NASA CONTRACTOR
REPORT

NASA CR-1985

ADDITIONAL RESEARCH ON INSTABILITIES
IN ATMOSPHERIC FLOW SYSTEMS
ASSOCIATED WITH CLEAR AIR TURBULENCE

by Richard C. Stoeffler

Prepared by o o

UNITED AIRCRAFT CORPORATION 20

East Hartford, Conn. 1 0082 741 6
Jor :

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. - APRIL 1972



. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-1985

4. Title and Subtitle 5. Report Date
April 1972

ADDITIONAL RESEARCH ON INSTABILITIES IN ATMOSPHERIC 6. Performing Organization Code
FLOW SYSTEMS ASSOCIATED WITH CLEAR AIR TURBULENCE

7. Author(s) 8. Performing Organization Report No,
Richard C. Stoeffler

10. Work Unit No.

9. Performing Organization Name and Address

UNITED AIRCRAFT CORPORATION 11. Contract or Grant No.
ford, ticut
East Hartfor Connec NASW-1582
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
Nathnal Aeronautics and Space Administration PP I raly Wi
Washington, D. C. 20546

RAA

15. Supplementary Notes !

16. Abstract
Additional analytical and experimental fluid mechanics studies were conducted
to investigate instabilities in atmospheric flow systems associated with clear
air turbulence.
The experimental portion of the program was conducted using the UARL Open
Water Channel which allows investigation of flows having wide ranges of shear
and density stratification. The program was primarily directed toward studies
of the stability of straight, stratified shear flows with particular emphasis
on the effects of velocity profile on stability; on studies of three-dimensional
effects on the breakdown region in shear layers; on the interaction of shear
flows with long-wavelength internal waves; and on the stability of shear flows
consisting of adjacent stable and unstable layers. The results of these
studies were used to evaluate methods used in analyses of CAT encounters in
the atmosphere involving wave-induced shear layer instabilities of the Kelvin-
Helmholtz type. i
A computer program was developed for predicting shear-layer instability and
CAT induced by mountain waves. This technique predicts specific altitudes and
locations where CAT would be expected.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Clear Air Turbulence; Unclassified - Unlimited

Atmospheric Fluid Mechanics

19.

Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price®
Unclassified Unclassified 75 $3.00

.For sale by the National Technical Information Service, Springfield, Virginia 22151

-~
Ve RV-" e "y

y 205 <es T ’




FOREWORD

Analytical and experimental fluid mechanics investigations were performed to
investigate instabilities in atmospheric flow systems associated with clear air
turbulence. This work was a continuation of investigations reported in NASA
Contractor Report CR-1604, "Research on Instabilities In Atmospheric Flow Systems
Associated With Clear Air Turbulence," by J. W. Clark, R. C. Stoeffler, and
P. G. Vogt (June 1970). The program was conducted by United Aircraft Research
Laboratories under Contract NASW-1582 with National Aeronautics and Space Administration
Headquarters, Washington, D. C., 20546. The program was under the technical direction
of the Chief, Aerodynamics and Fluid Dynamics Branch, Code RAA.
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RESULTS AND CONCLUSIONS

L The water channel experiments to investigate the stability of straight,
two-dimensional, stratified shear flows having "S-shaped" velocity profiles confirmed
that the shape of the velocity profile affects the dimensionless wavenumber, ad¥*,
of the instabilities which can occur. The values of ad observed in experiments with
"S-shaped" profiles were significantly larger than those observed previously in
experiments with hyperbolic tangent profiles. This result is in agreement with the
theoretical stability criteria of Hazel for "S-shaped" profiles and Drazin for
hyperbolic tangent profiles.

2 The experimental results and the theoretical stability criteria for two-
dimensional flows were also in good agreement regarding the critical value of
Richardson number. Both "S-shaped” and hyperbolic tangent profiles are stable for
Richardson numbers greater than Q;EZ,

e Although the values of dimensionless wavenumber, ad, at which instabilities
occur at a Richardson number of 0.25 are larger for "S-shaped" profiles than for
hyperbolic tangent profiles, the actual wavelengths, A , are about the same (assuming
that the shear layer thicknesses, the velocity differences across the shear layer,
and the mean shears at the center of the shear layers are approximately equal). The
theory indicates that the higher values of ad are due mainly to higher values of
the parameter d necessary to describe "S-shaped" profiles. The experimental results
tend to confirm this.

4, The preceding conclusion also applies to the wavelengths of instabilities
that can be expected when stable shear layers in the atmosphere are destabilized by
long-wavelength waves (i.e., wave-induced instabilities), such as mountain lee waves.
If the shear-layer thickness, the velocity difference across the shear layer, and
the mean shear at the center of the layer are fixed, then the wavelength of the
instability occurring when the Richardson number decreases to 0.25 will be sbout the
same, whether the profile is an "S" or a hyperbolic tangent. This wavelength is
closely approximated by the wavelength given by Drazin's theory3‘AE = (2n/\/§)'2d,
where d is taken as half the shear-layer thickness.

*The characteristic breakdown flow pattern of Kelvin-Helmholtz-type instebilities
consists of waves which develop into vortices and turbulence. The wavenumber & is
2m/A, where A is the wavelength of the instability; d is one of several parameters
vwhich describe the velocity profile (d is approximately half of the shear-layer
thickness for hyperbolic tangent profiles, but this is not a good approximation for
"S-shaped" profiles).



5. Water channel experiments and theoretical studies were conducted to
investigate the stability of straight, stratified shear flows in which the width of
the shear layer was from about 4 to 40 times its thickness. Thus, these shear layers
were "three-dimensional" as opposed to the usual two-dimensional shear layer which
is assumed to extend uniformly to infinity in the direction transverse to the flow.
The results indicate that "three-dimensional" flows are more stable than two-
dimensional flows. The measurements also indicate that, although the velocity
profiles were significantly different from hyperbolic tangent profiles analyzed by
Drazin for two-dimensional flows, the wavelengths of the initial Kelvin-Helmholtz-
type instabilities that occur are adequately predicted by his criterion.

6. Shear layer instabilities induced by long-wavelength internal waves were
also investigated in water channel experiments. Kelvin-Helmholtz-type waves which
grew in amplitude and transitioned to vortices and turbulence were observed in the
thin shear layers. These disturbances moved at the mean flow velocity and were
superimposed on the stationary long-wavelength internal waves. Occurrence of the
instabilities was predicted quite well using the method used previously in this
prbgram to predict CAT resulting from shear-layer instabilities induced by mountain
lee waves.

T Water channel experiments were conducted to investigate the stability of
combined shear layers consisting of adjacent stable and unstable layers. The results
indicated that instability is initiated in the individual unstable layers at wave-
lengths that would be predicted by theory based on the thickness of these indiyidual

unstable layers. However, in the final stages of vortex growth and turbulent break-
down, the wavelength increases to about that which would be predicted based on the
thickness of the combined.layer. Thus, in combined shear layers, small-amplitude,
short-wavelength disturbances associated with initial instabilities in individual
layers can result in large-asmplitude, long-wavelength disturbances.

85 A method was developed, and included in a computer program, for predicting
the occurrence of CAT in mountain.waves. The method compares the amplitude of a
lee wave required to destabilize an initially stable layer (i.e., to reduce the
Richardson number to 0.25) with a predicted lee wave amplitude. The layers are
identified using rawinsonde data. Iee wave activity is predicted using the United
Air Lines nomogram which is based on the sea level pressure difference between two
ground stations and maximum wind velocity associated with the wave zone of interest.
Iee wave amplitude is estimated from a correlation of predicted lee wave activity
(using the UAL nomogram) with wave amplitudes deduced from reconstructed mountain-
wave flow fields. Turbulence is predicted at altitudes where the lee wave amplitudes
required for instability are less than the predicted lee wave amplitudes.



INTRODUCTION

The general objectives of the present program were: (L) to gain increased
understanding of the nature and causes of turbulent atmospheric phenomena, parti-
cularly clear air turbulence; (2) to develop improved criteria for predicting
neutrally stable states in atmospheric flow systems; and (3) to compare the results
of this research with available meteorological data and attempt correlations.

The results of all fluid mechanics analyses and experiments conducted under this
program are reported in Refs. 1 through 5. The initial work (Refs. 1 and 2) provided
evidence that long-wavelength waves, such as mountain waves, could destabilize
initially stable shear layers which occur in the atmosphere. Since long-wavelength
waves may occur quite often in the atmosphere, the breakdown of these layers could
account for an appreciable fraction of CAT which is encountered. The present report
summarizes further research reported in detail in Refs. 3 through 5, The specific
objectives of the latter research were: (1) to conduct further experiments on the
effect of the shape of the velocity profile on the stability of straight, two-
dimensional, stratified shear flows; (2) to investigate the stability of "three-
dimensional" flows by conducting experiments in the UARL Open Water Channel on the
stability of straight, stratified shear flows in which the width of the shear layer
was less than the width of the channel; (3) to further investigate experimentally the
interaction of long-wavelength waves with stable shear layers; and (4) to develop a
computer program whlch predicts shear-layer instability and CAT induced by mountain
lee waves. v I;pontalns the derivation of equatlons used to compare theoretical
with experlmental "S-shaped" velocity profiles. ‘égggndix IIgcontalns a discussion of
an investigation of the stability of shear flows consisting of adjacent stable and
unstable layers and a description of the method used to obtain a stability criterion
for "three-dimensional", straight, stratified shear flows.




STABILITY OF TWO-DIMENSIONAL, STRAIGHT, STRATIFIED
SHEAR FLOWS HAVING "S-SHAPED" VELOCITY PROFILES

The primary purpose of this part of the fluid mechanics program was to investi-
gate the effects of the shape of the velocity profile on the stability of straight,
two-dimensional, stratified shear flows. First, experiments were conducted to obtain
data on the stability of flows having "S-shaped" velocity profiles; these data were
also compared with theoretical stability criteria. The results were then compared
with results from an earlier investigation of the stability flows having hyperbolic
tangent profiles. The program was directed toward three areas: (1) identifying
the conditions under which such flows become unstable, (2) determining the
characteristics of the flow during the initial phases of breakdown, and (3) evaluating
existing theoretical stability criteria for subsequent use in studying atmospheric
shear flows.

Review of Two-Dimensional Flows Having
Hyperbolic Tangent Profiles

The stability of shear flows having hyperbolic tangent velocity profiles was
investigated in detail in earlier work under this program (Refs. 1 through 4). Flows
of this type were studied using the UARL Open Water Chamnnel, shown in Fig. 1. This
facility provides a 2-ft-wide by 10-ft-long by 12-in.-deep, non-recirculating, open
channel flow. Filter beds made from porous foam material are used to introduce
desired vertical and transverse velocity profiles in the flow. Hot-water nozzles in
the plenum are used to introduce vertical temperature gradients and, hence, density
stratification. Dye tracing and hydrogen bubble wire techniques are used for flow
visualization and for measurement of the inlet velocity profile; standard submersible
mercury thermometers were used to measure temperatures. This facility and its
associated instrumentation are described in detail in Refs. 1 and 2.

