

Network Device Checklist Automator

by Donald A. Bennett and Aaron P. Hiltgen

ARL-TR-5394 November 2010

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5394 November 2010

Network Device Checklist Automator

Donald A. Bennett and Aaron P. Hiltgen

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2010

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

May 24 to August 2010

4. TITLE AND SUBTITLE

Network Device Checklist Automator

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Donald A. Bennett and Aaron P. Hiltgen

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIN-S

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-5394

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Department of Defense (DoD) 8500 series mandates that all agencies implement the Security Technical Implementation

Guides (STIGs) released by the Defense Information Systems Agency (DISA) to protect information systems against attackers

and misuse. Agencies are required to perform regular checks on all their systems for compliance with these regulations. To

make the STIG compliance validation process easier, the DoD allows the use of Security Readiness Review Scripts (SRRS),

which automatically perform many checks, allowing auditors to focus attention on critical areas. Per the DoD, network

devices are the most critical, but to date there are no commonly available Government automation tools for network devices

such as routers, firewalls, switches, and intrusion detection systems (IDSs). Without sufficient support, many of these devices

are running with little or no checking. The Network Device Checklist Automator (NDCA) seeks to become the first SRRS for

network devices and provide the groundwork for future development. Our goal is to create a framework and implement full

support for a few devices to demonstrate proof of concept in hopes of transitioning the project to other organizations for

further evaluation and testing, and eventual implementation by all sections of the DoD tasked with ensuring network device

STIG compliance.

15. SUBJECT TERMS

Security Technical Information Guide, Security Readiness Review Scripts

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
 OF

 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

32

19a. NAME OF RESPONSIBLE PERSON

Donald A. Bennett

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-5496

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Security Technical Implementation Guide (STIG) 2

2.1 STIGs...2

3. GUI 3

4. Rule Sets 8

4.1 Master Rule Set ...8

4.2 Checklists ..10

4.3 Regular Expressions ..13

5. Programming 14

6. XML Report 15

7. Future Extensions 19

8. Conclusion 23

List of Symbols, Abbreviations, and Acronyms 24

Distribution List 25

iv

List of Figures

Figure 1. Sample STIG title page. ..2

Figure 2. Sample STIG rule. ...3

Figure 3. Splash screen from program start. ...3

Figure 4. Warning that a master rule set is required to use the program.4

Figure 5. The main screen on a fresh load without any options selected.4

Figure 6. Sources tab with options selected. ...5

Figure 7. Generic file browser for choosing options. ...5

Figure 8. Main screen with options selected, ready to run. ..6

Figure 9. Main screen while generating a report. ...6

Figure 10. Main Screen after completion of the report. ..7

Figure 11. Example of a master rule set. ..9

Figure 12. Example of a checklist. ..12

Figure 13. General control flow of program modules and data. ...14

Figure 14. Summary page from generated XML report. ..16

Figure 15. Excerpt from the findings page of the XML report. ..17

Figure 16. Excerpt from the systems page of the XML report. ..18

Figure 17. Excerpt from the details page of the XML report. ..19

1

1. Introduction

Security Technical Implementation Guides (STIGs) released by the Defense Information

Systems Agency (DISA) are used as a standard guideline for the configuration of information

systems within the Department of Defense (DoD). A specific device can be tested for STIG

compliance either manually by downloading the device’s configuration information and

manually checking rules in the relevant STIG against the device or automatically by using

Security Readiness Review Scripts (SRRS). SRRS are tools that have been specifically designed

to automate as much of the STIG compliance validation process as possible, significantly

speeding up the entire process as a result. According to DISA’s Information Assurance Support

Environment (IASE), SRRS are available for ―all operating systems and databases that have

STIGs, and Web servers using IIS (1).‖ SRRS cover the STIGs for a wide variety of devices,

excluding one major device type, network devices. Commercial off-the-shelf (COTS) solutions

for network device validation, while available, are difficult to find and are very expensive. There

is currently no Government-off-the-shelf (GOTS) SRRS identified or made available by DISA

for network devices.

