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Abstract – Visual tracking in the real world is challeng-

ing with unavoidable background interference, target ori-

entation variations and scale changes. Spatial information

needs to be exploited to increase robustness; however, cur-

rent methods such as “Spatiogram” suffer from the large

complexity of spatial covariance calculation. Recently, joint

distribution representation has been used to estimate tar-

get orientation and scale, but this representation is at the

expense of losing position localization information. A new

framework is proposed for target model representation by

employing multiple kernel centers (MKC) within the kernel

window. By employing MKC, spatial information is implic-

itly embedded. Steepest gradient ascent is used to track the

target position, orientation and scale simultaneously. Using

an adaptive stepsize in the gradient ascent iteration, the pro-

posed method inherits the desirable properties of the mean

shift approach and shows a fast convergence rate. The ex-

perimental results in several challenging scenarios demon-

strate its robustness and superiority to previous technique.

Keywords: Visual tracking, kernel, mean shift.

1 Introduction
Object tracking based on visual features such as color and

texture have great flexibility to track rigid and non-rigid ob-

jects. Extensive work has been done in this area [1, 6, 5, 9],

but it is still challenging in the presence of background inter-

ference, orientation and scale changes, which usually lead to

losing the targets. For a recent survey of object track meth-

ods, see [12].

The background-weighted histogram is employed to se-

lect the salient parts in target representation [5]. This

method requires precalculating the background feature rep-

resentation around a region which is usually much larger

than the target area. Higher-order moments in target repre-

sentation are used to increase the robustness in tracking [3].

Each bin in the feature space is spatially weighted by the
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mean and covariance of the locations of the pixels that con-

tribute to that bin, however, the calculation of the mean and

covariance is a burden to the complexity.

Multiple kernels are used by introducing the roof kernel

[7, 8] based on the SSD (sum of squared differences) mea-

sure. The drawback of this representation is that it tends to

bring extra noise along the “roof” direction. Also, this ap-

proach is not as efficient as the mean shift method due to the

complexity of the Newton-style iterations it requires.

Recently, the joint distribution representation has been

used by employing the mean shift procedure to estimate tar-

get position, orientation and scale simultaneously [11]. One

drawback of this approach is that the capability of estimating

target orientation is at the expense of losing localization in-

formation in the target representation. When the joint distri-

bution is adopted, the kernel function assigns smaller weight

to the pixels farther from the orientation direction, where

the pixels are valuable for target representation. Another

problem is treating scale as a variable. The normalization

factor in the target model is independent of the kernel cen-

ter and orientation, so the mean shift method can be carried

out, however, the normalization factor depends on the tar-

get scale and it is no longer a constant when scale is treated

as a variable, so employing the mean shift method does not

guarantee convergence any more.

In this paper we propose a new framework for target

model representation. Multiple kernel centers (MKC) are

employed inside the kernel window to form an augmented

target model. The resulting MKC model contains both the

orientation and scale information, which is not possessed by

the single kernel center (SKC) model. Also, spatial con-

strains are implicitly embedded. The orientation and scale

estimates are given using steepest gradient ascent. By em-

ploying an adaptive stepsize, the proposed method inherits

the desirable property of the mean shift algorithm and shows

a fast convergence rate. The main contribution is that the

paper gives a new approach for building target appearance

model and provides target location, orientation and scale

estimates simultaneously by using steepest gradient ascent

with an adaptive stepsize. Comparisons with [11], which is
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the most recent algorithm in the literature that can handle

target location, orientation and scale, show the superiority

of our new approach.

The paper is organized as follows. Section 2 presents the

MKC model. Section 3 presents the MKC algorithm with

location estimation only. Section 4 describes the MKC al-

gorithm incorporated with orientation and scale estimation.

Section 5 shows the experimental results. Conclusions are

given in Section 6.

2 Target model
We shall introduce the MKC model and describe the nor-

malization issues which are important in the MKC scenario.