Velocity profiles approximating hyperbolic
tangent profiles were obtained by shaping the.
foam material in the filter bed as shown in 2
Sketch A. The stability of flows having such
profiles was studied theoretically by Drazin
(Ref. 6) and others. The hyperbolic tangent
velocity profile which most closely
approximates the profiles in the channel is
given by
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PROFILE FOR HYPERBOLIC TANGENT
VELOCITY PROFILE




=2
V=V°+A2V—'f0nh(d°) (1)

where V is the local velocity at height z above the channel floor; V, = (Vl + V2)/2
is the velocrity at the center of the shear layer at height z4; AV = (Vl = Vg); and
d = (AV)/2(8V/dz),. The parameter d is a scale length and is approximately half the
thickness of the shear layer. D‘I;a_lginr also used an exponential variation of density
with height:

i T 2 _
A e_’[g(zazo) .- Ri-d (gdv/@z)o (zdzo) 2)

where Ri is the Richardson number and g is the gravitational constant. Since the
change in density across the shear layer is small, a good approximation to Eq. (2) is

. 2 4. (3)
Ri-d-(dV/dz)5 (zdzo)

= | -
P/Py :

Drazin derives a criterion for stability in Ref. 6 by introducing a perturbation
stream function ‘

‘P, - ¢(Z)'eia(x-cf) (L)

into the equations governing the motion of the fluid. Here, « is the wavenumber,
a= 2n/A, and ¢ is the complex wave velocity, ¢ = ¢, + i+cy. The equations of motion
then yield a single stability equation. Making use of the fact that the perturbations

neither amplify nor decay when ¢y = 0, Drazin solves for the following equation for
neutral stability on the ad - Ri plane:

od= /L3 /_aq___R_i (5)




1 NEUTRAL BOUNDARY
Sketch B shows this boundary which 1.0
separates stable and unstable regions. Ri=10,25
The criterion indicates that the flow ad =1/2/2
would be stable for disturbances of |

; . & UNSTABLE
all dimensionless wavenumbers, ad,

for Ri > 0.25. For Ri < 0.25, the flow STALLE
would be unstable for dimensionless l

wavenumbers which lie inside the : ; |
boundary and a Kelvin-Helmholtz (K-H) 0 JJ 0.2 d3
type of instability would occur. RY
SKETCH B. DRAZIN'S NEUTRAL
STABILITY BOUNDARY
FOR HYPERBOLIC
TANGENT PROFILES

The results of UARL Open Water Channel investigations of the stability of flows
having hyperbolic tangent velocity profiles are summarized and compared with Drazin's
theoretical criterion in Fig. 2. For each flow condition, the Richardson number was
calculated using the slopes (av/az)o and aT/az from the measured profiles. The
scale length, 4, was calculated using the slope (av/az)o and the velocity difference
AV from the velocity profile; AV was based on the maximum and minimum velocities
in the vicinity of the edges of the shear layer. The wavenumber, o= 2n/A, of
instabilities observed in the shear layer was calculated using wavelengths determined
from photographs of dye traces. Thus, each flow condition at which waves were
observed is identified by a point on the plot of ad vs Ri.

The symbols in Eig. 2 denote different flow characteristics that were observed.
The open circle symbols denote conditions at which only Kelvin-Helmholtz-type waves
were observed in the shear layer; that is, the waves extended the entire length of
the channel without breaking down. The wavelengths of these waves ranged from about
3 to 6 in. The open circle symbols with flags indicate the nature of the distur-
bances observed --- for example, small-amplitude waves which persisted, waves which
seemed to grow in amplitude to a certain point and then not grow further as they
progressed downstream, and waves which appeared in the flow only intermittently. The
half-soclid symbols denote flow conditions in which the waves transitioned to vortices
but did not transition to turbulence before reaching the downstream end of the channel.
The full-solid symbols denote flow conditions at which the full sequence of events
associated with complete shear-layer breakdown occurred --- waves, vortices, and
turbulence. The crosses indicate conditions at which no waves of the type associated
with instability occurred.



Examination of Fig. 2 indicates that most of the observations are in good
agreement with Drazin's boundary. All cases in which full transition was observed
fall in the unstable region. Six cases in which waves were observed fall in the
stable region. The intermittent small-amplitude waves indicated at Ri = 0.43 and
steady small-amplitude waves at Ri = Q.38 were unexpected; in subsequent tests (
at approximately the same conditions, no waves were observed. Four cases were
observed which fall above the boundary but at Ri <0.25. These four cases were,
at the time of the tests, suspected to be attributable to differences between
the experimental velocity profile and Drazin's hyperbolic tangent profile.

This hypothesis was based on a theoretical study by Hazel (Ref. 7) which showed that
instabilities associated with flows having "S-shaped" velocity profiles could have
dimensionless wavenumbers greater than 1.0.

Stability Criteria of Hazel for
"S-Shaped" Velocity Profiles

"S-shaped” velocity profiles are developed in the Water Channel by shaping the
porous foam filter bed as shown in Sketch C.

z FILTER BED

/—VELOCITY PROFILE, V

v
L Vo
T LV, : Z(av.faz}‘,"'
% 1
%0
L
s * X
SKETCH C. FILTER BED AND VELOCITY PROFILE FOR ‘“S-SHAPED' YELOCITY PROFILE
The velocity profile used by Hazel in this theoretical study is

V = Vg +%V- - sech ® (z_z°)' tanh (Z_TZ") £

where b is an exponent that affects the shape of the "S" and, as before,
d = (av)/2(9V/8z)y. The relationship of the velocity difference AV to (V; - Vo) and
b is (see derivation in Appendix I)



b+l
AV=(b+1)2 b

The theoretical density profile used by Hazel is

2
_Ri-d-(0v/92) mnh(z-dzo) 8)
P=pot :

Hazel derives criteria for stability in Ref. 7 for several velocity and density
profiles. This is done by solving (using numerical techniques) a differential
equation which is satisfied by one Fourier component of the velocity perturbation for
a plane, two-dimensional, Boussinesq shear flow. The full perturbation velocity is
given by

® la(x-ct)

wikzd) & foo w(z) e da (9)

0r
ike Drazin's criterion, Hazel'
 DLihe Dregin'e GULISELOH,, Hasel'd b INCREASING

criteria (see Sketch D) indicate that

the flow would be stable for distur- o STABLE

. . —
bances of all dimensionless wave- 2.0 -
UNSTABLE —~

numbers for Ri > 0.25. For Ri < 0.25,
the flow would be unstable for

— —

= NEUTRAL
“‘\ BOUNDARY FOR
FIXED VALUE OF b

dimensionless wavenumbers which lie o
inside the boundaries. The locations 1.0
of the neutral stability curves on the
ad - Ri plane are dependent upon the
value of the exponent b (see sketch).
0 b&$/’ ]

0 0.1 0.2 0.3
Ri

SKETCH D. HAZEL'S NEUTRAL STABILITY BOUNDARIES FOR
- **'S-SHAPED'’ PROFILES



Summary of Experiments with "S-Shaped" Velocity Profiles

Characteristics of Breakdown of Flow

Figure 3 illustrates the stages observed as the flow in the shear layer breaks
down. The breakdown characteristics were very similar to those for hyperbolic-
tangent-type flows. There are four very distinct and repeatable stages which occur.
The photographs in Fig. 3 were taken through the lucite channel side wall with the
flow from left to right. The scale in the photographs was in the flow close to the
dye traces.

In Fig. 3(a), the flow appears undisturbed. 1In Fig. 3(b), 28 in. further
downstream, the center dye trace indicates the presence of a K-H wave amplifying
as it progresses downstream. The wave has a wavelength of about A =5 in. and an
amplitude (half the distance from trough to crest) of about a = 0.25 in. at this
point. By placing dye traces at several transverse locations across the channel, it
was verified that the flow was approximately two-dimensional, i.e., the wave extended
across the channel. In Fig. 3{c), another 2L in. downstream, the waves have rolled
up into vortices. The circulation of the vortices has the same sense as the vorticity
introduced by the shear --- the shear is negative in this flow condition, and all of
the vortices rotated counterclockwise. These vortices grew slightly in size as they
drifted downstream. Their downstream drift velocity was approximately V,, the
velocity upstream at the center of the shear layer. The flow was also two-dimensional
at this stage. In Fig. 3(d), another 10 in. downstream --- 70 in. downstream of the
filter bed --- the vortices have "burst" and the flow appears turbulent. The fluid
motions were three-dimensional at this stage.

Velocity, Temperature, and Density Profiles

Velocity, temperature, and density profiles for three flow conditions are shown
in Figlik. These data are for three different Richardson numbers and three different
values of the exponent.b used in Hazel's theoretical velocity profile. The corre-
sponding velocity and density profiles in Hazel's theory are shown by the dashed
lines. Once a velocity profile had been measured, the value of the exponent b was
derived so as to provide a reasonably good match between theoretical and experimental
velocity profiles. The theoretical profile was chosen by matching to the data the
following (see Appendix I and Sketch C): (1) the velocity difference, vy - Vo,

(2) the vertical distance between Vi and Vo, 21 - 2zp, and (3) the mean velocity
gradient, (av/az)o, at z,. The corresponding theoretical density profile was chosen
by matching the density gradient and mean density of the experimental profile at the
center of the shear region.



Comparison of Experimental Results with Hazel's Theoretical Stability Criteria

Figure 5 is a summary of the results and a comparison with Hazel's theoretical
criteria. As in Fig. 2, the symbols denote different flow characteristics that were
observed. The values of the exponent b which provide the best match between the
theoretical and experimental velocity profiles are given next to the symbols.

Most of the experimental results are in agreement with Hazel's stability
boundaries. For all cases in which instability was observed, the Richardson number
was less than 0.25, and only one stable case was observed for which the Richardson
number was less than 0.25 (@d = 0, Ri = 0.2). For all but one of the cases for which
instability was observed, the dimensionless wavenumbers, ad, were greater than 1.2.

| |This is in contrast to the results obtained for hyperbolic tangent velocity profiles

! (see Fig. 2) where the ad's associated with instabilities were less than 1.2 for all
! but one case.

Hazel's theory shows that as the value of b increases, the range of wavenumbers,
ad, of instabilities which can occur also increases. The data appear to confirm this
trend, although insufficient data were obtained to make detailed comparisons with
Hazel's criteria for low values of b. Only two cases are not in agreement with
Hazel's neutral stability boundaries. They are (1) Ri =0, ad =2.4, b = 0.8, and
(2) Ri = 0, ad =2.07, b = 0.3. However, these values of b are questionable since
the agreement between the theoretical and experimental velocity and density profiles
was comparatively poor for these cases.

Concluding Remarks

The most important result of these experiments is that the data provide
sufficient evidence to confirm the hypothesis that instabilities which occur in flows
having "S" profiles generally have values of ad considerably larger than those in
flows having hype:?g%ic tangent profiles. As explained below, however, the ag&g&}

wavelengths of instabilities at Ri = 0.25 are about the same due to compensating
changes in d.

