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1. Introduction 

Security Technical Implementation Guides (STIGs) released by the Defense Information 

Systems Agency (DISA) are used as a standard guideline for the configuration of information 

systems within the Department of Defense (DoD). A specific device can be tested for STIG 

compliance either manually by downloading the device’s configuration information and 

manually checking rules in the relevant STIG against the device or automatically by using 

Security Readiness Review Scripts (SRRS). SRRS are tools that have been specifically designed 

to automate as much of the STIG compliance validation process as possible, significantly 

speeding up the entire process as a result. According to DISA’s Information Assurance Support 

Environment (IASE), SRRS are available for ―all operating systems and databases that have 

STIGs, and Web servers using IIS (1).‖ SRRS cover the STIGs for a wide variety of devices, 

excluding one major device type, network devices. Commercial off-the-shelf (COTS) solutions 

for network device validation, while available, are difficult to find and are very expensive. There 

is currently no Government-off-the-shelf (GOTS) SRRS identified or made available by DISA 

for network devices. 

To remedy this situation, a project was launched with the goal of creating a program as proof of 

concept that a GOTS SRRS for network devices could be successfully implemented. The 

Network Device Checklist Automator (NDCA) is the result of that project. The program is able 

to apply rules created from a STIG for a specific network device to one or many configuration 

files for devices of that type. The program generates a report that includes all the necessary 

information on each rule in the STIG, allowing for an agent to quickly make a decision on 

compliance. Applicable sections of the configuration file are provided as output in the report for 

each rule, if such sections exist, and the program determines whether or not a rule is violated, if 

such a determination can be made by the NDCA. 

STIGs, upon which the NDCA program is based, are discussed at the outset of the report. Next, 

the two major portions of the NDCA program are covered. First is the NDCA program that 

includes a graphical user interface (GUI) for agent interaction and the second section covers the 

master rule set and checklists, which are directly related to DISA’s STIGs. When using the 

NDCA program, the agent chooses the master rule set and the specific checklist to perform its 

STIG compliance validation and generate reports. The rules are created based on information 

provided in the STIGs, with additional components based directly on regular expressions 

(Regex). The report goes on to outline the compliance validation report file that is created by the 

NDCA program, and ends with a discussion of ways that the program can be enhanced in the 

future. 
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2. Security Technical Implementation Guide (STIG) 

2.1 STIGs 

STIGs, created by DISA, are used as guidelines for secure configuration of Government 

information systems. Each STIG begins with a title page, as shown in figure 1, which includes 

the device covered by the STIG, the version number, the release date, and other pertinent 

information. Following the title page, the STIG lists each rule that must be adhered to by the 

targeted device to ensure network security. Figure 2 shows a sample rule from a STIG. Each 

STIG follows the same format, and the rules defined in each share a universal numbering system. 

This means that if the same rule is applicable to different versions of a device or multiple 

devices, portions of the rule (including the Group ID, Group Title, and Vulnerability Discussion 

fields) will be the same for all STIGs in which the rule appears. The Group ID, Group Title, 

Severity, Vulnerability Discussion, and Check Content fields from each STIG rule are used to 

create rules in the master rule set. 

 

Figure 1.  Sample STIG title page. 
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Figure 2.  Sample STIG rule. 

3. GUI 

A simple and intuitive GUI is essential to a universally accessible program (figure 3). We made 

the main process as autonomous as possible; it only asks the user for a few key pieces of data 

before generating the report.  

 

Figure 3.  Splash screen from program start. 
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If the master rule set is not in the same directory as the executable, the program will require the 

user to locate it before continuing (figure 4).  

 

Figure 4.  Warning that a master rule set is required to use the program. 

The first time the NDCA is run, the user must provide a NDCA checklist and the directory 

containing the configuration files (figure 5). This can be accomplished via the Sources tab at the 

top. 

 

Figure 5.  The main screen on a fresh load without any options selected. 

The user needs to select the destination of the report file, the checklist of rules specific for the 

device the user wants to audit, and a directory where one or more configuration files is located 

(figure 6). There is also support for filtering files so that only dumps appear. 
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Figure 6.  Sources tab with options selected. 

