

Emerging Technologies for Software-

Reliant Systems of Systems

Grace A. Lewis

September 2010

TECHNICAL NOTE

CMU/SEI-2010-TN-019

Research, Technology, and System Solutions (RTSS) Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Emerging Technologies for Software-Reliant Systems of Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents general computation trends and a particular set of emerging technologies to support
the trends for software-reliant systems of systems (SoSs). Software-reliant SoSs now tend to be highly
distributed software systems, formed from constituent software systems that are operated and managed by
different organizations. These SoSs are moving from a directed management structure (in which
constituent systems are integrated and built for a specific purpose) to a virtual one (in which there is no
central authority or central-ly agreed purpose). This shift is introducing a need for new technologies to
deal with the lack of central authority or centrally agreed pur-pose.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for

internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions

and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

i | CMU/SEI-2010-TN-019

Table of Contents

Abstract v

1 Introduction 1

2 General Computing Trends 2
2.1 Loose Coupling 2
2.2 Global Distribution of Hardware, Software, and People 2
2.3 Horizontal Integration and Convergence 2
2.4 Virtualization 3
2.5 Commoditization of Technology 3
2.6 End-User Empowerment 4
2.7 Large-Scale Data Mining 4
2.8 Low Energy Consumption 4
2.9 Multi-Core and Parallelization 4

3 Emerging Technologies 5
3.1 Cloud Computing 5
3.2 Complex Event Processing (CEP) 7
3.3 Data Intelligence 7
3.4 End-User Programming (EUP) 8
3.5 Green Computing 9
3.6 Mobile Computing 10
3.7 Opportunistic Networks 11
3.8 Self-* Computing 12
3.9 Social Computing 13

4 Conclusions 15

References 17

ii | CMU/SEI-2010-TN-019

iii | CMU/SEI-2010-TN-019

List of Tables

Table 1: Mapping of Emerging Technologies to Computing Trends 15

iv | CMU/SEI-2010-TN-019

v | CMU/SEI-2010-TN-019

Abstract

This report presents general computation trends and a particular set of emerging technologies to

support the trends for software-reliant systems of systems (SoSs). Software-reliant SoSs now tend

to be highly distributed software systems, formed from constituent software systems that are op-

erated and managed by different organizations. These SoSs are moving from a directed manage-

ment structure (in which constituent systems are integrated and built for a specific purpose) to a

virtual one (in which there is no central authority or centrally agreed purpose). This shift is intro-

ducing a need for new technologies to deal with the lack of central authority or centrally agreed

purpose.

vi | CMU/SEI-2010-TN-019

1 | CMU/SEI-2010-TN-019

1 Introduction

A system of systems (SoS) is “a set or arrangement of systems that results when independent and

useful systems are integrated into a larger system that delivers unique capabilities” [OUSDATL

2008]. Maier underscores that an SoS is different from a very large and complex but monolithic

system, defining these five characteristics of an SoS [Maier 1998]:

 operational independence of the constituent systems

 managerial independence of constituent systems

 evolutionary development

 emergent behavior

 geographic distribution

Maier also defines four types of SoS based on their management structure [Maier 1998]:

 Directed: Constituent systems are integrated and built to fulfill specific purposes.

 Acknowledged: The SoS has recognized objectives, a designated manager, and resources.

 Collaborative: Constituent systems voluntarily agree to fulfill central purposes.

 Virtual: No central authority exists and there is no centrally agreed purpose for the SoS.

A software-reliant SoS is an SoS that relies heavily on software to accomplish its goals. In accor-

dance with Maier’s characteristics, software-reliant SoSs tend to be highly distributed software

systems formed from constituent software systems that are operated and managed by separate

organizations.

As software-reliant SoSs move from a directed management structure and toward a virtual one,

new technologies are necessary to deal with the lack of central authority or centrally agreed pur-

pose. Two examples illustrate the challenges that today’s technologies fall short of addressing:

 SoS developers need to seamlessly and rapidly integrate constituent SoSs without central

direction.

 Constituent systems need to be able to seamlessly and rapidly join (and leave) an SoS.

Even though technologies such as service orientation, componentization, data warehousing, and

user empowerment via tools such as mashups are steps in the right direction, they usually require

upfront agreements between SoS integrators and constituent systems that make the process less

rapid and seamless than desired, or neither rapid nor seamless at all.

The purpose of this report is to present an informal survey of technologies that are, or are likely to

become, important for software-reliant SoSs in response to current computing trends. Section 2 of

this report includes some general computing trends over the past few years. Section 3 includes a

set of emerging technologies for meeting these trends. Section 4 presents some conclusions and

final thoughts.

2 | CMU/SEI-2010-TN-019

2 General Computing Trends

Against a backdrop of increased globalization, as well as a growing need for business agility and

environmental awareness, several general computing trends are shaping the way that organiza-

tions are building SoSs to support their business and operational needs. These trends are discussed

in the following sections in no particular order; for each trend, the implication for software-reliant

SoS is given.