2.1 MKC model

Given a kernel described by a convex and a monotonic de-

creasing kernel profile k(x), the traditional target model qu
is given by

qu = C

n
∑

i=1

k(‖xi‖2)δχ(xi),u (1)

where the summation is over the pixels in the target re-

gion (assumed to have been segmented by an operator in

the initial frame), δ is the Kronecker delta function, χ :
R2 → {1, . . . ,m} maps the pixel at location xi to the quan-

tized feature, u is an element of the finite set of features

{1, . . . ,m} and C is the normalization constant for satisfy-

ing the condition
m
∑

u=1

qu = 1 (2)

and is given by

C =
1

∑n

i=1 k(‖xi‖2)
(3)

The candidate model with bandwidth h is given by

pu(y) = Ch

nh
∑

i=1

k

(

∥

∥

∥

∥

y − xi

h

∥

∥

∥

∥

2
)

δχ(xi),u (4)

where y is both the centroid of the target region and the

kernel center. The normalization constant is

Ch =
1

∑nh

i=1 k(‖y−xi

h
‖2)

(5)

This model, computed with a single kernel center (SKC) at

the centroid, has limited ability in delineating targets and

the resulting mean shift procedure using this SKC model

can lead to localization ambiguity [8]. As shown in Fig. 1,

the two different targets cannot be discriminated with the

SKC target model. Note that the concepts of region cen-

troid and kernel center are different. The region centroid y

represents the location of target and the kernel center indi-

cates where we want to assign large weights to form a target

model. For example, we want to put the kernel center on a
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Figure 1: SKC target model.

salient part within the target region to discriminate the back-

ground features but the salient part is not necessarily on the

region centroid.

The idea of MKC is the following: the locations of the

region centroid and the kernel center can be different and

one can have a number of kernel centers to impose the spa-

tial constraints as long as the target model is normalized. We

represent the kernel center rl as a function of the region cen-

troid y, rotated angle φ (counterclockwise) and bandwidth

h by

rl(z) = y + h∆rl(φ) (6)

where z = [y φ h]T and

∆rl(φ) = dl

[

cos(φ + ψl)
sin(φ+ ψl)

]

(7)

l represents the lth kernel center and constants dl, ψl are its

initial distance and angle in polar coordinates with respect

to the centroid y. In view of this, the MKC model can be

expressed as

qu = C
N
∑

i=1

L
∑

l=1

k(‖rl − xi‖2)δχl(xi),u (8)

pu(z) = C(h)
N
∑

i=1

L
∑

l=1

k

(

∥

∥

∥

∥

rl(z) − xi

h

∥

∥

∥

∥

2
)

δχl(xi),u (9)

where L is the number of kernel centers used, χl : R2 →
{[(l − 1)m + 1], . . . , lm} maps xi to the quantized feature

which is calculated from the lth kernel center and u is an

element in the finite set {1, . . . , Lm}. For the convenience

of later derivations, we substitute N for nh, where N rep-

resents the number of all the pixels in a given frame. This

is equivalent to the original form because the pixels outside

the kernel window do not contribute to the model and N is

independent of h in this notation. Since the bandwidth h is

treated as a variable, the normalization factor is a function

of h, denoted as C(h). Note that C(h) is independent of y

and φ given the kernel centers. Imposed by the condition
∑Lm

u=1 qu = 1 and
∑Lm

u=1 pu(z) = 1, C and C(h) are given

by

C =
1

∑N

i=1

∑L

l=1 k(‖rl − xi‖2)
(10)
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Figure 2: MKC model with two kernel centers.

C(h) =
1

∑N

i=1

∑L

l=1 k

(

∥

∥

∥

rl(z)−xi

h

∥

∥

∥

2
) (11)

Note that by employing MKC, the number of quantized

features m remains the same but the finite set used to de-

lineate the target model is augmented from {1, . . . ,m} to

{1, . . . , Lm}, where the spatial information is now embed-

ded via the MKC. We use the same example but add another

kernel center as shown in Fig. 2. The two targets are dis-

criminated by the MKC model which embodies spatial con-

straints.

2.2 Scaled radius

An ellipse is employed here to represent the target region.

To accommodate the kernel profile representation, the el-

lipse region should be normalized like a unit circle [5]. The

normalized distance σi,l from the pixel xi = [xi yi]
T to the

lth kernel center rl = [rx ry]T can be represented as,

σi,l =
‖xi − rl‖
R(θ, h)

(12)

where θ = arctan
yi−ry

xi−rx
and R(θ, h) is the scaled radius

from the kernel center to the pixel on the ellipse contour

which passes through xi with angle θ from the horizontal. It

can be shownR(θ, h) is proportional to h given θ due to the

geometry similarity. Therefore,R(θ, h) can be rewritten as

R(θ, h) = R0(θ)h (13)

where R0(θ) is the scaled radius at h = 1. The goal is to

find R0(θ) given xi and rl.

