
Track-Before-Detect for Sensors with Complex Measurements

S. J. Davey† B. Cheung†⋆ M. G. Rutten†

†Defence Science and Technology Organisation, Australia

⋆School of Elec Engineering, The University of Adelaide, Australia

Email: {Samuel.Davey, Mark.Rutten, Brian.Cheung}@DSTO.Defence.gov.au

Abstract – Track-Before-Detect (TkBD) is a paradigm

that combines the target detection and estimation processes

that are usually sequentially applied to sensor data in a con-

ventional system. Under TkBD the single frame detector is

removed and the tracker is supplied with the whole sensor

image. Detection decisions are then shifted to the output

of the tracker which is able to use temporal correlation to

improve the decision performance. A fundamental measure

used by most TkBD approaches is the likelihood ratio of the

sensor data and this is formed as the product over individual

cell likelihoods under the assumption of spatially indepen-

dent noise. However, that approach exploits only the enve-

lope of the known sensor point spread function. This article

presents an approach for determining the data likelihood ra-

tio that also includes phase information. This alternative

likelihood ratio formulation is shown to both improve the

discrimination of targets from noise and reduce the compu-

tation overhead of the algorithm.

1 Introduction
Traditional tracking algorithms are designed assuming

that the sensor provides a set of point measurements at each

scan. The tracking algorithm links measurements across

time and estimates parameters of interest. However, a practi-

cal sensor may provide a data image, where each pixel corre-

sponds to the received power in a particular spatial location

(e.g. range bins and azimuth beams). In this case, the com-

mon approach is to apply a threshold to the data and to treat

those cells that exceed the threshold as point measurements,

perhaps using interpolation methods to improve accuracy.

This is acceptable if the signal to noise ratio (SNR) is high.

For low SNR targets the threshold must be low to allow suf-

ficient probability of target detection. A low threshold also

gives a high rate of false detections, which causes the tracker

to form false tracks. An alternative approach, referred to as

track-before-detect (TkBD), is to supply the tracker with all

of the sensor data without applying a threshold. This im-

proves track accuracy and allows the tracker to follow low

SNR targets.

c© Commonwealth of Australia 2009.

The key difference between TkBD algorithms and con-

ventional trackers is the measurement model. Conventional

trackers use a point measurement model that typically as-

sumes that the observations are kinematic states of the tar-

get corrupted with additive (usually Gaussian) noise (e.g.

[1, 3]). However, a TkBD algorithm requires a statistical

model of the signal received in each sensor pixel.

Earlier TkBD efforts focussed on optical sensors [2, 6, 7,

13] and assumed that the sensor noise was Gaussian. More

recent efforts have considered the radar problem where the

pixel intensity is either Ricean or Rayleigh distributed de-

pending on the presence or absence of targets [4, 9, 10, 11].

The overall likelihood ratio is formed by taking a product

of the pixel likelihood ratios for all pixels. This product is

a result of assuming that the noise is spatially uncorrelated.

The Ricean and Rayleigh distributions are functions of only

the envelope of the sensor data, so this approach does not

use phase information.

This article demonstrates an alternative likelihood formu-

lation that allows for spatially correlated noise and includes

the phase information. The performance of a grid based re-

cursive posterior filter [5, 14] is analysed for the traditional

likelihood function using only envelope data and the alter-

native likelihood function that includes phase. The inclu-

sion of phase information is shown to improve the detection

and estimation performance of the filter. Furthermore, the

complex likelihood function is an order of magnitude more

efficient to evaluate than the envelope one.

2 Problem Definition

As in [9, Ch. 11], consider a sensor that collects a se-

quence of two-dimensional images (frames). When present,

a target moves in the plane according to a known statistical

process. Each pixel in a frame is a complex valued random

variable, and the target contribution is via a known complex

point spread function with an arbitrary and unknown phase

offset.
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2.1 Target Model

For simplicity of notation, assume a discrete time model,

with a fixed frame period, T . The target state at frame k,

xk, consists of position and velocity in the plane, and the

intensity of the returned signal, Ik, i.e.

xk =
[

xk ẋk yk ẏk Ik

]T
. (1)

The evolution of the state is modelled by the linear stochas-

tic process

xk = Fxk−1 + vk, (2)

where vk is a noise process and the transition matrix is given

by

F =





Fs 0 0
0 Fs 0
0 0 1



 , Fs =

[

1 T
0 1

]

. (3)

The process noise, vk, is the usual Gaussian random vari-

able with covariance Q given by

Q =





Qs 0 0
0 Qs 0
0 0 qiT



 , Qs = qs

[

T 3/3 T 2/2
T 2/2 T

]

, (4)

where qs is the power spectral density of the acceleration

noise in the spatial dimensions and qi is the power spectral

density of the noise in the rate of change of target return

intensity.