2.1 Loose Coupling

In software systems, coupling is the degree to which a system element relies on other system ele-

ments to perform its tasks. Loose coupling is a low degree of dependence between system ele-

ments that potentially leads to high modifiability, because changes are localized; and high intero-

perability, because elements are not constrained by dependencies. An abundance of technologies

promote two types of loose coupling:

1. between capabilities and the consumers of those capabilities to ease integration

2. between system elements that contain capabilities and the interfaces exposed to consumers

of those capabilities such that implementation details are hidden from consumers

From a software-reliant SoS perspective, this trend requires standardization of capability interfac-

es as well as ways to describe those capabilities.

2.2 Global Distribution of Hardware, Software, and People

Globalization is an essential part of software systems in many ways, including the following:

 Software systems are often built by multinational teams.

 Many organizations use offshoring as a way to reduce costs of software development.

 Large web-based systems often use distributed caching services for better response times.

From a software-reliant SoS perspective, this trend requires greater coordination of distributed

hardware, software, and people—as well as better technologies for fault detection and recovery in

distributed systems.

2.3 Horizontal Integration and Convergence

The computing industry’s approach to integrating applications and platforms is moving from ver-

tical to horizontal integration. In a vertical integration approach, a single manufacturer controls

platform, middleware, and applications, bundling them into solutions for delivery to customers.

Conversely, in horizontal integration, applications are expected to run on any middleware and

middleware is expected to run on any platform. In addition, applications are expected to exchange

data seamlessly. An example of horizontal integration is seen in the way that a SmartPhone user

can provide address data that can be used to invoke a map application and the map application can

then invoke a “restaurant finder” application.

This trend requires exposure of APIs at the middleware and platform levels in ways that permit

software-reliant SoS developers to enable horizontal integration and convergence.

3 | CMU/SEI-2010-TN-019

2.4 Virtualization

Virtualization in general is the abstraction of computing resources. Common forms of virtualiza-

tion include

 Network virtualization

Traditionally, network virtualization has referred to the division of available bandwidth into

channels that can be assigned to a particular resource in real time. More recently, the term is

being used to refer to the deployment and management of logical services instead of physical

network resources (e.g., the logical separation of resources according to user roles or privi-

leges).

 Storage virtualization

This type of virtualization involves the combining of physical storage devices into what ap-

pears to be a single storage device (e.g., a SAN or storage area network).

 Server virtualization

This type involves the hiding of server resources (number and identity of individual physical

servers, processors, and operating systems) from server users (e.g., VMs or virtual ma-

chines).

Server and storage virtualization are mostly adopted as an IT cost-savings strategy, so that re-

sources can be better utilized. For example, an organization can have a small set of servers and

assign virtual machines to projects, instead of buying a server for each project. Network virtuali-

zation is used mostly for easier network management but also IT savings. For example, multiple

groups can be on the same physical network infrastructure but logically separated, instead of hav-

ing separate physical networks for separate groups.

From a software-reliant SoS perspective, this trend requires the use of efficient virtualization

strategies as well as improved resource hiding and interfaces to virtualized resources.

2.5 Commoditization of Technology

The price of technology is decreasing to a point that technology is ubiquitous. Most people have

access to computers, many organizations offer online services, and advances in handheld devices

are making it possible for people to have access to these services at any time.

In addition, because of commoditization,
1
 it is becoming difficult for technology vendors to diffe-

rentiate their products or to hold large market shares for a long period of time. To sustain market

share, technology vendors have to add value through customizing their products or create new

products to continually differentiate themselves from their competitors.

Technology commoditization requires software-reliant SoSs to be built in a way that minimizes

the impact of changing technologies while making them accessible from a wide variety of devic-

es.

1
 The definition of commodity being used to explain this trend is “a good or service whose wide availability typical-

ly leads to smaller profit margins and diminishes the importance of factors (as brand name) other than price”
from the Merriam-Webster dictionary.

4 | CMU/SEI-2010-TN-019

2.6 End-User Empowerment

End users want access to large amounts of information in real time. Because of technology com-

moditization, and because technology is getting easier to use, end users are also tending to be

more competent with technology. End users want technologies that will help them get access to

this information and process it without having to wait for developers to create the proper pro-

grams and reports.

From a software-reliant SoS perspective, this trend requires the awareness of what end users can

and want to do now, even if they have not been trained as software developers.

2.7 Large-Scale Data Mining

Data is everywhere. There is more and more data to analyze, process, and transform into useful

information in real time. Data warehouses and business intelligence are common products and

technologies in industry. There is active research in this area for mining of business, scientific,

and practically any other type of large heterogeneous data sets.

From a software-reliant SoS perspective, this trend requires the use of more efficient algorithms

for pre-processing, processing, clustering, and analyzing large amounts of data, as well as the

proper storage and computation power to do this in near real time. It will also require the use of

data structures more efficient than relational databases, such as the ones being used in Facebook,

Google, Twitter, and others [Bain 2009].