The built-in file browser enables easy file and folder selection (figure 7). 

 

Figure 7.  Generic file browser for choosing options. 

At that point, users can select which configuration files they wish to include via checkboxes, and 

then click the button to generate the report (figure 8). 
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Figure 8.  Main screen with options selected, ready to run. 

The NDCA pulls in the configuration files selected and runs them all against the rule set in 

batches before pushing the results out to a report (figures 9 and 10). 

 

Figure 9.  Main screen while generating a report. 
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Figure 10.  Main Screen after completion of the report. 

One important distinction between the master rule set and the checklists is that an inability to 

completely parse the master rule set results in failure, while checklists can recover from small 

errors by ignoring lines. We chose to put tighter restrictions on the master rule set because any 

errors would propagate to all reports and checklists, while a single checklist can only influence a 

single report. It is important to note that all errors are reported, so the user is always aware if 

there is an issue, even if it does not result in a failure.  

The report includes statistics about individual configurations and about the group as a whole. By 

default, the report is stored in the same location as the executable, under the name 

―summary<date>.xml.‖ The date is an eight-digit number corresponding to the date on the host 

computer, in the format ―ddmmyyyy.‖ The NDCA also has a strict protocol that prevents it from 

overwriting or editing files that it did not create; consequently, it will add a number to the end of 

the filename if the target file already exists. This feature protects reports and configuration files 

from accidental loss or damage. 

The NDCA currently only supports loading one device’s checklist file at a time, as there is no 

simple way to determine which configuration files are from which devices. It would not be 

difficult to add support for multiple checklist files at once, but it would require that something be 

added to the configuration files to denote the device from which the files have been dumped. At 

his point, we decided that it was important for the NDCA to be compatible with current 

collection methods since it is still a supplement to the auditing process.  

Whenever the program is closed, it takes a few seconds to store its state and user selections to a 

file, which is loaded on subsequent runs. This is done through a process called serialization, 

which converts objects to and from data streams. This means that it may only be necessary to 

make changes to the default settings once. 
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4. Rule Sets 

The initial design of the rule set was to give each device a file that would contain all the 

information required to do the check. In this way, they would be self-contained and modular. 

However, when creating these files, we noticed that many of the rule sets have a high degree of 

overlap between devices, with little if any change between instances. Because of this discovery, 

we decided to change to a database model. Instead of making a complete file for each device, the 

bulk of the information is now stored in a universal database file, referred to as the master rule 

set, and the individual device files, known as checklists, contain only references to this 

repository. The main benefit to this is that we only need to write a rule once and can then 

reference it in as many rule sets as we want, saving time in rule set development and storage 

space by eliminating redundancy. The decision to shift to a central rule repository also has the 

side-effect of propagating any changes made to an entry instantly to all affected rule sets. This 

allows us to make updates or improvements once and use them many times. This paradigm also 

reduces system maintenance and increases the accuracy by ensuring that all checks are done 

using identical rule implementations. Lastly, the user experience changed so that the initial load 

on program start is long (when the master rule set is loaded), but individual device rule sets load 

almost instantaneously (since they contain only pointers). The first implementation had a quick 

program launch, but changing between device rule sets caused the program to hang noticeably as 

it reparsed each rule. 

4.1 Master Rule Set 

Currently, the master rule set is a plain-text file that stores a complete version of all the rules 

included in the various STIGs for network devices. It acts as a central database of rules, allowing 

changes to a rule to propagate easily across all related STIGs. The master rule set is split into two 

sections, flags and rules. Flags are used by the NDCA program to distinguish between multiple 

versions of a rule. If two or more devices share a rule, a distinct version of the rule must be 

created for each instance based on the device’s unique configuration file. By setting a flag for the 

rule, the NDCA can distinguish which version of the rule to use based on the checklist that is 

chosen by the operator. 

At the beginning of the master rule set file is the header #Flags, as shown in figure 11. 

