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Abstract - Layered sensing provides a hierarchical net-
centric architecture for universal situational awareness 
with global coverage and persistent surveillance. Sensors 
in the layered hierarchy provide spatial, temporal, 
spectral, and polarization diversity with different scales 
and resolutions over different time horizons. Cooperative 
management of netted sensors is a successful strategy to 
achieve targeting performance and overall measures of 
merit (MOM) goals. After a brief introduction to issues in 
layered sensors, a resource management strategy based 
on geometry information is described so as to enhance 
performance in target detection (minimum detectable 
Doppler) and tracking accuracy (geometric dilution of 
precision). Preliminary simulation results are presented to 
illustrate this Geometric Approach to Layered Sensing 
(GALS) concept. 

Keywords: Layered Sensing, Performance-Driven, Geometric 
Approach, Resource Management, Measures of Merit (MOM) 

1 Layered Sensing 
Layered sensing is aimed at providing universal situational 
awareness with global coverage and persistent surveillance 
[2, 15]. A scenario of layered sensing is shown in Fig. 1 [9] 
wherein high altitude platforms afford target detection, 
unmanned aerial vehicles (UAV) maintain area 
surveillance for target tracking, and ground sensors can 
provide individual audio reports for target identification. 

For such a layered sensing scenario, the need for intelligent 
sensor management (SM) is illustrated via the simple 
space-time diagram in Fig. 2 wherein layered assets are 
coordinated to achieve mission success. As shown, high 
altitude platforms such as space-based radar (SBR) in the 
top layer have wide ground swath sweeping along the orbit 
for global coverage. Although the satellite ground track 
repeats regularly, it only offers short time windows on 
targets during each revisit. Although a fully populated 
constellation of fast moving low-earth orbit (LEO) 
satellites can minimize temporal and spatial gaps in ground 
coverage, a long revisit interval is not effective in tracking 
of mobile targets. With early detections from the top layer, 
UAVs in the middle layer can be dispatched and routed to 
the areas of interest (AOI) for surveillance and tracking. In 

the bottom layer, ground sensors can stay in the same area 
so long as the battery lasts but typically have limited spatial 
coverage. 

 
 

 
 

Fig. 1 A Layered Sensing Scenario [9] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Space-Time Coverage by Sensors in Different Layers 
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Provided by the high altitude layer, a long list of detections 
may contain both targets and clutter (false detections). 
Confirmed detections from lower layers can reduce the 
position uncertainty estimates; however, unconfirmed 
detections in the list have rather poor accuracy in their 
position estimates. This increases the complexity of sensor 
management and particularly for sensors in the middle 
layer, which now need to acquire (both search and detect) 
designated targets prior to tracking, albeit in a much 
reduced volume. 

Resources in layered sensing include both sensing assets 
and communications assets. This paper will focus on 
sensors. Sensor management traditionally considers two 
main themes: (1) sensor assignment decides which sensor 
combination will be assigned to which target over which 
area and (2) sensor scheduling determines when and which 
sensor will take what action [1, 3, 4, 5, 9, 11, 12, 13]. In 
layered sensing, however, sensor coordination and data 
exchange via both wireless and wired network 
communications play a pivotal role in net centric-operation 
and interaction, which may involve airborne replays and 
communications satellites. 

Functionality per layer and their interaction are shown on 
the right hand side of Fig. 3 where information flows from 
the top layer through the middle layer to the bottom layer 
and back to the top and middle layers in a closed-loop 
fashion. Early and quick information (coarse and 
incomplete) from top layers guide the deployment and 
execution of lower layers while detailed information 
derived from lower layers may request special sensor 
modes of upper layers when flying over special areas to 
revisit. 

 

 

 

 

 

 

 

 

 
Fig. 3 Implementation Schemes for Layered Functionalities and 

Interactions 

Two possible implementation schemes of the desired 
interactions are shown on the left hand side of Fig. 3. One 
is the centralized management scheme where sensors in all 
layers go through the command, control, and 
communication (C3) center. The other scheme is 
distributed (decentralized) management where sensors in 
different layers communicate to one another directly. Data 

link bandwidth, latency, and reliability are key issues in 
net-centric sensing. 