2.8 Low Energy Consumption

Research in low energy consumption is being driven by environmental concerns as well as the

increased computing power in handheld devices. Related to low-energy computing, this trend is

being advanced through work such as energy-efficient processor and computer architectures and

energy-friendly computer and data centers [Intel 2010, DOE 2010].

From a software-reliant SoS perspective, this trend requires more research in energy efficiency,

extending into algorithms and software that demand fewer computational cycles or take better

advantage of existing computational resources.

2.9 Multi-Core and Parallelization

Computer processors were originally developed with only one core (the processing part of a CPU

or central processing unit). Single-core processors process one instruction at a time. Multi-core

processors have two or more independent cores in order to process multiple instructions in paral-

lel. Multi-core processing seeks to improve performance through this parallelism, instead of by

trying to make individual cores faster. However, the performance gained by use of multi-core

processors highly depends on software algorithms and implementation that can be parallelized.

Therefore, from a software-reliant SoS perspective, this trend requires better software algorithms

and implementation that can take advantage of having multiple cores.

5 | CMU/SEI-2010-TN-019

3 Emerging Technologies

This section provides a list of technologies that are emerging to meet the computing trends de-

scribed in Section 2. The list is simply in alphabetical order.

3.1 Cloud Computing

Cloud computing has sparked the interest of a wide range of organizations. In general, cloud

computing is a distributed computing paradigm that focuses on providing users with access to

scalable and virtualized hardware or software infrastructure over the internet.

Based on capabilities, there are three types of cloud computing implementations:

1. Infrastructure as a Service (IaaS)

IaaS is mainly computational infrastructure available over the internet, such as compute

cycles and storage, which can be utilized in the same way as internally owned resources.

IaaS providers enforce minimal restrictions on their consumers to allow them maximum con-

trol and configuration of the resources. These resources typically provide a variety of inter-

faces to facilitate interaction, and there are usually additional services provided such as a

query service for storage resources. Examples of commercial IaaS providers include Amazon

Elastic Compute Cloud (EC2), Amazon Simple Storage Solution (S3), IBM Computing on

Demand (CoD), and Microsoft Live Mesh [Amazon 2010a, Amazon 2010b, IBM 2010, and

Microsoft 2010a].

2. Platform as a Service (PaaS)

PaaS refers to application development platforms—hardware and software components—

that enable developers to leverage the resources of established organizations in order to

create and host applications of a larger scale than an individual or small organization would

be able to handle. Services include, but are not limited to, software installation and configu-

ration, resource scaling, platform maintenance and upgrading. Examples of commercial PaaS

providers include Akamai EdgePlatform, Force.com, Google App Engine, Microsoft Azure

Services Platform, and Yahoo! Open Strategy (Y!OS) [Akamai 2010, Salesforce 2010a,

Google 2010a, Microsoft 2010b, and Yahoo 2010].

3. Software as a Service (SaaS)

SaaS focuses on providing users with business-specific capabilities—hardware and software

applications. In general, SaaS is a model of software deployment in which a provider li-

censes an application to customers for use as a service on demand. Examples of commercial

SaaS providers include Google Apps, Salesforce.com, and Zoho [Google 2010b, Salesforce

2010b, and Zoho 2010].

6 | CMU/SEI-2010-TN-019

Based on access, there are two types of cloud computing implementations or deployment models:
2

1. Public clouds

In public clouds, resources are offered as a service, usually over an internet connection, for a

monthly or a pay-per-usage fee. Users can scale on-demand and do not need to purchase

hardware. Cloud providers manage the infrastructure and pool resources into capacity re-

quired by consumers.

2. Private clouds

Private clouds are typically deployed inside a firewall and managed by the user organization.

In this case, the user organization owns the software and hardware running in the cloud,

manages the cloud, and provides virtualized cloud resources. These resources are typically

not shared outside the organization, and full control is retained by the organization.

Adoption drivers for cloud computing include scalability, lower infrastructure costs, and risk re-

duction. Barriers include challenges for meeting system quality attributes such as security, intero-

perability, and reliability [Strowd 2010].

From a software-reliant SoS perspective, constituent systems may reside in the cloud. Therefore it

is necessary for SoS engineers to understand not only the economies of scale that are inherent in

cloud computing but also the implications of using resources from the cloud from a quality

attribute perspective.

Related Terms and Technologies

 Grid Computing

Grid computing is a form of distributed computing based on “a hardware and software infra-

structure that provides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities” [Foster 2008]. It is very similar to IaaS implementations of cloud

computing. The main difference is that cloud computing adds an on-demand provisioning

aspect and greater resource management capabilities.

 Utility Computing

Utility computing is a service provisioning model in which consumers use services on a pay-

per-use basis. Utility computing is also similar to IaaS implementations of cloud computing

[Strickland 2008]. However, the main difference is that utility computing is simply a “re-

sources for rent” model as opposed to the much broader approach defined by cloud compu-

ting for designing, building, deploying, and running applications in the cloud.