2.2 Measurement Model

The measurement at each time is an image of an arbitrary

dimensionality with N pixels indexed by i = 1 . . . N . De-

note the complex response in the ith pixel of the kth frame as

zi
k and let zk be a stacked vector of all the pixel responses

of the kth frame. The target signal at the ith pixel is de-

noted by hi(xk) and h(xk) is a stacked vector of the target

signal over all of the pixels. This target signal may be the

point spread function (psf) of the sensor, the target signa-

ture (range profile) or a combination of both. It is shifted

to be centred over the target state and scaled by the target

amplitude and assumed to be known.

Assuming additive noise, the measurement equation is

zk = exp{jφ}h(xk) + nk, (5)

where φ is an unknown phase shift, uniformly distributed

over [0, 2π], and nk is a stacked vector of the (complex)

pixel noise signals. Assume that nk is complex Gaussian

with a known covariance matrix, R. For this paper, the noise

will be assumed to be spatially independent, so R is an iden-

tity matrix scaled by the known noise variance, σ2.

The target peak SNR quantifies the height of the peak of

the target point spread function relative to the noise floor,

and represents a measure of how easy it is to detect the tar-

get. The point spread function is assumed to be normalised

such that the contribution to cell i is Ik when the target is

located exactly on the sample point for the cell. Thus the

peak SNR in dB is given by 20 log
{

Ik/σ2
}

.

2.3 Envelope Likelihood

The standard treatment of this measurement model is to

assume that the noise is spatially uncorrelated and to form

the likelihood of its envelope (i.e. the magnitude of the data)

[11, 4, 9]. Thus R is assumed to be an identity matrix scaled

by σ2.

The envelope likelihood considers only the magnitude of

the sensor response at each pixel. The pixel magnitude will

be Ricean distributed, if there is a target present, or Rayleigh

distributed if there is no target [12]. Thus the pdf of
∣
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if there is no target, where I0(·) is the modified Bessel func-

tion.

Note that the measurement probability implied by (5) de-

pends on the phase shift, φ. The pdf (6) is the marginal

distribution achieved by the integral

p

(
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p(φ)dφ. (8)

The Bessel function arises as a result of this integral [8].

The likelihood ratio for the magnitude response at pixel i
is thus

L
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Since the pixels are assumed to be conditionally indepen-

dent, the likelihood of the envelope of the whole image is

simply the product over the pixels

Le

(

|zk|

∣

∣

∣

∣

xk

)

=

N
∏

i=1

L

(

∣

∣zi
k

∣

∣

∣

∣

∣
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xk

)

,

= exp

(

−h(xk)Hh(xk)

2σ2

) N
∏

i=1

I0

(

∣

∣hi(xk) zi
k

∣

∣

σ2

)

, (10)

where H denotes the Hermition conjugate.

Typically this product is truncated to only include those

pixels that have a significant target contribution, hi(xk), to

avoid unnecessary computation [11].
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If a prior distribution is assumed for the target intensity,

p(Ik), then an intensity independent marginal likelihood is

given by

L̄e (zk|xk) =

∫ ∞

0

Le (zk|xk) p(Ik)dIk. (11)

This integral may be numerically approximated using a sum-

mation.

An important implication of the above method is that

marginalisation over the random phase shift, φ, has been re-

peated independently for each pixel. This is equivalent to

assuming that there is a different phase shift for every pixel,

φi
k. This is not the case, and so the envelope likelihood has

not captured all of the available information.

3 Complex Likelihood

The factorised form of the envelope likelihood results in

a loss of information because it fails to include the phase of

the sensor data. It also requires the calculation of a Bessel

function for each pixel with a significant psf contribution.

Experience shows that the evaluation of these Bessel func-

tions is by far the most computationally expensive part of

TkBD algorithms that use this likelihood.

Consider now the joint likelihood of the whole sensor im-

age. For compactness, the notation will omit the dependence

of the psf on the target state, omit the frame index k, and let

s = exp{jφ} with s⋆ its conjugate. This likelihood defines

a matched filter which can account for both spatially corre-

lated noise and the phase response of the psf. The derivation

of this likelihood is now presented.