To remedy this situation, a project was launched with the goal of creating a program as proof of

concept that a GOTS SRRS for network devices could be successfully implemented. The

Network Device Checklist Automator (NDCA) is the result of that project. The program is able

to apply rules created from a STIG for a specific network device to one or many configuration

files for devices of that type. The program generates a report that includes all the necessary

information on each rule in the STIG, allowing for an agent to quickly make a decision on

compliance. Applicable sections of the configuration file are provided as output in the report for

each rule, if such sections exist, and the program determines whether or not a rule is violated, if

such a determination can be made by the NDCA.

STIGs, upon which the NDCA program is based, are discussed at the outset of the report. Next,

the two major portions of the NDCA program are covered. First is the NDCA program that

includes a graphical user interface (GUI) for agent interaction and the second section covers the

master rule set and checklists, which are directly related to DISA’s STIGs. When using the

NDCA program, the agent chooses the master rule set and the specific checklist to perform its

STIG compliance validation and generate reports. The rules are created based on information

provided in the STIGs, with additional components based directly on regular expressions

(Regex). The report goes on to outline the compliance validation report file that is created by the

NDCA program, and ends with a discussion of ways that the program can be enhanced in the

future.

2

2. Security Technical Implementation Guide (STIG)

2.1 STIGs

STIGs, created by DISA, are used as guidelines for secure configuration of Government

information systems. Each STIG begins with a title page, as shown in figure 1, which includes

the device covered by the STIG, the version number, the release date, and other pertinent

information. Following the title page, the STIG lists each rule that must be adhered to by the

targeted device to ensure network security. Figure 2 shows a sample rule from a STIG. Each

STIG follows the same format, and the rules defined in each share a universal numbering system.

This means that if the same rule is applicable to different versions of a device or multiple

devices, portions of the rule (including the Group ID, Group Title, and Vulnerability Discussion

fields) will be the same for all STIGs in which the rule appears. The Group ID, Group Title,

Severity, Vulnerability Discussion, and Check Content fields from each STIG rule are used to

create rules in the master rule set.

Figure 1. Sample STIG title page.

3

Figure 2. Sample STIG rule.

3. GUI

A simple and intuitive GUI is essential to a universally accessible program (figure 3). We made

the main process as autonomous as possible; it only asks the user for a few key pieces of data

before generating the report.

Figure 3. Splash screen from program start.

4

If the master rule set is not in the same directory as the executable, the program will require the

user to locate it before continuing (figure 4).

Figure 4. Warning that a master rule set is required to use the program.

The first time the NDCA is run, the user must provide a NDCA checklist and the directory

containing the configuration files (figure 5). This can be accomplished via the Sources tab at the

top.

Figure 5. The main screen on a fresh load without any options selected.

The user needs to select the destination of the report file, the checklist of rules specific for the

device the user wants to audit, and a directory where one or more configuration files is located

(figure 6). There is also support for filtering files so that only dumps appear.

5

Figure 6. Sources tab with options selected.

The built-in file browser enables easy file and folder selection (figure 7).

Figure 7. Generic file browser for choosing options.

At that point, users can select which configuration files they wish to include via checkboxes, and

then click the button to generate the report (figure 8).

6

Figure 8. Main screen with options selected, ready to run.

The NDCA pulls in the configuration files selected and runs them all against the rule set in

batches before pushing the results out to a report (figures 9 and 10).

Figure 9. Main screen while generating a report.

7

Figure 10. Main Screen after completion of the report.

One important distinction between the master rule set and the checklists is that an inability to

completely parse the master rule set results in failure, while checklists can recover from small

errors by ignoring lines. We chose to put tighter restrictions on the master rule set because any

errors would propagate to all reports and checklists, while a single checklist can only influence a

single report. It is important to note that all errors are reported, so the user is always aware if

there is an issue, even if it does not result in a failure.

The report includes statistics about individual configurations and about the group as a whole. By

default, the report is stored in the same location as the executable, under the name

―summary<date>.xml.‖ The date is an eight-digit number corresponding to the date on the host

computer, in the format ―ddmmyyyy.‖ The NDCA also has a strict protocol that prevents it from

overwriting or editing files that it did not create; consequently, it will add a number to the end of

the filename if the target file already exists. This feature protects reports and configuration files

from accidental loss or damage.

The NDCA currently only supports loading one device’s checklist file at a time, as there is no

simple way to determine which configuration files are from which devices. It would not be

difficult to add support for multiple checklist files at once, but it would require that something be

added to the configuration files to denote the device from which the files have been dumped. At

his point, we decided that it was important for the NDCA to be compatible with current

collection methods since it is still a supplement to the auditing process.