 On-Demand Computing

On-Demand Computing is simply another term used to refer the on-demand characteristics

of cloud computing and utility computing.

2
 The National Institute of Standards and Technology (NIST) defines two additional types of cloud deployment

models: (1) community clouds that are shared by multiple organizations and support specific needs and con-
cerns of a community and (2) hybrid clouds that are the combination of two or more public, private, and com-
munity clouds. However, both community and hybrid cloud are specialties of public and private clouds and are
therefore not included in the discussion. Additional information is available at
http://csrc.nist.gov/groups/SNS/cloud-computing/.

http://csrc.nist.gov/groups/SNS/cloud-computing/

7 | CMU/SEI-2010-TN-019

 Containerized Data Centers

Containerized data centers are portable data centers that contain all the power and cooling

equipment to run a data center in an energy-efficient manner. Some industry players in this

growing market are Google, HP, IBM, Rackable Systems, Sun, and Verari Systems [Miller

2009].

3.2 Complex Event Processing (CEP)

Event processing refers to computing that operates on events, involving their production, trans-

formation, detection, and consumption. Complex Event Processing (CEP) is a special form of

event processing which operates on complex events. A complex event is “an event that is an ab-

straction of other events called its members” [Luckham 2008]. These complex events are com-

posed or derived from a set of events related by time, causality, abstraction, or other relationships.

CEP systems find patterns in events to detect certain business opportunities or threats [Chandy

2007]. CEP solutions are commonly found in financial analysis, network security, manufacturing,

asset management, management dashboard, and power grid monitoring applications. The commo-

nality across these applications is that large numbers of events are monitored and analyzed to dis-

cern patterns that require real-time responses.

In a software-reliant SoS setting, CEP systems may monitor and operate on events produced from

multiple, heterogeneous constituent systems. SoS engineers in this setting will need to focus on

setting standards or mediation platforms for events that can produce results in real time.

Related Terms and Technologies

 Event-Driven Architecture (EDA)

EDA is an architectural style in which some components are event-driven and communicate

by means of events [Luckham 2008]. CEP is an event-processing style that can be used in an

EDA.

 Event Stream Processing (ESP)

ESP is performed on event streams—linearly ordered sequences of events [Luckham 2008].

CEP engines are common components of ESP solutions for building event-driven informa-

tion systems.

3.3 Data Intelligence

Data intelligence is the mining, aggregation, fusion, selection, search, and exploitation of huge

volumes of disparate data coming from diverse sources such as databases, events, sensor net-

works, human observation, human judgment, RSS (or really simple syndication) feeds, and GPS

(global positioning system) data. Just as the structuring of data in context is considered to yield

useful information, data intelligence can lead to a next step—knowledge.

Data intelligence relies on large-scale data mining in which significant amounts of heterogeneous,

raw data go through a pre-processing stage, a transformation stage, and finally a pattern recogni-

tion stage that produces knowledge.

Data-centric software-reliant SoSs may rely on data intelligence techniques to operate on data

from heterogeneous, constituent systems. SoS engineers, in addition to concentrating on data

8 | CMU/SEI-2010-TN-019

processing algorithm complexity, will have to focus on data transformation and mediation algo-

rithms that can be just as complex, especially when dealing with disparate data models.

Related Terms and Technologies

 Information Superiority

The term used by the U.S Department of Defense (DoD) for data intelligence is information

superiority: “The capability to collect, process, and disseminate an uninterrupted flow of in-

formation while exploiting or denying an adversary's ability to do the same” [DoD 2000].

 MapReduce

MapReduce is a software framework that was made popular by Google to support distributed

computing on large data sets on clusters of computers [Dean 2004]. An extremely simple ex-

planation of MapReduce is that it enables a big task (such as data processing) to be divided

into discrete tasks that can be done in parallel, by means of map and reduce functions that

are applied to the data. The key to MapReduce is that both map and reduce functions can be

distributed and run in parallel. The runtime infrastructure takes care of partitioning the input

data as well as scheduling, coordinating, and managing the program’s execution across a set

of machines. Even though not directly related to data intelligence, MapReduce is an emerg-

ing technology to process large amounts of data and solve complex data analytics problems

[MapReduce 2010].

3.4 End-User Programming (EUP)

End-user programming (EUP) describes the practice where end users write computer programs to

satisfy a specific need, even though they have not necessarily been taught how to write code in

conventional programming languages [EUSES 2010].

EUP has been around for a while, in the form of shell scripts and Excel spreadsheets that allow

users to quickly automate tasks. However, the advent of the internet, and the recent explosion in

the availability of web technologies, has made it much easier for end users to produce and cus-

tomize software. From the end-user perspective, the construction of these applications can be

done simply through a set of drag-and-drop operations that pull together capabilities from differ-

ent sources to build a desired functionality, as in mashups and dashboard tools.

