

inspired by ideas...driven by markets

Smart Sensor Network for Aircraft Corrosion Monitoring

2010 U.S. Army Corrosion Summit February 9-11, Huntsville, AL

Fritz Friedersdorf, Jeff Demo and Josh Averett

This material is based upon work supported by the United States Navy under contract Nos. N68335-09-C-0099 & N68335-09-C-0107. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the United States Navy.

Report Documentation Page					Form Approved OMB No. 0704-0188	
Public reporting burden for the col maintaining the data needed, and including suggestions for reducing VA 22202-4302. Respondents sho does not display a currently valid	lection of information is estimated t completing and reviewing the collect ; this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	o average 1 hour per response, inclu ion of information. Send comments arters Services, Directorate for Info ny other provision of law, no persor	Iding the time for reviewing ins regarding this burden estimate rmation Operations and Reports a shall be subject to a penalty for	tructions, searching exis or any other aspect of th s, 1215 Jefferson Davis r failing to comply with	sting data sources, gathering and nis collection of information, Highway, Suite 1204, Arlington a collection of information if it	
1. REPORT DATE FEB 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	red) to 00-00-2010	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Smart Sensor Network for Aircraft Corrosion Monitoring			5b. GRANT NUMBER			
				5c. PROGRAM E	ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER			
			5e. TASK NUMBER			
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Luna Innovations Incorporated,1 Riverside Circle, Suite 400,Roanoke,VA,24016					8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited				
13. SUPPLEMENTARY NO U.S. Government of	otes or Federal Rights Li	cense				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	0F PAGES 22	KESPONSIBLE PERSON	

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

Outline

- Smart Sensor Network
 - Needs and technology overview
- Network Elements
 - Hub, Network capable application processor (NCAP)
 - Node, Smart transducer interface module (STIM)
- Corrosion Sensing and Measurements
 - Corrosion rate
 - Cumulative corrosion
 - Environmental parameters

Issue / Need

- Aircraft corrosion is a leading maintenance cost driver that impacts readiness and safety
 – Costs increase as the fleet ages
- A corrosion monitoring system for current and future weapon systems is need to:
 - Identify, track and locate environmental conditions that cause corrosion damage
 - Improve inspection efficiency by identifying only those aircraft and systems that require attention
 - Reduce maintenance costs through early detection
 - Maximize operational availability

Sensor Node and Hub

Sensor Hub

- Centralized wired or wireless data hub provides communications between user network and sensor network
- Embedded processing for on-board data reduction
- Ultra-low power, for use with energy harvesting technologies
- Open architecture

Sensor Nodes

- Distributed sensor nodes for corrosion hotspot monitoring
- Wired or wireless interface to sensor hub
- Flexible modular design can support a wide variety of sensors
- Integrated sensor elements for corrosivity and corrosion measurements
- IEEE-1451 compliant for plug-and-play simplicity

Vehicle Health Management

Sensor Node and Hub

IEEE-1451 standard defines sensor node and hub

- Both sensor node and hub are based off common hardware
- Sensor hub interfaces with user network and sensor nodes
 - · Wired or wireless communications with other system elements
- Sensor node interfaces with transducer elements and hub
 - Communications between hub and node can be wired or wireless
 - Node contains transducer electronic data sheets (TEDS)
 - Plug-and-play capabilities between sensor nodes and hub elements

Modular Sensor Node and Hub

- Modular design allows for ease of development and application customization
- Design consists of three main hardware elements: base board, communications board, and analog board
 - Base board is common to sensor node and hub
 - microcontroller, power regulation, system memory, real time clock
 - Communications board can vary as needed between sensor node and hub
 - Wireless communications, USB or Ethernet controller, or UART pass-though
 - Analog board is unique to the sensor node
 - Analog board can be used to meet requirements for a wide range of transducer elements

7

- Provides transducer excitation and signal conditioning
- Direct access to all 8 microcontroller ADC channels,
- Could incorporate multiplexers if additional transducers are required

Corrosion Sensing and Monitoring

- Existing corrosion sensing technologies can be divided into three categories:
 - Instantaneous corrosion rate measurements
 - Cumulative corrosion and material loss measurements
 - Environmental measurements
- A suite of sensors offers the most robust measurements for building diagnostic algorithms and automating sensor validation routines
 - Corrosion damage can be measured using surrogate samples, or inferred with environmental data

Sensor Development

- Miniature, light weight sensor suite can be used to measure corrosive severity of operational environments
- The sensor suite permits instrumentation of critical components, inaccessible areas, and "corrosion hotspots"
- Monitors multiple environmental parameters and corrosivity
 - *i*_{corr}, *E*_{ocp}, *ER*, *Inductance*, *RH*, *T*_{air}, *T*_{surf}, *TOW*, [*Ci*-]
- Supports data fusion for improved state awareness and reduced uncertainty in estimating corrosion damage