The probability density of z when a target is present is

P (z|target, φ) =

1

|2πR|
1

2

exp

{

−
1

2
(z − sh)

H
R−1 (z − sh)

}

, (12)

and when a target is absent is

P (z|no target) =
1

|2πR|
1

2

exp

{

−
1

2
z

HR−1
z

}

, (13)

since n is Gaussian with covariance R.

Thus the likelihood ratio is

L(z|x, φ)

= exp

{

−
1

2
(z − sh)

H
R−1 (z − sh) +

1

2
z

HR−1
z

}

,

= exp

{

1

2
z

HR−1sh +
1

2
s⋆

h
HR−1

z −
1

2
s⋆

h
HR−1sh

}

,

= Λexp

{

1

2
szHR−1

h +
1

2
s⋆

h
HR−1

z

}

,

= Λexp

{

1

2
sξ⋆ +

1

2
s⋆ξ

}

, (14)

where

Λ ≡ exp

{

−
1

2
h

HR−1
h

}

,

ξ ≡ h
HR−1

z ≡ Ξexp{jθ}.

Algebraic manipulation yields

L(z|x, φ)

= Λ exp

{

1

2
(cos φ + j sin φ)ξ⋆ +

1

2
(cos φ − j sin φ)ξ

}

,

= Λexp

{

1

2
cos φ[ξ⋆ + ξ] +

1

2
j sin φ[ξ⋆ − ξ]

}

,

= Λexp

{

Ξcos φ cos θ + Ξsinφ sin θ

}

,

= Λexp

{

Ξcos(φ − θ)

}

. (15)

Marginalise over φ assuming a uniform distribution:

L(z|x) =

∫ 2π

0

L(z|x, φ)p(φ)dφ

=
Λ

2π

∫ 2π

0

exp

{

Ξcos(φ − θ)

}

dφ

= exp

{

−
1

2
h

HR−1
h

}

I0

(

∣

∣h
HR−1

z

∣

∣

)

(16)

If the noise is spatially uncorrelated with variance σ2,

then R is the identity matrix scaled by σ2 and the likelihood

simplifies to

L(z|x) = exp

{

−
h

H
h

2σ2

}

I0

(

∣

∣h
H
z

∣

∣

σ2

)

(17)

As with the envelope likelihood, the above expression is

implicitly dependent on the target amplitude. One way to

remove this dependence is to marginalise over it as in (11).

The likelihood expression is very similar to the envelope

likelihood except that whereas the envelope likelihood in-

cludes a product of Bessel functions, (17) has a single Bessel

function evaluated at the output of a matched filter. Because

evaluating the Bessel functions is the main computation cost

of many TkBD algorithms, one would expect a significant

speed improvement by using (17) instead of the envelope

likelihood. The key difference is that the matched filter form

includes the phase profile of the psf which is lost in the en-

velope likelihood. This extra information should lead to su-

perior performance.

4 State Posterior Recursion
The test TkBD algorithm is a discretised numerical ap-

proximation to the exact Bayesian posterior recursion. The

algorithm uses a fixed grid in the state space and propagates

the posterior probability mass of the target state over this

grid. The mode of the posterior is used as the estimate in
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this paper, since it is likely that the distribution will be multi-

modal, and the mean may be sensitive to distant low likeli-

hood modes.

The posterior pdf of the target state can be recursively

determined using the well known Bayesian relationship

p(xk|Zk) ∝ p(zk|xk)

∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1,

(18)

where Zk ≡ z1 . . . zk.

The estimator in this article uses a direct approximation

to (18) based on a discretisation of the state space. Choose

a uniformly spaced set of states, X (which is not necessarily

related to the discrete measurement function) such that

xk(q, r, s, t) =
[

∆xq ∆x

T
r ∆ys

∆y

T
t Ik

]T

, (19)

for some integers q,r,s and t.
(18) can then be approximated by

p(xk|Zk) ≈ KL̄(zk|xk)
∑

xk−1∈X

p(xk|xk−1)p(xk−1|Zk−1),

(20)

where K is a normalising constant and

∑

x∈X

F (x) ≡
∞
∑

q=−∞

∞
∑

r=−∞

∞
∑

s=−∞

∞
∑

t=−∞

F

(

x(q, r, s, t)

)

.