The theoretical criteria of Hazel differ from Drazin's criterion only in that
one might expect to observe instabilities having larger dimensionless wavenumbers in
unstable shear layers with "S" profiles. Therefore, one might be inclined to expect
shorter wavelengths for instabilities associated with "S" profiles than with hyper-
bolic tangent profiles. However, it can be shown that for an experimental velocity
profile having a maximum velocity Vj at z;, a minimum velocity V, at zp, and a
velocity gradient (8V/az)o at the center of the shear layer, the wavelength, A , at
Ri = 0.25 for the best fitting "S" profile is generally about the same as that for
the tanh profile. This is because the value of d for the best fitting "S" profile

10



is larger than that for the tanh profile. Thus, the increase in the critical value
of ad is primarily due to an increase in d and, therefore, the wavelengths of
instabilities in flows having "S" profiles are approximately the same as those for
hyperbolic tangent profiles. This is illustrated in Sketch E which shows, for
instabilities associated with

ad at Ri = 0.25, the 1.6
theoretical variation of USING HAZEL'S THEORETICAL RESULTS
the ratio of A for "S- ——EXTRAFOLATED
shaped" profiles to A for
hyperbolic tangent profiles 1.4
with the parameter b (b is
related to z; - zp, V; -V, L
and (8V/8z), in Eq. (25) in »|Z
Appendix I). For the range 'm; 1.2
of b shown, and for b not near 8 8
zero, this ratio is not 23 I
greatly different from 1.0,
Data from the water channel 1.0 e P
obtained near Richardscn T e
number of 0.25 tend to
confirm this:
0.8 L ] ]
0 1 2 3 4
b
SKETCH E. THEORETICAL RATIO OF WAVELENGTHS
FOR Ri = 0.25 FOR ‘‘S-SHAPED *’
AND HYPERBOLIC TANGENT PROFILES

Profile b Ri ad d.,in, A,in.

"S-Shaped" : v o) G- 18 e 5

"S-Shaped" >2.0 0.16 1.9 1.6 5

Tanh - 0.24 0.74 0.58 5

Tanh - 0.16 0.84 0.52 L

Tanh - 0.12 0.70 0.44 Y

L.



As a result, Drazin's value of A= (2r/Vv2)-2d |(Fig. 2), where d is approximately
equal to half the shear-layer thickness, would provide reasonably good estimates of

the wavelengths that might occur in the atmosphere regardless of whether the profiles
‘are "S" or tanh in shape.

The experiments and theories also provide further evidence that 0.25 should be
used as the critical Richardson number, and that several distinct waves might be
observed in the isentropes when instabilities occur in atmospheric shear layers.

12



STABILITY OF "THREE-DIMENSIONAL', STRAIGHT, STRATIFIED SHEAR FLOWS

A theoretical criterion for predicting the stability of "three-dimensional",
straight, stratified, shear flows is apparently not available. Because the magnitude
of the task of developing rigorous theoretical criteria was beyond the scope of this
program, a simple analysis based on energy considerations (similar to a method used
by Chandrasekhar; Ref. 8) was made; see Appendix T1. Criteria obtained using such
simple techniques are admittedly gquestionable and may not be too significant.
However, the criterion which was obtained was in qualitative agreement with experi-
mental results. The analysis in Appendix II predicts that the critical Richardson
number for "three-dimensional' stratified shear flow is Q.125.

A photograph of a shaped filter bed of the type used to develop velocity profiles
in experiments in the Water Channel is shown in Fig. 6. The filter provided no
velocity gradient (i.e., the same velocity at all heights above the channel floor)
across the 2-ft width of the channel except for a section in the center of the channel
span where a hyperbolic tangent vertical velocity gradient was provided. The span-
wise distance allowed for transition from hyperbolic tangent velocity gradient to
zero velocity gradient was large enough so that horizontal velocity gradients were
very small compared with the vertical gradients.

Summary of Experiments with "Three-Dimensional" Flows

Characteristics of Breakdown of Flow

The four distinct and repeatable stages which occurred during breakdown of the
"three-dimensional" flows were similar to those observed in tests of two-dimensional
flows having hyperbolic tangent and "S-shaped" velocity profiles. Dye traces
illustrating the phenomenon are shown in the sketch and in photographs in Fig. 7.

At the location in Figs. T(a) through 7(c), dye from probes at several transverse
locations indicated that the disturbance was confined to the flow containing the
shear layer in the central portion of the channel. At the location in Fig. 7(d),

the vortices have "burst" and the flow appears turbulent. Downstream of this location
the turbulence began to spread transversely.

Velocity, Temperature, and Density Profiles

Velocity, temperature, and density profiles are shown in Fig. 8 for three
different values of Richardson number. It was found that neither a hyperbolic
tangent nor an "S-shaped" profile was particularly representative of the experimental
velocity profiles. The temperature and density gradients shown in Fig. 8(b) and (c)
indicate that the temperature and density varied appreximately linearly through the
thermocline which separated the two regions of the flow having approximately uniform
temperatures.
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Comparison of Results with Theoretical Stability Criterion for Two-Dimensional Flows

Figures 9 through 11 present a comparison of the test results with Drazin's
criterion for two-dimensional flows. The data were obtained for three different
ranges of shear layer width, w, to thickness, (2d)m, ratios. See Fig. 6 for w.

During these tests, wg in Fig. 6 was varied between O and 12 in., and wt between 2

and 5 in. The shear layer thickness (2d)m was the measured distance between the
maximum and minimum velocities of the shear layer and for most cases was approximately
equal to twice the scale length, d. Data was presented in Figs. 9, 10, and 11 for
w/(2d), between 4.8 and 8.6, 9.7, and 14.3, and 14.5 and 4O, respectively.

Except for five cases (all on Fig. 9), the dimensionless wavenumbers for cases
where instability was observed are in agreement with Drazin's stability criterion
for two-dimensional flows having hyperbolic tangent velocity profiles (i.e., the
data points are inside the stability boundary). For the five exceptions the
dimensionless wavenumbers were greater than 1.0. This is not unexpected since the
velocity profiles were somewhat "S-shaped".

By inspecting Figs. 9 through.ll_it can be seen that as the width of the layer
containing the vertical velocity gradient decreases, the Richardson numbers at which
stable flows are observed generally decrease, and the Richardson numbers above which
instabilities are not observed also generally decrease. It appears, then, that the
critical Richardson number. decreases ®s the\gigtgfbf the vertical velocity gradient
decreases. This trend is shown by the shaded boundary in Fig..1l2. The trend is
compatible with the result obtained by extending Chandrasekhar's technique for
predicting the stability of two-dimensional stratified, shear flows to "three-
dimensional" flows (see Appendix II); i.e., the simplified extension of the theory
predicts that the critical Richardson number, Ri, for "three-dimensional" flows is
0.125.

Concluding Remarks

The most important result is that data and theory provide evidence that "thngg-_

}; {ﬁﬁﬁimensional" stratified shear flows are more stable than two-dimensional flows. The

¥

||

;brifical Richardson number is less than 6;255 it decreases with decreasing shear

layer width to thickness ratios. The results also indicate that, although the
experimental velocity and density profiles were quite different from theoretical
profiles used by Drazin in his analysis, Drazin's criterion for predicting the wave-
length of instabilities in two-dimensional flows could be used to predict the wave-
length of instabilities in "three-dimensional" flows. Finally, as many as four or
five wavelengths were often observed upstream of the first discernable vortex, as in
two-dimensional flows; thus, it is reasonable to expect that several waves will also
be observed in isentropes when instabilities occur in "three-dimensional" atmospheric
shear layers.
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INTERACTION OF LONG-WAVELENGTH WAVES WITH
TWO-DIMENSIONAL, STRAIGHT, STRATIFIED SHEAR FLOWS

The primary purpose of this part of the fluid mechanics program was to
investigate, using the Water Channel, the destabilization of initially stable shear
flows by long-wavelength waves. Evidence that this phenomenon occurs in the
atmosphere and may be the cause of an appreciable fraction of clear air turbulence
has been documented previously under this program (Refs. 1 through 4). In Ref. 1,
an analytical technique was developed to predict when long-wavelength waves, such as
mountein lee waves, would destabilize initially stable shear layers in the atmosphere.
In using the technique, Ri = 0.25 was used as the critical Richardson number for
neutral stability. The increment in shear induced by the presence of long waves was
estimated using an extension of a theory developed by Phillips (Ref. 9) and the
16ng~wave wavelenths were estimated using Haurwitz'theory (Ref. 10).

The objectives of the Water Channel experiments and analyses reported in this
section were: (1) to investigate the conditions for wave-induced instability and
the nature of the initial disturbances, (2) to obtain experimental verification of
Phillips' and Haurwitz' theories, and (3) to verify the validity of the combined
theoretical approach developed to predict the occurrence of wave-induced shear-layer
instabilities.

Theory for Wave-Induced Shear-Layer Instabilities
In Ref. 9, Phillips derives an equation for the increment in shear induced by

the presence of a wave traveling along the thermocline in a fluid. The expression
he obtained for the wave-induced shear is

AoV /2) = (N,_,f-nz)-(i) (10)

where

e

Brunt-Vdisdla Frequency = /- %(gf)

n = Wave Frequency = 2wV /Ary
a = Wave amplitude
Vo, = Wave velocity

For stationary waves, the wave velocity, V,, is equal to the mean velocity through
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In Ref. 10, Haurwitz derives an expression for the wavelength of waves
traveling on a discontinuity of density and velocity at a velocity equal to the mean
flow velocity and in a direction opposite to the flow direction (thus, the wave is
stationary relative to the observer). The velocity and density gradients were
considered to be zero on either side of the discontinuity. The expression obtained
by Haurwitz is j

2 2
we B A ) - o

where Vl and p; are the velocity and density, respectively, of the light fluid which
flows over the heavy fluid having a velocity and density Vo and po, respectively.

Using estimated values of wave-induced shear, it is possible to predict the
effects of long-wavelength waves on local Richardson number in shear flows in the
Water Channel (this was done for atmospheric flows in Ref. 1). A schematic diagram
of the flow condition is shown in Fig. 13(a). At the left are shown upstream velocity
and temperature profiles with a stable shear layer having a thickness 2d. Within
this layer, the mean velocity is V, and the mean temperature is Ty; the mean shear is
(3V/3z), (all mean values are at the center of the shear layer).

At the right in Fig. 13(a) is shown a portion of a long-wavelength wave having
an amplitude (which might be 0.1 to 4.0 in.) and a wavelength Apy (which might be
6 to 30 in.). It is agsumed in this analysis that the thickness of the shear layer,
the mean temperature, and temperature gradient remain constant as the flow within
the shear layer experiences the undulating motion.

The minimum local Richardson number in the flow is calculated with the wave-
induced shear, A (9V/dz), added to the initial mean shear. An expression for the
minimum Richardson number (which occurs locally at the crest in the example given,
but would occur at a trough if the initial shear were negative) is

2
Nm

Run * Taviad,] + [pov/an]| P (12)

Using Eq. (10) for the wave-induced shear, this becomes

N2

Rimn = T[OV/02)] + (N2 -m2)a N2

(13)
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From Eq. (13) it can be seen that small values of Riyry are associated with
large initial shears, (av/az)o; with large wave amplitudes, a; with small flow
velocities, V,; and with long wavelengths, A py(n = 2nV_/Ary). The effect of the
temperature gradient, dT/dz, on Riyyy can be seen in Fig. 13(b). With increasing|
initial temperature gradient, Rimry first increases to a maximum value, and then
decreases. Since the flow is unstable for Ri < 0.25, weakly stabilized layers
(3dT/dz near zero) as well as very strongly stabilized shear layers (9T/dz large)
could be destabilized in the presence of a long-wavelength wave.