Whenever the program is closed, it takes a few seconds to store its state and user selections to a

file, which is loaded on subsequent runs. This is done through a process called serialization,

which converts objects to and from data streams. This means that it may only be necessary to

make changes to the default settings once.

8

4. Rule Sets

The initial design of the rule set was to give each device a file that would contain all the

information required to do the check. In this way, they would be self-contained and modular.

However, when creating these files, we noticed that many of the rule sets have a high degree of

overlap between devices, with little if any change between instances. Because of this discovery,

we decided to change to a database model. Instead of making a complete file for each device, the

bulk of the information is now stored in a universal database file, referred to as the master rule

set, and the individual device files, known as checklists, contain only references to this

repository. The main benefit to this is that we only need to write a rule once and can then

reference it in as many rule sets as we want, saving time in rule set development and storage

space by eliminating redundancy. The decision to shift to a central rule repository also has the

side-effect of propagating any changes made to an entry instantly to all affected rule sets. This

allows us to make updates or improvements once and use them many times. This paradigm also

reduces system maintenance and increases the accuracy by ensuring that all checks are done

using identical rule implementations. Lastly, the user experience changed so that the initial load

on program start is long (when the master rule set is loaded), but individual device rule sets load

almost instantaneously (since they contain only pointers). The first implementation had a quick

program launch, but changing between device rule sets caused the program to hang noticeably as

it reparsed each rule.

4.1 Master Rule Set

Currently, the master rule set is a plain-text file that stores a complete version of all the rules

included in the various STIGs for network devices. It acts as a central database of rules, allowing

changes to a rule to propagate easily across all related STIGs. The master rule set is split into two

sections, flags and rules. Flags are used by the NDCA program to distinguish between multiple

versions of a rule. If two or more devices share a rule, a distinct version of the rule must be

created for each instance based on the device’s unique configuration file. By setting a flag for the

rule, the NDCA can distinguish which version of the rule to use based on the checklist that is

chosen by the operator.

At the beginning of the master rule set file is the header #Flags, as shown in figure 11.

Underneath this header is the flag hierarchy. Each flag is related to its ―parent‖ flag in the form

child→parent, which allows the NDCA program to locate a version of the relevant rule in all

instances. If the version of a rule referenced by a flag does not exist, the program looks for a

version of the rule referenced by the flag’s parent. If that version does not exist, the process

repeats for the parent’s parent and so on until a valid version of the rule is found. Flags that do

not have a parent defined in the flags field automatically have the default, non-flagged version of

9

the rule as their parent. In this manner, the program ensures that all rules are checked against the

most relevant version of each rule that is available.

Figure 11. Example of a master rule set.

The second section of the master rule set begins with the #Rules header. This section of the file

defines each rule in a specific format (as shown in figure 11). Each rule, or each version of a

rule, begins with several fields that are required for every rule every time. The first field is one of

two words, alert or require. Alert indicates that the NDCA should consider a rule violated if a

specific line (or lines) of text is found in the configuration file. Require indicates that the NDCA

10

will consider a rule violated if a specific line (or lines) of text does not appear in the

configuration file, i.e., the specified line of text is required to appear in the configuration file.

Rules that cannot be determined to pass/fail based on text in the configuration file, such as those

rules requiring the agent to interview the system administrator (SA), still must have either alert

or require at the beginning of the rule, but it does not matter which one is chosen.

Following alert/require is the rule number, identified as the Group ID in the STIG. This is

followed by a single digit, 1, 2, or 3, to indicate whether the rule is of category (CAT) I, II, or III

severity level. The final required field is the flag field, used to indicate the flag, or device

version, to which the rule is intended to apply. Note: The flag field is left blank for the default

version of any rule. The remaining fields are optional based on what information is necessary for

a particular rule or rule version. A completed rule should have the following format:

<alert|require> <Group ID> <Severity> [<flag>] ([Desc:―<field text>‖;] [Disc:―<field text>‖;]

[Check:―<field text>‖;] [Regex:―<field text>‖;] [Capture:―<field text>‖;])

The optional fields portion of a rule is enclosed in parentheses (), and each optional field begins

with the field name followed by a colon followed by the field text enclosed in quotation marks

and completed by a semicolon, e.g., Desc:―field text‖;. The fields that can be included in the

optional portion of a rule are the following:

• Desc: This field is always included and corresponds to the Group Title in the STIG.