To calculate R0(θ) of a current ellipse centered at y =
[ox oy]T , we rotate the ellipse back to its initial position

(Fig. 3). Without loss of generality, we assume the initial

ellipse (h = 1) is given by

x2

a2
+
y2

b2
= 1 (14)

where a, b are the semi-axes along the x-axis and y-axis,

respectively. The relative position ∆x
′

i = [∆x′i ∆y′i]
T of

the pixel xi with respect to y after rotation is given by,
[

∆x′i
∆y′i

]

=

[

cosφ′ − sinφ′

sinφ′ cosφ′

] [

xi − ox

yi − oy

]

(15)
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Figure 3: Ellipse Rotation

where φ′ = −φ is the rotation angle (counterclockwise).

Since following rotation, the distance between any two

points remains unchanged, we have

R0(θ) = R0(θ
′) (16)

where θ′ = arctan
∆y′

i−h∆r′

y

∆x′

i
−h∆r′

x
and ∆r

′

l = [∆r′x ∆r′y]T is

the relative position of the kernel center with respect to y

in the initial ellipse. Rewrite the initial ellipse in the polar

coordinates as
[

x
y

]

= R0(θ
′)

[

cos θ′

sin θ′

]

+

[

∆r′x
∆r′y

]

(17)

From (14) and (17), we obtain

R0(θ
′) = [−b2∆r′x cos θ′ − a2∆r′y sin θ′

+(2a2b2∆r′x∆r′y sin θ′ cos θ′ + a4b2 sin2 θ′ + a2b4

· cos2 θ′ − a2b2 cos2 θ′∆r′
2
y − a2b2 sin2 θ′∆r′

2
x)

1

2 ]

/(b2 cos2 θ′ + a2 sin2 θ′) (18)

Therefore, the normalized distance can be given in an equiv-

alent form by

σi,l =
‖∆x

′

i − h∆r
′

l‖
R0(θ′)h

(19)

Note that, given the kernel centers in the initial ellipse, ∆r
′

l

is always fixed. In particular, for ∆r
′

l = [0 0]T , (19) re-

duces to

σi,l =

√

(

∆x′i
ah

)2

+

(

∆y′i
bh

)2

(20)

3 MKC algorithm with location esti-

mation only
We employ the MKC model to form the similarity function

defined by the Bhattacharyya Coefficient [5] as

ρ(z) =
Lm
∑

u=1

√

pu(z)qu (21)
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To illustrate the relationship between the SKC model and

the MKC model, we treat φ and h as constants at first. To

find the mode of the similarity function, several optimiza-

tion techniques can be used. However, the major concern is

the complexity and the convergence rate. Since evaluating

the Hessian matrix is computationally expensive, we employ

the steepest gradient ascent to construct the algorithm. The

crucial issue here is how to find a suitable stepsize, since a

stepsize that is too large will lead to divergence and a step-

size that is too small will result in slow convergence. The

mean shift procedure is actually a gradient ascent method

with an adaptive stepsize [4]. Therefore, we shall investi-

gate the mean shift stepsize first.

3.1 Mean shift stepsize

Using similar notation as in [4], the kernel density estimate

(KDE) is given by

fh,K(x) =
ck,d

nhd

n
∑

i=1

k

(

∥

∥

∥

∥

x − xi

h

∥

∥

∥

∥

2
)

(22)

where ck,d is the normalization constant, d is the dimension

of x, and k(x) is the profile of kernel K(x) with the rela-

tionship

K(x) = ck,dk(‖x‖2) (23)

Define the derivative

g(x) = −k′(x) (24)

Then the mean shift vector is given by

mh,G =
h2

cfh,G(x)
∇fh,K(x) (25)

where c is a constant. The function fh,G(x) is the KDE

computed with the kernel G by

fh,G(x) =
cg,d

nhd

n
∑

i=1

g

(

∥

∥

∥

∥

x − xi

h

∥

∥

∥

∥

2
)

(26)

where G(x) is defined as

G(x) = cg,dg(‖x‖2) (27)

From (25) we can see that the mean shift stepsize αm is

given by

αm =
h2

cfh,G(x)
(28)

Therefore, in the regions of low-density values, αm is large

while in the regions near the local maxima, αm is small and

the search more refined.

