

Security Requirements Reusability and the

SQUARE Methodology

Travis Christian

Faculty Advisor

Nancy Mead

September 2010

TECHNICAL NOTE

CMU/SEI-2010-TN-027

CERT
®
 Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN ―AS-IS‖ BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and ―No Warranty‖ statements are included with all reproductions

and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

CMU/SEI-2010-TN-027 | i

Table of Contents

Executive Summary vii

Abstract ix

1 Introduction 1

2 Security Requirements in Current Practice 2

3 The SQUARE Methodology 3

4 Advantages of Reuse 4

5 Related Work 5

6 Defining a Model of Security Concepts 6
6.1 Quality Subfactors 6
6.2 Security Goals 7
6.3 Layered Defenses 7
6.4 Threats 8
6.5 Security Measures 8
6.6 Relating Levels 9

7 Writing Reusable Requirements 11
7.1 Quality Criteria for Requirements 11
7.2 Need for Common Terminology 12
7.3 Generic but Useful Requirements 12
7.4 Right Level of Abstraction 13

8 Integration into SQUARE 14
8.1 Step 1: Agree on Definitions 16
8.2 Step 2: Identify Assets and Goals 16
8.3 Step 3: Risk Assessment 17
8.4 Step 4: Choose Requirements 17
8.5 Step 5: Prioritize Requirements 18
8.6 Step 6: Review Requirements 18

9 Recommendations for Future Work 19

10 Conclusions 20

Appendix A: Concepts from the Security Model 21

Appendix B: Examples of Reusable Goals and Requirements 23

Glossary of Terms 25

References 29

CMU/SEI-2010-TN-027 | ii

CMU/SEI-2010-TN-027 | iii

List of Tables

Table 1: R-SQUARE Steps 15

Table 2: Security Quality Subfactors and Associated Measures 21

Table 3: Security Measures and Associated Mechanisms 22

Table 4: Potentially Reusable Security Goals 23

Table 5: Potentially Reusable Requirements 24

CMU/SEI-2010-TN-027 | iv

CMU/SEI-2010-TN-027 | v

Acknowledgments

I would like to thank my instructor, Dr. Nancy R. Mead, a senior member of the technical staff at

the Software Engineering Institute and principal investigator for the SQUARE methodology. Her

expertise and guidance made this study possible.

CMU/SEI-2010-TN-027 | vi

CMU/SEI-2010-TN-027 | vii

Executive Summary

Security is an important and complex quality attribute in many software-intensive systems. Unfor-

tunately security is often neglected in the requirements stage of the development life cycle. Secu-

rity is introduced later, in design and implementation, which results in inadequate analysis, cost

overruns, and vulnerabilities costing billions of dollars annually. Even when security requirements

are specified, they are likely at an incorrect level of abstraction, either too general to be useful or

too focused on design implications. To be most effective, security should be an integrated part of

systems development from the beginning, addressed with the same discipline as other system re-

quirements.

The Security Quality Requirements Engineering (SQUARE) methodology was created by the

CERT
®
 Program at Carnegie Mellon University’s Software Engineering Institute to address this

problem. SQUARE is a nine-step security requirements elicitation approach. Case studies have

shown that while SQUARE is effective, the process can take two to three months of effort for

large projects, an investment some organizations cannot afford. SQUARE-Lite, a leaner variant,

was developed for integration into an existing requirements engineering process. This paper intro-

duces another variant, R-SQUARE, based on SQUARE-Lite, which explores reusable artifacts in

various steps to reduce the effort needed to complete SQUARE.

In recent years research has gone several directions with the cataloguing and reuse of require-

ments and other security-related artifacts. Definitions of a unified security taxonomy for security

concepts and terms have also been proposed.

Security requirements, and the goals that produce them, are particularly reusable because security

needs and defenses are fairly common across different domains and independent of many func-

tional attributes and other quality requirements. Security requirements and goals can be made very

reusable for many different types of projects when they are written at the right level of abstrac-

tion, in generic but commonly understood terms, and with good requirements guidelines in mind.

This report introduces a generic security model that attempts to organize various aspects of securi-

ty into a hierarchy of concepts. Goals, requirements, and other artifacts in SQUARE and beyond

can be mapped to corresponding layers of this model, supporting traceability in security analysis

and reusability of security statements. The goal of this report is to introduce R-SQUARE, which

integrates reusability into the SQUARE methodology in a way that supports collaboration and

common understanding.

®
 CERT is a registered mark owned by Carnegie Mellon University.

CMU/SEI-2010-TN-027 | viii

CMU/SEI-2010-TN-027 | ix

Abstract

Security is often neglected during requirements elicitation, which leads to tacked-on designs, vul-

nerabilities, and increased costs. When security requirements are defined, they are often either too

vague to be of much use or overly specific in constraining designers to use particular mechanisms.

The CERT
®
 Program, part of Carnegie Mellon University’s Software Engineering Institute, has

developed the Security Quality Requirements Engineering (SQUARE) methodology to correct

this shortcoming by integrating security analysis into the requirements engineering process.

SQUARE can be improved upon by considering the inclusion of generalized, reusable security

requirements to produce better-quality specifications at a lower cost. Because many software-

intensive systems face similar security threats and address those threats in fairly standardized

ways, there is potential for reuse of security goals and requirements if they are properly specified.

Full integration of reuse into SQUARE requires a common understanding of security concepts

and a body of well-written and generalized requirements. This study explores common security

criteria as a hierarchy of concepts and relates those criteria to examples of reusable security goals

and requirements for inclusion in a new variant of SQUARE focusing on reusability, R-SQUARE.

CMU/SEI-2010-TN-027 | x

CMU/SEI-2010-TN-027 | 1

1 Introduction

Security requirements engineering shows potential for reusing security requirements and goals,

which reduces the overall cost of requirements engineering and yields higher-quality requirements

specifications. The CERT
®
 Program of Carnegie Mellon University’s Software Engineering Insti-

tute (SEI) has developed the Security Quality Requirements Engineering (SQUARE) methodolo-

gy, which can be adapted to support reuse of goals, requirements, and other security artifacts.

Such reuse requires a shared understanding of security terminology and concepts at different le-

vels of abstraction and their relation to one another.

This report explores the potential for reuse of security requirements and goals in security require-

ments engineering and how reuse can be integrated into the SQUARE methodology. A hierar-

chical security model is described that maps security concepts at different levels of abstraction to

the work products created in SQUARE. The report then proposes a new variant of SQUARE, R-

SQUARE, that supports the reuse of definitions, goals, risks, and requirements.

Section 2 introduces the state of security requirements and design in industry practice and the

problems that led to the creation of SQUARE. Section 3 briefly describes the SQUARE metho-

dology. Section 4 presents an argument for reuse in security requirements engineering, while Sec-

tion 5 explores related work in requirements engineering and reusable security concepts. Section 6

defines a security model for determining goals, risks, and requirements. Section 7 explains the

characteristics of good requirements and goals and how they can be written to be more reusable.

Section 8 defines a new variant of SQUARE for reuse, R-SQUARE, built on the concepts pre-

sented thus far. Section 9 suggests areas for future work, and Section 10 presents conclusions

from the completed research.

®
 CERT is a registered mark owned by Carnegie Mellon University.

CMU/SEI-2010-TN-027 | 2

2 Security Requirements in Current Practice

Security requirements engineering is where the creation of a secure system begins. As a quality

attribute with major financial, social, and even legal ramifications, security is an integral part of

system functionality. As such it must be addressed early in the development process. The cost of

catching and correcting requirements defects in deployed systems can be much greater than the

cost of doing so during requirements engineering. Defects in requirements, which can account for

up to 40–50 percent of project effort, can lead to budget and schedule overruns, quality problems,

and canceled projects. This is especially true for security, which has far-reaching implications and

great potential for harm if it fails [Mead 2009].

