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LONG-TERM GOALS 

Propagation and reverberation of acoustic fields in shallow waters depend strongly on the spatial 
variability of seabed geoacoustic parameters, and lack of knowledge of seabed variability is often a 
limiting factor in acoustic modeling applications. However, direct sampling (e.g., coring) of vertical and 
lateral variability is expensive and laborious, and matched-field and other long-range inversion methods 
fail to provide sufficient resolution. The long-term goal of this work is to use a Bayesian inversion 
approach in combination with seabed reflectivity data to investigate and quantify spatial variability of 
seabed sediments. For proper quantitative examination of spatial variability, it is important to 
differentiate between parameter estimate uncertainty, model parameterization effects and actual spatial 
variability. 

To date, the postdoctoral project has further developed and applied a probabilistic 1-D inversion method 
to quantify uncertainty of geoacoustic seabed parameters. In particular, rigorous methods for selecting 
the optimal model parameterizations (e.g., the number of sediment layers) were examined and applied. 
The ultimate goal of quantifying spatial variability is currently being pursued and will be continued in 
the remaining time of the project. Inversion results for multiple locations will be analyzed and 
compared to understand sediment variability. 

OBJECTIVES 

The objective of the research is to extend and use the inversion tools developed in Dettmer’s PhD 
project to investigate geoacoustic variability and the associated uncertainties at fine spatial scales. 
Spatial variability will be investigated by interpreting the differences between the recovered geoacoustic 
profiles while taking quantitative parameter uncertainties into account. Quantitative uncertainties 
depend on the model parameterizations selected for the problem. Therefore, model parametrization 
needs to be selected according to a quantitative criterion. The small seafloor footprint and high 

mailto:jand@uvic.ca
mailto:sdosso@uvic.ca


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
30 SEP 2008 

2. REPORT TYPE 
Annual 

3. DATES COVERED 
  00-00-2008 to 00-00-2008  

4. TITLE AND SUBTITLE 
Bayesian Seismo-Acoustic Inversion To Investigate Spatial Variability
And Uncertainty Of Shallow Water Sediments 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Victoria,School of Earth and Ocean Sciences,Victoria BC 
Canada, 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
code 1 only 

14. ABSTRACT 
Propagation and reverberation of acoustic fields in shallow waters depend strongly on the spatial
variability of seabed geoacoustic parameters, and lack of knowledge of seabed variability is often a limiting
factor in acoustic modeling applications. However, direct sampling (e.g., coring) of vertical and lateral
variability is expensive and laborious, and matched-field and other long-range inversion methods fail to
provide sufficient resolution. The long-term goal of this work is to use a Bayesian inversion approach in
combination with seabed reflectivity data to investigate and quantify spatial variability of seabed
sediments. For proper quantitative examination of spatial variability, it is important to differentiate
between parameter estimate uncertainty, model parameterization effects and actual spatial variability 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

9 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



precision of the reflectivity method provide the high lateral and vertical resolution required for this 
approach. The computation of quantitative uncertainty estimates for the recovered profiles is of key 
importance to differentiate between spatial variability of environmental parameters and uncertainties 
inherent in the inversion results. 

APPROACH 

This work uses Bayesian inference to determine model parameters of sediment profiles and their 
uncertainties from seismo-acoustic single bounce reflectivity measurements with small seafloor 
footprints (∼100 m). Lateral variability can be inferred from differences in inversion results for 
appropriately spaced measurement sites. 

Bayesian inversion formulates an inverse problem in terms of the posterior probability density (PPD) of 
the model parameters, incorporating both data and prior information. The solution is typically quantified 
in terms of properties of the multi-dimensional PPD representing parameter estimates, uncertainties and 
inter-relationships. Optimal parameter estimates require nonlinear optimization such as adaptive hybrid 
inversion (Dosso 2002). Parameter uncertainties (e.g., marginal distributions, credibility intervals) are 
computed using Markov-chain Monte Carlo methods (Dosso 2002; Dettmer et al. 2008a). 

Rigorous uncertainty estimation for geoacoustic parameters is of key importance to meaningfully 
resolve spatial variability between inversion results for nearby measurement sites from the inherent 
inversion uncertainties (an ultimate goal of our work). This requires a nonlinear inversion approach, 
rigorous estimation of the data error statistics, and quantitative model selection. 

Uncertainty estimates also depend on the model parametrization chosen for the inversion. Bayesian 
evidence is the basis for this model selection. Evidence brings a natural parsimony to the model 
selection problem which is referred to as the Bayesian razor. Estimating evidence is challenging due to 
the requirement to integrate the likelihood with respect to the prior (Chib 1995), and finding robust and 
accurate estimators for the evidence integral has seen the attention of much research. Due to the high 
computational demands of the forward and inverse problems considered in this paper, an asymptotic 
point estimate (for the MAP model vector) is used to carry out model selection. The Bayesian 
information criterion (BIC, Schwartz (1978)) is an asymptotic approximation derived for diffuse 
multivariate normal prior distributions (Kass and Raftery 1995). The BIC is given by 

BIC = −2 loge L(m̂) + M loge N , (1) 

where M is the number of model parameters and N is the number of data. Since the BIC is based on 
the negative log likelihood, the model with the smallest BIC is selected as the preferred model. In 
comparison to the also commonly-used Akaike information criterion (AIC, Akaike (1973)) 

AIC = −2 loge L(m̂) + M , (2) 

the BIC corrects for the number of data and favors simpler models than the AIC for N >8. Since this 
study addresses large data sets, the BIC is used here for model selection. 