The dashed curves in Fig. 13(b) were obtained by assuming thatA.Lw =, so that
Ny » n°. This reduces Eq. (10) to

a@v/a2) = Ny () (14)

The solid curves in Fig. 13(b) were obtained by using the equation for finite wave-
length waves, Eq. (10). A comparison of the dashed and solid curves shows (1) that
for the flow and wave conditions of Fig. 13(b), use of the simple expression for wave
shear, Eq. (14), in the calculation of Riyry does not cause large errors in Ripgy,
and (2) that these small errors in Riyry which do occur decrease with increasing
value of initial shear and are least for very small and very large initial tempera-
ture gradients.

Summary of Wave-Induced Shear Layer Instability Experiments

Example of Effects of Long-Wavelength Wave on Local Richardson Number

A long-wavelength wave typical of those studied in the Water Channel is shown
in Fig. 14 (ALW = 14 in. and a = 1.4 in.). The stationary gravity wave is represented
by the solid wavy line in the sketch at the top of Fig. 1l4. A wave-induced
instability is represented by the dashed line superimposed on the gravity wave. The
wave-induced instability first became apparent as a small amplitude wave just upstream
from the trough at x = 7 in. This wave then grows in amplitude, rolling up into
vortices near the first crest at x = 14 in. The vortices subsequently transition to
turbulence downstream from the crest at x = 14 in. Further downstream (x greater than
approximately 30 in.) the turbulence appears to decay and the flow restratifies.
Photographs of examples of instabilities which were observed are shown in Fig. 15
(discussed subsequently).
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The mean velocities, Vg, measured at the center of the shear layer through the
trough and crest were approximately 0.08 and 0.06 ft/sec, respectively --- the
average being 0.07 ft/sec (velocity, temperature, and density profiles for this test
are shown in Fig. 16). Based on an average of the local flow conditions (measured
at the center of the shear layer) at the trough at x = 7 in. and at the crest at
x = 14 in., the initial shear, (8V/az),, was -0.71 sec”l, the initial Richardson
number, Rio, was 0419} and the wave-induced shear, A (8V/dz), was -0.32 sec”l. The
data of Figs. 16(a) and 16(b) show that the magnitude of the shear was greater at the
trough than at-the crest. The minimum Richardson number, Rimyy, was 0.37 and
occurred at the trough. This was 53 percent of the initial Richardson number but
was greater than the minimum Richardson number for instability, Ri = 0.25. One
possible explanation for this discrepancy is that the velocity profile was distorted
at the time of its measurement by the wave-induced instabilities which were first
apparent just upstream from the trough at x = 7 in. Attempts were made to measure
the velocity profile at times when the profile was least disturbed, i.e., between
crests and troughs of the wave-induced instabilities. 1In most other tests in which
wave-induced instabilities were observed the minimum Richardson numbers were less
than 0.25. The Richardson number which was observed at the crest at x = 14 in.,

Ri = 1.8, was 260 percent of the initial Richardson number.

Example of Instability Induced by Long-Wavelength Wave

Photographs of an instability induced by along-wavelength gravity wave are
shown in Fig. 15. The upper dye traces show the instability superimposed on the
stationary gravity wave. The estimated shape of the undisturbed gravity wave is
sketched in white on the photograph. The lower trace appears to be undisturbed by
the wave instability. The photographs presented in Fig. 15(b) show that the waves
have transitioned to vortices, and the trace in the photograph on the right side of
Fig. 15(b) gives evidence that some turbulence exists downstream of the vortices.

Comparison Between Measured and Predicted Wave Shears in Long-Wavelength Waves

Measured values of wave-induced shear caused by long-wavelength waves are
compared with values calculated using Phillips' theory (Ref. 9) in_Figeské.- The
measured wave shear, |A(8V/az)|, was determined by taking one-half the difference
between the shears at the crest and trough of the long-wavelength wave. The pre-
dicted wave shears were calculated using Eq. (10) with measured values of wave
amplitude, wavelength, and velocity. The Brunt-Vaisdld frequency, NM, was determined
from measured temperature profiles. The results shown in Fig. 17 indicate that in
most cases the agreement between measured and predicted values of wave shear was good.
The results of these tests provide some experimental evidence that Eq. (10), which
is used in this program to predict wave-induced shear in the atmosphere is adequate.
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Comparison Between Measured and Predicted Wavelengths of Long-Wavelength Waves

Measured wavelengths of long-wavelength waves are compared with values predicted
using Haurwitz' theory (Ref. 10) in Fig. 18. The measured wavelengths, (Ary)p, were
determined by measuring the distance between crests and troughs of the long-wave-
length waves from photographs of the dye traces. The predicted wavelengths, (ALW)p’
were calculated using Eq. (11) with densities and velocities from measured tempera-
ture and velocity profiles, respectively. The data in_Fig. 18 indicate only fair .
agreement between measured and preédicted wavelengths. The differences between
measured and predicted values increase with increasing wavelength. Part of the reason
for this can be seen by examining the equation. One way to increase wavelength, Ayy,
is to decrease the density difference, p, - pj. However, this tends to maeke the
predicted wavelengths more sensitive to errors in py or pp. This may explain some of
the differences in Fig. 18 since in this series of experiments it was easier to obtain
changes in Ay by changing density gradient than velocity gradient. However, this
still does not account for the general trend in which the measured wavelengths were
generally less than predicted values. Subsequently, the method of Haurwitz (Ref. 10)
was examined to determine the possible effect of having a finite depth in the Water //\ A
Channel on the measured wavelengths. The influence on wavelength of having a free
surface above the shear layer and a boundary below the shear layer (applied by
Phillips in Ref. 9 to flows in the ocean) was calculated. This method predicted
a trend that did not account for the discrepancy in the data. That is, it predicted
that wavelength should 1ncrease with decreasing depth while the wavelengths measured
in the water channel were generally less than those predicted for infinite-depth flows.

Although these differences between theory and experiment at long wavelengths
were not resolved, they have no bearing on calculations of atmospheric shear layer
instabilities. This will be apparent later in the report.

Prediction of Wave-Induced Shear Instabilities in Water Channel

———

Figure- 19 is a plot of initial shear, l(av/az)o , versus the Brunt-Vaisala
frequency, NM. The boundaries define regions where wave-induced instabilities
can occur. They were calculated using Eq. (13) with the condition Ny > n. The
boundaries are loci of RiMIN = Q. .22 for constant values of a/Vo.

To the left of the boundary for a/Vo = 0, the presence of a long-wavelength wave
is not required for the flow to be unstable, and any instabilities observed in this
region would not be wave-induced. In the region to the right of the boundary for
a/Vo = 0, the boundaries define the lower limit Of,ﬁézo required for wave-induced
instability to occur. For example, a long-wavelength wave having a/Vg > 0.75 would
cause wave-induced instability to occur anywhere in the region between the boundary
for a/Vo = 0 and a/Vo = 0.75; a long-wavelength wave having a/Vo < 0.5 would not
cause wave-induced instability anywhere in the region to the right of the boundary
for afVy = 0:5.
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The open and solid symbols in Fig. 19 denote cases for which long-wavelength
waves were and were not observed, respectively. For each flow condition for which
a long-wavelength wave was present (the open symbols) (1) the Brunt-Vaisala frequency
was determined from an average of the crest and trough temperature gradients (in
these tests, measurements were made at the most upstream crest and trough for which
measurements could be made), and (2) the absolute value of initial shear |(8V/az)0|
was determined from an average of the shears measured at the crest and trough. For
cases in which long-wavelength waves were not observed (the solid symbols), the
Brunt-Vaisdla frequency and the absolute value of initial shear were obtained from
the temperature gradient and the velocity gradient, respectively, at the center of
the shear layer (measurements were made at approximately the same distance downstream
from the filter as the measurements that were made when waves were present). The
numbers near the symbols denote values of a/Vo. The letters near the symbols denote
the type of instability that was observed --- W - wave, V - Vortex, T - Turbulence.

The solid symbols show that long-wavelength waves were not observed in the
channel for values of Brunt-Vaisala frequency, Ny, less than about 0.3 sec™L,
Therefore, it was not possible to investigate wave-induced instability for values of
NM less than about 0.3 sec”l,

Examination of Fig. 19 indicates that most of the observations are in agreement
with the stability boundaries. Instability of some type was observed for all cases
which are to be left of the boundary for a/Vgo = O. This is expected since the flow
is predicted to be unstable in this region even without the additional shear from a
long-wavelength wave.

Suspected wave-induced shear instabilities were observed in six tests (see data
marked with asterisks) which are to the right of the locus a/V0 = 0. 1In these cases,
long-wavelength waves were present. Based on measured values of a/Vo for the six
cases for which wave-induced instability was suspected and the values of a/V0 for
the cases where wave-induced instability was not observed, the data agree with the
stability boundaries.

Concluding Remarks

These laboratory experiments tend to confirm the analytical methods that have
been used to estimate wave-induced shear and to predict the onset of shear-layer
instabilities in analyses of CAT encounters in the atmosphere. The most important
results are shown in Figs. 17 and 19.

Figure 17 shows that the wave shear P3(8V/BZ)| --- the change in shear that
occurs when a thin shear layer flows through a long-wavelength wave --- can be
reasonably well predicted using Eq. (10). The inputs needed for this calculation are
the long-wave amplitude (a), the mean flow velocity (Vo), the Brunt-Vdissls frequency
(NM), and the long-wave frequency (n).
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Figure 19 shows that the occurrence, or lack of occurrence, of wave-induced
shear-layer instabilities in the water channel experiments could be predicted fairly
consistently using/Eq. (13). This equation incorporates Eq. (10) for estimating the
wave shear. The criterion for instability that was used is that the shear layer will
become unstable when the predicted minimum Richardson number is less than 0.25.
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APPLICATION TO ATMOSPHERIC SHEAR FLOWS

In earlier work (Refs. 1 through 4) in this program, clear air turbulence was
associated with the destabilization of initially stable shear layers by long gravity
waves., Several cases were presented in which the long gravity waves were induced by
mountains. Also, a few cases were presented in Ref. 3 in which the long wave-like
undulations were induced by thunderstorms. These findings appear to be in agreement
with evidence assembled by other investigators --- notably Woods (Ref. 1ll, a study
of wave-induced instabilities in the ocean), Lud lam (Ref. 12, a study of billow cloud
formation), Mitchell and Prophet (Ref. 13, an analysis of USAF Project HICAT flight
data), Spillane (Ref. 14, an analysis of high-altitude CAT over the Australian desert
region), Hardy (Ref. 15, radar measurements that indicated wave-like motions in
regions of CAT), Hicks (Ref. 16, radar observations of gravitational waves associated
with CAT near the tropopause), Boucher (Ref. 17, radar observations of waves associated
with CAT at a subsidence inversion), Gossard, Richter and Atlas (Ref. 18, radar

(/ observations of internal gravity waves and billows at an oceanic inversion), Browning
and Watkins (Ref. 19, radar observations of billows associated with CAT near a frontal
\ zone beneath the jet core), Browning and Watkins (Ref. 20, radar observations of
billows associated with CAT in mountain lee.waves), Roach (Ref. 21, aircraft reports
of gravity waves associated with CAT over the Atlantic Ocean), Penn and Thompson
(Ref. 22, turbulence measurements associated with stable layers which are extensive
in area, persist in time and have large vertical wind shears), and Axford (Ref. 23,
aircraft observations of gravity waves associated with CAT in the lower stratosphere).