Unfortunately security is often neglected in the requirements stage and only introduced as an af-

terthought in later stages of development [Schumacher 2006]. Security requirements, if specified

at all, face one of two pitfalls. On the one hand, many security requirements are too vague to pro-

vide any real guidance to system designers. A generic phrase like ―data shall be kept secure‖ does

not communicate anything meaningful [Fabian 2010]. It is left up to architects and programmers,

who are disconnected from the business context, to interpret what kind of protection is needed and

to what extent. On the other hand, security requirements may overly constrain designers by de-

manding specific features and mechanisms without defining the underlying need. Finally, security

is often ignored altogether until the system is being designed or even implemented. In these cases

security features are often tacked onto an existing design. All of these practices lead to unneces-

sary rework, poor design, and vulnerabilities. Reports have shown that security vulnerabilities

cost up to $59.5 billion annually, while early focus on security analysis can provide up to

21 percent return on investment [Mead 2005].

Security requirements engineering suffers from a lack of proper analysis, haphazard specifica-

tions, and inadequate management. The industry needs a better way to handle security require-

ments. To be most effective, they need to be defined at a proper level of abstraction, aligned to the

organization’s goals, and considerate of the actual risks present. Requirements, which deal with

business needs, should address what the system should do while leaving the designers to deter-

mine how to do it. Just like any other quality attribute, security affects system design and functio-

nality. Security needs must be addressed from the beginning of the development life cycle so that

they can be integrated into the system design.

CMU/SEI-2010-TN-027 | 3

3 The SQUARE Methodology

The CERT Program developed SQUARE to address the problem of inadequate security require-

ments. SQUARE is a requirements engineering methodology ―for eliciting, categorizing, and pri-

oritizing security requirements for information technology systems and applications‖ [Mead

2005]. The process consists of nine steps performed in order by a team of requirements engineers,

including at least one expert in risk assessment methods, and project stakeholders:

1. Agree on definitions.

2. Identify assets and goals.

3. Develop supporting artifacts.

4. Perform risk assessment.

5. Select elicitation technique.

6. Elicit security requirements.

7. Categorize requirements.

8. Prioritize requirements.

9. Inspect requirements.

SQUARE is performed at the requirements elicitation stage of the development life cycle to de-

velop security-related system requirements. Engineers guide the stakeholders through the process

of identifying and prioritizing security-related goals, threats, and requirements specific to the

project. Each step has inputs and outputs, with assigned tasks for one or both. By guiding stake-

holders and requirements engineers through the specification of security requirements, SQUARE

ensures that security is addressed early in the project life cycle in the same way as functional

attributes and other quality attributes.

Completing the full nine-step SQUARE process may take two to three months for large projects.

Unfortunately some organizations are unwilling or unable to commit so much time and so many

resources to security requirements alone [Gayash 2008]. There is a need for a leaner, more effi-

cient process to achieve similar results. SQUARE-Lite was developed to address this need.

SQUARE-Lite is a five-step adaptation that can be completed more quickly and with fewer re-

sources by focusing on only the most essential steps. However, SQUARE-Lite assumes integra-

tion into an existing requirements engineering process. SQUARE-Lite consists of the following

steps [Mead 2009]:

1. Agree on definitions.

2. Identify assets and security goals.

3. Perform risk assessment.

4. Elicit security requirements.

5. Prioritize requirements.

Reuse of security requirements and other artifacts presents another opportunity to reduce the cost

of performing SQUARE. The following sections explore how reusable artifacts can be incorpo-

rated into the process with the support of a conceptual model for analyzing security criteria.

CMU/SEI-2010-TN-027 | 4

4 Advantages of Reuse

Reuse of security requirements provides several benefits to the requirements engineering process.

 Opportunity: Security requirements, more so than other requirements, have potential for

reuse in other projects. Many systems face similar security threats and deal with them in the

same standardized ways, at least at the requirements level. This is an opportunity to define

common security measures and establish reusable artifacts for future projects [Firesmith

2003a].

 Reduced cost: Each time a requirement is reused, it offsets another requirement that does not

have to be written. Reuse reduces the effort needed to produce requirements specifications

for later projects. Writing requirements that can be reused is a time investment in future

productivity.

 Improved quality: A requirement that has been written specifically for reuse will have been

given thorough attention and inspected for quality. Reusing published requirements thus re-

sults in fewer defects due to poorly written requirements [Firesmith 2003a].

 Consistency: Reusing requirements forces stakeholders to think at the same level of abstrac-

tion, in the same terms, and independently of system design in different contexts. Using the

same requirement for multiple projects grants a certain level of consistency across a product

line or an entire organization [Mellado 2008].

 Less technical knowledge required: Specifying requirements at the correct level of abstrac-

tion (by focusing on protection rather than design) lessens the need for security expertise at

the requirements stage. A business context and basic understanding of security concepts are

sufficient for choosing requirements [Firesmith 2003a].

A set of well-defined security requirements may be reused whole or in part while specifying simi-

lar systems. By investigating the goals and concepts behind security requirements and mapping

them to common mechanisms and principles, we can see that the primary challenge of eliciting

good security requirements is often not specifying innovative solutions but rather deciding what

types and degrees of protection are needed.

Reusing predefined criteria does have its disadvantages. There is an up-front investment in effort

and resources associated with creating a reusable security repository. Writing goals and require-

ments for reuse may take some extra thought, and cataloging them for future use will require addi-

tional process management. Reusability is unlikely to provide any immediate advantage when it is

first adopted.

The real benefit of reusing security requirements comes later when the team can reduce require-

ments costs by drawing on previous work. Not only will the team become more adept at perform-

ing the process, but the actual work to be done will decrease over time. Like the SQUARE me-

thodology itself, adopting reusability is an investment of a little more time now toward reduced

costs and higher quality in the future.

CMU/SEI-2010-TN-027 | 5

5 Related Work

Recent research has gone in several directions to deal with reusability in the context of security

analysis and design.

Requirements based on laws and regulations have been the subject of a number of studies. A team

in Norway performed such research in reusable security requirements for health care applications,

mapping European legal regulations to technical requirements [Jensen 2009]. In Spain another

team studied the reuse of legal requirements regarding personal data protection [Toval 2002]. The

Privacy Requirements Elicitation Technique, which was incorporated into SQUARE, was sup-

ported by a computer-aided software engineering tool that suggested relevant privacy require-

ments based on a questionnaire about applicable regulations and the use of the system [Miyazaki

2008]. Requirements based on legislation and other standards have great potential for reuse be-

cause they essentially reword regulatory language in technical terms.

A study of requirements-based access control and policy specification led to the creation of a sup-

port tool that allows analysts to create and reuse rules with traceability to requirements [He 2009].

The analysis itself is based on a three-tiered model of policies, models, and mechanisms, each at a

different level of abstraction. This structure influenced the design of the hierarchical security

model presented in this report.

Donald Firesmith at the SEI has contributed several ideas to this area of research. He proposes a

methodology for reuse-based security analysis, as well as reusable parameterized templates for

security requirements elicitation [Firesmith 2003a]. Templates present a solution to some of the

problems observed in security requirements. Firesmith also defined a detailed quality model for

safety, security, and survivability engineering [Firesmith 2003c]. The model describes relation-

ships between concepts that contribute to systemic qualities.