A special aspect of sensor coordination is target 
handover/cueing, which occurs between layers and within 
the same layer. One example is correlation of tracks from 
sensors that lack simultaneous coverage [6]. The cueing 
from a wide field of view (FOV) sensor to a narrow FOV 
sensor, either co-located or remotely, is another example. 
Similarly, handover of targets to a guided weapon from its 
launch platform is a third example. Proper inter-layer and 
intra-layer transitions are required to ensure coverage 
continuity in both time and space. However, transition in 
layered sensing is more complicated simply because of a 
large number of detections with large uncertainty in 
addition to severe constraints on the part of sensors and 
communication links available in time and space for 
needed coverage. It becomes clear that efficient resource 
management becomes indispensable.  

The rest of the paper is organized as follows. In Section 2, 
the resource management strategy based on geometry 
information is described with two illustrating examples. 
One example is to enhance tracking accuracy in terms of 
geometric dilution of precision (GDOP) while the other is 
to enhance target detection performance with relative 
target-sensor velocity above the minimum detectable 
velocity (MDV). Finally, the paper is concluded in Section 
3. 

2 Geometric Approach to Layered Sensing 
(GALS) 
Layered sensing is a multi-sensor multi-target environment 
wherein a performance-driven strategy is aimed at 
obtaining the best targeting results possible via clever use 
of available resources. The resource management therefore 
assumes the responsibility of sensor assignment, sensor 
scheduling, sensor data exchange, and sensor data fusion. 
For cooperative distributed sensors, they can act together 
via communication links to improve detection probability, 
success of classification, tracking accuracy, and the 
respective rates. Two examples of the geometric approach 
to layered sensing (GALS) are presented below.  

Example 1: Geometric Dilution of Precision (GDOP) as 
MOM 

Depending on the overlapping of multiple sensors in time, 
space, spectrum, and polarization, the resource manager 
may assign a sensor to multiple targets or have a target 
covered by multiple sensors. There are several criteria that 
can be used to conduct sensor-to-target assignment. One is 
to ensure persistent tracking of the target as it roams 
around, that is, to have maximum temporal and spatial 
coverage. Another is to ensure maximum target detection. 
At least two factors affect the probability of detection, one 
is the distance from the sensor to target (the reflected signal 
power is inversely proportional to R4 where R is the range 
from an active sensor to the target) and the other is the 
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relative velocity vector. In the latter case, both target and 
sensor velocity vectors are utilized in the assignment 
process, which will be discussed in the second example. 

A criterion for maximum accuracy is presented in the 
following example. Active ranging sensors or passive 
bearing-only sensors utilize multiple measurements to 
determine a target’s position. Measurements at different 
locations can be obtained from distributed sensors or from 
the same sensor but at different time instants over which 
either the target or sensor or both have meaningfully 
moved. 

Positioning performance can be estimated from using 
nonlinear (range or bearing or both) measurements. 
Analogous to the methods used in [8], assume that the 
target is at x and the i-th sensor is at xi. The i-th sensor’s 
measurement is given by: 

iiii vfz += ),( xx  (1) 

where fi(⋅,⋅) is a nonlinear measurement equation and vi is 
the sensor measurement error being zero-mean Gaussian 
N(0, 2

iσ ). 

With an initial estimate of the target position denoted by x0, 
the nonlinear range measurement can be written as: 

i
T
iiii vfz +−+= )(),( 00 xxhxx  (2a) 
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The equation can be further written as: 

i
T
i

T
iiiii vfzz +=+−= xhxhxx 00 ),(~  (3a) 

vHxz +=~  (3b) 
[ ]n

T zzz ~~~~
21=z  (3c) 

[ ]n
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The least square solution is given by: 

zTT ~)(ˆ 111 −−−= RHHRHx  (4a) 
11 )()}ˆ()ˆ{( −−=−−= HRHxxxxP TTE  (4b) 

Assume that all sensors have the same quality with R = 
σ2I. The solution is then determined by the linearization 
matrix H. A scalar value that characterizes the solution is 
the geometrical dilution of precision (GDOP) defined as: 

))((traceGDOP 11 −−= HRHT  (5a)  

 ))((trace 1−= HHT  when R = I  (5b) 

where trace(⋅) stands for the trace of a matrix. 

Consider an active sensor with ranging measurements in a 
two dimensional case as shown in Fig. 4. The nonlinear 
range equation and its linearization are: 

22 )()(),( iiiii yyxxrf −+−==xx  (6a) 
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It is clear from (6b) that hi is the line of sight vector from 
the i-th sensor to the target, denoted by ei. As a result, the 
GDOP is only determined by the geometry (angular 
relationship), not by the actual separation (distance) for 
active sensors. The thermal noise does not depend on the 
sensor to target range but the target echo strength does. So 
does the resulting signal to noise ratio (SNR) and this will 
affect the equivalent measurement covariance matrix R. 
This has significant ramifications in geometry-based sensor 
assignment and scheduling.  