The purpose of the present effort was to develop and evaluate a CAT prediction

fprocedure based on the mechanism of wave-induced instability of initialifuétéiie '
shear layers. The analysis used in the prediction procedure was developed previously
during this program and is reviewed in this section. It should be mentioned that

some of the wave and turbulence forecasting infomation used in the development and
evaluation of the prediction procedure was provided by United Air Lines and the Air
Force Global Weather Central. Also, mountain wave data used to evaluate the UAL wave
prediction procedure was obtained from 1968 and 1970 Lee Wave Observational programs
at the National Center for Atmospheric Research.

Review of the Fundamental Flow Phenomenon

A schematic diagram of the flow condition considered here is shown in Fig. 20(a).
This is analogous to the situation shown in Fig. 13(a) which was used to describe
wave-induced shear layer instabilities in the Water Channel. At the left in
Fig. 20(a) are shown upstream wind and temperature profiles with a stable shear layer
having a thickness 2d. Within this layer, the mean wind is Vg, and the mean tempera-
ture is To; the shear is (8V/az)O and the environmental lapse rate is 8T/az.
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At the right in Fig. 20(a) is shown a portion of a long-wavelength wave having
an amplitude,a (which might be 2000 or 3000 ft), and a wavelength A 1o (which might
be 10 or 20 nmi). It is assumed in this analysis that the thickness of the shear
layer, the mean temperature and the lapse rate all remain constant as the flow with-
in the shear layer experiences the undulating motion (24, To, and 8T/az are constant).
The increase in shear that occurs at the crest can be calculated from Eq. (10) given
previously. ©Now, for flows in the atmosphere,

Ny = Brunt-Vaisild frequency = 4/(g/To) * (9T7/02)-(8T/82)ag
n = wave frequency = 2nVo/Ary
(AT/82z)ag = adiabatic lapse rate, -2.98 x 1073 deg C/ft*/

This increase in shear is added to the initial shear, and Eq. (13) can be used to
calculate the minimum Richardson number (which occurs locally at the crest in Fig.
20(a), but would occur at the trough if the initial shear were negative). Since
Ny > n° under most conditions of interest (this is only untrue for weakly stable
lapse rates, i.e., when 8T/d8z= (8T/82)aq), Eq. (13) can be further simplified to

NM2 (i55)

Ri =~
MV ([0v/e2)g| + NZla/ V)P

From Eq. (15) it is evident that low values of Riyy are associated with large
initial shears, (8V/dz),; with large long-wave ag;;%igdes, a; and with low winds, V.
The latter two parameters are not independent, however, since large amplitude waves
do not usually occur under low-wind conditions.

The effect of the environmental lapse rate, 8T/8z, on Riyry is not evident from
Eq. (15) but can be seen in Fig. 20(b). This figure is based on typical conditions
under which long-wavelength waves, such as mountain lee waves, are observed in the
lower stratosphere. Curves are shown for three shears --- small shears (1 and
2 kts/1000 ft) and a moderately large shear (12 kts/1000 ft). The curves show that
the greater the initial stability from a convective standpoint (i.e., the greater

aT/az), the lower Riyyy will be. They also show that shear layers which have small
i

*Note use of minus sign to denote temperature decreasing with increasing altitude.
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values of initial shear are stable when the environmental lapse rate is near zero.
Thus, it is primarily the most stable layers appearing in the temperature profile
that are of interest. The curves also show that as the environmental lapse rate
approaches the adiabatic lapse rate (-3 deg C/ft), all shear layers become unstable.

Previous theoretical and experimental studies which have been discussed in this
report have shown that the critical Richardson number below which two-dimensional
flows are unstable is 0.25. For Ripmgy = 0.25 and fixed values of wave amplitude, a
wind velocity, Vo, and wavelength, A1y, Eq. (13) can be used to determine the neutral
stability boundaries on a plot of absolute value of initial wind shear, kav/az)ol,
versus vertical temperature gradient, 8T/0z. The stability boundaries are shown for
wave amplitudes of 500 and 3000 ft in Figs. 21 and 22, respectively. The boundaries
are shown for wind velocities, Vo, of 10, 25, 50, 75, and 100 kts (Agy = 15 nmi).
Atmospheric flows having combinations of vertical temperature gradient and initial
wind shear which plot under the boundary for a given wind velocity would remain
stable as they passed through the undulations of the long-wavelength waves. Flows
having combinations of 8T/dz and |(6V/az)ol which plot above the boundary would
become unstable. Flows having 9T/9z <-0.00298 deg C/ft would be convectively unstable.
It is seen in Figs. 21 and 22 that the stability of the flow decreases with decreasing
wind velocity.

Figures 21 and 22 could be used with rawinsonde data to predict whether or not
initially stable shear layers will be destabilized by long-wavelength waves. For
example, Vo, (AV/8z)y, and 8T/dz would be determined from rawinsonde data and used
with Figs. 21 and 22 for weak and strong wave activity, respectively, to make
predictions about the stability of the flow. Where flows are predicted to become
unstable, CAT could be expected to occur. A more comprehensive approach to CAT
prediction is presented in the next section, however.

The variations in maximum allowable initial shear with wind velocity for wave
amplitudes of 500, 1000, 2000, and 3000 ft are shown in Fig. 23. For values of
initial shear greater than this maximum, the flow for the given wave amplitude would
be unstable for all values of vertical temperature gradient. The curves shown in
Fig. 23 were obtained using

ovea| . = [1+ (2masny)][vora] (16)

Equation (16) was obtained by solving Eq. (13) for (aV/sz),, differentiating with
respect to the Brunt-Vdaisdld frequency, and solving for the maximum value of
kav/az)ol. For long wavelengths, i.e., Ay >2ma, Eq. (16) can be simplified to
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|(dv /az)o|MAx = vV /a (17)

The variation of |(8V/az)o|MAX with V, for a = 3000 ft was determined using Eq. (17)
and is compared in Fig. 23 (dashed curve) with that obtained using Eq. (16). For
A{w=15 nmi and a = 3000 ft, the difference in values of l(av/az)o|MAx is quite
small. This difference would be even less for smaller wave amplitudes.

Improved CAT Prediction Methods ( i

e T

In general, most CAT prediction techniques_are based on synoptic features which f
are present and on a comparison of the values of one or more atmospheric parameters —
(such as horizontal wind shear, vertical wind shear, horizontal temperature gradient,
streamline curvature, etc.) with empirically determined critical values. In most
cases, there is no physical model for the breakdown mechanism. An example of such a 7
prediction technique is given in Ref. 2L. The technique is based on horizontal and g el
vertical temperature gradients (determined from rawinsondes along the flight route)
and is quite simple to use.

In Ref. 3 it was recommended that consideration be given to development of a
prediction procedure which would predict the altitudes where CAT would be encountered
in mountain waves and which is based on the mechanism of wavgoinduced instability of
fﬁffially stable shear layers. During the present program, such a procedure was
developed and evaluated. Evaluation was limited, however, because of the limited
amount of available data. This procedure was comprised of three distinct operations
contained in a single computer program which is discussed in detail in Ref. 5:_'

(1) the rawinsonde data from a given station is processed to predict the long-wave
a@plitude necessary to destabilize each shear layer appearing in the profiles;
(2)/meteorological data from mountain wave zones are used with wave prediction
methods to predict lee wave activity and amplitudes; and (3) the results from (1) and
(2) are compared to see if wave-induced instabilities would occur and to identify the
associated altitudes and locations. A block diagram of the computer program logic is
shown in Fig. 24.

=

Calculation of Required Long-Wave Amplitudes

This portion of the procedure is relatively straight-forward. JEguatien (13) can.
be rewritten to yield the minimum long-wave amplitude necessary to destabilize
(RIMIN = 0.25) a shear layer:
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= /
g = 2Nm lz(avzaz)o| Vo (18)
NM 'n

The rawinsonde data are processed by the computer program to identify stable shear
layers (using temperature and velocity profiles) and, for each layer, to calculate

the mean flow parameters Vg, (aV/az)o, NM, and n. In calculating n = 2vVO/ALW, it

is necessary to assume a Vvalue for the wavelength, Ayy. 1In general, Apy is of the
order of 15 nmi and (for atmospheric flows) n is small compared to NM so that large
errors in n have little effect on the computed amplitude, a. Using the mean flow
parameters and an assumed long-wave wavelength, the required amplitude for instability
is calculated for stable shear layers which have temperature gradients greater than
some preselected minimum value (for a given wave amplitude, the induced wave shear,

A{&V/az), increages with increasing stability so that the mQst stable layers are the
mQ§L_likelyhtowexperieneewinst&biliﬁie;l,1

Long-Wave Amplitude Forecast

At this point, the characteristics of waves in the local zone of the forecast
must be considered. To_ forecast.CAT.induced by mountain.lee waves, good techniques
for foreeasting the occurrence and amgplitides of lee waves are required. The
techniques which are used by those active in forecasting mountain wave CAT, such as
United Air Lines (Ref. 25), Northwest Airlines, and Global Weather Central at
Offutt Air Force Base, are empizieal and rely on such parameters as Wigg*direction
and strength above the mountains, sea level pressure difference across the mountalns,
lgpsg rate and synoptic conditions in the local zone of forecast. When significant
wave activity is forecast, attempts are made to avoid flying within approximately

5000 ft of the tropopauce . Se——
P )

United Air Lines uses synoptic data in the forecast zone to forecast the
occurrence of mountain waves and CAT. During the forecast period, they check their
forecast with a nomogram which uses sea level pressure difference across the mountains
and maximum wind velocity between 10,000 and 20,000 ft (perpendicular to the mountains)
to predict mountain wave activity for 20 wave zones in the United States. This nomo-
gram, which is shown in Fig. 25, was first used to predict the Denver wave. The
Pressure difference used was the sea level pressure at Grand Junction minus the sea
level pressure at Denver. In using the nomogram for other wave zones, where the
distance between the stations may be different than the distance between Grand Junction
and Denver, a pressure correction is required. The magnitude of the correction
depends on the difference in distance, and the correction is plus if the distance is
less and minus if the distance is greater. The wave zones and pressure corrections
are given in Ref. 25. Pressure tendency is often used to extend the period of validity
of the nomogram.
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The nomogram (Fig. 25) indicates waves would be expected when the
g&ximuﬁ wind velocity perpendiculer to the mountain was lessSe.then 2Q0.Kts. For
meximum wind velocities above 20 kts, the sfrength of the wave depends on the sea
level pressure difference. Northwest Airlines also uses the nomogram shown in Fig.
29 to predict the presence of mountain waves; however, they use the wind velocity
perpendicular to the mountains at 300 mb altitude rather than maximum wind velocity
between 10,000 and 20,000 ft. Global Weather Central has correlated the coordinates
on the nomogram with the severity of turbulence and uses the pressure difference and
maximum winds (between 10,000 and 20,000 ft, perpendicular to the mountains) to
predict the occurrence and severity of CAT.

Some data obtained by the author during the 1970 Lee Wave Observation Program at
the National Center for Atmospheric Research for the Grand Junction-Denver wave zone
are plotted on Fig. 25 for comparison with the nomogram. The data obtained about
0500 MST between February 11 and February 27. The numbers next to the data points
denote the date. Flights were made on February 13, 17, 18, and 26 to make measure-
ments in the wave field (flights were only made on days when wave activity was fore-
cast by other techniques). Results of these flights indicated that weak waves were
present on February 13 and 26, and weak to moderate or strong waves were present on
February 17 and 18. Isentropes reconstructed from flight and radiosonde data which
show the mountain wave patterns which occurred on February 13, 17, and 18 are shown
in Figs. 19, 21, and 23 of Reg:_g, The data points which correspond to days on
which flights were made are flagged (a weak wave observation is indicated by a single
flag and a moderate wave by a double flag).