EUP in a software-reliant SoS setting may involve end users pulling together data and capabilities

from different constituent systems. Not only does EUP capability have to exist at the SoS level,

but also constituent systems have to be able to expose data and capabilities to be used by EUP

tools at the SoS level. In addition, SoS engineers will have to balance the flexibility that EUP pro-

vides with protection against the problems that might arise from that flexibility. For example,

EUP accomplished through the internet has vastly increased the use of shared code and shared

data; the accompanying risk is that users are more exposed to code and data that might be of poor

quality or malicious.

Related Terms and Technologies

 Intentional Programming

Intentional programming is a concept that was introduced by Microsoft Research in the early

1990s [Czarnecki 2000]. The basic idea is that a software designer or programmer represents

the elements of a particular domain as “intents” that correspond to high-level programming

9 | CMU/SEI-2010-TN-019

constructs. The designer or programmer then sits with the domain experts (end users), and

together they define an application’s behavior using these intents in a WYSIWYG-like man-

ner.
3
 Finally, there are tools that take these composed intents and translate them into lower-

level programming languages.

 Edge Programming

Edge programming refers to the decentralized programming of complex systems. The main

concept is that programming happens at the edge of these complex systems: “in multiple,

separate, decentralized units that manage their own software development processes …

where the knowledge and other resources needed for effective decision-making are located”

[Sullivan 2007]. In this case, even though the programming is done by software profession-

als, edge programming addresses the decentralized characteristics of SoS.

 Gesture Programming

Gesture Programming is a form of programming by human demonstration. The main concept

is the capture of gestures that are translated via tools into code. A gesture could be a particu-

lar hand movement, the movement of a mouse, or the pressing an area of a touch screen

[Voyles 1999]. As gesture-based input devices evolve, the potential for gesture-based pro-

gramming increases [Johnson 2010].

3.5 Green Computing

Green computing refers to "the study and practice of designing, manufacturing, using, and dispos-

ing of computers, servers, and associated subsystems—such as monitors, printers, storage devices,

and networking and communications systems—efficiently and effectively with minimal or no

impact on the environment [Murugesan 2008].” Software-related green practices that lead to re-

duced power and cooling include

 Algorithmic efficiency, which translates into code that optimizes computational resource

usage such as memory consumption and execution speed

 Platform virtualization, which allows the replacement of multiple physical systems with mul-

tiple virtual systems running on a single machine

 Thin clients, which consume between 6 and 50 watts, compared to the 150 to 350 watts used

by typical desktops [Davis 2008]

In software-reliant SoS environments, it will become common for thinner, smarter clients to inte-

ract with virtualized, smarter systems.

 Systems and their infrastructures will monitor usage in order to regulate power consumption.

 Systems will need to serve fat and thin clients in addition to a growing community of mobile

users.

 Building management systems (BAS) and energy management systems (EMS) will become

common constituents of SoS.

3
 WYSIWYG is an acronym for What You See Is What You Get.

10 | CMU/SEI-2010-TN-019

Related Terms and Technologies

 Energy-Efficient Computing

This concept refers to the design, development, and use of computers and computer compo-

nents targeted at optimized energy consumption. This approach takes advantage of energy-

efficient hardware in system development and promotes day-to-day computer-related prac-

tices to reduce energy consumption (e.g., disabling screensavers and printing less).

 Smart Grid

The Smart Grid is a modernization project for the United States electricity grid. The main

idea is the overlay of the electricity distribution grid with an information and metering sys-

tem [DOE 2008]. An advantage of the Smart Grid approach is two-way digital communica-

tion between the grid and its consumers. Two examples of how two-way communication

promotes energy efficiency are

 The grid can better understand consumer demand.

 Smart consumer appliances can monitor energy prices in real time and make better deci-

sions.

Even though it is a specific initiative, the Smart Grid is representative of the direction that

technology related to energy consumption is headed.

3.6 Mobile Computing

Mobile computing is a generic term that describes the possibility to use computing technology

“on the go” through devices such as SmartPhones, PDAs (personal digital assistants), portable

computers, and wearable computers. The mobile market today has nearly four billion subscribers

[Johnson 2010]. Mobile users expect seamless access to information anytime, anywhere, and from

any device.

This trend has a large implication for software-reliant SoSs because capabilities will need to be

provided to mobile as well as “fixed” users. The concept of application stores or “app stores” will

become a mixed-approach to the delivery of capabilities where application logic will be down-

loaded and installed on mobile devices with reach-back capabilities into other constituent systems

such as enterprise systems. This mobility will also introduce new risks in SoS environments,

mostly related to security:

 Data leakage

Mobile devices such as SmartPhones can store a lot of data. If a mobile device is stolen or

misplaced, any data that has been downloaded onto this device is compromised.