3.2 MKC stepsize

Now consider our problem based on MKC model. Since φ
and h are treated as constants, (9) reduces to

pu(y) = C(h0)

N
∑

i=1

L
∑

l=1

k

(

∥

∥

∥

∥

rl(y) − xi

h0

∥

∥

∥

∥

2
)

δχl(xi),u

(29)

where

rl(y) = y + h0∆rl(φ0) (30)

and

C(h0) =
1

∑N

i=1

∑L

l=1 k

(

∥

∥

∥

rl(y)−xi

h0

∥

∥

∥

2
) (31)

The linear approximation of ρ(y) defined in (21) is given by

[5],

ρ(y) ≈ 1

2

Lm
∑

u=1

√

pu(y0)qu +
1

2

Lm
∑

u=1

pu(y)

√

qu
pu(y0)

(32)

where y0 is the initial centroid in the current frame. Taking

the gradient of (32) with respect to y and using (29), we

obtain

∇ρ(y) =
C(h0)

2

N
∑

i=1

L
∑

l=1

∇k
(

∥

∥

∥

∥

rl(y) − xi

h0

∥

∥

∥

∥

2
)

wi,l

(33)

where

wi,l =

Lm
∑

u=1

√

qu
pu(y0)

δχl(xi),u (34)

The constraint is pu(y0) > 0 and the color features should

be selected such as to satisfy this constraint. Similarly to

(28), the MKC stepsize is given by

α =
h2

0

C(h0)
∑L

l=1 fl(y)
(35)

where

fl(y) =

N
∑

i=1

wi,lg

(

∥

∥

∥

∥

rl(y) − xi

h0

∥

∥

∥

∥

2
)

(36)

Since fl(y) is the weighted KDE calculated from the lth

kernel center,
∑L

l=1 fl(y) can be interpreted as a mixture of

the estimated probability density characterized by multiple

kernel centers. Mixture probability density functions (pdf)

are widely used in parametric estimation techniques, such

as Gaussian mixture. The sum
∑L

l=1 fl(y) can be viewed

as the counterpart of the mixture pdf in the nonparametric

estimation case (as in the KDE). Note that we omit the nor-

malization constants in fl(y) and
∑L

l=1 fl(y), which are in-

dependent of y given the kernel type. Therefore, the MKC

stepsize defined by (35) is adaptive, which makes it possess

the same desirable property as the mean shift stepsize.

Employing the steepest gradient ascent by

y
j+1 = y

j + αj∇ρ(yj) (37)

and substituting (35) for αj , the MKC algorithm1 is given

(after some algebraic manipulations) by

y
j+1 =

∑N

i=1

∑L

l=1[xi − h0∆rl(φ0)]wi,lg
j
i,l

∑N

i=1

∑L

l=1 wi,lg
j
i,l

(38)

1At this stage there is no orientation and scale estimation, which will be

added in Section 4.
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where gj
i,l represents g(‖ rl(y

j)−xi

h0

‖2) for short. Note that

y
j cancels out by using this adaptive stepsize.

For convergence analysis, we give the proposition below.

The assumptions are that the linear approximation given by

(32) is satisfactory and there is at least one nonzero wi,l for

each iteration, which are most often valid assumptions be-

tween consecutive frames.

Proposition. If the kernel K has a convex and a mono-

tonically decreasing profile, the sequences {yj} given by

(38) converge to y
∗, where ρ(y∗) is the local maximum of

the similarity function defined by the Bhattacharyya Coeffi-

cient.

The proof is given in the Appendix. Therefore, conver-

gence to y
∗ of the MKC Algorithm is guaranteed by us-

ing the MKC stepsize given in (35) for fixed orientation and

scale.

3.3 Relationship to mean shift procedure

Consider a special case that all the kernel centers are over-

lapped on the centroid, which means ∆rl(φ0) = 0. Then,

(38) reduces to

y
j+1 =

∑N

i=1 xiwig(‖y
j
−xi

h
‖2)

∑N

i=1 wig(‖yj−xi

h
‖2)

(39)

where wi = Lwi,l, since wi,l and gj
i,l are independent of

l in this case due to the same kernel center. We can see

that (39) is exactly the mean shift procedure which uses the

SKC model described in [5]. In this case, the MKC model

contains the same information as the SKC model, so the two

algorithms give the same result.

Since the MKC algorithm given by (38) possesses all the

properties of mean shift procedure, such as adaptive step-

size and guaranteed convergence, we can draw the following

conclusion: the mean shift procedure is a special case of the

MKC algorithm with a single kernel center at the centroid.