Underneath this header is the flag hierarchy. Each flag is related to its ―parent‖ flag in the form 

child→parent, which allows the NDCA program to locate a version of the relevant rule in all 

instances. If the version of a rule referenced by a flag does not exist, the program looks for a 

version of the rule referenced by the flag’s parent. If that version does not exist, the process 

repeats for the parent’s parent and so on until a valid version of the rule is found. Flags that do 

not have a parent defined in the flags field automatically have the default, non-flagged version of 



 

9 

the rule as their parent. In this manner, the program ensures that all rules are checked against the 

most relevant version of each rule that is available. 

 

Figure 11.  Example of a master rule set. 

The second section of the master rule set begins with the #Rules header. This section of the file 

defines each rule in a specific format (as shown in figure 11). Each rule, or each version of a 

rule, begins with several fields that are required for every rule every time. The first field is one of 

two words, alert or require. Alert indicates that the NDCA should consider a rule violated if a 

specific line (or lines) of text is found in the configuration file. Require indicates that the NDCA 
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will consider a rule violated if a specific line (or lines) of text does not appear in the 

configuration file, i.e., the specified line of text is required to appear in the configuration file. 

Rules that cannot be determined to pass/fail based on text in the configuration file, such as those 

rules requiring the agent to interview the system administrator (SA), still must have either alert 

or require at the beginning of the rule, but it does not matter which one is chosen.  

Following alert/require is the rule number, identified as the Group ID in the STIG. This is 

followed by a single digit, 1, 2, or 3, to indicate whether the rule is of category (CAT) I, II, or III 

severity level. The final required field is the flag field, used to indicate the flag, or device 

version, to which the rule is intended to apply. Note: The flag field is left blank for the default 

version of any rule. The remaining fields are optional based on what information is necessary for 

a particular rule or rule version. A completed rule should have the following format: 

<alert|require> <Group ID> <Severity> [<flag>] ([Desc:―<field text>‖;] [Disc:―<field text>‖;] 

[Check:―<field text>‖;] [Regex:―<field text>‖;] [Capture:―<field text>‖;]) 

The optional fields portion of a rule is enclosed in parentheses (), and each optional field begins 

with the field name followed by a colon followed by the field text enclosed in quotation marks 

and completed by a semicolon, e.g., Desc:―field text‖;. The fields that can be included in the 

optional portion of a rule are the following:  

• Desc: This field is always included and corresponds to the Group Title in the STIG.  

• Disc: This field is always included and corresponds to the Vulnerability Discussion in the 

STIG. 

• Check: This field is optional and is used for text that is included in the Check Content 

portion of the STIG. 

• Regex: This field is optional and provides the NDCA with a Regex pattern used to 

determine whether a rule passes or fails. 

• Capture: This field is optional and provides the NDCA with a second Regex pattern used to 

determine which lines of the configuration file are applicable to the rule.  

The file is ended with the flag #End, once all rules have been entered. 

Since it is possible for the same rule to be applicable across multiple STIGs, there is only one 

instance of the master rule set, which contains all possible instances of any rule. This allows 

updates to rules to be made once and propagate instantly across multiple devices. 

4.2 Checklists 

Though all rules are kept in a central repository, the master rule set, it is still necessary to 

determine which subset of these rules applies to a particular device. This is accomplished by 

using checklists. Each checklist is a plain-text file, following the same format as the master rule 
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set, that lists information pertinent to a specific device. A sample checklist is shown in figure 12. 

The first field on every checklist is #Device. Underneath that line is the name of the device, 

based on the device name in the title of the STIG. The next line is #Flag, which differs slightly 

from the #Flags field in the master rule set. In the checklist, only one flag is listed, which 

indicates the first version of each rule that the NDCA should try to find. This flag is applied to 

every rule, after which the NDCA looks for ―parent‖ versions of the rule until a valid rule 

version is found. The final section of each checklist is the #Rules section, which is a simple list 

of every rule number (Group ID) found in the STIG. It is important that the rule numbers in the 

checklist exactly match the rule numbers in the master rule set. In fact, the NDCA notifies the 

user if a particular rule number is not found in any form. Once all the rules are listed, each 

checklist must end with a #End line. 
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Figure 12.  Example of a checklist. 
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4.3 Regular Expressions 

The format of the rules themselves is inspired by Snort, a popular intrusion detection system 

(IDS) program. Snort uses Regex to check network traffic for patterns that might denote a 

problem, and we use the same idea to find configuration settings that might cause a security hole. 