 Network security

Wireless networks are typically less secure than wired networks. In addition, network securi-

ty is harder in mobile environments mostly because of wireless broadband internet access

and hotspots that enable mobile users to access enterprise systems via mobile devices.

 Device protection

The protection of mobile devices should be on the top of security agendas due to the threat

they pose to confidential information [Jhingan 2010]. Even if a device is not stolen or lost,

hackers can gain temporary access to unprotected devices and steal data or install malicious

software for capturing keystrokes or passwords.

11 | CMU/SEI-2010-TN-019

 Malware and viruses

Antivirus software is not built with mobile devices in mind [Kwang 2010]. Threats to these

devices so far are still low. However, as mobile device usage increases, the cost of unlimited

data plans will decrease and storage and computation capabilities will increase. It is certain

that threats will grow accordingly.

Security issues can be addressed with proper governance, but enforcement is difficult unless there

are specific guidelines, means to automate governance process and compliance, incentives, and

penalties for non-compliance.

Related Terms and Technologies

 Location-Based Services

Location-based services take advantage of capabilities of mobile devices and the mobile

network to determine a user’s location in order to deliver services that are tailored to the us-

er’s location. Location-based services are used in applications such as social applications for

finding close friends or restaurants, transportation applications to track vehicles or parcels,

and e-commerce applications to recommend stores or coupons in the area or emergency sys-

tems to inform of problems in the area.

 Physical Computing

Physical computing refers to systems that combine hardware and software such that systems

can sense and respond to the physical world. Common elements in physical computing are

sensors, microcontrollers, and electro-mechanical control devices. Other elements include

the support for computer vision, motion detection, and voice recognition capabilities

[O’Sullivan 2004]. Even though the concept has existed for many years, physical computing

opportunities as a complement to mobile computing have increased with the growing com-

plexity and creativity of input and output devices, as well as the availability of programming

platforms such as Arduino [Arduino 2010].

3.7 Opportunistic Networks

Opportunistic networks, or oppnets, are different from traditional networks because they are not

pre-designed in terms of number and location of nodes. Link performance in oppnets is often

highly variable [Huang 2008].

In general, oppnets start with the deployment of a small, pre-designed seed oppnet. The oppnet

then starts growing by detecting diverse systems present in its vicinity. Each detected system is

evaluated and those with the best “scores” evaluations are invited (or ordered) by an oppnet to

become its helpers. These helpers are then employed to execute tasks such as communications,

computing, storage, and sensing, in support of the oppnet’s goals [Lilien 2006]. Each one of these

steps poses significant technical challenges, in addition to privacy and security challenges for

constituent systems.

12 | CMU/SEI-2010-TN-019

Related Terms and Technologies

 Mobile Ad-Hoc Network (MANET)

A MANET is a self-configuring network in which nodes are mobile devices connected by

wireless links [Conti 2007]. Oppnets are considered specializations of MANETs. The main

differences between oppnets and MANETs are that in MANETs

 Communication is usually synchronous.

 An assumption is that every node wants to contribute (help).

 Vehicular Ad-Hoc Network (VANET)

VANETs are a type of MANET in which nodes are vehicles and roadside equipment.

 Mesh Network

A mesh network is a type of ad-hoc network in which it is possible to get from one node to

another via one or more hops. The main benefit of mesh networks is that the network can

continue to operate after problems with nodes, or with connections between nodes, because

there is usually more than one path between nodes. Mesh networks are commonly wireless

networks, but can be wired as well.

 Unstructured Peer-to-Peer (P2P) Network

P2P networks are distributed networks in which each node shares resources such as CPU

cycles, storage, and bandwidth with other nodes in the network, without the need for a cen-

tral coordinator. All nodes are both suppliers and consumers of resources. Typically, an

overlay layer is created on top of the network layer for connectivity, routing, and messaging.

In an unstructured P2P network, the overlay layer is not well defined, and node connections

are random. However, over time, the network becomes self-organized as many nodes and

their content become known to the rest of the network [Buford 2009].

 Wireless Sensor Network

A wireless sensor network is another form of ad-hoc network in which nodes cooperate to

monitor physical or environmental conditions, such as temperature, sound, vibration, light

intensity, motion, or proximity to objects [Raghavendra 2006].

 Cognitive Network

A cognitive network is a form of ad-hoc, self-organizing network that has a cognitive

process at the node and network levels. The cognitive process is used for perceiving current

network conditions and then planning, acting, and deciding on those conditions in order to

meet certain goals [Mahmoud 2007]. Cognitive networks therefore have the capability to

adapt in response to certain conditions, based on prior reasoning and acquired knowledge.

3.8 Self-* Computing

Self-* computing refers to systems that are aware of their environment and adaptable to changing

characteristics of the environment. Some terms or capabilities associated to such systems include

 self-adaptation

 self-awareness

 self-configuration and reconfiguration

 self-healing

13 | CMU/SEI-2010-TN-019

 self-knowledge of components

 self-optimization

 self-protection

The primary goals of these systems are to reduce

 response time to changes in the environment

 the amount of human intervention in management tasks

These goals apply to software-reliant SoSs, especially as they tend toward collaborative and vir-

tual SoS types in which there is less management and control of constituent systems.