The data for which wave activity was confirmed by flights is in fairly good
agreement with the nomogram. For instance, the nomogram indicates (1) the presence
of weak waves on February 12, 13, and 14 --- weak waves were observed on February 13,
and (2) the presence of weak waves on February 16 and 18 and moderate to strong
waves on February 17 --- moderate waves were observed on February 17 and 18. Wave
amplitudes up to 1000, 1350, and 1800 ft were observed on February 13, 17, and 18,
respectively. Also, on days for which flights were not made (because no wave activity
was forecast by other more complicated techniques), most of the data (February 15,
19, 21, 22, 23, and 24) fall into the "no wave" region of the nomogram. Although
negative pressure differences were not considered in Ref. 25, it is felt that waves
would not occur under such conditions.

It appears then that if such a nomogram could be modified to provide wave
amplitude information it could be used with rawinsonde data to predict the altitude
where CAT would occur from destabilization of initially stable layers by mountain
waves. Pressure tendency and forecast winds might be used with the nomogram to
forecast the occurrence of mountain lee waves and the altitude where CAT would occur
from destabilization of stable shear layers by the lee waves.
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This nomogram was used, in modified form, to provide wave amplitude information
and was incorporated in the computer program for predicting mountain-wave induced
shear-layer instability resulting in CAT. A correlation of wave amplitude with
nomogram-predicted wave activity was attempted by the present author using observed
wave amplitudes for the three mountain wave patterns for February 13, 17, and 18
(presented in Ref. 3) with predicted wave activity for those days. Nomogram-predicted
wave activity and wave amplitude are compared in Sketch F. In lee wave patterns
presented previously in Ref. 1, wave amplitudes up to 3000 and 3500 ft are apparent.
Although nomogram-predicted wave activity is not available for these cases, the data
were plotted in Sketch F in the region of moderate or strong wave activity.
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SKETCH F. CORRELATION OF WAVE AMPLITUDE WITH_PREDICTED WAVE ACTIVITY

Based on the data presented in Sketch F, wave amplitudes of 1000 and 2500 ft were
selected to correlate weak and moderate or.strong wave aetivity, respectively.
Because of the scarcity ofdaéta, the accuracy of this correlation is admittedly
[questionable. Also, since amplitudes of 1000 and 2500 ft are less than the maximum
‘amplitudes observed for the corresponding wave activities, CAT may be underpredicted
by the computer program (use of amplitudes equal to 1400 and LOOO ft for weak and
moderate or strong wave activities, respectively, would probably be more conserva-
tive). However, the selected correlation between wave amplitude and activity could
be changed based on experience and new data.

28



The computer program (Fig;_aﬁ) then, predicts lee wave amplitudes of 1000 and
2500 ft when weak and moderate or strong wave activity is predicted, respectively.
This provides a means for estiméting lee wave amplitude from sea level pressure
difference and maximum wind velocity perpendicular to the mountains in the altitude
range from 10,000 to 20,000 ft.

Screening and CAT Forecast

At this point, the computer program (Fig. 24) compares the wave amplitudes
required to destabilize each initially stable layer with the predicted amplitude of
the mountain lee wave. Layers requiring amplitudes smaller than the lee wave
amplitude would be expected to become unstable and produce CAT. Then, when weak
waves (a = 1000 ft) were forecast, turbulence would be forecast within 1000 ft of
the altitude of layers which were predicted to become unstable and when strong waves
(a = 2500 ft) were forecast, turbulence would be forecast within f2500 ft of the
altitude of unstable layers.

Computer Program for Forecasting Mountain Lee Wave CAT

Referring to Fig. 24, the program first computes the vertical velocity and
temperature profiles and the velocity and temperature gradients for each layer from
rawinsonde data obtained upwind from the mountains (block (1)). The program then
identifies stable shear layers from the velocity and temperature profile data and
selects those which are of interest for further analysis (temperature gradient above
preselected minimum value). Next, the program calculates the lee wave amplitude
required to destabilize (reduce RiMIN to 0.25) these stable shear layers, using
from the rawinsonde data the initial shear, (BV/az)o, velocity, Vy, temperature
gradient, (3T/3z)o, and temperature, T, (block (2)).

In the next step (block (3)), the program uses the United Air Lines nomogram
(with the amplitude modification made by the author) to (a) predict lee wave activity
and amplitudes using values of pressure difference and maximum wind velocity or
(b) forecast future lee wave activity and amplitudes using pressure tendency and
forecast wind velocity. The program then (block (4)) compares the predicted amplitude
of the lee waves with the amplitudes required to destabilize the stable shear layers.
CAT is predicted to occur at altitudes corresponding to layers which are predicted to
become unstable.



Concluding Remarks

Previous analyses of CAT cases involving mountain waves (Refs. 1 and 3) have
shown that there is a fair to good agreement between the altitudes at which CAT was
detected and the altitudes of initially stable layers which were predicted to be
destabilized by the wave-induced shear. Measured lee wave amplitude was used in
these analyses and in general the amplitude varied with altitude. The UAL nomogram,
which is based on airline experience, does quite well in predicting current wave_
activity using current pressure difference and maximum wind velocity. Data obtained
in the 1970 Lee Wave Observation program tend to confirm this. Also, based on lee
wave observations, it does not appear unreasonable to correlate wave amplitude with
waye activity. However, using the nomogram there is no way of estimating the
variation in wave amplitude with altitude. The success in using the nomogram with
the computer program to forecast future wave activity will depend on the success in
using pressure tendency to forecast pressure difference and success in forecasting
the maximum wind velocity. The forecast might be quite good for short forecast
periods. The major advantage in using the nomogram is that it is quite simple to
use with the computer program. However, if the nomogram results in erroneous wave
forecasts or long range forecasts are desired, then more subjective techniques could
be used for forecasting lee wave activity as suggested in the lower part of Fig. 2L.
Such techniques are presently in use by UAL, USAF, and others and use synoptic data,
such as the change in height of the tropopause upwind from the mountains, wind
velocity in the wave zone, wind and isotherm patterns, and location of warm tongues
of air at 850 mb to the lee of the mountains to forecast mountain waves. It does
not appear that a technique such as this could be included in the computer program;
if such a technique were used, some way of estimating the wave amplitude is again
required.
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LIST OF SYMBOLS

Amplitude of wave (half the height from trough to peak), ft or in.

Critical lee wave amplitude required to destabilize shear layer in
atmosphere, ft

Exponent in theoretical velocity profile (Eq. (6)), dimensionless
Complex wave velocity, ¢ = cp + iecj, ft/sec

Imaginary part of complex wave velocity, ft/sec

Real part of complex wave velocity, ft/sec

Shear -layer scale length parameter for describing velocity profiles,
d = (av/2)/(av/3z)q, ft

Kinetic energy per unit volume associated with shear (Eq. (27)), ft-lb/ft3
Gravitational constant, 32.2 ft/sec2
Unit imaginary number, +/~1, dimensionless

Wave frequency, 2mVo/Ary, e -

Brunt-Véisald frequency, Ny = \(g/To)* (8T/8z)-(aT/az)] ad in the
atmosphere and 1K-g/p)(8p/8z) in the Water Channel, sec™1

Richardson number, Ri = (g/To)'[(F)T/F)z)-(HT/az)ad]/(aV/az)2 in the atmosphere
and (-g/p)+(9p/32)/(dV/3z)2 in the Water Channel, dimensionless

Initial or upstream Richardson number, dimensionless

Minimum Richardson number caused by influence of long-wavelength wave,
dimensionless

Time, sec
Temperature, deg C, K, or F

Temperature at center of shear layer, deg C, K, or F



Vl ,V2

w(x,2z,t)

L35 2

LIST OF SYMBOLS (Continued)
Velocity or maximum velocity perpendicular to mountains between 10,000 and
20,000 ft, ft/sec or kts

Velocity at center of shear layer or velocity of long-wavelength wave,
ft/sec or kts

Velocities in upper and lower streams bounding shear layer, respectively,
for hyperbolic tangent profiles, ft/sec

Perturbation velocity (Eq. (9)), ft/sec

Width of "Three-Dimensional" shear layer (Fig. 6), w = wg + 2w, in.
Width of part of "Three-Dimensional' shear layer containing no horizontal
transverse velocity gradient (Fig. 6), in.

Width of "Three-Dimensional" transition region where shear profile changes
to uniform profile (Fig. 6), in.

Buoyant work per unit volume (Eq. (26)), ft-lb/ft3

Kinetic energy per unit volume associated with lateral motion (Eq. (32)),
ft-1b/ft3

Total work per unit volume (Eq. (33)), ft-1b/ft3
Downstream coordinates in Water Channel (Fig. 1), ft or in.
Transverse coordinate in Water Channel (Fig. 1), ft or in.
Vertical coordinate in Water Channel (Fig. 1), ft or in.

Vertical coordinate of center of shear layer in Water Channel, or mean
altitude of stable layer in the atmosphere, ft or in.

Vertical distance to V7 and Vo, respectively, in.

Wavenumber of small-amplitude waves associated with instabilities in
shear layers, a = 2m/A, rt7L
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LIST OF SYMBOLS (Concluded)

B Parameter in density profile equation (Eq. (2)), B= Ri'd-(av/az)o2/g,
dimensionless

Ap Sea level pressure difference, (Fig. 25), mb

AV Velocity difference parameter for describing velocity profiles

(Eq. (1)), ft/sec

o} Increment in quantity, dimensionless

A(8V/dz) Change in shear caused by influence of long-wavelength wave, sec”L

(3T/5z)gq Adiabatic lapse rate, (9T/82z)gq = -2.98 x 1073 deg C/ft

(0T7/32z), Initial upstream temperature gradient, deg F/ft or deg /1000 ft

(BV/BZ)O Initial or upstream shear, sec™L or kts/lOOO £

(2d)m Measured thickness of shear layer before turbulent breakdown, in.

A Wavelength of small-amplitude waves associated with instabilities in
shear layers, ft or in.

}‘LW Wavelength of lee wave or long-wavelength wave in Water Channel, in., ft,
or nmi

v Kinematic viscosity, ft2/sec

P Density of water or air, slugs/ft3

Po Denisty of water or air at center of shear layer, slugs/ft3

p1sP2 Densities in upper and lower streams bounding shear layer, respectively,
slugs/ft3

¢(z) Perturbation amplitude function in shear-layer stability analysis, ft2/sec

A Perturbation stream function in shear-layer stability analysis, ft2/sec
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APPENDIX I: METHOD FOR FITTING HAZEL'S THEORETICAL VELOCITY PROFILE
TO DATA FOR "S-SHAPED" VELOCITY PROFIIES

This Appendix describes the method which was used to fit the theoretical
velocity profile of Hazel (Ref. 7) to the "S-shaped” velocity profiles obtained
experimentally in the UARL Open Water Channel. The theoretical profile was given
previously in Eq. (6). It will also be helpful to refer back to Sketch C in the
main text.

