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FOREWORD 

Analytical and experimental fluid mechanics investigations were performed to 

investigate instabilities in atmospheric flow systems associated with clear air 

turbulence. This work was a continuation of investigations reported in NASA 
Contractor Report CR-I60U, "Research on Instabilities In Atmospheric Flow Systems 

Associated With Clear Air Turbulence," by J. W. Clark, R. C. Stoeffler, and 

P. G. Vogt (June 1970). The program was conducted by United Aircraft Research 

Laboratories under Contract NASW-1582 with National Aeronautics and Space Administration 

Headquarters, Washington, D. C, 205U6. The program was under the technical direction 

of the Chief, Aerodynamics and Fluid Dynamics Branch, Code RAA. 
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RESULTS AND CONCLUSIONS 

1. The water channel experiments to investigate the stability of straight, 

two-dimensional, stratified shear flows having "S-shaped" velocity profiles confirmed 

that the shape of the velocity profile affects the dimensionless wavenumber, ad*, 

of the instabilities which can occur. The values of ad observed in experiments with 

"S-shaped" profiles were significantly larger than those observed previously in 

experiments with hyperbolic tangent profiles. This result is in agreement with the 
theoretical stability criteria of Hazel for "S-shaped" profiles and Drazin for 

hyperbolic tangent profiles. 

2. The experimental results and the theoretical stability criteria for two- 

dimensional flows were also in good agreement regarding the critical value of 

Richardson number. Both "S-shaped" and hyperbolic tangent profiles are stable for 

Richardson numbers greater than 0.25. 

3. Although the values of dimensionless wavenumber, ad, at which instabilities 
occur at a Richardson number of 0.25 a^ce  larger for "S-shaped" profiles than for 
hyperbolic tangent profiles, the actual wavelengths, A, are about the same (assuming 
that the shear layer thicknesses, the velocity differences across the shear layer, 

and the mean shears at the center of the shear layers are approximately equal). The 

theory indicates that the higher values of ad are due mainly to higher values of 

the parameter d necessary to describe "S-shaped" profiles. The experimental results 
tend to confirm this. 

k.      The preceding conclusion also applies to the wavelengths of instabilities 
that can be expected when stable shear layers in the atmosphere are destabilized by 

long-wavelength waves (i.e., wave-induced instabilities), such as mountain lee waves. 
If the shear-layer thickness, the velocity difference across the shear layer, and 
the mean shear at the center of the layer are fixed, then the wavelength of the 

instability occurring when the Richardson number decreases to 0.25 will be about the 

same, whether the profile is an "S" or a hyperbolic tangent. This wavelength is 

closely approximated by the wavelength given by Drazin's theory, Ag = (2TT/\/2) *2d, 

where d is taken as half the shear-layer thickness. 

*The characteristic breakdown flow pattern of Kelvin-Helmholtz-type instabilities 
consists of waves which develop into vortices and turbulence. The wavenumber a is 

2n/\,  where A is the wavelength of the instability; d is one of several parameters 
which describe the velocity profile (d is approximately half of the shear-layer 

thickness for hyperbolic tangent profiles, but this is not a good approximation for 
"S-shaped" profiles). 



5. Water channel experiments and theoretical studies were conducted to 

investigate the stability of straight, stratified shear flows in which the width of 

the shear layer was from about h  to kO  times its thickness. Thus, these shear layers 

were "three-dimensional" as opposed to the usual two-dimensional shear layer which 

is assumed to extend uniformly to infinity in the direction transverse to the flow. 

The results indicate that "three-dimensional" flows are more stable than two- 

dimensional flows. The measurements also indicate that, although the velocity 

profiles were significantly different from hyperbolic tangent profiles analyzed by 

Drazin for two-dimensional flows, the wavelengths of the initial Kelvin-Helmholtz- 

type instabilities that occur are adequately predicted by his criterion. 

6. Shear layer instabilities induced by long^wavelength internal waves were 
also investigated in water channel experiments. Kelvin-Helmholtz-type waves which 

grew in amplitude and transitioned to vortices and turbulence were observed in the 

thin shear layers. These disturbances moved at the mean flow velocity and were 

superimposed on the stationary long-wavelength internal waves. Occurrence of the 

instabilities was predicted quite well using the method used previously in this 

program to predict CAT resulting from shear-layer instabilities induced by mountain 
lee waves. 

7. Water channel experiments were conducted to investigate the stability of 

combined shear layers consisting of adjacent stable and unstable layers. The results 

indicated that instability is initiated in the individual unstable layers at wave- 

lengths that would be predicted by theory based on the thickness of these individual 

unstable layers. However, in the final stages of vortex growth and turbulent break- 

down, the wavelength increases to about that which would be predicted based on the 

thickness of the combined layer. Thus, in combined shear layers, small-amplitude, 
short-wavelength disturbances associated with initial instabilities in individual 

layers can result in large-amplitude, long-wavelength disturbances. 

8. A method was developed, and included in a computer program, for predicting 

the occurrence of CAT in mountain waves. The method compares the amplitude of a 
lee wave required to destabilize an initially stable layer (i.e., to reduce the 
Richardson number to 0.25) with a predicted lee wave amplitude. The layers are 

identified using rawinsonde data. Lee wave activity is predicted using the United 

Air Lines nomogram which is based on the sea level pressure difference between two 
ground stations and maximum wind velocity associated with the wave zone of interest. 

Lee wave amplitude is estimated from a correlation of predicted lee wave activity 

(using the UAL nomogram) with wave amplitudes deduced from reconstructed mountain- 

wave flow fields. Turbulence is predicted at altitudes where the lee wave amplitudes 
required for instability are less than the predicted lee wave amplitudes. 



INTRODUCTION 

The general objectives of the present program were:  (L) to gain increased 

understanding of the nature and causes of turbulent atmospheric phenomena, parti- 

cularly clear air turbulence; (2) to develop improved criteria for predicting 

neutrally stable states in atmospheric flow systems; and (3) to compare the results 

of this research with available meteorological data and attempt correlations. 

The results of all fluid mechanics analyses and experiments conducted under this 

program are reported in Refs. 1 through 5. The initial work (Refs. 1 and 2) provided 
evidence that long-wavelength waves, such as mountain waves, could destabilize 

initially stable shear layers which occur in the atmosphere. Since long-wavelength 
waves may occur quite often in the atmosphere, the breakdown of these layers could 

account for an appreciable fraction of CAT which is encountered. The present report 
summarizes further research reported in detail in Refs. 3 through 5« The specific 

objectives of the latter research were:  (l) to conduct further experiments on the 
effect of the shape of the velocity profile on the stability of straight, two- 

dimensional, stratified shear flows; (2) to investigate the stability of "three- 

dimensional" flows by conducting experiments in the UARL Open Water Channel on the 

stability of straight, stratified shear flows in which the width of the shear layer 
was less than the width of the channel; (3) to further investigate experimentally the 
interaction of long-wavelength waves with stable shear layers; and (h)  to develop a 
computer program which predicts shear-layer instability and CAT induced by mountain 

lee waves. Appendix I contains the derivation of equations used to compare theoretical 

with experimental "S-shaped" velocity profiles. Appendix II contains a discussion of 

an investigation of the stability of shear flows consisting of adjacent stable and 
unstable layers and a description of the method used to obtain a stability criterion 

for "three-dimensional", straight, stratified shear flows. 



STABILITY OF TWO-DIMENSIONAL, STRAIGHT, STRATIFIED 

SHEAR FLOWS HAVING "S-SHAPED" VELOCITY PROFILES 

The primary purpose of this part of the fluid mechanics program was to investi- 
gate the effects of the shape of the velocity profile on the stability of straight, 

two-dimensional, stratified shear flows. First, experiments were conducted to obtain 
data on the stability of flows having "S-shaped" velocity profiles; these data were 

also compared with theoretical stability criteria. The results were then compared 

with results from an earlier investigation of the stability flows having hyperbolic 

tangent profiles. The program was directed toward three areas: (l) identifying 

the conditions under which such flows become unstable, (2) determining the 

characteristics of the flow during the initial phases of breakdown, and (3) evaluating 

existing theoretical stability criteria for subsequent use in studying atmospheric 

shear flows. 

Review of Two-Dimensional Flows Having 

Hyperbolic Tangent Profiles 

The stability of shear flows having hyperbolic tangent velocity profiles was 
investigated in detail in earlier work under this program (Refs. 1 through h).    Flows 
of this type were studied using the UARL Open Water Channel, shown in Fig. 1.  This 

facility provides a 2-ft-wide by 10-ft-long by 12-in.-deep, non-recirculating, open 

channel flow. Filter beds made from porous foam material are used to introduce 

desired vertical and transverse velocity profiles in the flow. Hot^water nozzles in 

the plenum are used to introduce vertical temperature gradients and, hence, density 

stratification. Dye tracing and hydrogen bubble wire techniques are used for flow 
visualization and for measurement of the inlet velocity profile; standard submersible 

mercury thermometers were used to measure temperatures. This facility and its 
associated instrumentation are described in detail in Refs. 1 and 2. 

Velocity profiles approximating hyperbolic 

tangent profiles were obtained by shaping the 

foam material in the filter bed as shown in «n/ 
Sketch A. The stability of flows having such 
profiles was studied theoretically by Drazin 

(Ref. 6) and others. The hyperbolic tangent 

velocity profile which most closely 

approximates the profiles in the channel is 
given by 

FILTER BED 

•VELOCITY 

(dv/dz), 

]/ PROFILE, V 

SKETCH A. FILTER BED AND VELOCITY 
PROFILE FOR HYPERBOLIC TANGENT 
VELOCITY PROFILE 



V = v0 + f- tanh (^°) (!) 

•where V is the local velocity at height z above the channel floor; VQ = (V^ + VgOA? 

is the velocity at the center of the shear layer at height zQ; AV = (Vn - v>>); and 
d = (AV)/2((9V/(?z)0. The parameter d is a scale length and is approximately half the 
thickness of the shear layer. Drazin also used an exponential variation of density 

with height: 

Ri-d-((3v/dz)o / z-z0 

P/P0  -e *ms -RIT z)°m <*> 
where Ri is the Richardson number and g is the gravitational constant.  Since the 

change in density across the shear layer is small, a good approximation to Eq. (2) is 

p/Po = l_ Ri-diav/^l (^ 
(3) 

Drazin derives a criterion for stability in Ref. 6 by introducing a perturbation 
stream function 

<//' = <f>(z)  e<a(*-ct) (I*) 

into the equations governing the motion of the fluid. Here, a is the wavenumber, 

a= 2-n/x,  and c is the complex wave velocity, c = cr + i«Cj_. The equations of motion 
then yield a single stability equation. Making use of the fact that the perturbations 

neither amplify nor decay when c^ = 0, Drazin solves for the following equation for 
neutral stability on the ad - Ri plane: 

'd-VlVp (5) 



NEUTRAL BOUNDARY 
Sketch B shows this boundary which 
separates stable and unstable regions. 

The criterion indicates that the flow 

would be stable for disturbances of 

all dimensionless wavenumbers,ad, 

for Ri > 0.25. For Ri < 0.25, the flow 

would be unstable for dimensionless 

wavenumbers which lie inside the 

boundary and a Kelvin-Helmholtz (K-H) 
type of instability would occur. 