4 Incorporation of orientation and

scale estimation into the MKC algo-

rithm

For robust tracking, the target region used to delineate the

target should be as precise as possible to reject the non-

object regions. Therefore, orientation and scale are impor-

tant parameters to be estimated. Most of the existing ap-

proaches restrict themselves to the mean shift framework

and suffer from either heuristics or large complexity. Since

the MKC model contains both orientation and scale infor-

mation, we will use it to estimate the orientation and scale.

4.1 Orientation and scale estimation

We employ steepest gradient ascent to optimize target lo-

cation, orientation and scale simultaneously. Following the

procedures discussed in Section 3.2 but without using the

linear approximation, the gradient of ρ(z) defined in (21) is

given by

∇ρ(z) =

Lm
∑

u=1

√
qu

2
√

pu(z)
∇pu(z) (40)

Since the orientation and scale are not constants any more,

stepsize selection is necessary in this case. We employ

Armijo rule [2] considering its efficiency and simplicity.

The initial stepsize α0 is a critical parameter for the conver-

gence rate. In view of this, it is natural to use the adaptive

stepsize given by (35) to serve as the initial value α0, which

is given by

α0 =
h2

C(h)
∑L

l=1 fl(z)
(41)

where

fl(z) =

N
∑

i=1

wi,lg

(

∥

∥

∥

∥

rl(z) − xi

h

∥

∥

∥

∥

2
)

(42)

and

wi,l =
Lm
∑

u=1

√

qu
pu(z)

δχl(xi),u (43)

The Armijo Rule stepsize is given by αj = βn′

α0 , where

n′ is the first nonnegative integer n that satisfies,

ρ(zj+1) − ρ(zj) ≥ λαj‖∇ρ(zj)‖2/γ2 (44)

where λ, β are fixed scalars satisfying 0 < λ < 1, 0 < β <
1. The choice of β is usually from 0.1 to 0.5 [2]. A compen-

sation factor γ is needed here since the distance ‖ rl(z)−xi

h
‖

has been normalized by the scaled radius discussed in Sec-

tion 2.2. An approximate value is given by γ = min(a, b).
Therefore, the increment αj∇ρ(zj) of the MKC algorithm

can be obtained (after some algebraic manipulations) as

∆y
j = βn′

∑N

i=1

∑L

l=1[xi − rl(z
j)]wj

i,lg
j
i,l

∑N

i=1

∑L

l=1 w
j
i,lg

j
i,l

(45)

∆φj = βn′ hj
∑N

i=1

∑L

l=1 v
j
i,lw

j
i,lg

j
i,l

∑N

i=1

∑L

l=1 w
j
i,lg

j
i,l

(46)

∆hj = βn′

∑N

i=1

∑L

l=1 s
j
i,l[w

j
i,l − ρ(zj)]gj

i,l

hj
∑N

i=1

∑L

l=1 w
j
i,lg

j
i,l

(47)

where,

vj
i,l = (xi − y

j)T ∂∆rl(φ
j)

∂φ
(48)

sj
i,l = (xi − y

j)T (xi − rl(z
j)) (49)

and gj
i,l represents g(‖ rl(z

j)−xi

h
‖2) for short. Note that, un-

like (34),wj
i,l should be updated as in (43) for each iteration
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and pu(zj) cannot be 0 in this case since it is calculated

from the updated target region in each iteration. Equations

(45)–(47) are carried out iteratively until ‖yj+1 − y
j‖ <

ǫy, ‖φj+1 − φj‖ < ǫφ, ‖hj+1 − hj‖ < ǫh are satisfied and

ǫy is chosen to satisfy that yj+1 and y
j are within the same

pixel.

Some insight can be obtained for the iterations given

above. For n′ = 0, it can be shown that the centroid iter-

ation given by (45) is the same as (38) except that wj
i,l is

updated for each iteration. If all the kernel centers are at the

region centroid, which indicates ∆rl(φ) = 0, (46) yields

φj+1 = φj . Therefore, the orientation information is not

available in this case. Also for ∆rl(φ
j) = 0, (49) reduces

to sj
i,l = ‖xi − y

j‖2. The norm ‖xi − y
j‖ is the distance

between the pixel xi and the centroid. The average distance

of all the pixels within the target region represents the target

scale. Since ρ(zj) is independent of i and l, (47) is actually

computing the difference between an unweighted scale and

a weighted scale characterized by the weight wj
i,l.