WORK COMPLETED 

In the second year of this project, the work was focused on extending the available inversion schemes to 
allow for quantitative model selection. This is considered to be the last step towards analyzing several 
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Figure 1: Experiment sites on the Malta Plateau. 

sites for spacial sediment variability. The geoacoustic model selection inversion was applied to several 
data sets collected on the Malta Plateau (see Fig. 1). The procedure for data collected at Site 13 on the 
Malta Plateau (Fig. 1) is discussed in detail in Dettmer et al. (2008b) and results are shown below. 

RESULTS 

This section applies the inversion and model selection to seismo-acoustic reflection data collected April 
6, 2002, during the Boundary02 experiment at 36◦ 24.515’ N, 14◦ 38.142’ E on the Malta Plateau, 
Mediterranean Sea. The acoustic data were generated with an electro-mechanical impulsive source 
(GeoAcoustics 5813B Geopulse boomer) with a short pulse length (<1 ms) and a broad bandwidth 
(0.5–10 kHz). Data were recorded at a single receiver that was part of a vertical line array of 4 
hydrophones, and sampled at 48 kHz. The hydrophone used in this data set was at 124-m depth and the 
water depth was 144 m. The sound-velocity profile was fairly constant with the sound velocity varying 
less than 5 m/s over the water column. The source was towed at 0.3-m depth. 

Figure 2 shows part of the seismo-acoustic traces (in reduced time) with the solid lines across traces 
indicating the part of the bottom response used to compute reflection coefficients. Figure 2 also 
illustrates the need for an objective model selection criterion. Reflected energy is most concentrated 
around the water-sediment interface reflection at 0.109 s and at a later event at about 0.114 s (times are 
given here for the shortest-range trace). In both instances, the events are spread out in time and the 
model parameterization is not obvious: both zones could contain reflections from one or more layers. 

Reflection-coefficient data as a function of grazing angle and frequency were computed from 
time-windowed direct and bottom-reflected arrivals using the method of Holland (2003) and are shown 
in Fig. 3. In this case, the bottom response is time windowed to approximately 6-m depth below the 
seafloor, as indicated in Fig. 2. The data are averaged into 14 frequency bands from 1000–5300 Hz 
using a Gaussian frequency average (Dettmer et al. 2007) with a fractional bandwidth of 1/20 (this 
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Figure 2: Seismo-acoustic traces (in reduced time, with 1512-m/s reducing velocity) collected at site 13 
on the Malta Plateau. 
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Figure 3: Reflection-coefficient data as a function of grazing angle and frequency (band centers 
indicated). The solid line indicates the best fit obtained from the MAP parameters of the model selected 

by the BIC (5 layers). 
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Figure 4: BIC, AIC and negative log likelihood for group A (open circles) and group B (asterisks) on a 
loge scale. Note that for presentation purposes BIC and AIC values have been shifted so that the 

minimum value of each is unity. 

bandwidth was found to retain structure in the reflection coefficient data while reducing noise). The 
data are interpolated onto a uniform spacing in angle; points with a signal to noise ratio of less than 6 
dB were excluded. Further, interpolated data that fall into recording gaps (due to experiment design) are 
excluded from the inversion. This results in approximately 90 data at each frequency. 

The model selection study was carried out using two groups of models. Group A assumes an increasing 
number of layers for the uppermost part of the sediment (corresponding to the reflected arrivals 
beginning at 0.109 s in Fig. 2) and a single reflector at depth (corresponding to the deeper reflected 
arrivals at 0.114 s). Group B considers the same numbers of layers for the uppermost part of the 
sediment but contains two reflectors (i.e., a layer) at depth. This way both zones that show reflections in 
the time series are addressed by the model selection. Group A includes 5 models with 3 to 7 layers and 
group B includes 7 models with 2 to 8 layers. 

To obtain inversion and model selection results, data-error statistics were estimated from the 
reflection-coefficient processing (Holland 2003) and optimization was carried out using plane-wave 
reflection-coefficient inversion (Holland et al. 2005). Prior bounds were chosen to be uniform over wide 
intervals. However, the thin topmost layers were differentiated by choosing prior bounds for layer 
thickness from 5–50 cm. This seems justified since the uppermost events in the time series (Fig. 2) 
extend over about 1.5 m (at 1500 m/s). These priors also allow the more complex models to exactly 
represent the simpler models. The resulting likelihood values were used to calculate the BIC for all 
models and results are shown in Fig. 4. All values are plotted on a loge scale since the range of values is 
large (due to the fact that the 2- and 3-layer models are very unlikely with high BIC and AIC values). 
This figure shows that, based on the minimum value of the BIC, the 5-layer model from group A is 
selected. The BIC values for the models in group B do not reach values as low as those for group A, but 
consistently decrease with more complex parameterizations. This result indicates that the data show 
high sensitivity to the presence of several layers close to the sediment water interface. In addition, the 
simpler models of group A are preferred over the models of group B which contain more structure at 
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Figure 5: Marginal-probability depth distributions and MAP sediment profiles (solid black line) for the 
5-layer model of group A (selected by BIC). A core (green) taken on site is shown for comparison, with 

error bars shown for every fifth datum. The left panel also shows the acoustic-source pulse (at 1500 
m/s). 