Ri = 0.25 
ad = A/272 

0      0.1     0.2     0.3 
Ri 

SKETCH B. DRAZIN'S NEUTRAL 
STABILITY BOUNDARY 
FOR HYPERBOLIC 
TANGENT PROFILES 

The results of UARL Open Water Channel investigations of the stability of flows 
having hyperbolic tangent velocity profiles are summarized and compared with Drazin's 

theoretical criterion in Fig. 2. For each flow condition, the Richardson number was 

calculated using the slopes (dv/dz)Q  and dl/dz  from the measured profiles.  The 
scale length, d, was calculated using the slope (dV/<9z)0 and the velocity difference 

AV from the velocity profile; Av was based on the maximum and minimum velocities 

in the vicinity of the edges of the shear layer. The wavenumber, a = 2TT/A, of 
instabilities observed in the shear layer was calculated using wavelengths determined 
from photographs of dye traces. Thus, each flow condition at which waves were 
observed is identified by a point on the plot of ad vs Ri. 

The symbols in Fag. 2 denote different flow characteristics that were observed. 
The open circle symbols denote conditions at which only Kelvin-Helmholtz-type waves 

were observed in the shear layer; that is, the waves extended the entire length of 

the channel without breaking down. The wavelengths of these waves ranged from about 
3 to 6 in.  The open circle symbols with flags indicate the nature of the distur- 

bances observed — for example, small-amplitude waves which persisted, waves which 
seemed to grow in amplitude to a certain point and then not grow further as they 

progressed downstream, and waves which appeared in the flow only intermittently. The 

half-solid symbols denote flow conditions in which the waves transitioned to vortices 

but did not transition to turbulence before reaching the downstream end of the channel, 

The full-solid symbols denote flow conditions at which the full sequence of events 

associated with complete shear-layer breakdown occurred   waves, vortices, and 
turbulence. The crosses indicate conditions at which no waves of the type associated 
with instability occurred. 



Examination of Fig. 2 indicates that most of the observations are in good 
agreement with Drazin's boundary. All cases in which full transition was observed 

fall in the unstable region.  Six cases in which waves were observed fall in the 

stable region.  The intermittent small-amplitude waves indicated at Ri = 0.^3 and 

steady small-amplitude waves at Ri = O.38 were unexpected; in subsequent tests 

at approximately the same conditions, no waves were observed. Four cases were 

observed which fall above the boundary but at Ri<0.25. These four cases were, 
at the time of the tests, suspected to be attributable to differences between 
the experimental velocity profile and Drazin's hyperbolic tangent profile. 
This hypothesis was based on a theoretical study by Hazel (Ref. 7) which showed that 
instabilities associated with flows having "S-shaped" velocity profiles could have 

dimensionless wavenumbers greater than 1.0. 

Stability Criteria of Hazel for 

"S-Shaped" Velocity Profiles 

"S-shaped" velocity profiles are developed in the Water Channel by shaping the 

porous foam filter bed as shown in Sketch C. 

VELOCITY PROFILE, V 

SKETCH C. FILTER BED AND VELOCITY PROFILE FOR "S-SHAPED" VELOCITY PROFILE 
The velocity profile used by Hazel in this theoretical study is 

AV 
V =  V0 +~2~ 5ech> (i^). fonh(^,) (6) 

where b is an exponent that affects the shape of the "S" and, as before, 

d = (AV)/2(<9V/az)0. The relationship of the velocity difference AV to (Y1  -  V2) and 
b is (see derivation in Appendix i) 



Av = (b + 0 
b»i 
2 

(V, - V?) 
(7) 

The theoretical density profile used by Hazel is 

2 
Ri- d JdV/dA 

Po 
tanh (^-) (8) 

Hazel derives criteria for stability in Ref. 7 for several velocity and density 

profiles. This is done by solving (using numerical techniques) a differential 

equation which is satisfied by one Fourier component of the velocity perturbation for 

a plane, two-dimensional, Boussinesq shear flow. The full perturbation velocity is 

given by 

w 
oo 

(x.z.t) = /   w(z) 
J-m 

la(x-ct) 
da (9) 

Like Drazin's criterion, Hazel's 
criteria (see Sketch D) indicate that 
the flow would be stable for distur- 

bances of all dimensionless wave- 

numbers for Ri > 0.25. For Ri < 0.25, 
the flow would be unstable for 

dimensionless wavenumbers which lie 
inside the boundaries. The locations 

of the neutral stability curves on the 
ad - Ri plane are dependent upon the 

value of the exponent b (see sketch). 

b   INCREASING 

STABLE 

ad 

NEUTRAL 
BOUNDARY FOR 
FIXED VALUE OF b 

SKETCH D. HAZEL'S NEUTRAL STABILITY BOUNDARIES FOR 
"S-SHAPED" PROFILES 



Summary of Experiments with "S-Shaped" Velocity Profiles 

Characteristics of Breakdown of Flow 

Figure 3 illustrates the stages observed as the flow in the shear layer breaks 
down. The breakdown characteristics were very similar to those for hyperbolic - 

tangent-type flows. There are four very distinct and repeatable stages which occur. 

The photographs in Fig. 3 were taken through the lucite channel side wall with the 

flow from left to right. The scale in the photographs was in the flow close to the 

dye traces. 

In Fig. 3(a)j the flow appears undisturbed. In Fig. 3(b), 28 in. further 
downstream, the center dye trace indicates the presence of a K-H wave amplifying 
as it progresses downstream. The wave has a wavelength of about A = 5 in. and an 

amplitude (half the distance from trough to crest) of about a = 0.25 in. at this 

point. By placing dye traces at several transverse locations across the channel, it 
was verified that the flow was approximately two-dimensional, i.e., the wave extended 
across the channel.  In Fig. 3(c), another 2k  in. downstream, the waves have rolled 
up into vortices. The circulation of the vortices has the same sense as the vorticity 

introduced by the shear   the shear is negative in this flow condition, and all of 

the vortices rotated counterclockwise. These vortices grew slightly in size as they 

drifted downstream. Their downstream drift velocity was approximately V0, the 
velocity upstream at the center of the shear layer. The flow was also two-dimensional 

at this stage.  In Fig. 3(d), another 10 in. downstream   70 in. downstream of the 

filter bed   the vortices have "burst" and the flow appears turbulent. The fluid 
motions were three-dimensional at this stage. 

Velocity, Temperature, and Density Profiles 

Velocity, temperature, and density profiles for three flow conditions are shown 

in Fig. h.    These data are for three different Richardson numbers and three different 
values of the exponent b_used in Hazel's theoretical velocity profile. The corre- 

sponding velocity and density profiles in Hazel's theory are shown by the dashed 

lines. Once a velocity profile had been measured, the value of the exponent b was 

derived so as to provide a reasonably good match between theoretical and experimental 

velocity profiles. The theoretical profile was chosen by matching to the data the 

following (see Appendix I and Sketch c): (l) the velocity difference, V-^ - V2, 

(2) the vertical distance between V^ and V2, z^ - zg, and (3) the mean velocity 
gradient, (av/3z)0, at zQ. The corresponding theoretical density profile was chosen 
by matching the density gradient and mean density of the experimental profile at the 
center of the shear region. 



Comparison of Experimental Results with Hazel's Theoretical Stability Criteria 

Figure 5 is a summary of the results and a comparison with Hazel's theoretical 

criteria. As in Fig. 2, the symbols denote different flow characteristics that were 

observed. The values of the exponent b which provide the best match between the 
theoretical and experimental velocity profiles are given next to the symbols. 

Most of the experimental results are in agreement with Hazel's stability 

boundaries. For all cases in which instability was observed, the Richardson number 

was less than 0.25, and only one stable case was observed for which the Richardson 

number was less than 0.25 («d = 0, Ri = 0.2). For all but one of the cases for which 

instability was observed, the dimensionless wavenumbers, ad, were greater than 1.2. 

This is in contrast to the results obtained for hyperbolic tangent velocity profiles 

(see Fig. 2) where the ad's associated with instabilities were less than 1.2 for all 
but one case. 

Hazel's theory shows that as the value of b increases, the range of wavenumbers, 

ad, of instabilities which can occur also increases. The data appear to confirm this 

trend, although insufficient data were obtained to make detailed comparisons with 

Hazel's criteria for low values of b. Only two cases are not in agreement with 
Hazel's neutral stability boundaries. They are (l) Ri =0, ad = 2.U, b = 0.8, and 

(2) Ri =0, ad = 2.07, b = 0.3. However, these values of b are questionable since 
the agreement between the theoretical and experimental velocity and density profiles 

was comparatively poor for these cases. 

Concluding Remarks 

The most important result of these experiments is that the data provide 

sufficient evidence to confirm the hypothesis that instabilities which occur in flows 
having "S" profiles generally have values of ad considerably larger than those in 
flows having hyperbolic tangent profiles. As explained below, however, the actual 

wavelengths of instabilities at Ri = 0.25 are about the same due to compensating 
changes in d. 

The theoretical criteria of Hazel differ from Drazin's criterion only in that 

one might expect to observe instabilities having larger dimensionless wavenumbers in 

unstable shear layers with "S" profiles. Therefore, one might be inclined to expect 
shorter wavelengths for instabilities associated with "s" profiles than with hyper- 

bolic tangent profiles. However, it can be shown that for an experimental velocity 

profile having a maximum velocity V^ at Zi, a minimum velocity V2 at zg, and a 
velocity gradient (av/3z)0 at the center of the shear layer, the wavelength, A , at 

Ri = 0.25 for the best fitting "s" profile is generally about the same as that for 
the tanh profile. This is because the value of d for the best fitting "s" profile 

10 



is larger than that for the tanh profile. Thus, the increase in the critical value 

of ad is primarily due to an increase in d and, therefore, the wavelengths of 
instabilities in flows having 

hyperbolic tangent profiles, 
instabilities associated with 

ad at Ri = 0.25, the 

theoretical variation of 

the ratio of A for "S- 

shaped" profiles to A for 

hyperbolic tangent profiles 
with the parameter b (b is 

related to z^ - zg, V, - V. 
and (9V/9z)0 in Eq. (25) 
Appendix I). For the range 

of b shown, and for b not near 

zero, this ratio is not 

greatly different from 1.0. 
Data from the water channel 
obtained near Richardson 
number of 0.25 tend to 

confirm this: 

"S" profiles are approximately the same as those for 
This is illustrated in Sketch E which shows, for 

1.6 
•USING HAZEL'S THEORETICAL RESULTS 
-EXTRAPOLATED 

1.4   - 

'2' 
in 

0.8 
2 

b 

SKETCH E. THEORETICAL RATIO OF WAVELENGTHS 
FOR Ri =0.25 FOR "S-SHAPED" 
AND HYPERBOLIC TANGENT PROFILES 

Profile b Ri ad d,in. A, in. 

"S-Shaped" >2.0 0.17 1.8 1.5 5 

"S-Shaped" >2.0 0.16 1.9 1.6 5 

Tanh - 0.2U O.7I+ O.58 5 

Tanh - 0.16 0.8U 0.52 k 

Tanh - 0.12 0.70 O.hh k 

11 



(is a result, Drazin's value of A= (2ir/v^)*2d (Fig. 2), where d is approximately- 
equal to half the shear-layer thickness, would provide reasonably good estimates of 

the wavelengths that might occur in the atmosphere regardless of whether the profiles 

are "s" or tanh in shape. 

The experiments and theories also provide further evidence that 0.25 should be 

used as the critical Richardson number, and that several distinct waves might be 

observed in the isentropes when instabilities occur in atmospheric shear layers. 

12 



STABILITY OF "THREE-DIMENSIONAL", STRAIGHT, STRATIFIED SHEAR FLOWS 

A theoretical criterion for predicting the stability of "three-dimensional", 

straight, stratified, shear flows is apparently not available. Because the magnitude 

of the task of developing rigorous theoretical criteria was beyond the scope of this 

program, a simple analysis based on energy considerations (similar to a method used 

by Chandrasekhar; Ref. 8) was made; see Appendix II. Criteria obtained using such 

simple techniques are admittedly questionable and may not be too significant. 