There have been various other attempts to define a unified model of security concepts [Fabian

2010, Firesmith 2005]. Security lacks a clear taxonomy of attributes, requirements, and standard

controls. Inconsistency in language and a focus on controls rather than requirements have hin-

dered a standardized approach to dealing with security needs. There is not yet a consensus about a

standardized approach, but the work has helped generate discussion about relationships between

abstract security concepts and related design decisions [Blanco 2008].

Another common research topic is requirement repositories for storing reusable requirements [Fa-

bian 2010, Firesmith 2003a]. Architectures and tools have been proposed for cataloguing and

tracking reusable requirements so that they can be searched and retrieved easily for later projects

[He 2009, Du 2009]. Repositories present an opportunity for collaborative standardization of se-

curity requirements that can be used across organizations and domains [Jensen 2009].

CMU/SEI-2010-TN-027 | 6

6 Defining a Model of Security Concepts

Reuse of security requirements requires a common understanding of the related security concepts

[Blanco 2008]. Goals and requirements are given at different levels of abstraction, though the be-

haviors specified in requirements support the concepts reflected in goals. This observation lends

itself to a hierarchical model of security concepts. The model partitions security into a set of high-

level concepts called quality subfactors, which represent the characteristics that a secure system

exhibits. Quality subfactors are further broken down into security measures, which define general

behaviors that support quality subfactors at a level above design patterns and mechanisms. Quali-

ty subfactors are reflected in security goals, while requirements are mapped to security measures.

The model also includes a layered view of system security, which is helpful when considering

different types of security threats and their effects. Many security measures provide defense at a

particular layer.

6.1 Quality Subfactors

To understand what security means and define requirements for attaining it, we must understand

the specific attributes that contribute to a state of security. In this section we explore some com-

mon models for breaking security down into smaller, more specific concepts.

One of the most widely recognized paradigms for analyzing system security is the Central Intelli-

gence Agency (CIA) triad [Pfleeger 2007]. This model defines a secure system as maintaining

three properties of its data and services: confidentiality, integrity, and availability. Another quali-

ty, accountability, is sometimes included as well. The Department of Homeland Security takes

another approach, naming dependability, trustworthiness, and survivability as the essential charac-

teristics of a secure system [Goertzel 2009].

Such attributes are referred to as security properties, principles, or characteristics. As these

attributes provide certain systemic properties that fall under the broad quality attribute of security,

we will refer to them as security quality subfactors [Firesmith 2003a]. For the purposes of defin-

ing security requirements, we will consider the following security quality subfactors:

 confidentiality. Sensitive information must be protected against unauthorized disclosure.

Privacy, which is the protection of personal information, is an important subset of confiden-

tiality. Confidentiality protection can take many forms. Data access may be restricted by lo-

cation, actor identity, or classification level. In the case of personal information (a privacy

concern), users may have access to their own data, but no other actor, not even an adminis-

trator, may be permitted to see it. Confidentiality may be enforced by hiding data behind a

boundary so that unauthorized actors may not access it, encrypting it so that it can only be

interpreted by the intended recipient, or a combination of both.

 integrity. Data must be protected against unauthorized modification. Restricting the ability to

modify secure data to authorized actors maintains integrity. Integrity may require that data is

completely immune to modification or that modification privileges are restricted to certain

actors. Access controls and user permissions provide data integrity, and encryption may be

used to check for unknown modification. An attribute closely related to integrity is authen-

CMU/SEI-2010-TN-027 | 7

ticity of data, which means that data is of genuine origin and has not been fabricated. Au-

thentic data has been confirmed to come from a valid source.

 availability. Data and services must be available when they are requested. If interrupted, a

system must recover and continue secure operation as quickly as possible without adverse

side effects. Availability includes survivability, also known as resilience, which is a system’s

ability to withstand attacks or accidents and continue to operate in a secure manner.

 accountability. If and when an attack or accident does occur, accountability ensures that ac-

tions that affect secure assets can be traced to the responsible actor or condition. Accounta-

bility ensures that an attacker who performs a malicious action cannot deny involvement af-

ter the fact.

 conformance. While the CIA triad focuses on protection of data, the services dealing with

data must also be secure. Conformance means that the software operates as intended without

variation. It reliably performs the necessary tasks, no more and no less. The system does not

contain vulnerabilities that can be exploited to cause unwanted behavior. Any deviation from

the specified behavior constitutes nonconformance because it either produces unwanted be-

havior or potentially allows an attacker to exploit a vulnerability.

6.2 Security Goals

Security goals are determined first, before requirements, so that the team will understand what

outcome the security requirements are to support. As the requirements engineering proverb says,

―If you don’t know what you want, it’s hard to do it right‖ [Fabian 2010]. Goals define the tar-

geted conditions that make security requirements necessary. While requirements, as we will see

later, are phrased in terms of what a system will do, goals focus on the end result. A goal may call

for a reduction in damages done, a certain uptime ratio, or other realistic results that business

stakeholders are looking for in the implemented system.

Security goals present an opportunity for reuse because systems share similar motivations for im-

plementing security mechanisms. Secure systems are not created simply for the sake of being se-

cure. Security supports the system’s primary purpose so that it can be performed in a secure man-

ner. In this sense, security goals are fairly limited: do whatever the system does securely,

according to the criteria and extent necessary. Thus, security goals are largely uniform and have a

relatively simple purpose: to protect the organization’s assets by providing for one or more of the

security quality subfactors. As such, goals can be stated in terms of a targeted degree of confor-

mance to a quality subfactor or the targeted business impact of such conformance.

6.3 Layered Defenses

Comprehensive security requires more than a single line of defense. To be most effective, mul-

tiple aspects of security should work together to provide layered protection. This is reflected in

the security strategy ―defense in depth,‖ in which overlapping controls at various layers combine

to provide more robust security. There are several layers at which security controls can be imple-

mented, each with its own purpose [Pfleeger 2007, Schumacher 2006]:

 deterrence or prevention. The first layer of defense is to prevent attacks from taking place.

An asset can be protected from malicious attack by making the attack as difficult as possible.

CMU/SEI-2010-TN-027 | 8

One way is to limit the means by which an attacker can gain access to and compromise the

asset.

 detection. If an attack or accident does occur, the system and its users should be informed

immediately to take action and mitigate the effects. System activities should be monitored

for incidents in progress, and notifications should be issued or a response automatically in-

itiated.

 response. When a potential attack or accident is detected, a secure system should take some

action to minimize the incident’s impact. This may include automated defense mechanisms,

active alarms and notifications, or simply recording the incident so that it can be dealt with

later.

 recovery. No system is completely secure. Accidents happen and attacks succeed. When an

incident occurs and harm is done, action must be taken to recover. Any damages must be

corrected, and the system must be returned to secure operation. Recovery services can be de-

fined in terms of what damage the system can correct and how quickly. Because recovery

requires a return to secure operation, it is most closely related to availability and specifically

survivability.

6.4 Threats

We use the definition of threat from Software Security Engineering [Allen 2008]: ―A threat is an

actor or agent that is a source of danger, capable of violating the confidentiality, integrity, and

availability of information assets and security policy.‖ A risk refers to the likelihood that the actor

or agent will be successful. Security threat models provide a generalized paradigm for evaluating

the different types of security threats and the risks associated with them.

Microsoft’s STRIDE Threat Model [Microsoft 2005] is one such example. STRIDE is an

acronym for five common categories of threats: Spoofing identity, Tampering with data, Repudia-

tion, Information disclosure, Denial of service, and Elevation of privilege. Each category presents

a risk to one or more security quality subfactor. For example, repudiation violates accountability,

and denial of service violates availability.

