need QoI 
qualifiers to inform us as to how those attributes should be 
put to use.  We are exploring the space of such qualifiers, 
but for our purposes here, we define two general, simple 
regimes.  The first, in which the worst QoI is taken, is a 
pessimistic bound estimator, in which the qualifier is that 
we pass on the minimum or worst quality.  The second is a 
weighted sum, in which each information source is assigned 
a weight.  This weight is, in fact, a function of the data 
quality, and its shape is seen in our results.  In further work 
we hope to derive this function from first principles. We 
define a straw-doll overall QoI function as a weighted sum 
of individual QoIs: 

t t k k c cQ w Q w Q w Q= + +                       (10) 
Individual weights are to be either synthesized, based on the 
role each part plays in the overall quality of the system, or 
learned through experience. Some weights may have high 
value compared to others if the quality of the overall system 
is more dependent on those parts.  We have a choice as to 
which attributes to aggregate, and which to leave separate. 

In the introductory section we suggested a decision-making 
task of intercepting any tracked vehicle that is traveling 
northbound. This requires tracking the vehicle accurately 
and classifying it as the tracked vehicle. For example, if the 
classifier can classify the vehicle as a tracked vehicle with 
high confidence—that is, with high QoI value—the 
battlefield commander can order the tracked vehicle to be  
intercepted when it is approaching. The target tracker QoI 
along with the Kalman filter QoI show how well the target 
is being tracked, and the classifier identifies it as a tracked 
vehicle. Figure 14 shows the distance between the check 
post located at (160, 700) and tracked vehicle, individual 
QoIs, and the overall QoI. For overall QoI, we used the 
mean of all QoIs ( 1/ 3iw = ) for all in (10). These weights 
can be appropriately learned with experience. 

 
Figure 14: Distance from check post and QoIs  

The decision to intercept the vehicle can be made during the 
northbound track, while the overall QoI is good—that is, 
above a threshold of 5.  

5 Discussion and further work 
Development of effective estimation and communication of 
information quality to decision-makers is an essential 
research target, when the range and number of sensing 
assets employed in sensing mission is rising rapidly.  There 
are two ends of the spectrum: theoretical ab initio synthesis, 
and empirical discovery.  Here we have begun to explore 
empirical approaches, with an eye to recognizing the 
theoretical issues as they become clear during testing. We 
have produced some basic, intuitive indicators of QoI 
calculated directly on the output of the sensing system and 
compared them with a view of ground truth known from the 
experiment that would not be available in normal operation.  
We find that these correlate well, particularly when 
combined in a simple but effective manner.  This suggests 
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that some investment in analysis of existing test data against 
realistic decision making requirements is warranted, and 
that the use of simple combinators may be effective where 
extensive calculation in theater is not practical. 

In the Kalman filter, we find in common with other 
researchers that the covariance matrix gives us a good 
handle on the accuracy of the filter’s predictions, and, for 
our purposes, the quality of the information.  The errors in 
DOA estimates are well-behaved, so we will filter the DOA 
estimates themselves, separately, or in combination with the 
derived Cartesian coordinates. The classifier success rate 
derives from processing excerpts from the same data as 
used in location estimation.  The quality of data (QoD) will, 
therefore, impact both.  This leads us to expect the observed 
correlation between tracking fidelity and classification 
success rates.  

6 Conclusions 
Effective construction and maintenance of situational 
awareness during tactical activity generally requires fusion 
of information sources.  Estimates of the accuracy, 
confidence, and believability of information products are 
essential in the decision-making process. Bandwidth and 
electrical power constrained scenarios strongly motivate the 
minimization of computation and communications required. 
In this paper, tracking and classification accuracy of QoI 
attribute values are estimated, and candidate QoI qualifiers 
are defined for a tracking scenario. These are simple yes/no 
qualifiers that dictate which information should be fused, 
but to which simple policy gives an effective method with 
low computational complexity and the opportunity to report 
summarized QoI to a user in a quickly digestible form to 
simplify decision-making under high loading. 
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