Assume the measurement matrix H is a non-singular square 
matrix (a very restrictive example) and R is a diagonal 
matrix with unequal diagonal elements 2

iσ , which is a 
function of SNR. Then, 
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where the subscript ii stands for the i-th diagonal element 
of the matrix 1)( −THH . Clearly, the contribution of the i-th 
sensor to the GDOP is weighted by 2

iσ . Similar results for 
more general cases can be found in [17]. 

For the case with two ranging sensors, GDOP can be 
written as: 
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If we have to choose two out of many (say, three) sensors 
to form a solution, we need to compare all possible 
configurations (three pairs in this case, namely, Sensors {1 
and 2}, {1 and 3}, and {2 and 3}) in terms of their GDOP 
as a function of the sensor quality (σ2/σ1) and their relative 
position (θ1 – θ1) assuming all other factors are equal. 

Assume that Sensor 1 has the smallest measurement error 
and is chosen as the reference. Assume Sensor 2 is of the 
same quality as Sensor 1 (σ2/σ1 = 1) but it makes 40o with 
respect to Sensor 1 (θ2 – θ1 = 40o). Although Sensor 3 has 
the best geometry relative to Sensor 1 with θ3 – θ1 = 90o, it  
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Fig. 4 GDOP for Ranging and Bearing-Only Sensors 
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Fig. 5 Optimal Selection of Sensor Pairs 
 

 
 
has the worst quality with σ3/σ1 = 2. The resulting GDOP 
for the pair 1 and 2 is GDOP1,2 = 2.20 while it is GDOP1,3 = 
2.24 for the pair {1 and 3}. The optimal choice is therefore 
the pair {1 and 2}, as shown in Fig. 5. 

Referring to Fig. 4 again, we now consider a passive sensor 
with bearing measurements in a two dimensional case. The 
nonlinear angular equation and its linearization are: 
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Comparing (9b) to (6b) shows that the measurement matrix 
hi for the bearing-only sensor is range-dependent and it is 
in fact perpendicular to the line of sight vector from sensor 
to target. When the range-dependence and angular errors 
are combined in the GDOP (5), it provides a position error 
perpendicular to the LOS (or along ei

⊥), that is, riσi.  

For the case with two bearing-only sensors, GDOP of (5) 
can be written as: 
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The same results for ranging sensors can be applied to 
bearing-only sensors when the cross range error ri(σi)bearing 
used in (10) is treated in much the same way as the ranging 
error (σi)ranging in (8b). The performance curve for sensor 
pair selection as shown in Fig. 2 is also applicable. 

To emphasize the geometric aspect, a normalized GDOP or 
GDOPN was introduced in [8]. It is defined as: 
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Rσ  is an averaged noise variance defined as: 
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Indeed, the original definition assumes R = I and GDOP is 
related purely to the geometry. This works well for such 
applications as GPS satellites selection above a certain 
elevation mask angle. For a near Earth user, its ranges to 
most satellites are about the same and the SNR does not 
vary greatly. As a result, GDOP is a good choice. However, 
the difference in distance to targets from sensors in various 
layers may be significant and so is their SNR. By 
consequence, the use of GDOP weighted with 
measurement quality seems to be more useful, as illustrated 
in Fig. 5. 

The GDOP definitions above involve the measurement 
matrix H and the product of its transpose HT. This is 
similar to the Fisher information gain and is also related to 
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the Cramer-Rao lower bound. It is of interest to further 
investigate their relationships. 

A practical problem with the least squares solution (4) is 
the inability to inverse the matrix term HTRH. This matrix 
inverse problem occurs when the vectors of the observation 
matrix H become collinear (rank-deficient), which 
produces unstable estimates. Under this condition, the 
GDOP is excessively high. 

However, the matrix inverse constraint condition may be 
used explicitly for sensor assignment. When it happens, 
one could task another available sensor with near optimum 
geometry. However, when there is no time to displace the 
sensors to the desired locations, temporary means may be 
applied to ensure the quality of solution. One technique is 
to apply the ridge regression (regularized least squares, 
constrained least squares, or Tikhonov regularization) in 
the interim before the optimal displacement is achieved. 