Fitting Eq. (6) to a measured profile involves determining the constants b, AV,
and d. In the following development this will be done by matching the velocities
V1 and Vo at z; and 25, the shears at z; and 25 (which are zero), and the mean shear,
(av/az)o, at zo of the measured profile to those of the theoretical profile.

The shear can be obtained by differentiating Eq. (6) with respect to the
vertical coordinate z:

ov/oz = (g_\zl)o{[(bﬂ) sect’ (%q)]_ b} sechb(z—;o) (19)

In this equation, the following substitution was made:

(av/02)0= 5% (20)

At z7 the shear is zero, so Eq. (19) yields

sech ((z,-zo/d) = ‘\/'b—bﬁ (21)

Substitution of Eq. (21) into Eq. (6) provides an expression for V;:
b _ b+l
Vo= Vg 4 (A—ZV) b2 (b+1) 2 (22)

Replacement of Vo with (V + Vp)/2 in Eq. (22) yields an equation for AV as a
function of b, V;, and Vo:

(b+i) = (23)

N

AV = (v,-Vv,) b

Now, substitution of AV from Eq. (20), (2 - z5)/d from Eq. (21) and Vg =
(V] + Vo)/2 into Eq. (22) results in

|
2 b b+ ol
[(z,— zo)/(Vl—Vz)] (0V/d12)g = l? <orccosh (bgl) > b2 (b4 1) 2 el
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Using a similar development but with the condition that the shear is also zero at zp
yields an expression that is similar to Eq. (24) except that z] is replaced by zo

and the right side of the equation is negative. Combining this result with Eq. (24)
produces

ol
A bel 25
[(21- 220/ (- V)] (OV/32), = <orccosh (-‘3—;-'-)>b 2 (b+1) 2 =

The left side of Eq. (25) can be determined entirely from properties of the
measured profile. The right side is only a function of b. Therefore, the value of
b for a given profile can be obtained by plotting b versus the right side of Eq. (25)
and entering the plot at the value given by the left side of Eq. (25). After
obtaining b for the profile, AV can be obtained from Eq. (23) and, finally, d can be
obtained from Eq. (20). Thus, all of the parameters needed in Eq. (6) to describe
the velocity V as a function of z have been determined.
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APPENDIX II: SUMMARY OF OTHER FLUID MECHANICS INVESTIGATICNS

Experimental Investigations of Stability of Straight,
Stratified, Shear Flows Having Multiple Shear Layers

The purpose of these investigations was to investigate the stability of a shear
layer consisting of a combination of several thinner stable and unstable layers.
Experiments were conducted to investigate conditions under which such flows become
unstable and the characteristics of the flow during the initial phases of breakdown.

Description of Combined Shear ILayer Experiments

S ——

The two types of velocity profiles which were investigated are shown in Sketch G.
The profiles are designated Type LSL and Type SLS (8 for small shear and L for large
shear). Type LSL velocity profile consists of a layer having small shear sandwiched
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SKETCH G. VELOCITY PROFILES USED IN STABILITY TESTS OF COMBINED SHEAR LAYERS
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between two layers having large shears.

Type SLS consists of a layer having large

shear sandwiched between two layers having small shears. Tests were made to determine
if turbulent breakdown of layers having large shears would cause a combined shear
layer, consisting of unstable large-shear layers and stable small-shear layers, to

become unstable and break down.

Accordingly;, attempts were made to establish density

gradients which would stabilize the small-shear Tayers (Ri > 0.25) but not the

large-shear layers (Ri < 0.25).

i o —— At
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Summary of Experimental Results

Typical velocity, temperature, and density profiles for the combined shear
layer experiments are shown in.Fig. 26. Profiles for a type LSL combined layer
having a layer of small shear (9V/d9z = -0.26 sec—l) sandwiched between two layers of
large shear (lower layer 9V/dz = -2.7 sec™l --- upper layer aV/sz = -0.65 sec™l) are
shown in Fig. 26(a). The Richardson numbers, Ri, for the upper, middle, and lower
shear layers were 0.04L, '0.272, and 0.003, respectively. Thus, the upper and lower
layers would be expected to become unstable and the middle layer to be marginally
stable.

The stages of breakdown which were observed during this test are sketched in
Fig. 215&2. First, there is a region where the flow appears to be undisturbed. Then
waves appear in the unstable layers. The waves in the upper layer (Vo equal to
0.02 ft/sec) have a wavelength, A , of 4 in., and appear upstream from the waves in
the lower layer (Vo equal to 0.09 ft/sec) which have a wavelength of 2 in. The waves
grow in amplitude and then transition to vortices. Further downstream the vortices
interact with each other causing turbulent breakdown of the combined layer. 1In the
turbulent region there was some evidence that the combined layer was influencing the
brgggggﬂp. There appeared to be an overall swirling motton superimposed on the
turbulence. This swirling motion was periodic and had a wavelength, A, approximately
equal to 8 in. This wavelength is more characteristic of the length expected based
on the combined layer thickness than on the thickness based on any of the individual
layers and suggests, therefore, that the combined layer is influencing the breakdown
(from Refs. 1 and 3, the expected wavelength is (Vv/2m)-2d).

Typical profiles for combined layer type SLS having a layer of large shear
sandwiched between two layers of small shear are shown in Fig. 26(b). The
Richardson numbers, Ri, for the upper, middle, and lower sheaf—iaﬁérs were 2.02,
0.01k4, and 0.21, respectively. Thus, the upper layer would be expected to be stable,
the lower layer to be slightly unstable, and the middle layer unstable. The stages
of breakdown which were observed during this test are sketched in Fig. 27(b). First,
there is a region where the flow appears undisturbed. Then waves appear which have
a wavelength, A , equal to H in. These waves grow in amplitude and then transition to
vortices. PFurther downstream some of these vortices continue to grow in size and
some are suppressed. The wavelength associated with the growing vortices was © L
and, based on the thickness of the layers, was more characteristic of the combined
layer than any of the individual layers. Further downstream, turbulent breakdown
occurred as the growing vortices interacted with each other and the suppressed
vortices.

Observations of the stages of breakdown during these tests indicated that the
breakdown.of the unstable layers wasé&;ﬁ?lndependent of the adjacent stable layers.
The growth of instabilities initiate the unstable layers appeared to be fed in
part by the shear energy from the adjacent stable shear layers. The final stages of
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the breakdown appeared to be influenced by the combined-layer at its characteristic
wavelength. This was most obvious in the test of combined layer type SLS. Here,
then, is a case where small amplitude instabilities having short wavelengths result
in larger amplitude instabilities having longer wavelengths.

These results are in agreement with fhegrefical work done by Atlas (Ref, 26) .
and experimental results obtained by Thorn;_ﬂgu;_27) Atlas showed _that once the _ \\
minimum Richardson number in a layer decreases to a value less than 0.25, any
resulting instability would grow in amplitude until the layer Richardson. number was

(losses because of dissipation would result in growth to & layer Ri less than
0.5). Thus, a thin, unstable (Ri <0.25) shear layer in a thick slightly stable
(RL> O3 25) shear layer may result in the destabilization of the thick as-well as the
thin layer, provided the layer Richardson number is O.5. The ;ﬁxi; Richardson
number is an average Richardson number based on the initial velocity and density
profiles and a layer Qgigkness equal tonﬂ‘iﬁiﬂthe maeximum amplitude of the
ingtability. Tho has observed that when the Kelvin-Helmholtz type of instability
occurs in stratified shear flows the volume of turbulent fluid grows until the
layer Richardson number is about 0.k. ‘

//—"f" et )\
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The results of these experiments indicate that, for the type of velocity and
temperature profiles tested, the breakdown of combined shear layers consisting of
stable and unstable layers is initiated by the instability of the unstable layers
and that the final stages of breakdown are influenced by the c ombined layer at its
characteristic wavelength. The observations indicated that, in combined shear
layers, the small amplitude short-wavelength disturbances associated with the initial
}nstability can result in large amplitude, long-wavelength disturbances.

Concluding Remarks

Stability Criterion for "Three-Dimensional”,
Straight, Stratified Shear Flows

The value of stability criteria derived by energy methods is open to question.
However, since such criteria have been derived by other investigators, a simple
criterion for the three-dimensional case was derived and is presented in this

Appendix. Chandrasekhar (Ref. 8) determined the critical value of Richardson number

for two-dimensional stratified shear flows using energy considerations. Chandrasekhar
easoned that for a stably ‘stratified shear flow to become unstable there must be
enough kinetic energy available from the shear to work against the buoyant stabilizing
forces. Chandrasekhar determined the critical Richardson number by equating the work
required to interchange fluid particles (1) and (2), shown in Sketch H, to the kinetic
energy available from the difference in velocity between particles (1) and (2).
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SKETCH H.DENSITY AND VELOCITY DISTRIBUTION FOR TWO-DIMENSIONAL STABLY STRATIFIED
SHEAR FLOW ANALYSED BY CHANDRASEKHAR

It was shown (Ref. 8) that the work per unit volume, Wg, required to interchange
particles (1) and (2) is given by

and that the kinetic energy per unit volume, E, available from the shear layer is
given by

E-= p(SV)2/4 (27)
For instability to occur, E must be greater than Wg:
g-8p 8z
WB/E:-—Z- < 1.0 (28)
p(8V)7/4

The critical Richardson number is obtained by dividing the numerator and denominator
in Eq. (28) by 6z and is given by

_ g_(%s_za)_ = Ri < 0.25 (29)
p(8V/82) = '

Thus, for two-dimensional stably stratified shear flows one would expect
instability to occur when the Richardson number was less than 0.25. This result is
in_agreement with theoretical stability criteria of Drazin, Hazel, and others. It

is also in agreement with exper{mental results obtained in this program and reported
previously in Refs. 1 through 5.
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The method of Chandrasekhar was extended to investigate the stability of
"three-dimensional" stably stratified shear flows for which the thickness of the
shear layer was small compared to the width of the shear layer; i.e., the velocity
profile was three-dimensional. A side view of the flow sectioned through the shear
layer on the centerline of the "three-dimensional" flow is the same as that shown in
Sketch H. A front view of the flow after fluid particles (1) and (2) have been
interchanged is shown in Sketch I.

REGION OF SHE AR REGION OF
|=— UNDISTURBED»{ LAYER |~ UNDISTUR BED —]|
FLOW ZONE FLOW
A ot
8 p P &
1 b =l p #
i A 4 X2 1l o
SHEAR 1 pooor W ls 52 ' =
ger = s ( e
ZONE . 5 s 4 Ms, L 5
A P P Oz » ptop L~
.()
i X ¢
A pt+op p o p P
A e 2
1 ,U'!ap p-ﬁp Ve
A
| W R N I O W N S T i .

SKETCH I-FRONT VIEW OF “THREE-DIMENSIONAL’’ STABLY STRATIFIED SHEAR FLOW ANALYSED
USING METHOD OF CHANDRASEKHAR

In Sketch I, the flgw direction is out of the paper. For this analysis it is
assumed that horizontal velocity gradients are negligible. The difference in velocity
and density between particles (1) and (2) is 6V and &p, respectively.