depth. Figure 4 also shows the negative log likelihood (i.e., the data misfit) for all parameterizations. It 
is important to note that these values consistently decrease with an increasing number of layers. The 
BIC depends strongly on the likelihood values, and a better fit to the data for more complex models is 
important for the BIC to yield meaningful results. For comparison, the figure also shows the AIC 
values, with the minimum for both groups occurring at the models with most layers. 

Once the preferred model parameterization was identified using the BIC, the data residuals for this 
model were used to compute a non-parametric estimate of the data error covariance matrix at each 
frequency (Dettmer et al. 2008a). Posterior statistical test were carried out for raw residuals d − d(m̂) 
and for standardized residuals C−

d 
1/2

[d −d(m̂)] to ensure these estimate and the assumptions of random 
Gaussian errors were reasonable. The runs test for randomness failed at all 14 frequencies (at the 0.05 
level) for raw residuals; however, standardized residuals passed the test at 13 out of 14 frequencies. The 
Kolmogorov-Smirnov test for Gaussianity was passed (at the 0.05 level) 4 times for the raw residuals 
and 9 times for the standardized residuals. Overall, the results of the statistical tests suggest the data 
error statistics are reasonably well quantified, providing confidence in the inversion results. The 
estimated error covariance matrices were then used in the integration of the PPD by MH sampling. 

The integration was carried out for two models from group A, the 5-layer model that was picked due to 
the BIC and the 3-layer model to observe the variability in results with model selection. The fit to the 
measured data for the 5-layer model is shown in Fig. 3. 

Figure 5 shows the MAP sediment profiles and associated uncertainties in terms of marginal-probability 
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Figure 6: The best fit obtained from the MAP parameters of the 3-layer model of group A. 

depth distributions for the 5-layer model. The uncertainties are obtained from a large random subset of 
the PPD (4×105 models). The inversion results indicate 4 layers within the upper meter of the 
sediments. Figure 5 also shows the acoustic-source pulse (at 1500 m/s) for comparison with the 
inversion results: Note that the pulse length is large compared to the layered structure resolved in the 
upper sediments. The appearance and location of the thick layer is consistent with what would be 
expected from the time-domain data (Fig. 2) where no significant reflections occur between 0.11 s and 
0.113 s. The inversion result also shows an interface at about 4.5-m depth. Confidence for the 
half-space parameter values, particularly density, is low, likely because the half-space lacks a lower 
reflector and hence data information is available only from the reflection off the upper interface. 

Figure 5 also shows the sound velocity and density estimates from a shallow gravity core taken at the 
site. The core error bars, shown for every fifth datum, represent measurement errors associated with the 
time-of-flight and gamma-ray attenuation density estimates for a perfectly calibrated system, but do not 
include errors due to sediment disturbance from sampling, retrieval, calibration, and storage. Note that 
the core represents a highly-localized sample (10-cm diameter compared to the ∼100 m experiment 
footprint) and that spikes in the core values could be due to anomalies such as sea shells. The core 
indicates complicated structure in the upper part of the sediment. The inversion results show similar fine 
structure to the core. In particular, the density profile estimate from the inversion matches the core 
profile estimate well: the location of interfaces in the inversion result coincides with interfaces in the 
core. Below about 0.5-m depth, the inversion results appear to represent an average value in the sound 
velocity estimated by the core. 

Figures 6 and 7 show inversion results for the 3-layer model from group A. The fit to the data (Fig. 6) is 
considerably worse than that for the 5-layer model (Fig. 3), and the resulting low log likelihood value 
dominates the BIC, resulting in the rejection of the 3-layer model. However, high frequencies show a 
much better fit than low frequencies, suggesting that the model is appropriate for the shallowest 
structure. 
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Figure 7: Marginal-probability depth distributions and MAP sediment profiles (solid black line) for the 
3-layer model of group A. A core (green) taken on site is shown for comparison. Core error bars are 

shown for every fifth datum on the core. 
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IMPACT/APPLICATIONS 

The ability to remotely obtain (i.e., without direct sampling) seabed parameters has important 
implications for science (e.g., providing data for understanding sediment processes), the Navy (e.g., 
improving databases for ASW and MCM), as well as many commercial applications (e.,g., pipeline or 
cable laying). A particular strength of the present work is quantifying the uncertainties of the seabed 
parameters. 

RELATED PROJECTS 

Broadband Clutter JRP project (NURC, ARL-PSU, DRDC-A, NRL) 
ONR QPE Uncertainty Program 
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