Ridge regression attempts to limit the minimum values of 
the diagonal values of HTH by replacing it with HTH + κI 
in (4a) [7, 10]. It is used to reduce the overall mean squared 
errors and the variance inflated by poor GDOP at the 
expense of higher bias. Explicitly, the ridge regression is 
written as: 

zRHIHRHx ~)(ˆ 111 −−− += TT κ  (12a) 
11 )( −− += IHRHP κT  (12b) 

This can be viewed as the optimal solution that minimizes 
the following performance index: 

xxHxzRHxz TTJ κ+−−= − )~()~( 1  (13) 

It contains a measurement error term and a constraint term 
on the solution. Such a formulation is also referred to the 
regularized least squares (RLS) [14]. It is also similar to the 
nonlinear constrained optimization used for track to road 
fusion [16].  

Example 2: Relative Motion for Detection in Clutter 

One task of sensor management is to put the right sensors 
in the right places at the right times and doing the right 
processing. The goal of the four “rights” is to improve 
target detection probability and state estimation accuracy 
yet with minimum efforts (cost and time).  

With advance in netted sensors and multi-input and multi-
output (MIMO) radar, distributed sensors may be 
coordinated to produce better fusion results. Clearly there 
are two lower levels of fusion, namely, detection or feature 
fusion (classifier fusion) and coordinated processing and 
signal fusion (coherent and non-coherent integration). One 
example of signal fusion is in a bistatic setting where two 
radars look at the same place, one serves as the transmitter 
and the other as receiver. The backscattered signal at the 
transmitter may be combined with the forward-scattered 
signal at the receiver, coherently or non-coherently, to 
enhance the detection. This may require one radar sending 
its received signal (translated onto a different frequency) to 

the other radar. Large bandwidth is required for 
communication but only at those critical moments for high-
valued targets. Bistatic detection becomes more viable 
when there are more receivers in the network dwelling at 
the same region of interest where both signal fusion and 
classifier fusion can take place. 

In addition to the two types of sensors discussed in the last 
section, namely, (1) passive sensors with bearing-only 
measurements and (2) active sensors with range 
measurements (no or poor angular measurements), we now 
consider measurements that depend on relative velocity 
along the line of sight (LOS) direction to targets. An 
example is an airborne ground moving target indicator 
(GMTI). 

As analyzed in the last section, the relative geometry 
affects target detection and estimation accuracy. This is 
illustrated again in Fig. 6. In Fig. 6(a) for passive sensors 
with bearing-only measurements, the positioning accuracy 
depends not only on the sensors’ accuracy measurement 
quality and the range to target but also on the relative 
geometry of the sensors to target. Fig. 6(b) shows active 
sensors with range measurements. Its positioning accuracy 
depends on the sensors’ accuracy measurement quality as 
well as on the relative geometry of the sensors to target. 
The dependence on the range-to-target is due to SNR 
(partially reflected in the range measurement errors). 

For the third type of measurements, consider the encounter 
geometry shown in Fig. 8 where the range rates due to the 
target motion are given by: 

)sin( 11 θt
t Vr =  (14a) 

)sin( 212 θθ += t
t Vr  (14b) 

where Vt is the target’s velocity and θ1 and θ2 are the 
viewing angles of the two sensors relative to the target’s 
broadside, respectively. 

The range rates in (14a) and (14b) specify the Doppler 
frequency as seen by individual sensors when they operate 
in a monostatic manner (for two-way propagation, a factor 
of two is omitted). In the bistatic setting, the Doppler 
frequency is then given by: 

)sin()sin( 211 θθθ ++= tt
t VVr  

 )
2
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2

sin(2 22
1

θθθ += tV   (15) 

When θ1 = 0, (15) is identical to (12b), which can be easily 
verified from Fig. 8. For a given θ1 of the first sensor, the  
placement of the second sensor at θ2 is such that the range 
rate is maximized. The solution can be written as: 

2
))(sin( 121
πθθθ sign=+  (16a) 
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Fig. 6 Geometric Effects on Target Positioning 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Two Sensors with a Target 
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Fig. 8(a) Monostatic at θ1 
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Fig. 8(b) Monostatic at θ2 As a Function of θ1 
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Fig. 9(a) Bistatic with θ1 vs. θ2 
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Fig. 9(b) Bistatic as a Function of θ2 for Selected θ1 
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The result in (16b) is significant. For the two types of 
sensors shown in Figs. 6(a) and 6(b), the angular separation 
is desired to be 90o or orthogonal. However, for GMTI type 
of sensors, the best angular separation is the ninety degrees 
(90o) complement of the first sensor’s angular position to 
the target’s broadside. That is, to place the second sensor in 
the direction of the target’ velocity. 