By using a threat model to categorize and evaluate risks against security goals, an organization

can quickly build up a threat database of likely attacks and their potential impact on secure assets.

These threats can be described in short scenarios, misuse cases, or any number of formats. A re-

quirements engineering team can then refer to this database, identify relevant threats, and analyze

them in terms of the project’s own security goals and assets.

6.5 Security Measures

Security measures are the generic, implementation-independent forms of security controls that

dictate what the system should do to provide a secure environment. Security measures are not de-

sign decisions; rather they describe security in a behavioral sense. Thus, they are at the correct

level of abstraction for specifying requirements. There are many types of security measures,

whose variety provides for different quality subfactors at different layers. Some of the most fun-

damental security measures are described here.

CMU/SEI-2010-TN-027 | 9

 access control. One of the most important and fundamental security measures, access control

is a means by which access to a resource is restricted by some condition. Secure systems

must ensure that each instance of data or a service is made available only to those who are

authorized to access it. Access control makes use of three subsidiary measures to provide se-

cure access to system resources: identification, authentication, and authorization of actors

[Schumacher 2006]:

 identification. Before interacting with an actor, the system must identify it, whether it is

a person or another system or component.

 authentication. When an actor identifies itself, the system must verify the claim against

some source known to and trusted by the system. In many cases identification and au-

thentication are done concurrently, as in the case of username and password pairs.

 authorization. Once the actor’s identity has been verified, the system must determine

whether the actor is permitted to access the requested data or service. This check may be

done on the basis of user roles, user-specific permissions, or some other criteria depend-

ing on the system’s access control policy. If the system supports user sessions, identifica-

tion and authentication may be performed only once, while authorization would be per-

formed for each request.

 physical protection. Secure systems must be protected not only from electronic attack but

also physical threats. This may include theft, tampering, or destruction of equipment. Physi-

cal protection includes a wide variety of defenses against accidents, disasters, and intruders

[Pfleeger 2007].

 security policy. A set of rules or practices that a system must enforce is described by a secu-

rity policy. Policies specify how a system should handle its assets in a secure manner

[Schumacher 2006].

 nonrepudiation. Services that provide accountability monitor events and record relevant in-

formation about them. When linked to individuals, such data provides nonrepudiation, the

inability of an actor to falsely deny involvement in an incident [Schumacher 2006].

 system recovery. An accident or successful attack may compromise the system or its assets

in some way. System recovery minimizes the effects of a security failure by restoring the

system to a secure state in the case of an attack or accident [Schumacher 2006].

 attack detection. Attack detection is the active or passive monitoring of behaviors and condi-

tions for evidence of an attack [Pfleeger 2007].

 boundary protection. Services that protect the components of a system that are exposed to the

outside world limit the means by which an external threat can penetrate the system [Schu-

macher 2006].

6.6 Relating Levels

Security quality subfactors are the systemic characteristics that define secure behavior. They form

the highest level of abstraction in the security model, partitioning the concept of security into sep-

arate attributes.

CMU/SEI-2010-TN-027 | 10

Security goals are statements that describe the system’s conformance to quality subfactors. Goals

do not specify what exactly the system is to do. Instead, they state that when a system has fulfilled

its security requirements, it will exhibit a given set of characteristics.

The system will be exposed to certain threats that can break its conformance to the goals by pene-

trating security defenses and causing a deviation from secure behavior. The risk that these threats

will occur can be mitigated by security requirements that support the provision of characteristics

stated in the security goals. Requirements are made in terms of security measures, which describe

the type of defense to be implemented without constraining the design to specific mechanisms. In

other words, requirements dictate what the system must do but not how to do it. Requirements

mandate the presence of defenses around secure assets. Such defenses are best applied in layers so

as to maximize the robustness and coverage of security mechanisms.

Security mechanisms come out of the resulting design decisions that are made in light of the re-

quirements. Mechanisms are concrete patterns and techniques such as password protection, secure

sockets layers (SSL), or firewalls.

Thus, each level’s specification brings the system closer to a concrete design and provides a con-

text for the next level of concepts. The following example, taken from a SQUARE case study

with some alteration to support reusability, illustrates this point. Each level of the security model

is represented in one of the statements. As SQUARE progresses from goals and assets to risks to

requirements, it moves down the model from abstract quality subfactors to more concrete but still

generic security measures.

Step 2: Identify assets and goals

Assets: User data, hardware, application software

Business goal: The tool provides the means to make informed decisions based on available

sources.

Security subgoal: The confidentiality and integrity of the user data shall be maintained against

unsophisticated login attack 99 percent of the time.

Step 4: Risk assessment

Threat: An attacker succeeds in an unauthorized server login (low sophistication), resulting in

loss of data integrity and confidentiality.

Step 6: Elicit security requirements

Requirement: The system is required to have strong authentication measures in place at all sys-

tem gateways/entrance points.

From this breakdown, we can see that the stated goals have led to a requirement, which will lead

to specific design decisions. The specified requirement mitigates the threat and supports the secu-

rity goal. The goals, risks, and especially the requirements are each stated at a proper level of ab-

straction and in a way that supports reuse.

CMU/SEI-2010-TN-027 | 11

7 Writing Reusable Requirements

Now that we have explored security concepts at different levels of abstraction, we can see how

they relate to the artifacts defined in requirements analysis. We turn our attention specifically to

writing requirements that support reuse. What makes a security requirement a good candidate for

reuse? It must have the qualities of a good requirement in the first place, and it also must be gen-

eral enough to apply in different situations while carrying the same meaning.

If a requirement is to be placed in a collective body of knowledge and used again in other con-

texts, some care must be taken that it is well written and exhibits the qualities that a requirement

should carry. The total impact of a reused requirement over its lifetime will be much greater than

that of a single-use requirement.

A reusable requirement also must not be overly specific to the system in question, or it will lose

its value outside of that context and cannot be reused without significant rewording. Requirements

that must be significantly modified to be meaningful in another project are not reusable and may

as well be discarded.

We will first explore the characteristics of a good requirement and then see what can be done to

make them suitable for reuse. There are various criteria for what a good requirement should look

like [Firesmith 2003b]. For example, in the context of security engineering, Pfleeger and Pfleeger

propose six characteristics for requirements: correctness, consistency, completeness, realism,

need, verifiability, and traceability [Pfleeger 2007]. They also state that security requirements

should cover all aspects of security and be stated in a way that specifies function without con-

straining design.

7.1 Quality Criteria for Requirements

The following criteria have been found to characterize good requirements and specifications

[Firesmith 2003b, Pfleeger 2007]. Requirements that meet all of these criteria will be good candi-

dates for reuse because they will be sufficiently abstract to apply to multiple projects while clearly

communicating security needs.

 atomic. The requirement addresses exactly one point and stands on its own as a single, com-

plete thought in one statement. Generally speaking, an atomic requirement should not con-

tain more than one clause.

 complete. Collectively, the requirements provide a full representation of system functionali-

ty. For security requirements, this means full coverage of the identified goals and risks. All

relevant aspects of security, including each affected quality subfactor and layered defense,

are fully specified at a proper level of abstraction.

 consistent. The requirement does not conflict with or confuse the meaning of any other re-

quirement. The same function is not described in different terms or from different perspec-

tives. The entire specification provides a single, uniform model of functionality.

 feasible. The requirement can be reasonably implemented within the project’s constraints.

Requirements do not represent wishful thinking, recommendations, or unrealistic goals.