However, the criterion which was obtained was in qualitative agreement with experi- 

mental results. The analysis in Appendix II predicts that the critical Richardson 

number for "three-dimensional" stratified shear flow is QT1PS. 

A photograph of a shaped filter bed of the type used to develop velocity profiles 

in experiments in the Water Channel is shown in Fig. 6. The filter provided no 
velocity gradient (i.e., the same velocity at all heights above the channel floor) 
across the 2-ft width of the channel except for a section in the center of the channel 

span where a hyperbolic tangent vertical velocity gradient was provided. The span- 
wise distance allowed for transition from hyperbolic tangent velocity gradient to 

zero velocity gradient was large enough so that horizontal velocity gradients were 
very small compared with the vertical gradients. 

Summary of Experiments with "Three-Dimensional" Flows 

Characteristics of Breakdown of Flow 

The four distinct and repeatable stages which occurred during breakdown of the 
"three-dimensional" flows were similar to those observed in tests of two-dimensional 

flows having hyperbolic tangent and "S-shaped" velocity profiles. Dye traces 
illustrating the phenomenon are shown in the sketch and in photographs in Fig. 7- 
At the location in Figs. 7(a) through 7(c), dye from probes at several transverse 

locations indicated that the disturbance was confined to the flow containing the 

shear layer in the central portion of the channel. At the location in Fig. 7(d), 

the vortices have "burst" and the flow appears turbulent. Downstream of this location 

the turbulence began to spread transversely. 

Velocity, Temperature, and Density Profiles 

Velocity, temperature, and density profiles are shown in Fig. 8 for three 
different values of Richardson number. It was found that neither a hyperbolic 

tangent nor an "S-shaped" profile was particularly representative of the experimental 
velocity profiles. The temperature and density gradients shown in Fig. 8(b) and (c) 

indicate that the temperature and density varied approximately linearly through the 
thermocline which separated the two regions of the flow having approximately uniform 
temperatures. 
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Comparison of Results with Theoretical Stability Criterion for Two-Dimensional Flows 

Figures 9 through 11 present a comparison of the test results with Drazin's 

criterion for two-dimensional flows. The data were obtained for three different 

ranges of shear layer width, w, to thickness, (2d)m, ratios. See Fig. 6 for w. 

During these tests, ws in Fig. 6 was varied between 0 and 12 in., and w-t between 2 
and 5 in. The shear layer thickness (2d)m was the measured distance between the 

maximum and minimum velocities of the shear layer and for most cases was approximately 

equal to twice the scale length, d. Data was presented in Figs. 9» 10» and 11 for 

w/(2d)m between U.8 and 8.6, 9«7, and lU.3> and lU.5 and ko,  respectively. 

Except for five cases (all on Fig. 9)> the dimensionless wavenumbers for cases 
where instability was observed are in agreement with Drazin's stability criterion 

for two-dimensional flows having hyperbolic tangent velocity profiles (i.e., the 

data points are inside the stability boundary). For the five exceptions the 

dimensionless wavenumbers were greater than 1.0. This is not unexpected since the 

velocity profiles were somewhat "S-shaped". 

By inspecting Figs. 9 through 11 it can be seen that as the width of the layer 

containing the vertical velocity gradient decreases, the Richardson numbers at which 

stable flows are observed generally decrease, and the Richardson numbers above which 

instabilities are not observed also generally decrease. It appears, then, that the 

critical Richardson number decreases ~as the width of the vertical velocity gradient 
decreases. This trend is shown by the shaded boundary in Fig. 12. The trend is 
compatible with the result obtained by extending Chandrasekhar's technique for 
predicting the stability of two-dimensional stratified, shear flows to "three- 

dimensional" flows (see Appendix II); i.e., the simplified extension of the theory 

predicts that the critical Richardson number, Ri, for "three-dimensional" flows is 

0.125. 

Concluding Remarks- 

The most important result is that data and theory provide evidence that "three - 

imensional" stratified shear flows are njojje^^jajjle than two-dimensional flows. The 

ritical Richardson number is less than 0*25; it decreases with decreasing shear 

ayer width to thickness ratios. The results also indicate that, although the 

experimental velocity and density profiles were quite different from theoretical 

profiles used by Drazin in his analysis, Drazin's criterion for predicting the wave- 
length of instabilities in two-dimensional flows could be used to predict the wave- 
length of instabilities in "three-dimensional" flows. Finally, as many as four or 
five wavelengths were often observed upstream of the first discernable vortex, as in 

two-dimensional flows; thus, it is reasonable to expect that several waves will also 
be observed in isentropes when instabilities occur in "three-dimensional" atmospheric 

shear layers. 
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INTERACTION OF LONG-WAVELENGTH WAVES WITH 

TWO-DIMENSIONAL, STRAIGHT, STRATIFIED SHEAR FLOWS 

The primary purpose of this part of the fluid mechanics program was to 

investigate, using the Water Channel, the destabilization of initially stable shear 
flows by long-wavelength waves. Evidence that this phenomenon occurs in the 
atmosphere and may be the cause of an appreciable fraction of clear air turbulence 
has been documented previously under this program (Refs. 1 through k).    In Ref. 1, 
an analytical technique was developed to predict when long-wavelength waves, such as 

mountain lee waves, would destabilize initially stable shear layers in the atmosphere. 

In using the technique, Ri = 0.25 was used as the critical Richardson number for 

neutral stability. The increment in shear induced by the presence of long waves was 

estimated using an extension of a theory developed by Phillips (Ref. 9) and the 
long^wave wavelenths were estimated using Haurwitz1 theory (Ref. 10). 

The objectives of the Water Channel experiments and analyses reported in this 

section were:  (l) to investigate the conditions for wave-induced instability and 
the nature of the initial disturbances, (2) to obtain experimental verification of 

Phillips' and Haurwitz' theories, and (3) to verify the validity of the combined 
theoretical approach developed to predict the occurrence of wave-induced shear-layer 

instabilities. 

Theory for Wave-Induced Shear-Layer Instabilities 

In Ref. 9> Phillips derives an equation for the increment in shear induced by 
the presence of a wave traveling along the thermocline in a fluid. The expression 

he obtained for the wave-induced shear is 

where 

(10) 

/ g/dP\ 
Nj^ = Brunt-Vaisala Frequency =     v~~p\T~ 1 

n = Wave Frequency = 2 TT VQ/ALW 

a = Wave amplitude 

VQ = Wave velocity 

For  stationary waves,  the wave velocity, VQ,  is equal to the mean velocity through 

the wave, 15 



In Ref. 10, Haurwitz derives an expression for the wavelength of waves 
traveling on a discontinuity of density and velocity at a velocity equal to the mean 

flow velocity and in a direction opposite to the flow direction (thus, the wave is 

stationary relative to the observer). The velocity and density gradients were 

considered to be zero on either side of the discontinuity. The expression obtained 
by Haurwitz is 

2 

. 2m   *£((*$£L  + ,\  J— (ii) 
A
LW  g (p2-p)\\sj2! p2     7 

K    J 

where V-, and p-^  are the velocity and density, respectively, of the light fluid which 
flows over the heavy fluid having a velocity and density Vg and pg, respectively. 

Using estimated values of wave-induced shear, it is possible to predict the 

effects of long-wavelength waves on local Richardson number in shear flows in the 

Water Channel (this was done for atmospheric flows in Ref. 1). A schematic diagram 

of the flow condition is shown in Fig. 13(a). At the left are shown upstream velocity 

and temperature profiles with a stable shear layer having a thickness 2d. Within 

this layer, the mean velocity is V0 and the mean temperature is T0; the mean shear is 
(9V/9z)0 (all mean values are at the center of the shear layer). 

At the right in Fig. 13(a) is shown a portion of a long-wavelength wave having 
an amplitude (which might be 0.1 to k.O  in.) and a wavelength ALW (which might be 
6 to 30 in.). It is assumed in this analysis that the thickness of the shear layer, 
the mean temperature, and temperature gradient remain constant as the flow within 
the shear layer experiences the undulating motion. 

The minimum local Richardson number in the flow is calculated with the wave- 

induced shear, A (dV/dz),  added to the initial mean shear. An expression for the 
minimum Richardson number (which occurs locally at the crest in the example given, 

but would occur at a trough if the initial shear were negative) is 

2 

M,N " (\(dv/dz)0\ + \A(dWdz)\f <12) 

Using Eq.   (10)  for the wave-induced shear,  this becomes 

R'M,N   " (|(dv/dz)0| + (N^-n^Ha/Vo))* K    ' 
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From Eq. (13) it can be seen that small values of Ri^iN are associated with 
large initial shears, (<?V"/dz)0; with large wave amplitudes, a; with small flow 
velocities, V0; and with long wavelengths,ALw(

n = 2TTV0/\LW). The effect of the 
temperature gradient, dT/dz,  on RiMijj can be seen in Fig. 13(b). With increasing 
initial temperature gradient, Ri>HN first increases to a maximum value, and then ' 
decreases. Since the flow is unstable for Ri < 0.25, weakly stabilized layers 
(dl/dz  near zero) as well as very strongly stabilized shear layers (<9T/dz large) 
could be destabilized in the presence of a long-wavelength wave. 

The dashed curves in Fig. 13(b) were obtained by assuming that X TU =00, so that 
2 ^ _2 LW 
% » n . This reduces Eq. (10) to 

A(dV/dz)= "»(-%) (1*0 

The solid curves in Fig. 13(b) were obtained by using the equation for finite wave- 
length waves, Eq. (10). A comparison of the dashed and solid curves shows (l) that 
for the flow and wave conditions of Fig. 13(b), use of the simple expression for wave 
shear, Eq. (1*0, in the calculation of RijvnN does not cause large errors in RiMiN> 
and (2) that these small errors in Ri^iN which do occur decrease with increasing 
value of initial shear and are least for very small and very large initial tempera- 
ture gradients. 

Summary of Wave-Induced Shear Layer Instability Experiments 

Example of Effects of Long-Wavelength Wave on Local Richardson Number 

A long-wavelength wave typical of those studied in the Water Channel is shown 
in Fig. lb  (XL„ = Ik  in. and a = l.k  in.). The stationary gravity wave is represented 
by the solid wavy line in the sketch at the top of Fig. lb.    A wave-induced 
instability is represented by the dashed line superimposed on the gravity wave. The 
wave-induced instability first became apparent as a small amplitude wave just upstream 
from the trough at x = 7 in. This wave then grows in amplitude, rolling up into 
vortices near the first crest at x = Ik  in. The vortices subsequently transition to 
turbulence downstream from the crest at x = lU in. Further downstream (x greater than 
approximately 30 in.) the turbulence appears to decay and the flow restratifies. 
Photographs of examples of instabilities which were observed are shown in Fig. 15 
(discussed subsequently). 
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The mean velocities, Vo, measured at the center of the shear layer through the 

trough and crest were approximately 0.08 and 0.06 ft/sec, respectively   the 

average being 0.07 ft/sec (velocity, temperature, and density profiles for this test 

are shown in Fig. 16). Based on an average of the local flow conditions (measured 

at the center of the shear layer) at the trough at x = 7 in. and at the crest at 

x = lU in., the initial shear, (8V/3z)0, was -0.71 sec  , the initial Richardson 

number, Ri0, was 0/fO, and the wave-induced shear, A(9V/3z), was -0.32 sec"-'-. The 

data of Figs. 16(a) and 16(b) show that the magnitude of the shear was greater at the 

trough than at the crest. The minimum Richardson number, RiMXN, was 0.37 and 

occurred at the trough. This was 53 percent of the initial Richardson number but 

was greater than the minimum Richardson number for instability, Ri = 0.25. One 
possible explanation for this discrepancy is that the velocity profile was distorted 

at the time of its measurement by the wave-induced instabilities which were first 

apparent just upstream from the trough at x = 7 in. Attempts were made to measure 
the velocity profile at times when the profile was least disturbed, i.e., between 

crests and troughs of the wave-induced instabilities. In most other tests in which 

wave-induced instabilities were observed the minimum Richardson numbers were less 

than O.25. The Richardson number which was observed at the crest at x = 1^ in., 

Ri = 1.8, was 260 percent of the initial Richardson number. 