Given two consecutive frames, the variations of φ and h
are always limited and this can be utilized to improve the

tracking performance in the high clutter environment. For

some threshold ∆hmax and ∆φmax, a feasible solution is

given by

φj+1 =

{

φj+1 if |φj+1 − φp| ≤ ∆φmax

φj if |φj+1 − φp| > ∆φmax
(50)

hj+1 =

{

hj+1 if |hj+1 − hp| ≤ ∆hmax

hj if |hj+1 − hp| > ∆hmax
(51)

where φp, hp are from the previous frame. A default value

for ∆hmax is 0.1hp and ∆φmax is usually application de-

pendent.

4.2 MKC implementation

In an ideal scenario, without occlusion or background in-

terference, the performance given by the MKC algorithm

should be at least no worse than the mean shift method due

to the spatial information considered. However, this is not

necessarily true in real applications. Some important is-

sues should be taken into consideration before employing

the MKC algorithm.

Kernel center selection in MKC algorithm: Intuitively,

kernel centers should be far away from each other to provide

more discrimination in the target model; however, the noise

may increase as the kernel center is away from the centroid,

since occlusion or background interference often occurs in

the peripheral pixels. Therefore, the kernel centers should

be restricted to some region around the centroid. From most

situations, the maximum distance to the centroid for the ker-

nel center should be no more than 1/3 of the minor axis.

Parallel MKC (PMKC) algorithm: Compared to the noise

in the SKC model, if the occlusion or background interfer-

ence is near the “perigee” of the kernel ellipse (with respect

to the kernel center), the noise in the MKC model is larger;

if it is near the “apogee” of the kernel ellipse, the noise in

the MKC model is smaller. In view of this, we propose a

Figure 4: Comparison of mean shift and MKC algorithm.

procedure called PMKC algorithm:use two sets of MKC on

opposing sides within the kernel window and run the two

MKC algorithms in parallel. The best result which yields

the largest Bhattacharyya coefficient is retained . Though

the computational cost is a little higher, it yields a very ro-

bust tracking performance.

5 Experimental results

The RGB color space is quantized into 16×16×16 bins. An

Epanechnikov profile

k(x) =

{

1
2c

−1
d (d+ 2)(1 − x) if x ≤ 1

0 otherwise
(52)

is employed, where cd is the unit volume of d-dimensional

(2 in our case) sphere. The MKC algorithm is employed by

using two kernel centers through all the experiments. One

kernel center is on the centroid and the other one is on the

axis. Since two different algorithms are described in Section

3 (MKC algorithm with location estimation only) and Sec-

tion 4 (MKC algorithm with location, orientation and scale

estimation) respectively, the experimental results are given

in two parts.

5.1 Localization with fixed orientation and

scale

The performance of the MKC algorithm given by (38) for

fixed orientation and scale, shown in the bottom row of

Fig. 4, is compared with the mean shift algorithm (top row

of Fig. 4). For ǫy = 0.7 (in image coordinates), the average

number of iterations is about 3 for both algorithms. We can

see the mean shift algorithm yielded ambiguity in the local-

ization due to the background interference while the MKC

algorithm, due to its use of two kernel centers, tracked the

target correctly.

5.2 Localization with orientation and scale

estimation

Next, we give the experimental results of the MKC algo-

rithm given by (45)–(47) with orientation and scale esti-

mation. The target region (bottom row of Figs. 5–9) is

marked by an ellipse with a (green) line across it represent-

ing the orientation. We compare the MKC algorithm with
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Figure 5: Human Walking Sequence-1. Frames: 1, 10, 35,

60, 72, 75.

Figure 6: Human Walking Sequence-2. Frames: 1, 50, 60,

74, 150, 170.

the method of [11] (top row of Figs. 5–9). The latter ap-

plies the mean shift algorithm to a 4D kernel, namely

K(x, y, σ, θ) = K(x, y)K(σ)K(θ) (53)

whereK(x, y) is the spatial kernel,K(σ) is the scale kernel

and K(θ) is the orientation kernel. The thresholds (for both

algorithms) are chosen as ǫy = 0.7, ǫφ = 0.01 rad. and

ǫh = 0.01. For the MKC algorithm, the average number

of iterations is about 3 and the average number of Armijo

Rule iterations is about 2, while for the algorithm of [11],

the average number of iterations is about 8.