Related Terms and Technologies

 Autonomic Computing

Autonomic computing, an initiative started by IBM in 2001, refers to computer systems that

can manage themselves given high-level goals from administrators [Kephart 2003]. The four

main aspects of autonomic computing are self-configuration, self-optimization, self-healing

and self-protection.

 Biomimetics

Biomimetics refers to the study and imitation of nature’s methods, design, and processes in

order to solve human problems [Bar-Cohen 2005]. From a computing perspective, biomimet-

ics is being applied in systems such as autonomous robots and vehicles, machine vision sys-

tems, machine hearing systems, and navigational systems.

 Sociomimetics

Still at a very early stage of development and application, sociomimetics refers to the study

and imitation of social behavior patterns in electronic information systems as a technique to

enhance their effectiveness [Cross 2006].

3.9 Social Computing

Social computing is a “general term for an area of computer science that is concerned with the

intersection of social behavior and computational systems.”
4
 There is a wide range of examples of

social computing. The better-known side of social computing is related to social software such as

wikis, blogs, instant messaging, and collaboration tools. However, the lesser-known side of social

computing, which is of greater interest and application to software-reliant SoSs, is that of socially

inspired computation. In socially inspired computing, groups of people carry out the computation;

examples of this type of social computing include

 Collaborative Filtering

Collaborative filtering refers to mechanisms for making automated predictions for a user

based on similar data from other users. The most common application of collaborative filter-

ing is a recommendation system for products or websites based on what other users have

bought or links they have followed.

4
 This generic definition is from Wikipedia: http://en.wikipedia.org/wiki/Social_computing.

http://en.wikipedia.org/wiki/Social_computing

14 | CMU/SEI-2010-TN-019

 Online Auctions

Online auctions enable the electronic selling and buying of products and services via auction

sites such as eBay (http://www.ebay.com). In online actions, buyers and sellers give transac-

tion feedback that is aggregated and published as a rating. This rating can be used to make

decisions on whether to buy from or sell to a particular user. Buyer and seller networks are

also studied to detect fraudulent ratings.

 Prediction Markets

Prediction markets are specialized, small-scale financial markets operated to predict future

events. In theory, the market price used for prediction is based on the collaborative know-

ledge of the participants. Based on knowledge or inside information about a particular situa-

tion, each participant can bet on a particular outcome, using shares or contracts purchased for

that purpose (usually not with real money). Current uses of prediction markets include elec-

tion outcomes, disease outbreaks, sports scores, sales predictions, and public opinion. Exam-

ples of prediction market sites are InTrade (http://www.intrade.com), Iowa Electronics Mar-

ket (http://tippie.uiowa.edu/iem) and simExchange (http://www.simexchange.com).

 Social Tagging

Tagging is an activity in which end users add their own metadata or keywords to resources.

A resource can have many tags that are generated by many different users. These tags are

managed by a classification software or system that will provide links to other items with the

same or related tags. The benefit of social tagging is that items are classified from the pers-

pective of the end users as opposed to that of the resource creator or owner. The information

tagging systems created in the context are often called folksonomies. Examples of social

tagging sites are Delicious (http://www.delicious.com) and Digg (http://www.digg.com).

Related Terms and Technologies

 Enterprise 2.0

Enterprise 2.0 refers to the use of social computing within the enterprise. The scope of enter-

prise in this context incorporates business partners as well as customers and the public

[Hinchcliffe 2010].

 Social Information Processing

Social Information Processing is another term that refers to the collective creation, annota-

tion, evaluation, and sharing of content via social computing tools and technologies. The

concept extends beyond blogging and tagging to collective problem solving such as that

promoted by Amazon’s Mechanical Turk, a marketplace for people that need to solve hard

problems (https://www.mturk.com/mturk/welcome).

http://www.intrade.com/
http://www.delicious.com/
https://www.mturk.com/mturk/welcome
http://www.ebay.com
http://tippie.uiowa.edu/iem
http://www.simexchange.com
http://www.digg.com

15 | CMU/SEI-2010-TN-019

4 Conclusions

This report discusses computing trends and emerging technologies, as they relate to software-

reliant SoS environments. Table 1 provides a rough mapping of the emerging technologies to the

general computing trends.