Example of Instability Induced by Long-Wavelength Wave 

Photographs of an instability induced by a long-wavelength gravity wave are 

shown in Fig. 15. The upper dye traces show the instability superimposed on the 

stationary gravity wave. The estimated shape of the undisturbed gravity wave is 

sketched in white on the photograph. The lower trace appears to be undisturbed by 
the wave instability. The photographs presented in Fig. 15(b) show that the waves 
have transitioned to vortices, and the trace in the photograph on the right side of 

Fig. 15(b) gives evidence that some turbulence exists downstream of the vortices. 

Comparison Between Measured and Predicted Wave Shears in Long-Wavelength Waves 

Measured values of wave-induced shear caused by long-wavelength waves are 

compared with values calculated using Phillips' theory (Ref. 9) inJj^JU^iZ— T^e 

measured wave shear,  |A(9V"/9Z)| , was determined by taking one-half the difference 

between the shears at the crest and trough of the long-wavelength wave. The pre- 

dicted wave shears were calculated using Eq. (10) with measured values of wave 

amplitude, wavelength, and velocity. The Brunt-Vais'ala frequency, NM, was determined 

from measured temperature profiles. The results shown in Fig. 17 indicate that in 
most cases the agreement between measured and predicted values of wave shear was good, 

The results of these tests provide some experimental evidence that Eq. (10), which 
is used in this program to predict wave-induced shear in the atmosphere is adequate. 
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Comparison Between Measured and Predicted Wavelengths of Long-Wavelength Waves 

Measured wavelengths of long-wavelength waves are compared with values predicted 

using Haurwitz1 theory (Ref. 10) in Fig. 18. The measured wavelengths, (^i\j)m,  were 
determined by measuring the distance between crests and troughs of the long-wave- 

length waves from photographs of the dye traces. The predicted wavelengths, (ALw)p> 
were calculated using Eq. (ll) with densities and velocities from measured tempera- 

ture and velocity profiles, respectively. The data in Fig. l8 indicate only fair 

agreement between measured and predicted wavelengths. The differences between 

measured and predicted values increase with increasing wavelength.  Part of the reason 
for this can be seen by examining the equation. One way to increase wavelength, Xj^, 
is to decrease the density difference, pg - P]_. However, this tends to make the 

predicted wavelengths more sensitive to errors in p-, or P2- This may explain some of 

the differences in Fig. 18 since in this series of experiments it was easier to obtain 
changes in A^ by changing density gradient than velocity gradient. However, this 
still does not account for the general trend in which the measured wavelengths were 
generally less than predicted values. Subsequently, the method of Haurwitz (Ref. 10) 

was examined to determine the possible effect of having a finite depth in the Water M/*- 
Channel on the measured wavelengths. The influence on wavelength of having a free 
surface above the shear layer and a boundary below the shear layer (applied by 

Phillips in Ref. 9 to flows in the ocean) was calculated.  This method predicted 

a trend that did not account for the discrepancy in the data.  That is, it predicted 
that wavelength should increase with decreasing depth while the wavelengths measured 

in the water channel were generally less than those predicted for infinite-depth flows. 

Although these differences between theory and experiment at long wavelengths 
were not resolved, they have no bearing on calculations of atmospheric shear layer 

instabilities. This will be apparent later in the report. 

Prediction of Wave-Induced Shear Instabilities in Water Channel 

Figure 19 is a plot of initial shear,  (9V/3z)0|, versus the Brunt-Vaisal'a 
frequency, NM- The boundaries define regions where wave-induced instabilities 
can occur. They were calculated using Eq. (l^) with the condition NM » n. The 

boundaries are loci of RiMIN = Q»£5_ f°r constant values of a/v0. 

To the left of the boundary for a/vo = 0, the presence of a long-wavelength wave 

is not required for the flow to be unstable, and any instabilities observed in this 
region would not be wave-induced.  In the region to the right of the boundary for 

a/v0 = 0, the boundaries define the lower limit of a/v0 required for wave-induced 
instability to occur. For example, a long-wavelength wave having a/V0 > O.75 would 

cause wave-induced instability to occur anywhere in the region between the boundary 

for a/V0 = 0 and a/v0 = 0.75; a long-wavelength wave having a/Vo < 0.5 would not 

cause wave-induced instability anywhere in the region to the right of the boundary 

for a/v0 = 0.5. 
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The open and solid symbols in Fig. 19 denote cases for which long^wavelength 

waves were and were not observed, respectively. For each flow condition for which 

a long-wavelength wave was present (the open symbols) (l) the Brunt-Vaisala frequency 

was determined from an average of the crest and trough temperature gradients (in 

these tests, measurements were made at the most upstream crest and trough for which 

measurements could be made), and (2) the absolute value of initial shear  (9V/9.z)0| 

was determined from an average of the shears measured at the crest and trough. For 

cases in which long^wavelength waves were not observed (the solid symbols), the 

Brunt-Vaisala frequency and the absolute value of initial shear were obtained from 

the temperature gradient and the velocity gradient, respectively, at the center of 

the shear layer (measurements were made at approximately the same distance downstream 

from the filter as the measurements that were made when waves were present). The 

numbers near the symbols denote values of a/vQ. The letters near the symbols denote 
the type of instability that was observed   W - wave, V - Vortex, T - Turbulence. 

The solid symbols show that long-wavelength waves were not observed in the 

channel for values of Brunt-VaisaTa frequency, Njjj less than about 0.3 sec  . 

Therefore, it was not possible to investigate wave-induced instability for values of 

% less than about 0.3 sec"-1-. 

Examination of Fig. 19 indicates that most of the observations are in agreement 

with the stability boundaries. Instability of some type was observed for all cases 

which are to be left of the boundary for a/vQ = 0. This is expected since the flow 
is predicted to be unstable in this region even without the additional shear from a 
long-wavelength wave. 

Suspected wave-induced shear instabilities were observed in six tests (see data 
marked with asterisks) which are to the right of the locus a/v0 = 0. In these cases, 
long-wavelength waves were present. Based on measured values of a/v0 for the six 
cases for which wave-induced instability was suspected and the values of a/v0 for 

the cases where wave-induced instability was not observed, the data agree with the 
stability boundaries. 

Concluding Remarks 

These laboratory experiments tend to confirm the analytical methods that have 

been used to estimate wave-induced shear and to predict the onset of shear-layer 

instabilities in analyses of CAT encounters in the atmosphere. The most important 

results are shown in Figs. 17 and 19. 

Figure 17 shows that the wave shear |A(3v/9z)|  the change in shear that 
occurs when a thin shear layer flows through a long-wavelength wave — can be 

reasonably well predicted using Eq. (10). The inputs needed for this calculation are 
the long-wave amplitude (a), the mean flow velocity (V0), the Brunt-Vaisala frequency 

(1%), and the long-wave frequency (n). 
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Figure 19 shows that the occurrence, or lack of occurrence, of wave-induced 

shear-layer instabilities in the water channel experiments could be predicted fairly 

consistently using Eg.. (13). This equation incorporates Eq. (10) for estimating the 
wave shear. The criterion for instability that was used is that the shear layer will 

become unstable when the predicted minimum Richardson number is less than 0.25. 
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APPLICATION TO ATMOSPHERIC SHEAR FLOWS 

In earlier work (Refs. 1 through h)  in this program, clear air turbulence was 
associated with the destabilization of initially stable shear layers by long gravity 
waves. Several cases were presented in which the long gravity waves were induced by 

mountains. Also, a few cases were presented in Ref. 3 in which the long wave-like 

undulations were induced by thunderstorms. These findings appear to be in agreement 

with evidence assembled by other investigators   notably Woods (Ref. 11, a study 

of wave-induced instabilities in the ocean), Ludlam (Ref. 12, a study of billow cloud 
formation), Mitchell and Prophet (Ref. 13, an analysis of USAF Project HICAT flight 

data), Spillane (Ref. Ik,  an analysis of high-altitude CAT over the Australian desert 
region), Hardy (Ref. 15, radar measurements that indicated wave-like motions in 

regions of CAT), Hicks (Ref. 16, radar observations of gravitational waves associated 

with CAT near the tropopause), Boucher (Ref. 17, radar observations of waves associated 

with CAT at a subsidence inversion), Gossard, Richter and Atlas (Ref. 18, radar 

observations of internal gravity waves and billows at an oceanic inversion), Browning 

find Watkins (Ref. 19, radar observations of billows associated with CAT near a frontal 

zone beneath the jet core), Browning and Watkins (Ref. 20, radar observations of 

billows associated with CAT in mountain lee waves), Roach (Ref. 21, aircraft reports 

of gravity waves associated with CAT over the Atlantic Ocean), Perm and Thompson 
(Ref. 22, turbulence measurements associated with stable layers which are extensive 
in area, persist in time and have large vertical wind shears), and Axford (Ref. 23, 

aircraft observations of gravity waves associated with CAT in the lower stratosphere). 

The purpose of the present effort was to develop and evaluate a CAT prediction 

procedure based on the mechanism of wave-induced instability of initially stable 
shear layers. The analysis used in the prediction procedure was developed previously 
during this program and is reviewed in this section. It should be mentioned that 

some of the wave and turbulence forecasting information used in the development and 

evaluation of the prediction procedure was provided by United Air Lines and the Air 
Force Global Weather Central. Also, mountain wave data used to evaluate the UAL wave 

prediction procedure was obtained from I968 and 1970 Lee Wave Observational programs 
at the National Center for Atmospheric Research. 

Review of the Fundamental Flow Phenomenon 

A schematic diagram of the flow condition considered here ia shown in Fig. 20(a). 
This is analogous to the situation shown in Fig. 13(a) which was used to describe 
wave-induced shear layer instabilities in the Water Channel. At the left in 

Fig. 20(a) are shown upstream wind and temperature profiles with a stable shear layer 

having a thickness 2d. Within this layer, the mean wind is V0 and the mean tempera- 

ture is TQ; the shear is (9V/8z)0 and the environmental lapse rate is 3T/3z. 
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At the right in Fig. 20(a) is shown a portion of a long^wavelength wave having 
an amplitude, a (which might be 2000 or 3000 ft), and a wavelength ALW (which might 
be 10 or 20 nmi). It is assumed in this analysis that the thickness of the shear 
layer, the mean temperature and the lapse rate all remain constant as the flow with- 

in the shear layer experiences the undulating motion (2d, T0, and 3T/3z are constant). 

The increase in shear that occurs at the crest can be calculated from Eq. (10) given 

previously. Now, for flows in the atmosphere, 

NM = Brunt-Vaisala frequency = yJ(g/T0)   '   (3T/9z)-(9T/az)a(i 

n = wave frequency = 2TTV0/AL^ 

(3T/az)aa = adiabatic lapse rate, -2.98 x 10"3 deg c/ft*••' 

This increase in shear is added to the initial shear, and Eq. (13) can be used to 
calculate the minimum Richardson number (which occurs locally at the crest in Fig. 
20(a), but would occur at the trough if the initial shear were negative). Since 
%j > n under most conditions of interest (this is only untrue for weakly stable 

lapse rates, i.e., when 8T/9z =(3T/9z)ad), Eq. (13) can be further simplified to 

M (15) 

(|fov/dz)0| + NM
2(a/v0))

z 
Rl
MIN K   il/.w/j,! I . K, 2»„/w u2 

From Eq. (15) it is evident that low values of RijvuN are associated with large 

initial shears, (av/dz)0; with large long-wave amplitudes, a; and with low winds, V0. 