CMU/SEI-2010-TN-027 | 12

 generic. Requirements should communicate a system’s functions, not the means by which

those functions are achieved. A good requirement does not constrain the design by imposing

a particular mechanism. To put it another way, requirements state ―what,‖ not ―how.‖

 necessary. The requirement communicates exactly what is needed and no more. It is an es-

sential statement without which the project’s specification would be incomplete. There are

no redundant requirements, and overlap is kept to a minimum. Each requirement provides a

unique piece of information.

 traceable. The requirement can be related to decisions and products throughout the develop-

ment life cycle so that its implementation can be verified at any point and any changes to the

requirement can be easily assessed.

 unambiguous. The requirement is worded in a way that is clear and difficult to misunders-

tand. The requirement avoids undefined jargon and vague terms and allows only one objec-

tive interpretation.

 verifiable. The requirement can be verified through testing or other forms of analysis. A sys-

tem characteristic that cannot be proven is a goal, not a requirement.

Any requirements specification should meet the above criteria. The first step in writing reusable

requirements is to write good requirements. Now we turn our attention to those characteristics that

specifically make a requirement suitable for reuse.

7.2 Need for Common Terminology

Reusable requirements will be used outside of their original context. They will be applied to dif-

ferent projects while retaining the same meaning. This calls for common terminology in defining

security requirements. SQUARE begins by agreeing on definitions. For requirements reuse to be

feasible, teams need to agree on definitions not only for a single project but across projects in the

organization. Agreeing to use widely accepted definitions from a reputable public source is even

better. IEEE, the Software Engineering Body of Knowledge (SWEBOK),
1
 and the U.S. Depart-

ment of Defense are all potential sources of defined terminology.

7.3 Generic but Useful Requirements

Requirements tend to be stated in terms specific to the project for which they are written. But

reusable requirements need to retain their meaning outside of their original context. A require-

ment written for reuse should not refer to any specific system component or feature. Rather it

should state a systemic trait that is to be implemented. If it is not possible to write a meaningful

requirement in generic terms, the requirement may not be written at a sufficient level of abstrac-

tion, or it may be a special case not suitable for reuse.

For example, this might be a fine requirement:

The system must authenticate users arriving at the control panel.

But what does it mean in a generic context? This requirement is only meaningful when there is a

control panel at which a user can arrive. For reusability, the requirement would be better stated as

1
 http://www.computer.org/portal/web/swebok

http://www.computer.org/portal/web/swebok

CMU/SEI-2010-TN-027 | 13

The system is required to have strong authentication measures in place at all system gate-

ways/entrance points.

This requirement is independent of any specific system features and retains its meaning in almost

any context.

7.4 Right Level of Abstraction

Requirements are most useful when they specify what a system must do without placing any con-

straints on how that behavior is achieved. A requirement that enforces a technique or mechanism

puts unnecessary limitations on designers, who must create a design that conforms to the stated

requirements.

It can be tempting to begin design of security features while specifying requirements. If accounta-

bility is an important quality subfactor, a requirement might state

The system shall require users to log in with a username and password combination.

This is a standard way to force authentication. But why must the login mechanism use a username

and password? What if these users are in a hurry and just want to swipe a card or scan their fin-

gerprint? Those may be valid alternatives that achieve the same end result: user authentication.

The requirement is better stated as

The system shall implement access control via a secure login screen.

This requirement states the intended security measure and the point at which it is implemented

without specifying a certain design.

Another example shows that requirements can also be too abstract:

The system’s availability shall be maintained in the event of a denial-of-service attack 99 percent

of the time.

This makes a fine security goal, but it is too general to be of much use as a requirement. Specifi-

cally, it is not verifiable—a successful denial-of-service attack would have to be defined and the

associated figure of 99 percent availability measured in order to verify this requirement. A better

requirement would state what the system must do to achieve the desired level of availability:

The system shall recover from attacks, failures, and accidents in less than one minute.

This requirement speaks to the same quality subfactor but is more specific to system behavior. It

places a clear, testable measurement to be achieved by one of the layers of security (recovery)

without constraining any particular design decision. This requirement can be reused with practi-

cally any system.

CMU/SEI-2010-TN-027 | 14

8 Integration into SQUARE

The motivation for integrating reusability into SQUARE is twofold. First, it is easier to select and

adapt existing requirements from a repository than to write new ones. Reusing requirements will

reduce the total effort needed to perform SQUARE, especially as a practicing organization devel-

ops or acquires a large body of knowledge from which to draw requirements, goals, and risks.

Second, by focusing their attention on reusing and refining the same well-defined requirements

multiple times, organizations can produce higher-quality requirements and create better specifica-

tions overall. Rather than always writing and reviewing new requirements, engineers can choose

from predefined requirements whose quality has already been verified.

With these goals in mind, a new variant of SQUARE, R-SQUARE, is defined using SQUARE-

Lite as a base model and incorporating reuse in several places (see Table 1). This new version

includes six steps, five of which provide some opportunity for reuse of artifacts and concepts.

CMU/SEI-2010-TN-027 | 15

Table 1: R-SQUARE Steps

 Step Input Techniques Opportunities

for Reuse

Participants Output

1 Agree on definitions Security glossary and/or defini-

tions from external standards

Work session Definitions Stakeholders,

requirements

engineers

Agreed-on defini-

tions

2 Identify assets and

security goals

Definitions, predefined and

candidate goals, security quali-

ty model, business drivers,

policies and procedures,

examples

Facilitated work session,

surveys, interviews

Security- and

business-

oriented goals

Stakeholders,

requirements

engineers

Assets and goals

3 Perform risk

assessment

Misuse cases, scenarios,

threat models, security goals

 Threat models,

attack trees,

documented risks

Requirements

engineer, risk

expert, stake-

holders

Risk assessment

results

4 Choose security

requirements

Definitions, goals, risks,

pre-defined requirements,

templates

Work session, focus

groups, checklists, lists of

reusable requirements

Requirements Stakeholders

facilitated by

requirements

engineers

Initial cut at securi-

ty requirements

5 Prioritize require-

ments

Requirements, risks Prioritization methods such

as Analytical Hierarchy

Process (AHP), triage, Win-

Win

 Stakeholders

facilitated by

requirements

engineers

Prioritized

requirements

6 Review require-

ments

Prioritized requirements,

review techniques

Inspection method such as

Fagan, peer reviews

New require-

ments

Review team Initial selected

requirements

CMU/SEI-2010-TN-027 | 16

8.1 Step 1: Agree on Definitions

SQUARE begins with all participants agreeing on definitions to be used in the subsequent steps.

Requirements engineers, customers, security specialists, and other stakeholders may use the same

terms but mean different things or refer to the same concepts using different words. To communi-

cate clearly and effectively, everyone involved in requirements engineering must agree to a set of

definitions to be used from this point onward.

Agreeing on definitions is especially important when considering reusable requirements because

the same wording will be used in different contexts. Any definitions used in reusable requirements

should hold beyond the scope of the current project. An organization that implements reusable

requirements will need to create and maintain a glossary of relevant terms and definitions so that

the meanings of requirements do not become ambiguous over time as they are reused. After a

glossary is established, it will be important to minimize changes to existing definitions so that

reused goals and requirements retain their intended meaning. Some or all stakeholders may need

to adapt their terminology for the purpose of conforming to the wording of existing defined terms.

This step obviously requires some additional investment if the organization does not have a re-

source glossary, but the extra time spent on its creation will pay off in future projects. Instead of

debating and writing new definitions each time the process is followed, the team can simply

choose the applicable predefined terms from the organization’s glossary. Of course, a team that

has performed SQUARE in the past is likely to refer back to previously agreed-on definitions

whenever possible, but the emphasis here is to intentionally define terms independently of the

current project.