• Disc: This field is always included and corresponds to the Vulnerability Discussion in the

STIG.

• Check: This field is optional and is used for text that is included in the Check Content

portion of the STIG.

• Regex: This field is optional and provides the NDCA with a Regex pattern used to

determine whether a rule passes or fails.

• Capture: This field is optional and provides the NDCA with a second Regex pattern used to

determine which lines of the configuration file are applicable to the rule.

The file is ended with the flag #End, once all rules have been entered.

Since it is possible for the same rule to be applicable across multiple STIGs, there is only one

instance of the master rule set, which contains all possible instances of any rule. This allows

updates to rules to be made once and propagate instantly across multiple devices.

4.2 Checklists

Though all rules are kept in a central repository, the master rule set, it is still necessary to

determine which subset of these rules applies to a particular device. This is accomplished by

using checklists. Each checklist is a plain-text file, following the same format as the master rule

11

set, that lists information pertinent to a specific device. A sample checklist is shown in figure 12.

The first field on every checklist is #Device. Underneath that line is the name of the device,

based on the device name in the title of the STIG. The next line is #Flag, which differs slightly

from the #Flags field in the master rule set. In the checklist, only one flag is listed, which

indicates the first version of each rule that the NDCA should try to find. This flag is applied to

every rule, after which the NDCA looks for ―parent‖ versions of the rule until a valid rule

version is found. The final section of each checklist is the #Rules section, which is a simple list

of every rule number (Group ID) found in the STIG. It is important that the rule numbers in the

checklist exactly match the rule numbers in the master rule set. In fact, the NDCA notifies the

user if a particular rule number is not found in any form. Once all the rules are listed, each

checklist must end with a #End line.

12

Figure 12. Example of a checklist.

13

4.3 Regular Expressions

The format of the rules themselves is inspired by Snort, a popular intrusion detection system

(IDS) program. Snort uses Regex to check network traffic for patterns that might denote a

problem, and we use the same idea to find configuration settings that might cause a security hole.

Each rule is designed to contain all the data auditors would need to perform an evaluation on the

system, making NDCA reports the primary auditing reference. Rules also contain an optional

field that displays data directly from the configuration files in the report alongside their rules to

again speed up manual checking.

The most important part of the NDCA is its use of Regex to match portions of a configuration

file. Regex is how the NDCA determines pass/fail for a rule, and how it determines which

portion(s) of a configuration file is related to each rule. Regex has specific rules that are used to

create a ―pattern‖ that can be used to find a substring within a block of text. While some

advanced Regex concepts vary slightly between programming languages, all use Regex in some

form for pattern matching. The NDCA and the master rule set use Perl-style Regex to create

matching patterns. Basic Regex patterns allow for the use of wildcards for one or multiple

consecutive characters, exclusive-or logic, and specifying a range of characters to check for. For

example, instead of writing several lines of code to locate text, a user can write one Regex string,

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b, which would locate any e-mail addresses in the

targeted text. With slight modifications, the same Regex pattern can be used by a programmer to

check that a user’s input is a valid e-mail address. Regex is used in many applications, including

text editors, command line text search functions (grep, egrep,…), programming compilers, and

find/replace functions to speed the location of a specific pattern of text. Two Web sites,

http://java.sun.com and http://www.regular-expressions.info, were invaluable sources of

information on Regex throughout this project.

In the Regex field of a rule, a pattern is created for a specific line in the configuration file (e.g.,

ip cef). If that pattern appears in the configuration file, the NDCA is able to identify that line and

take action based on whether the rule is an alert or require rule. The NDCA is also able to take

action based on the rule if the line does not appear in the configuration file. A Regex can be

difficult to craft since a small mistake in constructing a pattern can cause extremely unexpected

results, and patterns often require creative methods to achieve the desired result. As a result,

pattern creation for the master rule set should only be attempted by someone who is thoroughly

trained in Regex in cooperation with a subject matter expert (SME) for the device covered by the

STIG in question.