Each rule is designed to contain all the data auditors would need to perform an evaluation on the 

system, making NDCA reports the primary auditing reference. Rules also contain an optional 

field that displays data directly from the configuration files in the report alongside their rules to 

again speed up manual checking. 

The most important part of the NDCA is its use of Regex to match portions of a configuration 

file. Regex is how the NDCA determines pass/fail for a rule, and how it determines which 

portion(s) of a configuration file is related to each rule. Regex has specific rules that are used to 

create a ―pattern‖ that can be used to find a substring within a block of text. While some 

advanced Regex concepts vary slightly between programming languages, all use Regex in some 

form for pattern matching. The NDCA and the master rule set use Perl-style Regex to create 

matching patterns. Basic Regex patterns allow for the use of wildcards for one or multiple 

consecutive characters, exclusive-or logic, and specifying a range of characters to check for. For 

example, instead of writing several lines of code to locate text, a user can write one Regex string, 

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b, which would locate any e-mail addresses in the 

targeted text. With slight modifications, the same Regex pattern can be used by a programmer to 

check that a user’s input is a valid e-mail address. Regex is used in many applications, including 

text editors, command line text search functions (grep, egrep,…), programming compilers, and 

find/replace functions to speed the location of a specific pattern of text. Two Web sites, 

http://java.sun.com and http://www.regular-expressions.info, were invaluable sources of 

information on Regex throughout this project. 

In the Regex field of a rule, a pattern is created for a specific line in the configuration file (e.g.,  

ip cef). If that pattern appears in the configuration file, the NDCA is able to identify that line and 

take action based on whether the rule is an alert or require rule. The NDCA is also able to take 

action based on the rule if the line does not appear in the configuration file. A Regex can be 

difficult to craft since a small mistake in constructing a pattern can cause extremely unexpected 

results, and patterns often require creative methods to achieve the desired result. As a result, 

pattern creation for the master rule set should only be attempted by someone who is thoroughly 

trained in Regex in cooperation with a subject matter expert (SME) for the device covered by the 

STIG in question. 

The NDCA currently only supports a single pass system for reasons of simplicity and speed, 

which has worked out well for most rules. It is also important to note that this system is not 

perfect; some checks are not easily adapted to Regex, while others require conditional statements 

and multiple passes through the configuration file. Due to time constraints, we decided not to 

http://java.sun.com/
http://www.regular-expressions.info/
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implement these features, but have tried to make it as simple as possible to add support at a later 

time. 

5. Programming 

The program is structured with modularity and extensibility in mind. As illustrated in figure 13, 

the GUI front end collects the data from the user and does some preliminary checks for validity. 

When the user has met all the requirements for generating a report, the GUI packages up the data 

and sends it to a report generator, which runs in its own thread.  The report generator uses the 

architecture it has been given to pull in the rules as a RuleSet object. Finally, after parsing all the 

data, the report generator packages everything into an XMLWriter object, which generates the 

XML file and terminates the thread. The reason that we divided the program in this way was to 

make it as seamless as possible for later developers to change a module or put new plug-ins 

between existing nodes. The use of single information bundles as opposed to data streams also 

helps strengthen modularity and ensure a healthy dependence tree. 

 

Figure 13.  General control flow of program modules and data. 
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We decided that if the GUI crashed or was closed while the report generator was running, it 

would continue until it had completed its task. Since the program institutes a strict no-overwrite 

policy, it was considered unlikely that allowing the program to continue would cause any 

damage, but rather would make it more robust.   

6. XML Report 

Based on the success of similar projects, we decided to output findings in XML format so they 

could be displayed in a spreadsheet. The XML reports are generated manually and are very 

basic. We used other reports as a template to create our own spreadsheet that would display 

everything in a well-organized manner for the user. 