Alternatively, an organization can borrow many or all of its security definitions from established

sources such as the SWEBOK or IEEE. Whether using internal or external sources, certain

projects may involve specific terminology that is not a part of the glossary, in which case the team

will have to establish those definitions on its own. The important thing is that terms are used con-

sistently across projects and teams so that reused statements retain their meaning and avoid ambi-

guity.

8.2 Step 2: Identify Assets and Goals

Step 2, Identify Assets and Goals, calls for the identification of valuable assets and security goals

for the project. This step ensures that security requirements will reflect the organization’s policies

and priorities for protecting its assets. Security goals should be aligned to the project’s essential

quality subfactors and any business-oriented objectives for meeting them.

Each stakeholder may have a slightly different focus, which should be reflected in the goals. For

example, a stakeholder in human resources may be more interested in preserving the privacy of

user information, while a financial executive will be concerned with the integrity of accounting

data. Both have valid security implications. Each stakeholder’s concerns, along with the overall

business context, should be considered when selecting goals [Mead 2005].

An organization may have one or more top-level security goals for all of its projects. It may also

have several applicable subgoals depending on the level of assurance desired and the types of

CMU/SEI-2010-TN-027 | 17

threats present. Organizations that develop product lines of secure software will likely have over-

arching business and security-related goals that are intended to apply to all affected projects.

After goals are identified, they must be prioritized, either by consensus or executive decision.

8.3 Step 3: Risk Assessment

In Step 3, Risk Assessment, the team analyzes relevant security risks in light of business and se-

curity goals. In this step the team will identify risks and determine how they affect each of the

goals and associated security quality subfactors.

The risk assessment should employ an expert in risk assessment methods, who may recommend a

particular method based on the organization’s needs. Goals identified in Step 2 and their asso-

ciated security quality subfactors provide the input to risk assessment. Depending on the method

chosen, the team may make use of existing risk-related artifacts such as misuse cases or historical

security data.

Threat models, which are abstract and highly reusable, can be used to identify relevant threats and

map them to the project’s security quality subfactors. Previously defined risks may also apply,

though the team will need to reassess their impact for the new project.

8.4 Step 4: Choose Requirements

Step 4, Choose Requirements, is the core of SQUARE. This is when the team actually decides on

the requirements that will go into the system specification. Requirements are chosen by stake-

holders based on the previously identified goals and the specific risks that pose a threat to the re-

lated quality subfactors. Stakeholders identify suitable requirements from the repository or write

new ones as needed. A more rigorous elicitation process will be needed when writing new re-

quirements to ensure their quality. This obviously will require more investment in the first several

projects (unless the organization opts to borrow predefined requirements, if a suitable compilation

exists), but over time the organization can begin to rely more on the accumulated work of past

projects.

Any number of techniques may be suitable for choosing requirements. SQUARE has been per-

formed with several defined candidate processes [Chung 2006]. For selecting predefined require-

ments, an informal method such as focus groups or stakeholder interviews may be appropriate.

Some requirements may have been or need to be sanitized by removing or changing specific

wording to make them more applicable to the project’s context.

The team should take care to include requirements that address each of the identified quality sub-

factors pertaining to the security goals. If stakeholders have difficulty choosing appropriate re-

quirements, it may help to work backward by examining applicable security mechanisms and trac-

ing them back to related requirements. This tactic allows stakeholders to think in terms of

common security concepts without unduly constraining system designers with overly specific re-

quirements.

CMU/SEI-2010-TN-027 | 18

8.5 Step 5: Prioritize Requirements

Step 5, Prioritize Requirements, is not affected by reuse. The team prioritizes requirements so that

management can evaluate tradeoffs and know which requirements to focus on if resources become

scarce. The same security requirements may have different relative priorities in different settings,

depending on the applicable threats and the level of assurance required, so it is meaningless to

assign an inherent priority outside of some context. Prioritization should be done independently

for each project, regardless of whether the requirements are new or reused.

Prioritization requires the involvement of both the requirements engineering team and stakehold-

ers. Stakeholders consider the business consequences of having or not having certain security

measures in place, while engineers may focus on the technical risks and costs involved with im-

plementing them. The requirements engineering team should perform cost-benefit analysis, if

possible, to aid stakeholders in their decision making.

SQUARE does not prescribe any one way of prioritizing requirements, although the Analytical

Hierarchy Process (AHP) has been found to be effective. AHP is a pair-wise comparison method

that uses multiple factors for estimating value. In the case of requirements, this is often cost ver-

sus benefit. Various other options are explored in SQUARE case studies, including triage, Win-

Win, and mathematical models. Prioritization may be done by either numerical ranking or classi-

fication (essential, conditional, optional, etc.).

8.6 Step 6: Review Requirements

Step 6, Review Requirements, is the final step to conclude security requirements engineering. At

this point a full set of requirements has been defined and prioritized along with associated goals

and risks. Review of reused requirements should take less effort than the inspection step mandated

by the full version of SQUARE because at least some requirements will have already been in-

spected when they were created. The focus of this step is rather to demonstrate that the correct set

of requirements has been selected. Of course, any new requirements should be given full atten-

tion, especially if they are candidates for reuse.

At a minimum, any new requirements should be evaluated in terms of the identified characteris-

tics of good requirements. If requirements have been previously used and published for reuse, it

can be reasonably assumed that they are of high quality and do not need to be individually in-

spected in detail. However, a requirements specification is more than the sum of its parts. Three

characteristics in particular—completeness, consistency, and necessity—must be assessed collec-

tively. A review of the entire set of requirements will reveal whether these characteristics have

been met. When reviewing requirements, the team should refer back to the results of previous

steps to check that everything has been accounted for. The chosen requirements should fully ad-

dress business and security goals, risks, and threats.

After passing a review, the security requirements are ready to be incorporated into a requirements

specification or other permanent artifact. Any new requirements that meet reusability criteria can

be submitted to the repository. At this point, the SQUARE process is complete, and the organiza-

tion will be well on its way to developing more secure systems using reusable security require-

ments and goals.

CMU/SEI-2010-TN-027 | 19

9 Recommendations for Future Work

This report has presented a unified, structured model for thinking about software security from

quality attributes down to control mechanisms. This model was the basis for defining a new va-

riant of the SQUARE methodology with reuse of artifacts. The security model and its mapping

among concepts is a start, but more work is needed to map out the concepts in each layer and the

relationships between layers.

Both the conceptual model and the new process draw heavily from previous research and case

studies, but neither has yet been applied to a real project. The next step is to field-test R-SQUARE

in a case study and compare the results with those of SQUARE and SQUARE-Lite. From there,

research into the actual process of creating and managing reusable artifacts can improve on the

methodology.

CMU/SEI-2010-TN-027 | 20

10 Conclusions

The ideas presented in this report demonstrate that reusability is a viable extension to the

SQUARE process. A new variant of SQUARE has been defined that specifically calls for consid-

eration of reuse in several of its steps. The incorporation of reuse into SQUARE has the potential

to reduce the cost of performing the process repeatedly. A conceptual model that defines related

ideas at multiple levels of abstraction aids the reuse of goals, requirements, and threats. Such a

model, backed by standardized definitions, is needed to support a common understanding of secu-

rity concepts in the context of reusable artifacts.

CMU/SEI-2010-TN-027 | 21

Appendix A: Concepts from the Security Model

Table 2 and Table 3 present a survey of known relationships among security subfactors and meas-

ures identified in this report as well as common mechanisms. This information is intended to help

relate requirements to goals and design decisions to requirements.