The latter two parameters are not independent, however, since large amplitude waves 
do not usually occur under low-wind conditions. 

The effect of the environmental lapse rate, dT/dz, on Ri^iN is not evident from 
Eq. (15) but can be seen in Fig. 20(b). This figure is based on typical conditions 

under which long-wavelength waves, such as mountain lee waves, are observed in the 
lower stratosphere. Curves are shown for three shears   small shears (l and 
2 kts/1000 ft) and a moderately large shear (12 kts/1000 ft). The curves show that 
the greater the initial stability from a convective standpoint (i.e., the greater 

dT/dz), the lower Rij^iN will be. They also show that shear layers which have small 

*Note use of minus sign to denote temperature decreasing with increasing altitude. 
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values of initial shear are stable when the environmental lapse rate is near zero. 
Thus, it is primarily the most stable layers appearing in the temperature profile 

that are of interest. The curves also show that as the environmental lapse rate 

approaches the adiabatic lapse rate (-3 cleg c/ft), all shear layers become unstable. 

Previous theoretical and experimental studies which have been discussed in this 

report have shown that the critical Richardson number below which two-dimensional 

flows are unstable is 0.25. For RijvUN = 0.25 and fixed values of wave amplitude, a 

wind velocity, VQ, and wavelength, Aj^, Eq. (13) can be used to determine the neutral 
stability boundaries on a plot of absolute value of initial wind shear,  (dV/dz)0|, 

versus vertical temperature gradient, ST/dz. The stability boundaries are shown for 

wave amplitudes of 500 and 3000 ft in Figs. 21 and 22, respectively. The boundaries 

are shown for wind velocities, VOJ of 10, 25, 50, 75} and 100 kts (A^ = 15 nmi). 
Atmospheric flows having combinations of vertical temperature gradient and initial 

wind shear which plot under the boundary for a given wind velocity would remain 
stable as they passed through the undulations of the long-wavelength waves. Flows 

having combinations of dT/dz  and  |(dV/8z)0|  which plot above the boundary would 
become unstable. Flows having 9T/9z <-0.00298 deg c/ft would be convectively unstable. 

It is seen in Figs. 21 and 22 that the stability of the flow decreases with decreasing 

wind velocity. 

Figures 21 and 22 could be used with rawinsonde data to predict whether or not 

initially stable shear layers will be destabilized by long-wavelength waves. For 

example, V0, (9V/9z)0, and 9T/9z would be determined from rawinsonde data and used 

with Figs. 21 and 22 for weak and strong wave activity, respectively, to make 

predictions about the stability of the flow. Where flows are predicted to become 

unstable, CAT could be expected to occur. A more comprehensive approach to CAT 

prediction is presented in the next section, however. 

The variations in maximum allowable initial shear with wind velocity for wave 
amplitudes of 500, 1000, 2000, and 3000 ft are shown in Fig. 23.  For values of 

initial shear greater than this maximum, the flow for the given wave amplitude would 

be unstable for all values of vertical temperature gradient. The curves shown in 

Fig. 23 were obtained using 

\idV/dz)0\m%    = [i + (27ra/ALWf] [vo/a] (l6) 

Equation  (l6) was obtained by solving Eq.   (13) for  (9V"/9z)0, differentiating with 
respect to the Brunt-VaisaTa frequency, and solving for the maximum value of 
|(9V/9z)o| .    For long wavelengths,  i.e., Aj^ >2-rra, Eq.   (l6) can be simplified to 
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(dv/dz)0 MAX     0'u 

The variation of |(av/3z)0| j^ with V0 for a = 3000 ft was determined using Eq. (17) 

and is compared in Fig. 23 (dashed curve) with that obtained using Eq. (l6). For 

XLW>15 nmi and a = 3000 ft, the difference in values of  (3V/3z)0|MAX is quite 
small. This difference would be even less for smaller wave amplitudes. 

Improved CAT Prediction Methods /       . • ) 
  - ,   ! 

A. 
In general, most CAT prediction techniques are based on synoptic features which 

are present and on a comparison of the values of one or more atmospheric parameters 

(such as horizontal wind shear, vertical wind shear, horizontal temperature gradient, 
streamline curvature, etc.) with empirically determined critical values.  In most 

cases, there is no physical model for the breakdown mechanism. An example of such a    * 

prediction technique is given in Ref. 2k.    The technique is based on horizontal and - «L— 
vertical temperature gradients (determined from rawinsondes along the flight route) 

and is quite simple to use. 

In Ref. 3 it was recommended that consideration be given to development of a 
prediction procedure which would predict the altitudes where CAT would be encountered 

in mountain waves and which is based on the mechanism of wave-induced instability of 
initially stable shear layers. During the present program, such a procedure was 

developed and evaluated. Evaluation was limited, however, because of the limited 

amount of available data. This procedure was comprised of three distinct operations 

contained in a single computer program which is discussed in detail in Ref. 5: 
(l^the rawinsonde data from a given station is processed to predict the long^wave 

amplitude necessary to destabilize each shear layer appearing in the profiles; 

(2)/meteorological data from mountain wave zones are used with wave prediction 
methods to predict lee wave activity and amplitudes; and (3} the results from (l) and 
(2) are compared to see if wave-induced instabilities would occur and to identify the 

associated altitudes and locations. A block diagram of the computer program logic is 

shown in Fig. 2.k. 

Calculation of Required Long-Wave Amplitudes 

This portion of the procedure is relatively straight-forward. ^Hlfttiildtt? iLj}  n"n 

be rewritten to yield the minimum long-wave amplitude necessary to destabilize 
(RiMIN = 0.25) a shear layer: 
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2NM- |(av/a2)J ,VQ (l8) 

( 

NM
2-n2 

The rawinsonde data are processed by the computer program to identify stable shear 

layers (using temperature and velocity profiles) and, for each layer, to calculate 

the mean flow parameters V0, (8V/8z)0, Hju, and n. In calculating n = 2-nY0/Xjj^,  it 
is necessary to assume a value for the wavelength, A^y. In general, X-^j  is of the 
order of _15_nmi and (for atmospheric flows) n is small compared to Nj^ so that large 

errors in n have little effect on the computed amplitude, a. Using the mean flow 
parameters and an assumed long-wave wavelength, the required amplitude for instability 
is calculated for stable shear layers which have temperature gradients greater than 
some preselected minimum value (for a given wave amplitude, the induced wave shear, 

A(3v/3z), increases with increasing sfrabjLl^frv so that the most stable layers are the 

most likely to experience instabilities). 

Long-Wave Amplitude Forecast 

At this point, the characteristics of waves in the local zone of the forecast 

must be considered. To forecast- f.AT -inrhmpr] by fflninpfcai-n—l qg •wavpg.) good techniques 

for forecasting the occurrence and amfiiiiucLes of lee waves are required. The 

techniques which are used by those active in forecasting mountain wave CAT, such as 

United Air Lines (Ref. 25), Northwest Airlines, and Global Weather Central at 

Offutt Air Force Base, are empirical and rely on such parameters as wi.nd direction  V 

and strength above the mountains, sea level pressure difference across the mountains, \ 

lapse rate and synoptic conditions in the local zone of forecast. When significant 

wave activity is forecast, attempts are made to avoid flying within approximately 
-5000 ft of the tropopaug 7 

United Air Lines uses synoptic data in the forecast zone to forecast the 
occurrence of mountain waves and CAT. During the forecast period, they check their 
forecast with a nomogram which uses sea level pressure difference across the mountains 

and maximum wind velocity between 10,000 and 20,000 ft (perpendicular to the mountains) 

to predict mountain wave activity for 20 wave zones in the United States. This nomo- 
gram, which is shown in Fig. 25 , was first used to predict the Denver wave. The 

pressure difference used was the sea level pressure at Grand Junction minus the sea 
level pressure at Denver. In using the nomogram for other wave zones, where the 

distance between the stations may be different than the distance between Grand Junction 

and Denver, a pressure correction is required. The magnitude of the correction 

depends on the difference in distance, and the correction is plus if the distance is 
less and minus if the distance is greater. The wave zones and pressure corrections 
are given in Ref. 25. Pressure tendency is often used to extend the period of validity 
of the nomogram. 
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The nomogram (Fig. 25) indicates nn Ifi^^vfis would be expected when the 
maximum wind velocity perpendicular to the mountain was ip^ than Pfl fctg _ p0r 

maximum wind velocities above 20 kts, the sjy^gnjjy^ of the wave depends on the sea 

level pressure difference. Northwest Airlines also uses the nomogram shown in Fig 

25^to predict the presence of mountain waves; however, they use the wind velocity 

perpendicular to the mountains at 300 mb altitude rather than maximum wind velocity 

between 10,000 and 20,000 ft. Global Weather Central has correlated the coordinates 
on the nomogram with the severity of turbulence and uses the pressure -difference and 

maximum winds (between 10,000 and 20,000 ft, perpendicular to the mountains) to 

predict the occurrence and severity of CAT. 

Some data obtained by the author during the 1970 Lee Wave Observation Program at 

the National Center for Atmospheric Research for the Grand Junction-Denver wave zone 
are plotted on Fig. 25 for comparison with the nomogram. The data obtained about 

0500 MST between February 11 and February 27. The numbers next to the data points 

denote the date. Flights were made on February 13, 17} 18, and 26 to make measure- 

ments in the wave field (flights were only made on days when wave activity was fore- 
cast by other techniques). Results of these flights indicated that weak waves were 
present on February 13 and 26, and weak to moderate or strong waves were present on 
February 17 and 18. Isentropes reconstructed from flight and radiosonde data which 

show the mountain wave patterns which occurred on February 13, 17, and 18 are shown 

in Figs. 19, 21, and 23 of Ref. 3» The data points which correspond to days on 
which flights were made are flagged (a weak wave observation is indicated by a single 
flag and a moderate wave by a double flag). 

The data for which wave activity was confirmed by flights is in fairly good 

agreement with the nomogram. For instance, the nomogram indicates (l) the presence 

of weak waves on February 12, 13, and 1^   weak waves were observed on February 13, 

and (2) the presence of weak waves on February 16 and 18 and moderate to strong 

waves on February 17   moderate waves were observed on February 17 and 18. Wave 
amplitudes up to 1000, 1350, and 1800 ft were observed on February 13, 17, and 18, 
respectively. Also, on days for which flights were not made (because no wave activity 

was forecast by other more complicated techniques), most of the data (February 15, 

19, 21, 22, 23, and 2U) fall into the "no wave" region of the nomogram. Although 

negative pressure differences were not considered in Ref. 25, it is felt that waves 

would not occur under such conditions. 

It appears then that if such a nomogram could be modified to provide wave 
amplitude information it could be used with rawinsonde data to predict the altitude 

where CAT would occur from destabilization of initially stable layers by mountain 
waves. Pressure tendency and forecast winds might be used with the nomogram to 

forecast the occurrence of mountain lee waves and the altitude where CAT would occur 
from destabilization of stable shear layers by the lee waves. 
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This nomogram was used, in modified form, to provide vave amplitude information 

and was incorporated in the computer program for predicting mountain-wave induced 

shear-layer instability resulting in CAT. A correlation of wave amplitude with 

nomogram-predicted wave activity was attempted by the present author using observed 

wave amplitudes for the three mountain wave patterns for February 13, 17, and 18 

(presented in Ref. 3) with predicted wave activity for those days. Nomogram-predicted 
wave activity and wave amplitude are compared in Sketch F. In lee wave patterns 

presented previously in Ref. 1, wave amplitudes up to 3000 and 3500 ft are apparent. 