In Fig. 5 the person in the sequence walked quickly to-

wards the camera, which resulted in fast scale changes. Both

methods handled the scale changes very well. In Fig. 6 the

target underwent large changes in both scale and orientation.

The MKC algorithm tracked the target well while the algo-

rithm of [11] failed to estimate the orientational changes

and “took” non-object regions into the kernel window. In

Fig. 7 the scenario is even more challenging with strong

background interference. The MKC algorithm kept the tar-

get in track throughout the sequence. The tracking perfor-

mance of the algorithm of [11] degraded drastically after

the background interference arose and its scale estimate di-

verged at the end of the sequence.

In the Box sequence (Fig. 8) and Pink Cup sequence

(Fig. 9), the tracker was tested for fast orientational changes.

In Fig. 8 the average rotational speed was about 6◦/frame

and the maximum rotational speed was about 14◦/frame.

The MKC algorithm successfully tracked these fast orien-

tational changes. The algorithm of [11] lost the target. In

Fig. 9 we added the background interference (pink, similar

to the cup) and employed the PMKC (Parallel MKC intro-

duced in Section 4.2) algorithm with the results shown in

Figure 7: Human Walking Sequence-3. Frames: 1, 30, 37,

42, 55, 112.

Figure 8: Box Sequence. Frames: 1, 20, 30, 40, 50, 60

the middle row. The average rotational speed was about

11◦/frame and the maximum rotational speed was about

18◦/frame. The PMKC tracker outperformed the MKC

tracker in this particularly difficult scenario with fast rota-

tion and background interference. The performance of [11]

was the worst.

6 Summary and conclusions
This paper presented a new framework for target model rep-

resentation based on multiple kernel centers (MKC). Com-

pared to the traditional model computed with a single ker-

nel center at the centroid (SKC), the MKC model is more

flexible in the target representation and more robust due to

the spatial information it carries. The orientation and scale

estimates are exploited from the MKC model by employ-

ing steepest gradient ascent. The proposed MKC algorithm

and the mean shift approach have in common an adaptive

stepsize rule, which results in a fast convergence rate. The

parallel MKC algorithm was also introduced and shown to

improve the tracking performance drastically.

Appendix
Proposition. If the kernel K has a convex and a mono-

tonically decreasing profile, the sequences {yj} given by

(38) converges to y
∗, where ρ(y∗) is the local maximum of

the similarity function defined by the Bhattacharyya Coeffi-

cient.

Proof: From (29) and (32), we have

ρ(yj+1) − ρ(yj) =
1

2
C(h0)

N
∑

i=1

L
∑

l=1

wi,l

·
[

k

(

∥

∥

∥

∥

rl(y
j+1) − xi

h0

∥

∥

∥

∥

2
)

− k

(

∥

∥

∥

∥

rl(y
j) − xi

h0

∥

∥

∥

∥

2
)]
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Figure 9: Pink Cup Sequence. Frames: 1, 8, 35, 80, 125,

170.

(54)

Since the kernel profile k(x) is convex, the inequality

k(x2) − k(x1) ≥ g(x1)(x1 − x2) (55)

holds, where g(x) = −k′(x). Therefore, (54) becomes,

ρ(yj+1) − ρ(yj) ≥ C(h0)

h2
0

(yj+1 − y
j)T

·
N
∑

i=1

L
∑

l=1

[xi − h0∆rl(φ0)]wi,lgi,l
j

+
C(h0)

2h2
0

(‖yj‖2 − ‖yj+1‖2)

N
∑

i=1

L
∑

l=1

wi,lgi,l
j (56)

by recalling (30). Using the iterations given by (38), we

obtain

ρ(yj+1) − ρ(yj) ≥
C(h0)

2h2
0

‖yj+1 − y
j‖2

N
∑

i=1

L
∑

l=1

wi,lgi,l
j (57)

Since profile k(x) is monotonically decreasing for all x ≥ 0
and the weight wi,l is nonnegative, the right term of (57) is

always positive as long as y
j+1 6= y

j (at least one nonzero

wi,l by assumption). Therefore, ρ(yj) is monotonically in-

creasing for y
j+1 6= y

j . Since, ρ(y) is bounded by 1, the

sequence {ρ(yj)} converges to its local maxima ρ(y∗) for

y
j+1 = y

j = y
∗. Q.E.D.
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