The NDCA currently only supports a single pass system for reasons of simplicity and speed,

which has worked out well for most rules. It is also important to note that this system is not

perfect; some checks are not easily adapted to Regex, while others require conditional statements

and multiple passes through the configuration file. Due to time constraints, we decided not to

http://java.sun.com/
http://www.regular-expressions.info/

14

implement these features, but have tried to make it as simple as possible to add support at a later

time.

5. Programming

The program is structured with modularity and extensibility in mind. As illustrated in figure 13,

the GUI front end collects the data from the user and does some preliminary checks for validity.

When the user has met all the requirements for generating a report, the GUI packages up the data

and sends it to a report generator, which runs in its own thread. The report generator uses the

architecture it has been given to pull in the rules as a RuleSet object. Finally, after parsing all the

data, the report generator packages everything into an XMLWriter object, which generates the

XML file and terminates the thread. The reason that we divided the program in this way was to

make it as seamless as possible for later developers to change a module or put new plug-ins

between existing nodes. The use of single information bundles as opposed to data streams also

helps strengthen modularity and ensure a healthy dependence tree.

Figure 13. General control flow of program modules and data.

15

We decided that if the GUI crashed or was closed while the report generator was running, it

would continue until it had completed its task. Since the program institutes a strict no-overwrite

policy, it was considered unlikely that allowing the program to continue would cause any

damage, but rather would make it more robust.

6. XML Report

Based on the success of similar projects, we decided to output findings in XML format so they

could be displayed in a spreadsheet. The XML reports are generated manually and are very

basic. We used other reports as a template to create our own spreadsheet that would display

everything in a well-organized manner for the user.

The first page in the workbook is the summary page (figure 14), which contains some basic

statistics, such as the total number of flags, what level of rules were violated, and how many

rules were violated at each level. We used colors and large print to make this page very visible

and easily accessible.

16

Figure 14. Summary page from generated XML report.

The second page is a findings page (figure 15), which contains a list of all the rules in the

checklist and their details. The purpose of this page is to provide a place to look up any

additional data the auditor may require for manual rule checking or verifying the accuracy of the

program.

17

Figure 15. Excerpt from the findings page of the XML report.

The third page is a breakdown of the configuration files that were scanned, and how many

violations each had and how many checks must be done manually (figure 16). Our goal was to

provide a way to quickly prioritize devices based on how vulnerable the program thinks they are.

18

Figure 16. Excerpt from the systems page of the XML report.

The last page is the most important one for the auditor and provides a complete breakdown of

each file for each rule (figure 17). The rules are colored green or red, as determined by whether

the file passed or failed the automated checks. Also under each rule are the excerpts from the file

about which an auditor needs to make a decision, thus saving them from having to open each file

individually. With a complete and well-written master rule set, users rarely need any other

sources to do a complete analysis of system files.

19

Figure 17. Excerpt from the details page of the XML report.

7. Future Extensions

As mentioned previously, this program is a prototype to show proof of concept and lay the

groundwork for developing a more comprehensive SRRS for network auditing. During the

process of creating the NDCA, we brainstormed many ideas and were unable to implement most

of them because they were beyond the scope of the project or because there was insufficient

time. The following are several of the best and potentially most useful extensions.

20

1. Development of additional checklists and rules—This is the most fundamental and

important extension. Developing rules takes a non-trivial amount of time, and includes

transcribing, testing, and debugging. The checklists are then simpler, but also require

validation when applied to a real device, which may lead to the discovery of further

refinements to the rules. It has taken several weeks to generate our current rule set. That

time included several revisions as well as learning how the devices work with our evolving

process. In order for the master rule set to achieve maximum effectiveness, the Regex and

capture statements for each rule need to be written by a SME in coordination with a Regex

expert. In this way, the SME can precisely identify the lines of a configuration file that are

applicable to a specific rule, and the Regex expert can craft the exact pattern necessary to

extract the identified lines. As an example, we initially created the master rule set with no

input from an SME. We were able to create rules that would make a pass/fail determination

or extract text for an estimated 25–30% of the rules in a STIG. Working with a Cisco SME

for approximately 4 h, we were able to increase that percentage to roughly 45–50% for

three STIGs. Given a sufficient amount of time and expertise, it is our opinion that those

percentages could rise much higher, increasing the overall efficacy of the NDCA program.

New checklists can introduce upwards of 100 rules, meaning that the time requirement can

vary widely based on experience and size of the task.