Although nomogram-predicted wave activity is not available for these cases, the data 

were plotted in Sketch F in the region of moderate or strong wave activity. 
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Based on the data presented in Sketch F, wave amplitudes of 1QQQ. and 2500 ft_ were 

selected to correlate weak and moderate or strong wave activity, respectively. 
/Because of the scarcity of data, the accuracy of this correlation is admittedly 

/questionable. Also, since amplitudes of 1000 and 2500 ft are less than the maximum 

amplitudes observed for the corresponding wave activities, CAT may be underpredicted 

by the computer program (use of amplitudes equal to 1^00 and U000 ft for weak and 

moderate or strong wave activities, respectively, would probably be more conserva- 

tive). However, the selected correlation between wave amplitude and activity could 
be changed based on experience and new data. 
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The computer program (Fig. 2k)  then, predicts lee wave amplitudes of 1000 and 
2500 ft when weak and moderate or strong wave activity is predicted, respectively. 

This provides a means for estimating lee wave amplitude from sea level pressure 

difference and maximum wind velocity perpendicular to the mountains in the altitude 
range from 10,000 to 20,000 ft. 

Screening and CAT Forecast 

At this point, the computer program (Fig. 2U) compares the wave amplitudes 

required to destabilize each initially stable layer with the predicted amplitude of 

the mountain lee wave. Layers requiring amplitudes smaller than the lee wave 

amplitude would be expected to become unstable and produce CAT. Then, when weak 

waves (a = 1000 ft) were forecast, turbulence would be forecast within -1000 ft of 

the altitude of layers which were predicted to become unstable and when strong waves 

(a = 2500 ft) were forecast, turbulence would be forecast within -2500 ft of the 

altitude of unstable layers. 

Computer Program for Forecasting Mountain Lee Wave CAT 

Referring to Fig. 2U, the program first computes the vertical velocity and 
temperature profiles and the velocity and temperature gradients for each layer from 

rawinsonde data obtained upwind from the mountains (block (l)). The program then 

identifies stable shear layers from the velocity and temperature profile data and 
selects those which are of interest for further analysis (temperature gradient above 
preselected minimum value). Next, the program calculates the lee wave amplitude 

required to destabilize (reduce RiMIN to 0.25) these stable shear layers, using 
from the rawinsonde data the initial shear, (W/8z)OJ velocity, V0, temperature 

gradient, (3T/8z)0, and temperature, T0 (block (2)). 

In the next step (block (3)), the program uses the United Air Lines nomogram 
(with the amplitude modification made by the author) to (a) predict lee wave activity 
and amplitudes using values of pressure difference and maximum wind velocity or 
(b) forecast future lee wave activity and amplitudes using pressure tendency and 
forecast wind velocity. The program then (block (k))  compares the predicted amplitude 
of the lee waves with the amplitudes required to destabilize the stable shear layers. 
CAT is predicted to occur at altitudes corresponding to layers which are predicted to 
become unstable. 
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Concluding Remarks 

Previous analyses of CAT cases involving mountain waves (Refs. 1 and 3) have 

shown that there is a fair to good agreement between the altitudes at which CAT was 
detected and the altitudes of initially stable layers which were predicted to be 
destabilized by the wave-induced shear. Measured lee wave amplitude was used in 

these analyses and in general the amplitude varied with altitude. The UAL nomogram, 

which is based on airline experience, does quite well in predicting current wave 

activity using current pressure difference and maximum wind velocity. Data obtained 

in the 1970 Lee Wave Observation program tend to confirm this. Also, based on lee 
wave observations, it does not appear unreasonable to correlate wave amplitude with 

wave activity. However, using the nomogram there is no way of estimating the 

variation in wave amplitude with altitude. The success in using the nomogram with 

the computer program to forecast future wave activity will depend on the success in 

using pressure tendency to forecast pressure difference and success in forecasting 

the maximum wind velocity. The forecast might be quite good for short forecast 

periods. The major advantage in using the nomogram is that it is quite simple to 
use with the computer program. However, if the nomogram results in erroneous wave 

forecasts or long range forecasts are desired, then more subjective techniques could 
be used for forecasting lee wave activity as suggested in the lower part of Fig. 2k. 
Such techniques are presently in use by UAL, USAF, and others and use synoptic data, 

such as the change in height of the tropopause upwind from the mountains, wind 

velocity in the wave zone, wind and isotherm patterns, and location of warm tongues 
of air at 850 mb to the lee of the mountains to forecast mountain waves. It does 

not appear that a technique such as this could be included in the computer program; 

if such a technique were used, some way of estimating the wave amplitude is again 

required. 
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LIST OF SYMBOLS 

a       Amplitude of wave (half the height from trough to peak), ft or in. 

a       Critical lee wave amplitude required to destabilize shear layer in 

atmosphere, ft 

b Exponent in theoretical velocity profile (Eq. (6)), dimensionless 

c Complex wave velocity, c = cr + i'C^, ft/sec 

Ci Imaginary part of complex wave velocity, ft/sec 

cr Real part of complex wave velocity, ft/sec 

d       Shear-layer scale length parameter for describing velocity profiles, 

d = (AV/2)/(9V/8z)0, ft 

E Kinetic energy per unit volume associated with shear (Eq. (27)), ft-lb/ft3 

g Gravitational constant, 32.2 ft/sec 

i Unit imaginary number, V-T", dimensionless 

n Wave frequency, 2TTV0/ALW, sec 

NM      Brunt-Vais'ala frequency, NM = V(g/T0)' (3T/3z)-(aT/3z)| ad in the 
atmosphere and -W(-g/p)(3p/3z) in the Water Channel, sec~l 

Ri      Richardson number, Ri = (g/T0)' [(9T/az)-(8T/8z)ad]/(3V/8z)
2 in the atmosphere 

and (-g/p)•(3p/3z)/(9V/3z)2 in the Water Channel, dimensionless 

Ri0     Initial or upstream Richardson number, dimensionless 

RijYjjU    Minimum Richardson number caused by influence of long-wavelength wave, 
dimensionless 

t       Time, sec 

T       Temperature, deg C, K, or F 

TQ      Temperature at center of shear layer, deg C, K, or F 

3h 



LIST OF SYMBOLS  (Continued) 

V Velocity or maximum velocity perpendicular to mountains between 10,000 and 
20,000 ft,  ft/sec or kts 

V Velocity at center of shear layer or velocity of long-wavelength wave, 
ft/sec or kts 

Vn,Vp Velocities in upper and lower  streams bounding shear  layer,  respectively, 
for hyperbolic tangent profiles,  ft/sec 

w(x,z,t)    Perturbation velocity  (Eq.   (9))5  ft/sec 

w Width of "Three-Dimensional" shear layer  (Fig. 6), w = ws + 2wt,  in. 

ws 

wB 

Width of part of "Three-Dimensional" shear layer containing no horizontal 
transverse velocity gradient (Fig. 6), in. 

Width of "Three-Dimensional" transition region where shear profile changes 
to uniform profile (Fig. 6), in. 

Buoyant work per unit volume (Eq. (26)), ft-lb/ft-* 

WF      Kinetic energy per unit volume associated with lateral motion (Eq. (32)), 
ft-lb/ft3 

WT Total work per unit volume (Eq. (33)), ft-lb/ft^ 

x Downstream coordinates in Water Channel (Fig. 1), ft or in. 

y Transverse coordinate in Water Channel (Fig. 1), ft or in. 

z Vertical coordinate in Water Channel (Fig. 1), ft or in. 

z       Vertical coordinate of center of shear layer in Water Channel, or mean 
altitude of stable layer in the atmosphere, ft or in. 

zj_, z2   Vertical distance to V]_ and V2, respectively, in. 

a Wavenumber of small-amplitude waves associated with instabilities in 
shear layers, a = 2TT/A, ft 
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LIST OF SYMBOLS (Concluded) 

(3       Parameter in density profile equation (Eq. (2)), |3 = Ri#d'(9V/Bz) /g, 
dimensionless 

An     Sea level pressure difference, (Fig. 25), mb 

AV     Velocity difference parameter for describing velocity profiles 
(Eq. (1)), ft/sec 

6 Increment in quantity, dimensionless 

A(3V"/8z) change in shear caused by influence of long-wave length wave, sec 

(8T/8z)ad Adiabatic lapse rate, (8T/3z)ad = -2.98 x 10"3 deg c/ft 

(9T/3z)0 Initial upstream temperature gradient, deg F/ft or deg c/1000 ft 

(3V/8z)0 Initial or upstream shear, sec--'- or kts/1000 ft 

(2d)m    Measured thickness of shear layer before turbulent breakdown, in. 

A      Wavelength of small-amplitude waves associated with instabilities in 
shear layers, ft or in. 

XLW     Wavelength of lee wave or long-wavelength wave in Water Channel, in., ft, 
or nmi 

v Kinematic viscosity, ft /sec 

p       Density of water or air, slugs/ft3 

p0      Denisty of water or air at center of shear layer, slugs/ft^ 

P]_>P2    Densities in upper and lower streams bounding shear layer, respectively, 
slugs/ft3 

<j>(z) Perturbation amplitude function in shear-layer stability analysis, ft /sec 

<P' Perturbation stream function in shear-layer stability analysis, ft /sec 
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APPENDIX I:  METHOD FOR FITTING HAZEL'S THEORETICAL VELOCITY PROFILE 

TO DATA FOR "S-SHAPED" VELOCITY PROFILES 

This Appendix describes the method which was used to fit the theoretical 

velocity profile of Hazel (Ref. 7) to the "S-shaped" velocity profiles obtained 

experimentally in the UARL Open Water Channel. The theoretical profile was given 

previously in Eq. (6).  It will also be helpful to refer back to Sketch C in the 

main text. 

Fitting Eq. (6) to a measured profile involves determining the constants b,AV, 

and d. In the following development this will be done by matching the velocities 

Vi and V2 at z^ and z2, the shears at Z]_ and Z2 (which are zero), and the mean shear, 

(9V/8z)0, at z0 of the measured profile to those of the theoretical profile. 

The shear can be obtained by differentiating Eq. (6) with respect to the 
vertical coordinate z: 

*"*•(&)„{[»-' W(^)]-b}sechb(^) (19, 

In this equation, the following substitution was made : 

(dV/dz)0= |j (20) 

At zi the shear  is zero,  so Eq.   (19) yields 

sech((2|-Zo)/d) = V-5TT (21) 

Substitution of Eq.   (21)  into Eq.   (6) provides an expression for V]_: 

V,   =    V0   +  (^)    b*(b+l)~^ (22) 

Replacement of V0 with  (V-^ + V2)/2 in Eq.   (22) yields an equation for   AV as a 
function of b, V^,  and V2 : 

4 ^LL (23) 
AV  =   (v.-vJ   b2 (b+i)   2 

Now,  substitution of   AV from Eq.   (20),   (z-^ - z0)/d from Eq.   (21) and V0 

(Vx + V2)/2 into Eq.   (22) results in 

2\      b b+l 
[(z|-z0)/(Vl-V2)](av/az)0 =   Y (arccosh (-^y-)    )   b1  (b+l)  2 

{2k) 
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Using a similar development but with the condition that the shear is also zero at Z2 

yields an expression that is similar to Eq. (2k)  except that z-y  is replaced by zg 
and the right side of the equation is negative. Combining this result with Eq. (2k) 
produces 

f(z,-z2)/(V,-V2)l(dV/dz)0 = (arccosh 
(25) 

The left side of Eq. (25) can be determined entirely from properties of the 
measured profile. The right side is only a function of b. Therefore, the value of 

b for a given profile can be obtained by plotting b versus the right side of Eq. (25) 

and entering the plot at the value given by the left side of Eq. (25). After 

obtaining b for the profile, AV can be obtained from Eq. (23) and, finally, d can be 

obtained from Eq. (20). Thus, all of the parameters needed in Eq. (6) to describe 
the velocity V as a function of z have been determined. 
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APPENDIX II: SUMMARY OF OTHER FLUID MECHANICS INVESTIGATIONS 

Experimental Investigations of Stability of Straight, 
Stratified, Shear Flows Having Multiple Shear Layers 

The purpose of these investigations was to investigate the stability of a shear 

layer consisting of a combination of several thinner stable and unstable layers. 