The first page in the workbook is the summary page (figure 14), which contains some basic 

statistics, such as the total number of flags, what level of rules were violated, and how many 

rules were violated at each level. We used colors and large print to make this page very visible 

and easily accessible.  
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Figure 14.  Summary page from generated XML report. 

The second page is a findings page (figure 15), which contains a list of all the rules in the 

checklist and their details. The purpose of this page is to provide a place to look up any 

additional data the auditor may require for manual rule checking or verifying the accuracy of the 

program.  
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Figure 15.  Excerpt from the findings page of the XML report. 

The third page is a breakdown of the configuration files that were scanned, and how many 

violations each had and how many checks must be done manually (figure 16). Our goal was to 

provide a way to quickly prioritize devices based on how vulnerable the program thinks they are.  
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Figure 16.  Excerpt from the systems page of the XML report. 

The last page is the most important one for the auditor and provides a complete breakdown of 

each file for each rule (figure 17). The rules are colored green or red, as determined by whether 

the file passed or failed the automated checks. Also under each rule are the excerpts from the file 

about which an auditor needs to make a decision, thus saving them from having to open each file 

individually. With a complete and well-written master rule set, users rarely need any other 

sources to do a complete analysis of system files. 



 

19 

 

Figure 17.  Excerpt from the details page of the XML report. 

7. Future Extensions 

As mentioned previously, this program is a prototype to show proof of concept and lay the 

groundwork for developing a more comprehensive SRRS for network auditing. During the 

process of creating the NDCA, we brainstormed many ideas and were unable to implement most 

of them because they were beyond the scope of the project or because there was insufficient 

time. The following are several of the best and potentially most useful extensions. 
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1. Development of additional checklists and rules—This is the most fundamental and 

important extension. Developing rules takes a non-trivial amount of time, and includes 

transcribing, testing, and debugging. The checklists are then simpler, but also require 

validation when applied to a real device, which may lead to the discovery of further 

refinements to the rules. It has taken several weeks to generate our current rule set. That 

time included several revisions as well as learning how the devices work with our evolving 

process. In order for the master rule set to achieve maximum effectiveness, the Regex and 

capture statements for each rule need to be written by a SME in coordination with a Regex 

expert. In this way, the SME can precisely identify the lines of a configuration file that are 

applicable to a specific rule, and the Regex expert can craft the exact pattern necessary to 

extract the identified lines. As an example, we initially created the master rule set with no 

input from an SME. We were able to create rules that would make a pass/fail determination 

or extract text for an estimated 25–30% of the rules in a STIG. Working with a Cisco SME 

for approximately 4 h, we were able to increase that percentage to roughly 45–50% for 

three STIGs. Given a sufficient amount of time and expertise, it is our opinion that those 

percentages could rise much higher, increasing the overall efficacy of the NDCA program. 

New checklists can introduce upwards of 100 rules, meaning that the time requirement can 

vary widely based on experience and size of the task. 

2. Adding new fields in the master rule set— The master rule set is designed with a great 

amount of flexibility, allowing new optional fields to be added at any time. If additional 

fields are added to the STIG format, or if current fields are deemed to be necessary for the 

report, a new optional field can be created for each rule. This new field would simply be 

ignored by the NDCA until such time as the program was modified to use the field in 

whatever manner was necessary. 

3. Machine learning—During the automated portion of the validation process, the machine 

has several opportunities to make a judgment call about whether it thinks a rule is 

implemented correctly. Currently, this is done simply using a Regex, but we believe that 

there is potential for artificial intelligence to make those decisions in the future. It could 

also be possible to implement training by allowing the program to take part in recording 

results and corrections from a professional audit.  

4. Further user interaction—A common theme while writing the rules was the desire for a 

few more pieces of information that only the user could provide. Allowing the user to 

specify information to be used in a pattern would allow greater flexibility in rule validation. 