2. Adding new fields in the master rule set— The master rule set is designed with a great

amount of flexibility, allowing new optional fields to be added at any time. If additional

fields are added to the STIG format, or if current fields are deemed to be necessary for the

report, a new optional field can be created for each rule. This new field would simply be

ignored by the NDCA until such time as the program was modified to use the field in

whatever manner was necessary.

3. Machine learning—During the automated portion of the validation process, the machine

has several opportunities to make a judgment call about whether it thinks a rule is

implemented correctly. Currently, this is done simply using a Regex, but we believe that

there is potential for artificial intelligence to make those decisions in the future. It could

also be possible to implement training by allowing the program to take part in recording

results and corrections from a professional audit.

4. Further user interaction—A common theme while writing the rules was the desire for a

few more pieces of information that only the user could provide. Allowing the user to

specify information to be used in a pattern would allow greater flexibility in rule validation.

The best example of this involves the Out of Band Management (OOBM) network. The IP

address for the OOBM network varies for each location, whereas the rules that apply to the

OOBM network in a STIG remain the same. If the IP address of the OOBM network is

provided to the NDCA by the reviewing agent, these rules could be checked for

compliance by the NDCA, and the applicable information could easily be provided to the

21

agent in the final report. We think that an additional rule field that could be used to ask the

user questions would make an excellent extension.

5. Support for multiple checklists simultaneously—The primary reason that we have not

already included support for multiple checklists in a single report is that we have not found

a way to differentiate between devices by looking at their configuration files alone. Our

suggestion would be to have the team that collects the configuration files name them in

such a way that the NDCA can tell exactly which checklist it should use. Currently, the

NDCA can only produce a report that contains information on one type of device, requiring

a different report for every variety of machine on the network. With this improvement, it

would be possible to generate one comprehensive report for the entire network.

6. Multipass logic—For the sake of simplicity and efficiency, the NDCA only performs

single pass operations for checking regular expressions. Implementing support for multiple

passes could greatly enrich the level of complexity that rule options can support by

allowing rules to change their own behavior dynamically. For instance, it would be

possible to implement conditionals and rules that make reference to results from other

rules. As an example, the name of an access list could be extracted in the first pass, and

then could be used in the second pass to find all statements involving that particular access

list. Another example would involve determining if a specific service is activated on the

device on the first pass, and, if found, using a second pass to capture information on how

the device is configured. The biggest drawback, aside from the time required to implement

such a system, is that it adds a great deal of overhead to the parsing and checking process.

The developer would need to ameliorate some of the additional costs, or the program might

become too slow for the average user.

7. Automatic checklist generation—The most recent checklist update was released in XML

format, which makes them more accessible to programs than the previous PDF releases.

This means that it would be easier to develop a secondary program, which is capable of

reading in the device checklists and creating NDCA format checklist. Such a program

could reduce the workload and likelihood of errors greatly.

8. Automatic rule generation—The idea of automatic rule generation is similar to checklist

automation, but the secondary program requirements are much more complex, if not

impossible. Ideally, a parser could copy plain text information fields to set up an outline for

new rules, but it would almost certainly require a human to write the Regex and other

supporting fields. This development would reduce the workload and help prevent duplicate

rules, but could not eliminate the task completely.

22

9. Further refinements to the report: The following are suggested for refining the report:

• Several cells in the report are grouped and meant to show information about a single

device or rule. These cells could be collapsed by default or put into an expandable tree

format to reduce the size of the report on the screen.

• Whenever a capture field or other Regex puts an IP address into the report, it could be

useful to also include a ―whois‖ lookup alongside it. Auditors would then have access

to knowledge, such as the country of origin, without having to go to another source.

• Currently, all fields are static and do not reflect changes to other parts of the report. It

would be a nice feature if the summary pages reflected the results of manual entries or

corrections to the detailed output. For example, if the user decides that the program had

a false positive, they could change it to a pass and the summary page would decrement

the warnings and increment the number of passed rules.

10. Further refinements to the GUI—We have developed and justified the design of the

GUI, but our user testing has been minimal due to time and resource constraints. The

interface should be tested with a wide array of users of various technical backgrounds, and

then adjusted based on feedback. The goal is to make the NDCA as accessible as possible

so that it will be used to secure more network devices.