Table 2: Security Quality Subfactors and Associated Measures

Security Quality Subfactor Associated Security Measures

Confidentiality Access control

Physical protection

Security policy

Integrity Access control

Nonrepudiation

Physical protection

Attack detection

Availability System recovery

Physical protection

Attack detection

Accountability Nonrepudiation

Attack detection

Conformance Access control

Physical protection

Attack detection

CMU/SEI-2010-TN-027 | 22

Table 3: Security Measures and Associated Mechanisms

Security Measure Associated Security Mechanisms

Access control Biometrics

Certificates

Multilevel security

Passwords and keys

Reference monitor

Registration

Time limits

User permissions

VPN

Security policy Administrative privileges

Malware detection

Multilevel security

Reference monitor

Secure channels

Security session

Single access point

Time limits

User permissions

VPN

Nonrepudiation Administrative privileges

Logging and auditing

Reference monitor

Physical protection Access cards

Alarms

Equipment tagging

Locks

Offsite storage

Secured rooms

Security personnel

System recovery Backup and restoration

Configuration management

Connection service agreement

Disaster recovery

Off-site storage

Redundancy

Attack detection Administrative privileges

Alarms

Incident response

Intrusion detection systems

Logging and auditing

Malware detection

Reference monitor

Boundary protection DMZ

Firewalls

Proxies

Single access point

VPN

CMU/SEI-2010-TN-027 | 23

Appendix B: Examples of Reusable Goals and Requirements

Reusable Goals

Table 4 presents example security goals from SQUARE case studies [Chung 2006] that are poten-

tially reusable.

Table 4: Potentially Reusable Security Goals

Goal Quality Subfactors

Management shall exercise effective control over the

system’s configuration and usage.

Conformance

The confidentiality, accuracy, and integrity of the system’s

data shall be maintained.

Confidentiality

Integrity

The system shall be available for use when needed. Availability

Reusable Requirements

Table 5 presents example requirements from SQUARE case studies [Chung 2006] that are poten-

tially reusable.

CMU/SEI-2010-TN-027 | 24

Table 5: Potentially Reusable Requirements

Requirement Security Measures Related Quality

Subfactors

The system is required to have authentication measures in

place at all gateways/entrance points.

Access control (authentica-

tion)

Boundary protection

Integrity

Confidentiality

Accountability

The system is required to have a role-based access control

mechanism that governs which system elements (data,

functionality, etc.) users can view, modify, and/or interact

with.

It is required that a continuity of operations plan (COOP) be in

place to ensure system availability.

Security policy

System recovery

Availability

It is required that designated security personnel be able to

audit the status and usage of system resources (including

security devices).

Nonrepudiation Accountability

Designated personnel are required to audit the status of

system resources and their usage on a regular basis.

Security policy Accountability

It is required that the system’s network communications be

protected from unauthorized information gathering and/or

eavesdropping by encryption and other reasonable

techniques.

 Confidentiality

It is a requirement that both process-centric and logical

means be in place to prevent the installation of any software

or device without prior authorization.

Physical protection

Boundary protection

Security policy

Conformance

It is required that physical devices be protected against

destruction, damage, theft, tampering, or surreptitious

replacement (including but not limited to damage due to

vandalism, sabotage, terrorism, or natural disaster).

Physical protection Availability

The website shall ensure the integrity of content that is

provided to the users by using authentication, authorization,

and access control.

Access control (authentica-

tion, authorization)

Integrity

The website shall enable auditing features that log all content

modifications, work-flow state transitions, access failures, and

authentication attempts.

Nonrepudiation Accountability

The website shall ensure that only authenticated users can

access its protected content.

Access control (authentica-

tion)

Confidentiality

Integrity

The website shall protect the authenticated users’ privacy by

securing the communication channel.

Access control (authentica-

tion)

Confidentiality

(privacy)

CMU/SEI-2010-TN-027 | 25

Glossary of Terms

access control

Security measure; access to a resource that is restricted to those who are authorized.

accountability

Security subfactor; the ability to trace actions affecting a secure resource to the responsible actor

or condition.

attack detection

Security measure; the active or passive monitoring of behaviors and conditions for evidence of an

attack.

authentication

Security measure; verification by the system of a claim of identity or origin against some source

known to and trusted by the system. Authentic data is confirmed to have come from a valid

source.

authorization

Security measure; a part of access control in which the system determines whether the actor is

permitted to access the requested data or service.

availability

Security subfactor; the presence and accessibility of data and services when they are requested. If

interrupted, a system recovers and continues secure operation as quickly as possible without ad-

verse side effects.

boundary protection

Security measure; services protecting the components of a system that are exposed to the outside

world. Boundary protection limits the means by which an external threat can penetrate the system.

confidentiality

Security subfactor; the protection of sensitive information against unauthorized disclosure. This

includes privacy, the protection of personal information.

conformance

Security subfactor; the operation of software as intended and without variation. It reliably per-

forms the necessary tasks, no more and no less. The system does not contain vulnerabilities that

can be exploited to cause unwanted behavior.

detection

Layer of defense; the monitoring of system activities for incidents in progress. Upon detecting an

incident, the system will issue a notification or automatically initiate a response.

CMU/SEI-2010-TN-027 | 26

deterrence

Layer of defense; the protection of assets from malicious attack by making the attack as difficult

as possible. The means by which an attacker can gain access to and compromise the asset are li-

mited. Also known as prevention.

identification

Security measure; a part of access control in which the system identifies an actor before interact-

ing with it.

integrity

Security subfactor; the protection of data against unauthorized modification and fabrication.

nonrepudiation

Security measure; the monitoring of events and recording of relevant information to disprove an

actor’s false denial of involvement in an incident.

physical protection

Security measure; protection from physical threats such as theft, tampering, or destruction of

equipment, including defenses against accidents and disasters.

privacy

The protection of personal information; an aspect of confidentiality.

recovery

Layered defense; actions taken to correct any damage done and return to secure operation after a

harmful incident.

response

Layered defense; actions taken to minimize an incident’s impact when a potential attack or acci-

dent is detected.

security measure

A generic, implementation-independent form of security control that dictates what the system

should do to provide a secure environment. It describes security in a behavioral sense, not as a

design decision.

security policy

Security measure; a set of rules or practices that a system must enforce. It specifies how a system

should handle its assets in a secure manner.

security quality subfactor

A specific systemic property under the security quality attribute that contributes to a state of secu-

rity.

survivability

A system’s ability to withstand attacks or accidents and continue to operate in a secure manner; an

aspect of availability. Also known as resilience.

CMU/SEI-2010-TN-027 | 27

system recovery

Security measure; services that minimize the effects of a security failure by restoring the system

to a secure state during or after an attack or accident.

CMU/SEI-2010-TN-027 | 28

CMU/SEI-2010-TN-027 | 29

References

URLs are valid as of the publication date of this document.

[Allen 2008]

Allen, J.; Barnum, S.; Ellison, R.; McGraw, G.; & Mead, N. Software Security Engineering: A

Guide for Project Managers. Addison-Wesley, 2008.

[Blanco 2008]

Blanco, C.; Lasheras, J.; Valencia-Garcia, R.; Fernandez-Medina, E.; Toval, A.; & Piattini, M. ―A

Systematic Review and Comparison of Security Ontologies,‖ 813-820. 2008 Third International

Conference on Availability, Reliability and Security (ARES ’08). Barcelona, Spain, March 2008.

IEEE Computer Society, 2008.