(21)

The approximation is exact in the limit as X approaches

ℜ4 for non-negative continuous functions, as used here.

The first term in (20) is the intensity independent marginal

likelihood, defined by (11) and using either the envelope

likelihood or the matched likelihood.

The state evolution term in (20), p(xk|xk−1), is a four

dimensional matrix. The dynamics determines the centre of

the distribution, i.e. Fxk−1, and the shape is prescribed by

the probability mass of the process noise, vk, which is now

discrete on X . In order to minimise the computation burden

of (20), the probability mass of vk is assumed to be zero

outside a compact region centred on the origin.

The discrete state space is augmented with a null state,

∅, to indicate the possibility that there is no target. Denote

the probability of target death as Pd, and the probability of

target birth as Pb. Then the evolution probability in (20) is

given by

p(xk|xk−1) =



















1 − Pb xk = ∅,xk−1 = ∅,

Pd xk = ∅,xk−1 6= ∅,

Pb/|X | xk 6= ∅,xk−1 = ∅,

(1 − Pd)pv(ṽk) xk 6= ∅,xk−1 6= ∅,
(22)

where |X | is the number of discrete states in X , ṽk =
xk −Fxk−1 and pv(ṽk) is the process noise probability dis-

tribution (refer to section 2.1).

The parameters Pb and Pd are tuning parameters and may

be adjusted to optimise detection performance. The selec-

tion of the state space, X , is a trade-off between estima-

tion accuracy, which improves with finer resolution, and

computation requirement, which increases with |X |. The

process noise pmf also affects estimation accuracy, as well

as providing some capacity to handle model mismatch be-

tween the assumed target model and the true target mo-

tion. The algorithm is initialised with p(x0 = ∅) = 1 and

p(x0) = 0 ∀ x0 6= ∅.

Once the pdf of the state has been evaluated, a state esti-

mate can be obtained by selecting the state with the highest

probability. In the event that this state is the null state, then

the algorithm reports that there is no target. To account for

the case where the pdf has a peak that is spread over several

grid cells, the implementation used in this article finds the

highest probability non-null state and accumulates the prob-

ability in the adjacent cells. If the accumulated probability

is higher than the null state probability, then a detection is

reported.

In the experimental analysis, it will be seen that imple-

mentations of the Bayesian posterior recursion using the two

likelihood alternatives have substantially different computa-

tion costs. In order to remove the effects of implementation

efficiency, the computation cost of the algorithm is now con-

sidered analytically.

Assume that the state space X is a regular grid such that

|X | = AXAẊ , where AX is the number of position states

in X and AẊ is the number of velocity states. Let V denote

the number of elements of X for which the process noise has

a non-zero probability mass.

The likelihood is independent of the target speed and so

an efficient implementation requires AX likelihood calcula-

tions, each of which has a cost CL.

For each state locale, (20) requires V products and accu-

mulates under the sum with a further two multiplies outside

the sum. Determining the scaling constant requires a sum

over the whole state space. Let C× and C+ denote the cost

of a multiplication and a sum respectively.

Thus the total cost of a single time slice of the estimator

is

C = AXCL + AXAẊC+

+ AXAẊ

{

(V + 2)C× + V C+

}

,

≈ AXCL + AXAẊV (C× + C+) , (23)

since V ≫ 1.

If the state space has a fixed physical extent in space and

velocity and a symmetrical sampling spatial frequency fs

then the cost can be written as

C ≈ (fs)
2a1CL + (fs)

8a2 (C× + C+) , (24)

where a1 and a2 are constants whose value are a function of

the physical extent of the state space in position and velocity.

So the algorithm cost contains a term that has O(N2)
complexity in the grid resolution due to the likelihoods and a

term that has O(N8) complexity due to the dynamic model.

It is intuitive that the cost of calculating the envelope

likelihood is much higher than that of the matched likeli-

hood. Although the second term is high in complexity, it is
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amenable to pipeline processing and may be relatively cheap

for problems over a small spatial area.

5 Performance Evaluation

Bayesian algorithms constructed using the two likelihood

functions are now compared via Monte Carlo simulation.

The test scenarios consist of a small surveillance volume

containing either a single straight line target, or no target.

Although the straight line target assumption is rather limit-

ing, this paper is focussed on the measurement model, not

the target dynamics, so there is no requirement for more

challenging targets.