The best example of this involves the Out of Band Management (OOBM) network. The IP 

address for the OOBM network varies for each location, whereas the rules that apply to the 

OOBM network in a STIG remain the same. If the IP address of the OOBM network is 

provided to the NDCA by the reviewing agent, these rules could be checked for 

compliance by the NDCA, and the applicable information could easily be provided to the 
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agent in the final report. We think that an additional rule field that could be used to ask the 

user questions would make an excellent extension.  

5. Support for multiple checklists simultaneously—The primary reason that we have not 

already included support for multiple checklists in a single report is that we have not found 

a way to differentiate between devices by looking at their configuration files alone. Our 

suggestion would be to have the team that collects the configuration files name them in 

such a way that the NDCA can tell exactly which checklist it should use. Currently, the 

NDCA can only produce a report that contains information on one type of device, requiring 

a different report for every variety of machine on the network. With this improvement, it 

would be possible to generate one comprehensive report for the entire network. 

6. Multipass logic—For the sake of simplicity and efficiency, the NDCA only performs 

single pass operations for checking regular expressions. Implementing support for multiple 

passes could greatly enrich the level of complexity that rule options can support by 

allowing rules to change their own behavior dynamically. For instance, it would be 

possible to implement conditionals and rules that make reference to results from other 

rules. As an example, the name of an access list could be extracted in the first pass, and 

then could be used in the second pass to find all statements involving that particular access 

list. Another example would involve determining if a specific service is activated on the 

device on the first pass, and, if found, using a second pass to capture information on how 

the device is configured. The biggest drawback, aside from the time required to implement 

such a system, is that it adds a great deal of overhead to the parsing and checking process. 

The developer would need to ameliorate some of the additional costs, or the program might 

become too slow for the average user. 

7. Automatic checklist generation—The most recent checklist update was released in XML 

format, which makes them more accessible to programs than the previous PDF releases. 

This means that it would be easier to develop a secondary program, which is capable of 

reading in the device checklists and creating NDCA format checklist. Such a program 

could reduce the workload and likelihood of errors greatly. 

8. Automatic rule generation—The idea of automatic rule generation is similar to checklist 

automation, but the secondary program requirements are much more complex, if not 

impossible. Ideally, a parser could copy plain text information fields to set up an outline for 

new rules, but it would almost certainly require a human to write the Regex and other 

supporting fields. This development would reduce the workload and help prevent duplicate 

rules, but could not eliminate the task completely. 
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9. Further refinements to the report: The following are suggested for refining the report: 

• Several cells in the report are grouped and meant to show information about a single 

device or rule. These cells could be collapsed by default or put into an expandable tree 

format to reduce the size of the report on the screen. 

• Whenever a capture field or other Regex puts an IP address into the report, it could be 

useful to also include a ―whois‖ lookup alongside it. Auditors would then have access 

to knowledge, such as the country of origin, without having to go to another source. 

• Currently, all fields are static and do not reflect changes to other parts of the report. It 

would be a nice feature if the summary pages reflected the results of manual entries or 

corrections to the detailed output. For example, if the user decides that the program had 

a false positive, they could change it to a pass and the summary page would decrement 

the warnings and increment the number of passed rules. 

10. Further refinements to the GUI—We have developed and justified the design of the 

GUI, but our user testing has been minimal due to time and resource constraints. The 

interface should be tested with a wide array of users of various technical backgrounds, and 

then adjusted based on feedback. The goal is to make the NDCA as accessible as possible 

so that it will be used to secure more network devices. 

11. Password hash checker—Password hashes are often kept in the configuration files 

alongside user accounts. It would be useful to add a rudimentary password hash cracker to 

ensure that default or easily cracked passwords are not in use. This would be a modular 

extension that does not require rule sets; it simply does a single pass through the file and 

attempts a quick crack on any hashes it encounters. It could then raise a notification if it 

discovers any weaknesses.  