[Chung 2006]

Chung, Lydia; Hung, Frank; Hough, Eric; & Ojoko-Adams, Don. Security Quality Requirements

Engineering (SQUARE): Case Study Phase III (CMU/SEI-2006-SR-003). Software Engineering

Institute, Carnegie Mellon University, May 2006.

http://www.sei.cmu.edu/library/abstracts/reports/06sr003.cfm

[Du 2009]

Du, Jing; Yang, Ye; & Wang, Qing. ―An Analysis for Understanding Software Security Require-

ment Methodologies,‖ 141-149. Third IEEE International Conference on Secure Software Inte-

gration and Reliability Improvement. Shanghai, China, July 2009. IEEE Computer Society, 2009.

[Fabian 2010]

Fabian, Benjamin; Guerses, Seda; & Heisel, Maritt. ―A Comparison of Security Requirements

Engineering Methods.‖ Requirements Engineering 15, 1 (March 2010): 7-40.

[Firesmith 2003a]

Firesmith, Donald G. ―Analyzing and Specifying Reusable Security Requirements‖ (slides), 7-11.

Requirements Engineering 2003 Requirements for High Assurance Systems (RHAS) Workshop

Proceedings. Monterey, CA, September 2003. IEEE Computer Society, 2003.

[Firesmith 2003b]

Firesmith, Donald G. ―Specifying Good Requirements.‖ Journal of Object Technology (JOT) 2, 4

(July-August 2003): 77-87.

[Firesmith 2003c]

Firesmith, Donald G. Common Concepts Underlying Safety, Security, and Survivability Engineer-

ing (CMU/SEI-2003-TN-033). Software Engineering Institute, Carnegie Mellon University, De-

cember 2003. http://www.sei.cmu.edu/library/abstracts/reports/03tn033.cfm

http://www.sei.cmu.edu/library/abstracts/reports/06sr003.cfm
http://www.sei.cmu.edu/library/abstracts/reports/03tn033.cfm

CMU/SEI-2010-TN-027 | 30

[Firesmith 2005]

Firesmith, Donald G. A Taxonomy of Security-Related Requirements. Software Engineering Insti-

tute, Carnegie Mellon University, 2005.

http://www.sei.cmu.edu/library/abstracts/whitepapers/taxonomysep2005.cfm

[Gayash 2008]

Gayash, Ashwin; Viswanathan, Venkatesh; & Padmanabhan, Deepa. SQUARE-Lite: Case Study

on VADSoft Project (CMU/SEI-2008-SR-017). Software Engineering Institute, Carnegie Mellon

University, June 2008. http://www.sei.cmu.edu/library/abstracts/reports/08sr017.cfm

[Goertzel 2009]

Goertzel, Karen Mercedes. Introduction to Software Security.

https://buildsecurityin.us-cert.gov/bsi/547-BSI.html (2009).

[He 2009]

He, Q. I. & Antón, A. I. ―Requirements-Based Access Control and Policy Specification (Re-

CAPS).‖ Information and Software Technology 51, 6 (June 2009): 993-1009.

[Jensen 2009]

Jensen, J.; Tondel, I. A.; Jaatun, M. G.; Meland, P. H.; & Andresen, H. ―Reusable Security Re-

quirements for Healthcare Applications,‖ 380-385. International Conference on Availability, Re-

liability and Security (ARES ’09). Fukuoka, Japan, March 2009. IEEE Computer Society, 2009.

[Mead 2005]

Mead, Nancy R.; Hough, Eric; & Stehney, Theodore R., II. Security Requirements Engineering

(SQUARE) Methodology (CMU/SEI-2005-TR-009). Software Engineering Institute, Carnegie

Mellon University, 2005. http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm

[Mead 2009]

Mead, Nancy R. SQUARE Overview. http://www.sei.cmu.edu/library/assets/20090514webinar.pdf

(2009).

[Mellado 2008]

Mellado, D.; Fernandez-Medina, E.; & Piattini, M. ―Towards Security Requirements Management

for Software Product Lines: A Security Domain Requirements Engineering Process.‖ Computer

Standards & Interfaces 30, 6 (August 2008): 361-371.

[Microsoft 2005]

Microsoft. ―The STRIDE Threat Model.‖ MSDN Library.

http://msdn.microsoft.com/en-us/library/ee823878(CS.20).aspx (2005).

[Miyazaki 2008]

Miyazaki, Seiya; Mead, Nancy; & Zhan, Justin. ―Computer-Aided Privacy Requirements Elicita-

tion Technique,‖ 367-372. 2008 IEEE Asia-Pacific Services Computing Conference. Yilan, Tai-

wan, December 2008. IEEE Computer Society, 2008.

http://www.sei.cmu.edu/library/abstracts/whitepapers/taxonomysep2005.cfm
https://buildsecurityin.us-cert.gov/bsi/547-BSI.html
http://www.sei.cmu.edu/library/assets/20090514webinar.pdf
http://msdn.microsoft.com/en-us/library/ee823878(CS.20).aspx
http://www.sei.cmu.edu/library/abstracts/reports/08sr017.cfm
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm

CMU/SEI-2010-TN-027 | 31

[Pfleeger 2007]

Pfleeger, Charles P. & Pfleeger, Shari Lawrence. Security in Computing, 4th ed. Prentice Hall,

2007.

[Schumacher 2006]

Schumacher, Markus; Fernandez-Buglioni, Eduardo; Hybertson, Duane; Buschmann, Frank; &

Sommerlad, Peter. Security Patterns: Integrating Security and Systems Engineering. John Wiley

& Sons, 2006.

[Toval 2002]

Toval, Ambrosio; Olmos, Alfonso; & Piattini, Mario. ―Legal Requirements Reuse: A Critical

Success Factor for Requirements Quality and Personal Data Protection,‖ 95-103. Proceedings of

the IEEE Joint International Conference on Requirements Engineering (RE’02). Essen, Germany,

September 2002. IEEE Computer Society, 2002.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Security Requirements Reusability and the SQUARE Methodology

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Travis Christian, Nancy Mead (faculty advisor)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-027

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Security is often neglected during requirements elicitation, which leads to tacked-on designs, vulnerabilities, and increased costs. When

security requirements are defined, they are often either too vague to be of much use or overly specific in constraining designers to use

particular mechanisms. The CERT® Program, part of Carnegie Mellon University’s Software Engineering Institute, has developed the

Security Quality Requirements Engineering (SQUARE) methodology to correct this shortcoming by integrating security analysis into the

requirements engineering process.

SQUARE can be improved upon by considering the inclusion of generalized, reusable security requirements to produce better-quality

specifications at a lower cost. Because many software-intensive systems face similar security threats and address those threats in fairly

standardized ways, there is potential for reuse of security goals and requirements if they are properly specified. Full integration of reuse

into SQUARE requires a common understanding of security concepts and a body of well-written and generalized requirements. This

study explores common security criteria as a hierarchy of concepts and relates those criteria to examples of reusable security goals and

requirements for inclusion in a new variant of SQUARE focusing on reusability, R-SQUARE.

14. SUBJECT TERMS

security requirements engineering, reuse, software engineering

15. NUMBER OF PAGES

44

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Security Requirements Reusability and the SQUARE Methodology
	Table of Contents
	List of Tables
	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 Security Requirements in Current Practice
	3 The SQUARE Methodology
	4 Advantages of Reuse
	5 Related Work
	6 Defining a Model of Security Concepts
	7 Writing Reusable Requirements
	8 Integration into SQUARE
	9 Recommendations for Future Work
	10 Conclusions
	Appendix A: Concepts from the Security Model
	Appendix B: Examples of Reusable Goals and Requirements
	Glossary of Terms
	References