Experiments were conducted to investigate conditions under which such flows become 
unstable and the characteristics of the flow during the initial phases of breakdown. 

Description of Combined Shear Layer Experiments 

The two types of velocity profiles which were investigated are shown in Sketch G. 

The profiles are designated Type LSL and Type SLS (S for small shear and L for large 
shear). Type LSL velocity profile consists of a layer having small shear sandwiched 
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SKETCH G. VELOCITY PROFILES USED IN STABILITY TESTS OF COMBINED SHEAR LAYERS 

between two layers having large  shears.    Type SLS consists of a layer having large 
shear  sandwiched between two layers having small shears.    Tests were made to determine 
if turbulent breakdown of layers having large  shears would cause a combined  shear 
layer,  consisting of unstable  large-shear layers and stable  small-shear layers,  to 
become unstable and break down.    Accordingly, attempts were made to establish density 
gradients which would stabilize the  small-shear  layers   (Ri  > 0.25) but not the 
large-shear  layers   (Ri <  0.25). 
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Summary of Experimental Results 

Typical velocity, temperature, and density profiles for the combined shear 

layer experiments are shown in Jig. 26. Profiles for a type LSL combined layer 

having a layer of small shear (dv/dz  = -0.26 sec-1) sandwiched between two layers of 
large shear (lower layer 3V/Bz = -2.7 sec"l   upper layer 3V/3z = -0.65 sec-1) are 

shown in Fig. 26(a). The Richardson numbers, Ri, for the upper, middle, and lower 

shear layers were O^OUU, 0.272, and 0.003, respectively. Thus, the upper and lower 
layers would be expected to become unstable and the middle layer to be marginally 
stable. 

The stages of breakdown which were observed during this test are sketched in 

Fig. 27(a). First, there is a region where the flow appears to be undisturbed. Then 

•waves appear in the unstable layers. The waves in the upper layer (V"o equal to 
0.02 ft/sec) have a wavelength, \ , of k  in. and appear upstream from the waves in 
the lower layer (V0 equal to 0.09 ft/sec) which have a wavelength of 2 in. The waves 

grow in amplitude and then transition to vortices. Further downstream the vortices 

interact with each other causing turbulent breakdown of the combined layer. In the 

turbulent region there was some evidence that the combined layer was influencing the 

breakdown. There appeared to be an overall swirling" Uiulluil superimposed on the 

turbulence. This swirling motion was periodic and had a wavelength, A, approximately 

equal to 8 in. This wavelength is more characteristic of the length expected based 
on the combined layer thickness than on the thickness based on any of the individual 

layers and suggests, therefore, that the combined layer is influencing the breakdown 

(from Refs. 1 and 3, the expected wavelength is (V2uV2d). 

Typical profiles for combined layer type SLS having a layer of large shear 
sandwiched between two layers of small shear are shown in Fig. 26(b). The 

Richardson numbers, Ri, for the upper, middle, and lower shear layers were 2.02, 

0.01U, and 0.21, respectively. Thus, the upper layer would be expected to be stable, 

the lower layer to be slightly unstable, and the middle layer unstable. The stages 
of breakdown which were observed during this test are sketched in Fig. 27(b). First, 

there is a region where the flow appears undisturbed. Then waves appear which have 
a wavelength,A , equal to U_in. These waves grow in amplitude and then transition to 
vortices. Further downstream some of these vortices continue to grow in size and 
some are sujjjnr^yyjed. The wavelength associated with the growing vortices was 8 in. 

and, based on the thickness of the layers, was more characteristic of the combined 
layer than any of the individual layers. Further downstream, turbulent breakdown 
occurred as the growing vortices interacted with each other and the suppressed 

vortices. 

Observations of the stages of breakdown during these tests indicated that the 

breakdown of the unstable layers was'not)independent of the adjacent stable layers. 

The growth of instabilities initiated"In the unstable layers appeared to be fed in 

part by the shear energy from the adjacent stable shear layers. The final stages of 
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the breakdown appeared to be influenced by the combined layer at its characteristic 
wavelength.    This was most obvious in the test of combined layer type  SLS.    Here, 
then,  is a case where  small amplitude  instabilities having short wavelengths result 
in larger amplitude  instabilities having longer wavelengths. 

These results are in agreement with yjgyr^yjgl work done by Atlas  (Re£^26) 
and experimental results obtained by Thorny  fRef. 271.    Atlas  showed that once the 
minimum Richardson number in a layer decreases to a value less than 0.25,  any 
resulting instability would grow in amplitude until the layer Richardson number was 
Q.»5  (losses because  of dissipation would result in growth to a layer Ri less than 
0.5).    Thus,  a thin,   unstable  (Ri<0.25)  shear layer in a thick slightly stable 
(Ri> 0.25)  shear layer may result in the destabilization of the thick as well as the 
thin layer,  provided the layer Richardson number  is 0.5.    The ^^^^ Richardson 
number  is an average Richardson number based on the initial velocity and density 
profiles and a layer thickness equal to tofi^the maximum amplitude of the 
instability.    TJiorne has  observed that when the Kelvin-Helmholtz type  of instability     / 
occurs in stratified shear flows the volume of turbulent fluid grows  until the / 
layer Richardson number is about 0.^.       i J 

l U 1 Concluding Remark-' /    f 
OM'r 

The results of these experiments indicate that, for the type of velocity and 
temperature profiles tested, the breakdown of combined shear layers consisting of 
stable and unstable layers is initiated by the instability of the unstable layers 

and that the final stages of breakdown are influenced by the c ombined layer at its 

characteristic wavelength. The observations indicated that, in combined shear 

layers, the small amplitude short-wavelength disturbances associated with the initial 

instability can result in large amplitude, long-wavelength disturbances. 

Stability Criterion for "Three-Dimensional", 

Straight, Stratified Shear Plows 

The value of stability criteria derived by energy methods is open to question. 

However, since such criteria have been derived by other investigators, a simple 
criterion for the three-dimensional case was derived and is presented in this 

^Appendix. Chandrasekhar (Ref. 8) determined the critical value of Richardson number 
•for two-dimensional stratified shear flows using energy considerations. Chandrasekhar 
^reasoned that for a stably stratified shear flow to become unstable there must be 
enough kinetic energy available from the shear to work against the buoyant stabilizing 

forces. Chandrasekhar determined the critical Richardson number by equating the work 

required to interchange fluid particles (l) and (2), shown in Sketch H, to the kinetic 

energy available from the difference in velocity between particles (l) and (2). 
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SKETCH H. DENSITY AND VELOCITY DISTRIBUTION FOR TWO-DIMENSIONAL STABLY STRATIFIED 
SHEAR FLOW ANALYSED BY CHANDRASEKHAR 

It was shown (Ref. 8) that the work per unit volume, Wg, required to interchange 
particles  (l) and (2)  is given by 

WB=  -q -Bp-Bz (26) 

and that the kinetic energy per unit volume, E, available from the shear layer is 
given by 

E = /o(8V) /4 

For instability to occur, E must be greater than Wg: 

WB/E = 
q-bp-Sz 

< 1.0 

(27) 

(28) 
f (8Vr/4 

The critical Richardson number is obtained by dividing the numerator and denominator 
in Eq.   (28) by Sz and is given by 

g(Sp/Sz! 

/D(SV/8Z)
2 

=  Ri <  0.25 (29) 

Thus, for two-dimensional stably stratified shear flows one would expect 
instability to occur when the Richardson number was less than 0.25. This result is 

in agreement with theoretical stability criteria of Drazin, Hazel, and others. It 

is also in agreement with experimental results obtained in this program and reported 
previously in Refs. 1 through 5. 
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The method of Chandrasekhar was extended to investigate the stability of 

"three-dimensional" stably stratified shear flows for which the thickness of the 

shear layer was small compared to the width of the shear layer; i.e., the velocity 
profile was three-dimensional. A side view of the flow sectioned through the shear 

layer on the centerline of the "three-dimensional" flow is the same as that shown in 
Sketch H. A front view of the flow after fluid particles (l) and (2) have been 

interchanged is shown in Sketch I. 

REGION OF SHEAR REGION OF 
[-«— UNDISTURBED*-) LAYER \~* UNDISTURBED 

FLOW ZONE FLOW 

SHEAR 
LAYER 
ZONE 

SKETCH  I. FRONT VIEW OF "THREE-DIMENSIONAL" STABLY STRATIFIED SHEAR FLOW ANALYSED 

USING METHOD OF CHANDRASEKHAR 

In Sketch I,  the  flow direction is out of the paper.    For this analysis it is 
assumed that horizontal velocity gradients are negligible.     The difference  in velocity 
and density between particles   (l)  and  (2)  is SV and op,  respectively. 

The critical Richardson number of the three-dimensional flow shown in Sketch I 
can be obtained,  in a manner similar to the method used for two-dimensional flows, by 
equating the kinetic energy per  unit volume available from the shear to the energy 
per unit volume required to interchange particles  (l) and  (2).    The work per  unit 
volume, WB, required to overcome buoyant forces and the kinetic energy per unit  volume, 
E,  available  from the  shear are the  same  for the three-dimensional flow as  for the 
two-dimensional flow and were given previously in Eqs.   (26) and  (231), respectively. 
However,  for the three-dimensional flow,  as particles(l)  and  (2) are interchanged, 
pressure forces  occur which tend to make the fluid spread laterally.    This  lateral 
motion does not help d^yjjgMikze the flow and,  since the kinetic energy per unit 
volume of this motion must also come from the kinetic energy per  unit volume associated 
with the  shear,  the three-dimensional flow appears more stable than the two-dimensional 

\ 

1.3 



flow. The kinetic energy per unit volume associated with the lateral motion was 

assumed to be equal to the potential energy per unit volume associated with the 

lateral pressure forces which would act on the particles if the particles were 

restrained from moving laterally while they are being interchanged. The lateral 

pressure forces, which are equal to potential energy per unit volume, result from 

the differences between the pressure at the center of particles (l) and (2) (at 

points 2 and 5 shown in Sketch I) and the pressure at the sides (at points 1, 3, 

k,  and 6) of the particles. These pressure differences, which are equivalent to 

potential energy per unit volume, are given by 

(p2-p,)(2)= (p2-p3>(2, = g-fy> -sz/2 (30) 

(p5-P4)(ir (p5-p6)(i)
: g %>• sz/2 (31) 

These pressures result in forces which would tend to split the particles causing flow 

to both sides. Assuming that the kinetic energy per unit volume associated with 

lateral motion is equal to the potential energy per unit volume associated with (and 

equal to) the lateral pressure differences (pressure equivalent to potential energy 

per unit volume), the kinetic energy per unit volume is given by 

WF= -g Bp   8z (32) 

The total energy per unit volume required to interchange the particles is the buoyant 

work WB (Eq. (26)) plus the kinetic energy per unit volume associated with the lateral 
pressure differences, Wp (Eq. (32)): 

WT= - 2g-8/v8z (33) 

For instability to occur the kinetic energy per unit volume, E, available from the 
shear  (Eq.   (27)) must be greater than the total energy per unit volume, W  : 

WT 2g 8o-8z ,     . 