12. XML macros—A further extension to the reporting process would be to add macros and 

other functionality that makes the data itself more accessible to other interested parties. For 

instance, a macro could be designed that copies all of the relevant data and auditing results 

into a formal report that can be distributed to non-technical personnel. Another such 

addition would be to allow the final auditor to certify their work by attaching a digital 

signature using their common access card (CAC). Most improvements like this would 

simply require a developer who is familiar with XML to construct the macros and then add 

the code to the hard coded section of the XML report generator. 
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8. Conclusion 

The goal of this project was to create a framework for automating a time-consuming and tedious 

process. We feel that we have reached this goal by showing proof of concept on a subset of 

devices that automation is possible to a certain degree. We are planning to collaborate with other 

DoD components to develop this project into a Government standard, and hopefully transition 

this project to other agencies. The current implementation can collate data for several types of 

network devices, and it provides meaningful guidance for the auditors of the devices on which 

we have chosen to focus. Further development of existing rule sets, as well as the creation of 

several more by SMEs, would fully realize the usefulness of the product by improving efficiency 

and accuracy. We feel that the Government needs the extra security that this product can bring to 

our network infrastructure, and anything that decreases our vulnerability helps the Soldiers that 

these systems support.  
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List of Symbols, Abbreviations, and Acronyms 

CAT category 

COTS  commercial off-the-shelf 

DISA  Defense Information Systems Agency 

DoD  Department of Defense 

GOTS  Government off-the-shelf 

GUI  graphical user interface 

IASE Information Assurance Support Environment 

IDS intrusion detection system 

NDCA  Network Device Checklist Automator 

OOBM  Out of Band Management 

Regex  regular expressions 

SA  System Administrator 

SME subject matter expert 

SRRS  Security Readiness Review Script 

STIG  Security Technical Implementation Guide 
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NO. OF 

COPIES ORGANIZATION 

 

 1 ADMNSTR 

 ELEC DEFNS TECHL INFO CTR 

  ATTN  DTIC OCP 

  8725 JOHN J KINGMAN RD STE 0944 

  FT BELVOIR VA 22060-6218 

 

 1 CD OFC OF THE SECY OF DEFNS 

  ATTN  ODDRE (R&AT)  

  THE PENTAGON 

  WASHINGTON DC 20301-3080 

 

 1 US ARMY RSRCH DEV AND ENGRG  

  CMND 

  ARMAMENT RSRCH DEV & ENGRG  

  CTR 

  ARMAMENT ENGRG & TECHNLGY  

  CTR 

  ATTN  AMSRD AAR AEF T   

  J  MATTS 

  BLDG 305 

  ABERDEEN PROVING GROUND MD  

  21005-5001 

 

 1 PM TIMS, PROFILER (MMS-P)  

  AN/TMQ-52 

  ATTN  B  GRIFFIES  

  BUILDING 563 

  FT MONMOUTH NJ 07703 

 

 1 US ARMY INFO SYS ENGRG CMND 

  ATTN  AMSEL IE TD  A  RIVERA 

  FT HUACHUCA AZ 85613-5300 

 

 1 COMMANDER 

  US ARMY RDECOM 

  ATTN  AMSRD AMR   

  W C  MCCORKLE 

  5400 FOWLER RD 

  REDSTONE ARSENAL AL 35898-5000 

 

 1 US GOVERNMENT PRINT OFF 

  DEPOSITORY RECEIVING SECTION 

  ATTN  MAIL STOP IDAD  J  TATE 

  732 NORTH CAPITOL ST NW 

  WASHINGTON DC 20402 

 

 3 AARON P.  HILTGEN 

  14017 MANDERSON PLAZA #101 

  OMAHA NE 68164 

 

 3 DONALD A.  BENNETT 

  10013 S. IRVINGTON AVE 

  TULSA OK 74137 

NO. OF 

COPIES ORGANIZATION 

 

 1 US ARMY RSRCH LAB 

  ATTN  RDRL CIM G  T  LANDFRIED 

  BLDG 4600 

  ABERDEEN PROVING GROUND MD  

  21005-5066 

 

 3 US ARMY RSRCH LAB 

  ATTN  IMNE ALC HRR  

  MAIL & RECORDS MGMT 

  ATTN  RDRL CIM L TECHL LIB 

  ATTN  RDRL CIM P TECHL PUB 

  ADELPHI MD 20783-1197 

 

TOTAL:  17 (1 ELEC, 1 CD, 15 HCS) 
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