A TkBD algorithm is primarily a detector that exploits

a target dynamics model to achieve integration gain. There-

fore the most important measure of performance is how well

the algorithm discriminates between the presence and the

absence of a target. Of secondary interest is the processing

resource required to employ the algorithm. This quantity is

highly dependent on the implementation. However, the vari-

ation in implementation cost should reflect the complexity

model described above. The estimation error is also of in-

terest, although it is much less important than the detection

performance and processing cost.

5.1 Simulation Details

The simulation scenario uses a 30×45 pixel scan with unit

variance complex normal noise. When present, the target

signature is the spectral response of a Hann window centred

at the target location. The target moves with a fixed speed of

1 pixels per frame. For each Monte Carlo trial a heading is

uniformly sampled between 0 degrees (East) and 45 degrees

(North-East).

The target state space was defined as the measurement

domain in the spatial dimensions and ±3 pixels per frame in

each velocity dimension. The resulting 4D state space has a

size of 30 × 7 × 45 × 7.

Scalloping loss may reduce the sensitivity of the algo-

rithm to a target that is located part way between sample

points, resulting in a potential variation in performance de-

pending on the relative position on the target with respect

to the grid. In order to average over this potential variation,

the initial target position for each Monte Carlo trial was ran-

domly sampled from the range 2.5 . . . 3 independently in X

and Y.

The Bayesian system model comprises a target dynam-

ics model, a measurement model, and a target birth-death

model. Of these, the measurement model is assumed to be

known, and the target model is assumed to be fixed. The

target model is specified by the process noise, which is as-

sumed zero outside of a 3×3×3×3 region with probability

0.7 at the origin and the remaining 0.3 spread equally over

the other 80 elements.

The parameters of the birth-death model are the probabil-

ity of new target birth and the probability of old target death.

For this comparison, it was found that using a very small

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

proportion of trials with false tracks

p
ro

p
o

rt
io

n
 o

f 
ta

rg
e

ts
 d

e
te

c
te

d

 

 

matched, 6dB matched, 3dB envelope, 6dB envelope, 3dB

Figure 1: Overall ROC

probability of death gave best performance for all birth prob-

abilities, so the probability of death was fixed at Pd = 10−5.

The probability of birth, Pb, was varied to trace out a Re-

ceiver Operating Characteristic (ROC) curve. For each value

of Pb, 100 Monte Carlo trials were performed with a target

present and 100 without a target.

5.2 Performance Measures and Results

Five Measures Of Performance (MOPs) were defined for

the comparison: overall ROC; per-scan ROC; per-scan de-

tection as a function of SNR; RMS position error and com-

putation resource.

For TkBD, the main focus is on detection of targets, thus

the first three measures are the most important. Of lesser in-

terest is the estimation accuracy and computation cost, pro-

vided that the latter is not unreasonably high.

When a target scenario was tested, the target was declared

detected on a particular scan if the TkBD algorithm pro-

duced an output track for that scan that was sufficiently close

to the true target location. The association gate used only the

target position and had a radius of 2 pixels.

5.2.1 Overall ROC

The proportion of targets detected is defined as the frac-

tion of Monte Carlo trials where the TkBD algorithm pro-

duced a track that was within the association gate of the tar-

get location for at least one scan. The proportion of trials

with false tracks is defined as the fraction of Monte Carlo

trials where the TkBD algorithm produced at least one false

track. This statistic only includes trials where there was no

target present.

The overall ROC was generated by plotting the proportion

of targets detected as a function of the proportion of trials

with false tracks. This MOP quantifies how well the differ-

ent likelihood ratios discriminate between data that contains

a target and data that does not.

Figure 1 shows the overall ROC curves for both of the

likelihood functions at target SNR values of 6dB and 3dB.
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Figure 2: Per-scan ROC

Both likelihood functions detect all targets at 6dB, even for

very low false alarm rates. At 3dB, the matched likelihood

still provides very good detection performance, detecting

approximately 95% of targets at very low false alarm. How-

ever, the envelope likelihood is unreliable at 3dB and only

detects around half of the targets. The matched likelihood

clearly provides superior overall detection performance.

5.2.2 Per-scan ROC

The overall ROC does not include any information about

how long the algorithm takes to detect a target, or how long

false tracks persist. In order to limit the number of MOPs

these considerations are summarised by empirically estimat-

ing the per-scan probability of detection and false alarm.