11. Password hash checker—Password hashes are often kept in the configuration files

alongside user accounts. It would be useful to add a rudimentary password hash cracker to

ensure that default or easily cracked passwords are not in use. This would be a modular

extension that does not require rule sets; it simply does a single pass through the file and

attempts a quick crack on any hashes it encounters. It could then raise a notification if it

discovers any weaknesses.

12. XML macros—A further extension to the reporting process would be to add macros and

other functionality that makes the data itself more accessible to other interested parties. For

instance, a macro could be designed that copies all of the relevant data and auditing results

into a formal report that can be distributed to non-technical personnel. Another such

addition would be to allow the final auditor to certify their work by attaching a digital

signature using their common access card (CAC). Most improvements like this would

simply require a developer who is familiar with XML to construct the macros and then add

the code to the hard coded section of the XML report generator.

23

8. Conclusion

The goal of this project was to create a framework for automating a time-consuming and tedious

process. We feel that we have reached this goal by showing proof of concept on a subset of

devices that automation is possible to a certain degree. We are planning to collaborate with other

DoD components to develop this project into a Government standard, and hopefully transition

this project to other agencies. The current implementation can collate data for several types of

network devices, and it provides meaningful guidance for the auditors of the devices on which

we have chosen to focus. Further development of existing rule sets, as well as the creation of

several more by SMEs, would fully realize the usefulness of the product by improving efficiency

and accuracy. We feel that the Government needs the extra security that this product can bring to

our network infrastructure, and anything that decreases our vulnerability helps the Soldiers that

these systems support.

24

List of Symbols, Abbreviations, and Acronyms

CAT category

COTS commercial off-the-shelf

DISA Defense Information Systems Agency

DoD Department of Defense

GOTS Government off-the-shelf

GUI graphical user interface

IASE Information Assurance Support Environment

IDS intrusion detection system

NDCA Network Device Checklist Automator

OOBM Out of Band Management

Regex regular expressions

SA System Administrator

SME subject matter expert

SRRS Security Readiness Review Script

STIG Security Technical Implementation Guide

25

NO. OF

COPIES ORGANIZATION

 1 ADMNSTR

 ELEC DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 8725 JOHN J KINGMAN RD STE 0944

 FT BELVOIR VA 22060-6218

 1 CD OFC OF THE SECY OF DEFNS

 ATTN ODDRE (R&AT)

 THE PENTAGON

 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG

 CMND

 ARMAMENT RSRCH DEV & ENGRG

 CTR

 ARMAMENT ENGRG & TECHNLGY

 CTR

 ATTN AMSRD AAR AEF T

 J MATTS

 BLDG 305

 ABERDEEN PROVING GROUND MD

 21005-5001

 1 PM TIMS, PROFILER (MMS-P)

 AN/TMQ-52

 ATTN B GRIFFIES

 BUILDING 563

 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND

 ATTN AMSEL IE TD A RIVERA

 FT HUACHUCA AZ 85613-5300

 1 COMMANDER

 US ARMY RDECOM

 ATTN AMSRD AMR

 W C MCCORKLE

 5400 FOWLER RD

 REDSTONE ARSENAL AL 35898-5000

 1 US GOVERNMENT PRINT OFF

 DEPOSITORY RECEIVING SECTION

 ATTN MAIL STOP IDAD J TATE

 732 NORTH CAPITOL ST NW

 WASHINGTON DC 20402

 3 AARON P. HILTGEN

 14017 MANDERSON PLAZA #101

 OMAHA NE 68164

 3 DONALD A. BENNETT

 10013 S. IRVINGTON AVE

 TULSA OK 74137

NO. OF

COPIES ORGANIZATION

 1 US ARMY RSRCH LAB

 ATTN RDRL CIM G T LANDFRIED

 BLDG 4600

 ABERDEEN PROVING GROUND MD

 21005-5066

 3 US ARMY RSRCH LAB

 ATTN IMNE ALC HRR

 MAIL & RECORDS MGMT

 ATTN RDRL CIM L TECHL LIB

 ATTN RDRL CIM P TECHL PUB

 ADELPHI MD 20783-1197

TOTAL: 17 (1 ELEC, 1 CD, 15 HCS)

26

INTENTIONALLY LEFT BLANK.