Instantaneous Measurements

- Instantaneous measurements are used to characterize corrosivity at any given time
 - A measure of cumulative damage can be obtained by integrating periodic corrosion rate measurements

Sensor	Comments
Corrosion rate	Low power and low frequency excitations. Provides a measurement of R _p for calculating i _{corr}
Corrosion potential	Passive device. Requires high impedance input circuitry. Electrochemical measurement of E _{ocp}

AA7075-T6 interdigitated electrode

Cumulative Corrosion Sensors

- Cumulative corrosion sensors measure the total damage to a sensing element
 - The total amount of damage can be determined at any time
 - Corrosion rate from the change in state for a given time interval

Inductance sensor

Sensor	Comments	-
Inductive/Eddy	Requires low power AC excitation.	
Current Sensor	Inductive coupling between sensor and	FG
	surrogate sample provides measure of	L.
	material loss. Sensor can be used for	Rohrl
	localized corrosion of an alloy.	- An
Electrical Resistance	Low power Wheatstone bridge	
Probe	measurement technique. Resistive	1
	changes dependent on material loss.	
	Typically a copper sensor for generalized	
	corrosion.	

ER probe

ohrback Cosasco Systems (Model 610-TF50)

Environmental Sensors

Environmental sensors are used to measure corrosivity

- Atmospheric conditions or microclimates within a structure

Sensor Technology	Specifications & Comments
Time of Wetness (TOW) / Surface conductivity	Gold-gold interdigitated electrode design. Requires low power, low voltage AC excitation source.
Chloride Sensor	Passive device. Requires high impedance input circuitry.
Relative Humidity / Air Temperature	Miniature, digital module +/-2.0% RH accuracy, +/- 0.3% Temp accuracy. Average power consumption of 150µW.
Surface Temperature	Platinum RTD with accuracies to +/-0.15°C @ 0° (Class A RTD). Sensors can be driven with low power constant current circuitry.

Au/Au interdigitated

Reference Electrode

- Reference electrodes are used to measure the corrosion potential (E_{ocp}) for a given alloy and environment
 - For a given alloy, E_{ocp} can be used to predict pitting or uniform corrosion
 - AA2024-T3 or AA7075-T6 working electrode
- Reference electrode can also be used to measure chloride concentration (Nernst Equation)
 - Pure silver working electrode for measuring [CI-]

Reference Electrode

- Reference electrode testing for stability of potential measurements
 - 0.01, 0.1, 0.5, and 1. M NaCl solutions in 90% RH
 - Immersions tests at 1.0 and 0.1 M NaCl
 - long term potential is unaffected by chloride concentration

Interdigitated Electrodes

- Interdigitated electrodes can be used to measure polarization resistance (R_p) and solution resistance (R_s)
 - Corrosion rate (i_{corr}) can be determined from R_p
 - $-R_s$ is dependent on salt concentration
 - $-R_s$ can be used to measure time of wetness

Interdigitated electrode (AA7075 & AA2024)

Luna interdigitated electrode (gold)

Interdigitated Electrodes

Polarization resistance

- Impedance analysis used to determine R_p
- Two electrode measurement
- Low frequency excitation to measure $2R_p + R_s$
- High frequency measurement for R_s

V_s _

16

Interdigitated Electrodes - TOW

- Impedance magnitude for Au/Au sensor excited at 1 kHz indicates TOW and deliquescence point of surface
- Relationship of RH to corrosivity is dependent on deliquescence of salt deposits and corrosion products

Interdigitated Electrodes - i_{corr}

- Copper corrosion rates were measured by a number of techniques over a range of salt concentrations
- Flat copper plate electrodes were evaluated LPR, EIS and DC step methods
- Interdigitated electrodes were tested using low frequency (0.01 Hz) 5 mV excitation
- There is reasonable agreement between EIS with the interdigitated electrode and other measurement methods

Inductive Corrosivity Sensor

- Inductive corrosivity sensor measures cumulative corrosion damage
 - Sensitive to localized corrosion
 - Coating system breakdown
- Sensor is composed of an induction coil and sensing element (AA2024-T3 or AA7075-T6)
 - Sensing element is fabricated so gage section has exposed end grains

Inductive Sensor

- Inductive sensor can detect changes in gage section geometry due to corrosion
 - AC current excitation
 - As corrosion occurs, induced EMF into sample decreases
 - Need to relate output to corrosion damage

Change Vr (V)

Gage cross-section

Algorithm Development

- The system is designed to support data processing at the sensor node and hub
 - Embedded diagnostic and prognostic routines including automated sensor validation
 - Data reduction decreases the overall data volume, thus requiring fewer data transmissions
 - Reduction in communications lowers system power consumption
- Designed experiments and accelerated corrosion tests will be performed to establish diagnostic algorithms

Sensor Node

Luna Innovations Incorporated 1 Riverside Circle, Suite 400, Roanoke, VA 24016

INNOV

Sensor Hub