The critical Richardson number of the three-dimensional flow shown in Sketch I
can be obtained, in a manner similar to the method used for two-dimensional flows, by
equating the kinetic energy per unit volume available from the shear to the energy
per unit volume required to interchange particles (1) and (2). The work per unit
volume, Wp, required to overcome buoyant forces and the kinetic energy.pexr unit volume,
E, available from the shear are the same for the three-dimensional flow as for the
two-dimensional flow and were given previously in Egs. (26) and (27), respectively.
However, for the three-dimensional flow, as particles (1) and (2) are interchanged,
pressure forces occur which tend to make the fluid spread laterally. This lateral
[ motion does not helpWqugggilize the flow and, since the kinetic energy per unit
volume of this motion must also come from the kinetic energy per unit volume associated
with the shear, the three-dimensional flow appears more stable than the two-dimensional
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flow. The kinetic energy per unit volume associated with the lateral motion was
assumed to be equal to the potential energy per unit volume associated with the
lateral pressure forces which would act on the particles if the particles were
restrained from moving laterally while they are being interchanged. The lateral
pressure forces, which are equal to potential energy per unit volume, result from
the differences between the pressure at the center of particles (1) and (2) (at
points 2 and 5 shown in Sketch I) and the pressure at the sides (at points 1, 3,
4, and 6) of the particles. These pressure differences, which are equivalent to
potential energy per unit volume, are given by

(Pa-Pﬂw)=(P2’P3%2)=g'8P +8z/2 (30)

(P5 = Pa)yy= (Ps—Pg)yy * g8 - 82/2 (31)

These pressures result in forces which would tend to split the particles causing flow
to both sides. Assuming that the kinetic energy per unit volume associated with
lateral motion is equal to the potential energy per unit volume associated with (and
equal to) the lateral pressure differences (pressure equivalent to potential energy
per unit volume), the kinetic energy per unit volume is given by

We= ~g-8 -8z (32)

The total energy per unit volume required to interchange the particles is the buoyant
work WB (Eq. (26)) plus the kinetic energy per unit volume associated with the lateral
pressure differences, Wp (Eq. (32)):

Wr= -29-8p- 812 (33)
For instability to occur the kinetic energy per unit volume, E, available from the
shear (Eq. (27)) must be greater than the total energy per unit volume, W
W 29-8p-82
0 i _fl_f%___ ) (34)
E p(8V)</4

The critical Richardson number is obtained by dividing the numerator and denominator
in Eq. (34) by 6z:
g(8p/82)

" T = Ri<0.125 (5)

Thus, for three-dimensional, stably, stratified, shear flows one would expect
instability to occur only when the Richardson number was less than 0.125. On the
basis of this result, then, "three-dimensional" flows would be more stable than two-
dimensional flows which have a critical Richardson number of 0.25., This result is
confirmed to some degree by experimental results obtained during this program and
discussed previously.
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FIG. 3

TYPICAL STAGES OF BREAKDOWN OF FLOW IN SHEAR LAYERS HAVING
‘““S-SHAPED" VELOCITY PROFILES

Vo =0.07 FT/SEC (OV/61), = ~0,80 SEC ™! (9T/dz) =0

FLOW
SURFACE-Z =6|N.—\
—,\_/\/V\j\j\ﬁ@ £y Ly
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HEIGHT ABOYE CHANNEL FLOOR, z - IN.

FIG. 4
TYPICAL “§" VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR SHEAR-FLOW

EXPERIMENTS IN WATER CHANNEL

—— — CORRESPONDING PROFILE IN HAZEL'S THEORY

SEE EQS. (6) AND (8) FOR THEORETICAL VELOCITY

(a)Ri -0,b-08 AND DENSITY PROFILES
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FIG. 5
COMPARISON OF WATER CHANNEL RESULTS FOR ‘“‘S-SHAPED'' VELOCITY o

PROFILES WITH HAZEL'S CRITERIA FOR STABILITY

FLOW DEVELOPED USING TWO-DIMENSIONAL CONTOURED FILTER BEDS
SEE EQS. (6) AND (8) FOR THEORETICAL VELOCITY AND DENSITY PROFILES
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FIG. 7

TYPICAL STAGES OF BREAKDOWN OF FLOW IN SHEAR LAYERS HAVING
“THREE-DIMENSIONAL" VELOCITY PROFILES
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FiG. 8
TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR ‘‘THREE-DIMENSIONAL"
SHEAR-FLOW EXPERIMENTS
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DIMENSIONLESS WAVE NUMBER, a d

COMPARISON OF RESULTS FOR FLOWS HAVING “THREE-DIMENSIONAL"

SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 4.8 AND 8.6
WITH DRAZIN'S CRITERION FOR TWO-DIMENSIONAL FLOWS

DRAZIN'S CRITERION FOR HYPERBOLIC TANGENT VELOCITY PROFILES
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DIMENSIONLESS WAVE NUMBER, « d

COMPARISON OF RESULTS FOR FLOWS HAVING “THREE-DIMENSIONAL"
SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 9.7 AND 14.3
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FIG. 1
COMPARISON OF RESULTS FOR FLOWS HAVING ‘“THREE-DIMENSIONAL"

SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 14.5 AND 40
WITH DRAZIN'S CRITERION FOR TWO-DIMENSIONAL FLOWS

DRAZIN’S CRITERION FORHYPERBOLIC TANGENT VELOCITY PROFILES
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FIG. 13

EFFECT OF A LONG-WAVELENGTH WAVE ON THE MINIMUM
RICHARDSON NUMBER IN A SHEAR FLOW
(a) SCHEMATIC DIAGRAM OF FLOW CONDITION ’

MAXIMUM SHEAR,
Riyn AT CREST

2d
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v Tn
o
o ¥t EDGES OF SHEAR LAYER
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(-]

"UPSTREAM VELOCITY AND
TEMPERATURE PROFILES

(b) EFFECT OF TEMPERATURE GRADIENT AND INITIAL SHEAR ON Ri y; IN WATER
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FIG, 14

WATER CHANNEL RESULTS SHOWING EFFECT OF A LONG-WAVELENGTH WAVE ON
THE LOCAL RICHARDSON NUMBER IN A SHEAR FLOW

v, =0.07 FT/SEC Rig = 0.70 @v/dz) = ~0.71 SEC"
SEE FIG. 16 FOR VELDCITY, TEMPERATURE AND DENSITY PROFILES
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Ri = 0.37 Ri=1.8




FIG.15

PHOTOGRAPHS SHOWING EXAMPLES OF INSTABILITIES
INDUCED BY LONG-WAVELENGTH WAVES

SEE FIG.14 FOR FLOW CONDITIONS AND FIG. 16 FOR
VELOCITY, TEMPERATURE, AND DENSITY PROFILES

DIRECTION OF FLOW

(a) FIRST TROUGH TO SECOND CREST (X=7 TO 14 IN.)-WAVES

(b) SECOND CREST TO SECOND TROUGH (X=14 TO 21 IN.)—- VORTICES




TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR FLOW
IN A LONG-WAVELENGTH WAVE

SEE FIGS, 14 AND 15 FOR PHOTOGRAPHS OF THE FLOW
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FI1G. 17

COMPARISON BETWEEN MEASURED AND PREDICTED VALUES OF WAVE SHEAR
IN A LONG-WAVELENGTH WAVE

SHEAR PREDICTED USING PHILLIPS' THEORY (REF.9)

|a @v/an], = @vo) 0iE - ah)

MEASURED WAVE SHEAR GENERALLY BASED ON FIRST HALF WAVELENGTH
OF LONG-WAVELENGTH WAVE

DATA FROM UARL OPEN WATER CHANNEL

1.0
s
= - F 4
IU 8]
5 oal . 4
. %
= /
2]
= 0.6 — //
X v
:j f—
- 7
ui 0.4 — " /
x
E‘ — o0 O/ =
= 7 e
E 0.2 - / (o]
= ©
B yoo o
o 1y
0 0.2 0.4 0.6 0.8 1.0 1.2

PREDICTED WAVE SHEAR, |A (3v/d2)] - SEE™

61



62

MEASURED WAVELENGTH, (A w, -~ IN.

COMPARISON BETWEEN MEASURED AND PREDICTED VALUES OF
WAVELENGTH OF LONG-WAVELENGTH WAVES

DATA FROM UARL OPEN WATER CHANNEL

WAVELENGTH PREDICTED USING HAURWITZ'S THEORY (REF. 10)
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EFFECT OF WAVE AMPLITUDE RATIO ON STABILITY BOUNDARIES FOR
SHEAR FLOWS IN LONG-WAVELENGTH WAVES

DATA FROM UARL OPEN WATER CHANNEL
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EFFECTS OF LONG-WAVELENGTH WAVES ON STABILITY

OF ATMOSPHERIC SHEAR LAYERS

(a) SCHEMATIC DIAGRAM OF FLOW CONDITION

MAXIMUM SHEAR,
Riyiny AT CREST
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(b) EFFECT OF LAPSE RATE AND SHEAR ON Riy )\ FOR TYPICAL WAVE CONDITIONS
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FIG. 21

EFFECT OF WIND VELOCITY ON STABILITY BOUNDARIES FOR ATMOSPHERIC SHEAR
FLOWS IN A LONG-WAVELENGTH, 500-FT-AMPLITUDE WAVE

INITIAL WIND SHEAR, 10V/3, ) | - KT/(1000 FT)

ALTITUDE, z = 34,089 FT
TEMPERATURE, T =-56.5C

WAVELENGTH, A , = 15 NMI

NOTE: FLOW STABLE FOR (J'V /dz)o| AND 3T/3z BELOW BOUNDARY FOR GIVEN V,
AND UNSTABLE FOR|(3V/dz) | AND 3T/ ABOVE BOUNDARY
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INITIAL WIND SHEAR, I(3V/dz) | - KT/1000 FT
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FIG. 22

EFFECT OF WIND VELOCITY ON STABILITY BOUNDARIES FOR ATMOSPHERIC
SHEAR FLOWS IN A LONG-WAVELENGTH, 3000-FT- AMPLITUDE WAVE

ALTITIDE, z = 36,089 FT

TEMPERATURE, T, -56.5 C

WAVELENGTH, )\w = 15 NMI

NOTE: FLOW STABLE FOR|(JV/dz),| AND 3T/dz BELOW BOUNDARY FOR GIVEN V,
AND UNSTABLE FOR |(0V/32),] AND dT/dz ABOVE BOUNDARY
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ALLOWABLE MAXIMUM INITIAL WIND SHEAR FOR STABILITY, [V /91)| e —-KT/(1000 FT)

FIG. 23

EFFECTS OF WIND SPEED AND LONG-WAVE WAVELENGTH
ON MAXIMUM ALLOWABLE INITIAL WIND SHEAR FOR STABILITY
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FIG. 24
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FIG. 25

COMPARISON OF DATA FROM 1970 LEE WAVE OBSERVATION PROGRAM
WITH UNITED AIR LINES NOMOGRAM FOR PREDICTING WAVE OCCURENCE

NOTES: 1. NUMBER NEAR SYMBOL DENOTES FEBRUARY, 1970 DATE
2. NO FLAG DENOTES FLIGHTS NOT MADE ASINO WAVE ACTIVITY WAS
PREDICTED BY OTHER METHODS
3. SINGLE .ELAG DENOTES.WEAK WAVE OBSERVED IN FLIGHT

4. DOUBLE FLAG DENOTES MODERA AVE OBSERVED IN FLIGHT
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F16,26
TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES

FOR COMBINED SHEAR LAYER EXPERIMENTS

(a) COMBINED LAYER TYPE LARGE-SMALL-LARGE
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FIG. 27
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