E yo(8V)2/4 

The critical Richardson number is obtained by dividing the numerator and denominator 
in Eq. fak)  by <5z: 

g(8/o/8z) 

p(8v/8z)2 
Ri < 0.125 (35) 

Thus, for three-dimensional, stably, stratified, shear flows one would expect 

instability to occur only when the Richardson number was less than 0.125• On the 

basis of this result, then, "three-dimensional" flows would be more stable than two- 

dimensional flows which have a critical Richardson number of 0.25. This result is 
confirmed to some degree by experimental results obtained during this program and 
discussed previously. 
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FIG. 3 

TYPICAL STAGES OF BREAKDOWN OF FLOW IN SHEAR LAYERS HAVING 

"S-SHAPED" VELOCITY   PROFILES 

V0  = 0.07 FT/SEC (dV/d*)0 = -0.80 SEC " 1      0T/^)0 = 0 

FLOW 

<TT77 11 I I I I I I I I I I I I I I I I I I I I I 111 I I I I I I I I I I 141 I I I I I I I I I 

>—FLOOR -i = 0 

(o) x = 8 IN. - UNDISTURBED (b) x = 36 IN. - WAVES 

(c)x =60 IN. - VORTICES 

* 

(d)x = 70 IN. - TURBULENCE 
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TYPICAL "S" VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR SHEAR-FLOW ' 
EXPERIMENTS IN WATER CHANNEL 

_ CORRESPONDING PROFILE IN HAZEL'S THEORY 
SEE EQS. (6) AND (8) FOR THEORETICAL VELOCITY 

AND DENSITY PROFILES 
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COMPARISON OF WATER CHANNEL RESULTS FOR "S-SHAPED" VELOCITY 
PROFILES WITH HAZEL'S CRITERIA FOR STABILITY 

FIG. 5 

FLOW DEVELOPED  USING TWO-DIMENSIONAL CONTOURED FILTER BEDS 

SEE EQS. ( 6 ) AND (8 ) FOR THEORETICAL VELOCITY AND  DENSITY PROFILES 

0.3 0.4 0.5 
RICHARDSON NUMBER, Ri 



FIG. 6 
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FIG. 7 

TYPICAL STAGES OF BREAKDOWN OF FLOW IN SHEAR LAYERS HAVING 
"THREE-DIMENSIONAL"  VELOCITY PROFILES 

V„   = 0.07 FT/SEC dT/di = 0 

£. SURFACE 
x=6  IN. 

^mm^m. 
sf/ 77 7 i i) ) i i i i i > i i i i i I i > > i i i i i i i > i i i t i i /1 t in i i r 11 

FL :LOOR 
i = 0 

(a) x = 3 IN. - UNDISTURBED (b) x = 10.5 IN. - WAVES 

(e) x - 21 IN. - VORTICES (d) x     62 IN. - TURBULENCE 
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FIG. 8 

TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR "THREE-DIMENSIONAL" 

SHEAR-FLOW  EXPERIMENTS 

ALL MEASUREMENTS 2 IN. DOWNSTREAM FROM TAPERED FILTER BED AT CENTER OF CHANNEL 

(a) Ri =0, w/(2d)m = 12.2 
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FIG. 9 
COMPARISON OF RESULTS FOR FLOWS HAVING "THREE-DIMENSIONAL" 

SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 4.8 AND 8.6 

WITH DRAZIN'S CRITERION FOR TWO-DIMENSIONAL FLOWS 

DRAZIN'S CRITERION FOR HYPERBOLIC TANGENT VELOCITY PROFILES 

SYMBOLS 
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© WAVES TRANSITION TO VORTICES 

O' WAVES TRANSITION TO VORTICES 
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•  WAVES TRANSITION TO VORTICES 
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COMPARISON OF RESULTS FOR FLOWS HAVING "THREE-DIMENSIONAL" 

SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 9.7 AND 14.3 

WITH DRAZIN'S CRITERION FOR TWO-DIMENSIONAL FLOWS 

FIG. 10 

DRAZIN'S CRITERION FOR HYPERBOLIC TANGENT VELOCITY PROFILES 
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Q.   INTERMITTENT WAVES 
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FIG. 11 

COMPARISON OF RESULTS FOR FLOWS HAVING "THREE-DIMENSIONAL" 

SHEAR LAYER WIDTH-TO-THICKNESS RATIOS BETWEEN 14.5 AND 40 

WITH DRAZIN'S CRITERION  FOR TWO-DIMENSIONAL  FLOWS 

DRAZIN'S CRITERION FOR HYPERBOLIC TANGENT VELOCITY  PROFILES 

SYMBOLS 
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FIG.12 
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FIG. 13 

EFFECT OF A LONG-WAVELENGTH WAVE ON THE MINIMUM 
RICHARDSON NUMBER IN A SHEAR FLOW 

(a) SCHEMATIC DIAGRAM OF FLOW CONDITION 

•UPSTREAM VELOCITY AND 

TEMPERATURE PROFILES 

(b) EFFECT OF TEMPERATURE GRADIENT AND INITIAL SHEAR ON   Ri M1N IN WATER 

Ri MIN 

[l&<"«-"°-^ 

V0 =0.10 FT/SEC 

T0 =60 DEG F 

o = 0.05 FT 

500 1000 1500 

TEMPERATURE GRADIENT, dl/dz - DEG F/FT 

2000 
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FIG. 14 

WATER CHANNEL RESULTS SHOWING EFFECT OF A LONG-WAVELENGTH WAVE ON 
THE LOCAL RICHARDSON NUMBER IN A SHEAR FLOW 

V„   =0.07 FT/SEC Rio  =0.70 (<?V/<?i)0= -0.71 SEC~' 

SEE FIG. 16 FOR VELOCITY, TEMPERATURE AND DENSITY PROFILES 

777777777777777777777777777777777777X7777777777777777777777 
\ FLOOR -  x - 0 

(o) x = 7 IN.-TROUGH 

<?V'di= -1.03 SEC"', r9T/r)i = 120 DEG F/FT 
Ri = 0.37 

(b) x -   14 IN.-CREST 

dV'dz - 0.39 SEC" ',   r9T/(9i - 82 DEG F/FT 

Ri « 1.8 
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FIG.15 

PHOTOGRAPHS SHOWING EXAMPLES OF INSTABILITIES 
INDUCED BY LONG-WAVELENGTH WAVES 

SEE FIG. 14 FOR FLOW CONDITIONS AND FIG. 16 FOR 
VELOCITY, TEMPERATURE, AND DENSITY PROFILES 

DIRECTION OF FLOW 

(a) FIRST TROUGH TO SECOND CREST (X=7 TO 14 IN.hWAVES 

(b) SECOND CREST TO SECOND TROUGH (X= 14 TO 21 IN.)- VORTICES 
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TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES FOR FLOW 
IN A LONG-WAVELENGTH WAVE 

FIG. 16 

SEE FIGS. 14 AND 15 FOR PHOTOGRAPHS OF THE FLOW 

(a) VELOCITY V0 = 0.07 FT/SEC, 0V/dz)o= -0.71 SEC 

TROUGH-X = 7 IN. 

•1 
ALW= 14 IN. , a =  1.4 IN. 

CREST-X = 14 IN. 

0   0.02 0.04 0.06 0.08   0.10 0.12 0.14 0    0.02 0.04  0.06 0.08 0.10  0.12 0.14 
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FIG. 17 

COMPARISON BETWEEN MEASURED AND PREDICTED VALUES OF WAVE SHEAR 

IN A LONG-WAVELENGTH WAVE 

SHEAR PREDICTED USING PHILLIPS' THEORY (REF.9) 
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FIG. 18 

COMPARISON BETWEEN MEASURED AND PREDICTED VALUES OF 

WAVELENGTH OF LONG-WAVELENGTH WAVES 

DATA FROM UARL OPEN WATER CHANNEL 

WAVELENGTH PREDICTED USING HAURWITZ'S THEORY (REF. 10) 
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EFFECT OF WAVE AMPLITUDE RATIO ON STABILITY BOUNDARIES FOR 
SHEAR FLOWS IN LONG-WAVELENGTH WAVES 

DATA FROM UARL OPEN WATER CHANNEL 

FIG. 19 
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EFFECTS OF LONG-WAVELENGTH WAVES ON STABILITY 
OF ATMOSPHERIC SHEAR LAYERS 

FIG. 20 

(o) SCHEMATIC DIAGRAM OF FLOW CONDITION 

MAXIMUM SHEAR, 
RiMIN AT CREST • 

2d- 

• UPSTREAM WIND AND TEMPERATURE PROFILES 

(b) EFFECT OF LAPSE RATE AND SHEAR ON RiMIN FOR TYPICAL WAVE CONDITIONS 
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FIG.  21 

EFFECT OF WIND VELOCITY ON STABILITY BOUNDARIES FOR ATMOSPHERIC SHEAR 

FLOWS IN A LONG-WAVELENGTH, 500-FT-AMPLITUDE WAVE 

ALTITUDE, i = 34,089 FT 

TEMPERATURE, T   =-56.5C 

WAVELENGTH, ALW- 15 NMI 

NOTE: FLOW STABLE FOR|(d V/d*)„| AND dT/<?z BELOW BOUNDARY FOR GIVEN V0 

AND UNSTABLE FORJ(dV/d*)0| AND dT/di   ABOVE BOUNDARY 
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FIG. 22 
EFFECT OF WIND VELOCITY ON STABILITY BOUNDARIES FOR ATMOSPHERIC 

SHEAR FLOWS IN A LONG-WAVELENGTH, 3000-FT-AMPLITUDE WAVE 

ALTITIDE, i = 36,089 FT 

TEMPERATURE, T0 -56.5 C 

WAVELENGTH, Aw= 15 NMI 

NOTE: FLOW STABLE FOR |<<9V/d*)0| AND dT/fa BELOW BOUNDARY FOR GIVEN V0 

AND UNSTABLE FOR |((9V/dz)0| AND dT/di ABOVE BOUNDARY 
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FIG. 23 

EFFECTS OF WIND SPEED AND LONG-WAVE WAVELENGTH 

ON MAXIMUM ALLOWABLE INITIAL WIND SHEAR FOR STABILITY 
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FIG. 25 

COMPARISON OF DATA   FROM 1970 LEE WAVE OBSERVATION PROGRAM 

WITH   UNITED AIR LINES NOMOGRAM FOR PREDICTING WAVE OCCURENCE 

NOTES: I. NUMBER NEAR SYMBOL DENOTES FEBRUARY, 1970 DATE 
2. NO FLAG DENOTES FLIGHTS NOT MADE ASiNO WAVE ACTIVITY WAS 

PREDICTED BY OTHER METHODS 
3. SINGLE FLAG DENOTES WEAK WAVE OBSEf^vn m PLJpHT   - 

MODERATE WAV 4. DOUBLE FLAG DENOTES MODERAT VAVE OBSERVED IN   FLIGHT 
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TYPICAL VELOCITY, TEMPERATURE AND DENSITY PROFILES 

FOR COMBINED SHEAR LAYER EXPERIMENTS 

FIG.^6 

(a) COMBINED LAYER TYPE LARGE-SMALL-LARGE 
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FIG. 27 
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