Fig. 8(a) shows (14a), which indicates positive and 
negative maximum values at ±90o, that is, in the same 
direction or opposite to the target’s velocity vector. 

Fig. 8 (b) shows (14b) for three values of θ1 = 0o, 5o, and 
10o. The curve is shifted leftward and so is the peak point. 
This is consistent with (16).  

Fig. 9(a) shows the absolute value of (15) as a function of 
θ1 and θ2 where the dark brown color represents the 
maximum and the dark blue for minimum (zero) values. 
Fig. 9(b) shows the three rows of Fig. 9(a). Again the best 
placement of the 2nd sensor is at the peak location and this 
agrees with (16). 

The above results afford several observations for managing 
mixed sensors. First, if insufficient information is available 
about the target and its motion (velocity vector), the 
placement of two sensors 90° apart is a reasonable choice 
because this produces good GDOP and avoids the worst 
case Doppler detection. Knowing the target velocity vector 
or its prediction requires a side-looking sensor to fly over 
the target’s path (perpendicular to it). When additional 
information is available about one sensor’s viewing angle, 
the placement of a second sensor or more can be made 
according to (16) so as to improve the overall targeting 
capability and estimation accuracy. 

3 Inter-Layer Transitions1 
The handoff of target information from one layer to the 
most appropriate sensors in another layer (i.e., inter-layer 
transition) is an important aspect of resource management 
in layered sensing as discussed in Section 1. The two 
geometric approaches presented in Section 2, namely, using 
GDOP as MOM and creating relative motion to maximize 
detection in clutter, can be used to implement an optimal 
handoff scheme. 

The information about a target from one layer may be 
represented in terms of the target kinematic state estimate 
(a track) and the estimation error covariance and possibly a 
target ID and its confidence level. However, some passive 
sensors may only offer bearings associated with a detection 
and a level of quality. Given such a priori information, 
which may be predicted forward to a future time or over a 
time interval, the most appropriate sensors are chosen such 
that the updated error covariance at that particular future 
time or over the future time interval is minimized. The 
                                                 
1 This section is added based on the comments and 
suggestions from three anonymous reviewers, who are 
gratefully appreciated.  

GDOP method (or a similar eigen analysis [17]) can be 
applied for this purpose. However, this GDOP method 
assumes that the designated target can be found at the 
future updating time and this involves target detection and 
detection-to-track association so as to carry out this inter-
layer transition. As a result, a viable sensor-to-target 
assignment approach ought to take a holistic view in which 
maximum probability of target detection, correct data 
association, effective position error reduction, and 
improved target ID are all design goals under such 
constraints as limited endurance, ECM conditions, adverse 
environmental factors, and communications [19, 20]. In 
particular, maximizing target detection and target ID may 
also involve adaptive waveform selection at the same time 
as sensor-to-target assignment [21, 22]. 

In addition, the concept of “target value” can be utilized to 
prioritize the assignment of sensor functions, which is more 
operational applicable. In case of too little resource 
capacity (overload), sensor tasks need to be assigned to the 
(operationally) most important objects. Assigning values to 
targets is no easy task. At least three facets can be 
considered: (1) target ID or class, (2) a target’s proximity to 
tactical positions in the field, and (3) a target’s need for 
sensor updating. 

It is therefore necessary to have an idea of the class a target 
belongs to and to deploy those sensors that can provide 
such class information (both cooperative and non-
cooperative). In fact, taking the target class into account 
could also help in optimizing the geometric aspects (as 
shown in Figs. 6 and 7) as it helps to estimate the RCS/ 
“Swerling case” combination [18], thus yielding a better 
prediction of the Pd.  

Layered sensing involves managing sensors that are spread 
over a large area. The meteorological effects cannot be 
overlooked. Two sensors that have similar performance 
may yield different results against the same target type 
when the EM propagation path of one of the sensors is 
affected by ducting effects for instance. These and other 
issues are made a part of our ongoing investigation. 

4 Conclusions 
Within the framework of layered sensing, this paper 
described the needs, issues, and approaches to resource 
management. In particular, the geometric approach to 
layered sensing (GALS) is detailed to enhance performance 
in target detection (minimum detectable Doppler) and 
tracking accuracy (geometric dilution of precision). 
Simulation examples showed that such a geometrical 
performance-based layered-sensing approach could be used 
for sensor management in both sensor selection and sensor 
scheduling. Ongoing work is focused on cooperative 
management of netted sensors in a more complex 
environment to achieve targeting performance and overall 
mission goals. 
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