The per-scan proportion of targets detected is defined as

the fraction of scans where the TkBD algorithm produced a

track that was within the association gate of the target loca-

tion. An algorithm that quickly initiates a track and main-

tains the track will have a high per-scan proportion detected,

whereas one that has a long initiation delay or quickly di-

verges will have a low one.

The per-scan false track rate is defined as the average

number of false tracks reported by the TkBD algorithm per

scan. This statistic summarises both the number and length

of false tracks and is simply the ratio of the total number of

false reports from the TkBD output to the total number of

simulated frames.

The per-scan ROC was generated by plotting the per-scan

proportion detected as a function of the per-scan false track

rate and is shown in figure 2.

At 6dB, the matched likelihood per-scan proportion de-

tected is close to 0.95, reflecting that the algorithm estab-

lishes a track (on average) by the second scan. The envelope

likelihood has a slightly lower per-scan proportion detected,

reflecting a track establishment delay of around 2-3 scans at

6dB.

At 3dB, the matched likelihood per-scan proportion de-

tected is significantly lower than the overall proportion de-
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Figure 3: Per-scan detection as a function of SNR

tected. This indicates that the algorithm now takes a more

substantial time to establish track, on average 8 scans at low

false alarm rates. The envelope likelihood per-scan propor-

tion detected is less than half the overall proportion detected.

This is because many of the targets it detects produce only

short track segments.

As before, the matched likelihood is clearly superior.

5.2.3 Per-scan detection as a function of SNR

The ROC curves shown in figures 1 and 2 correspond to

two SNR values. For this MOP, the per-scan false track rate

was held fixed and the per-scan proportion of targets de-

tected was observed as a function of SNR. For this MOP

the birth probability was fixed to achieve 0.05 false reports

per scan.

The per-scan proportion detected is shown in figure 3.

It demonstrates that the improved detection ability of the

matched likelihood function is approximately equivalent to

a gain of 1.5 dB in signal power.

5.2.4 RMS position error

The two dimensional position error was averaged over

those frames when the target was detected. Figure 4 shows

the RMS error for each of the likelihoods as a function of

SNR. The probability of birth was again fixed to achieve

0.05 false reports per scan. The RMS error for the envelope

likelihood was only measured at 3 dB and above since there

are too few tracks to get reliable estimates below this.

As should be expected, the estimation error is lower when

the target SNR is higher. The RMS error of the matched

likelihood tracks is roughly equivalent to that of the enve-

lope likelihood at 2 dB higher SNR.

5.2.5 Computation resource

Table 1 gives the computation resource spent by the two

alternatives both in absolute CPU seconds and in relative

terms. Profiling the algorithm code using the envelope like-

lihood function showed that more than 90 percent of the cpu

time was spent in the likelihood calculation, at around 55
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Figure 4: RMS error (pixels) as a function of SNR

likelihood cpu time (s) cpu time (ratio)

envelope 39,100 11

matched 3,570 1

Table 1: Computation requirements

seconds per monte carlo trial. In contrast, the calculations

for the matched likelihood took only 1.4 seconds per trial,

on average. This reduction is partly due to the number of

Bessel function evaluations, which dropped by a factor of

approximately 20. However, additional gain was made due

to simplification of the inner loop in the Matlab code. This

additional gain is not likely to be reflected in an implementa-

tion of the algorithm using a lower level software language.

The nett result is approximately an order in magnitude speed

improvement in the total algorithm.

The difference in computation resource required for an

operational implementation of these algorithms would be

highly dependent on how the Bessel functions were evalu-

ated. If low-accuracy approximations to the likelihood were

found to be sufficient, then the speed difference may be

small. However, if higher accuracy Bessel evaluations were

required, the order of magnitude speed difference may be re-

alistic, since Matlab uses external optimised code to perform

this task.

6 Summary
This paper demonstrated that the performance of a

Bayesian Track-Before-Detect algorithm was significantly

improved by making use of the phase signature of the target

in addition to the amplitude signature. Intuitively, this phase

information may be incorporated by using a matched filter

tuned to the known complete point spread function of the

sensor. This matched filter is in addition to those that may

be used for range gating or other pre-tracker processing.

The use of phase information was found to be roughly

equivalent to a 1.5 dB improvement in signal power, com-

pared with the phase ignorant algorithm. The phase infor-

mation not only improved detection and estimation perfor-

mance, but also lead to a more efficient algorithm with an or-

der of magnitude lower computation resource requirements.
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