Table 1: Mapping of Emerging Technologies to Computing Trends

Technologies L
o

o
s

e
 C

o
u

p
li
n

g

G
lo

b
a
l

D
is

tr
ib

u
ti

o
n

 o
f

H
a
rd

w
a
re

,
S

o
ft

w
a
re

a
n

d
 P

e
o

p
le

H
o

ri
z
o

n
ta

l
In

te
g

ra
ti

o
n

a
n

d
 C

o
n

v
e
rg

e
n

c
e

V
ir

tu
a
li
z
a
ti

o
n

C
o

m
m

o
d

it
iz

a
ti

o
n

 o
f

T
e

c
h

n
o

lo
g

y

E
n

d
-U

s
e
r

E
m

p
o

w
e
rm

e
n

t

L
a

rg
e
-S

c
a
le

 D
a
ta

M
in

in
g

L
o

w
 E

n
e

rg
y

C
o

n
s

u
m

p
ti

o
n

M
u

lt
i-

C
o

re
 a

n
d

P
a
ra

ll
e
li
z
a
ti

o
n

Cloud

Computing
X X X X X X X X

Complex

Event

Processing

X X X X X

Data

Intelligence
X X X X X X

End-User

Programming
 X X X

Green

Computing
 X X X X

Mobile

Computing
X X X X X X

Opportunistic

Networks
X X X X

Self-*

Computing
X X X X X X

Social

Computing
 X X X X

As the table shows, not all technologies apply to each trend. Also emerging technologies can be

used in combination (as well as in conjunction with existing technologies) to enable the highly

distributed, heterogeneous, loosely coupled characteristics of SoSs and their constituent systems.

Some examples of technologies used together include

 Service-orientation is used to provide standardized service interfaces to cloud resources and

for the management of those resources.

 The availability of pervasive and mobile devices coupled with opportunistic network tech-

nologies and self-* computing mechanisms will enable more robust mobile applications in

areas with poor bandwidth and connectivity.

 Data intelligence and complex event processing will work together to make sense of dispa-

rate sources of data and support decision makers that need answers in near real time.

 Advances in mobile devices and green computing technologies will enable the moving of

computation to the mobile devices instead of energy-consuming servers.

16 | CMU/SEI-2010-TN-019

 Social computing, mobile computing, and data intelligence will support ubiquitous, informal

recording of data that can be classified and processed into valuable, on-time information.

In addition, while extensive, the list of emerging technologies presented in this report is not meant

to be inclusive and will change over time. Gartner’s yearly report on emerging technologies de-

scribes why a list like this one will change. Technologies, Gartner states, go through a “hype

cycle” that includes a peak of inflated expectations, a trough of disillusionment, and a slope of

enlightenment [Gartner 2009]. Further, as software-reliant SoSs move from a directed to a virtual

management structure, more complex technologies will be necessary to deal with problems stem-

ming from the lack of central authority or centrally agreed purpose. However, not every SoS must

be a fully-virtual SoS, and not every SoS must be fully-directed to be successful.

Finally, the focus on emerging technologies in this report should not be taken to imply that solv-

ing problems begins with choosing a technology. It must be acknowledged that many problems

are behavioral and not solvable with technology. Where technology adoption can provide a solu-

tion in a software-reliant SoS environment (really any system environment), the key is to start

with the problem and then seek technologies that match it and fit the organizational context—not

the other way around.

17 | CMU/SEI-2010-TN-019

References

URLs are valid as of the publication date of this document.

[Akamai 2010]

Akamai Technologies. Akamai Edge Platform: Application Acceleration that Delivers Content

and Applications Quickly. http://www.akamai.com/html/technology/edgeplatform.html (2010).

[Amazon 2010a]

Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2).

http://aws.amazon.com/ec2/ (2010).

[Amazon 2010b]

Amazon Web Services. Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/

(2010).

[Arduino 2010]

Arduino. http://www.arduino.cc/ (2010).

[Bain 2009]

Bain, T. Is the Relational Database Doomed? ReadWrite Enterprise.

http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-database-doomed.php (2009).

[Bar-Cohen 2005]

Bar-Cohen, Y. Biomimetics: Biologically Inspired Technologies. CRC Press, 2005.

[Buford 2009]

Buford, J., Yu, H., & Lua, E. P2P Networking and Applications. Morgan Kaufmann, 2009.

[Chandy 2007]

Chandy, K. & Schulte, R. The Role of Event Processing in Modern Business. ebizQ.

http://www.ebizq.net/hot_topics/cep/features/8303.html?page=1 (2007).

[Conti 2007]

Conti, M. & Giordano, S. “Multihop Ad Hoc Networking: The Reality.” IEEE Communications

Magazine 45, 4 (April 2007): 88-95.

[Cross 2006]

Cross, R. Recovering Lost Group Communications Skills. Bioteams.

http://www.bioteams.com/2006/04/25/recovering_lost_group.html (2006).

[Czarnecki 2000]

Czarnecki, K. & Eisenecker, U. Generative Programming: Methods, Tools, and Applications.

Addison-Wesley, 2000.

http://www.arduino.cc/
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-database-doomed.php
http://www.ebizq.net/hot_topics/cep/features/8303.html?page=1
http://www.bioteams.com/2006/04/25/recovering_lost_group.html
http://www.akamai.com/html/technology/edgeplatform.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/

18 | CMU/SEI-2010-TN-019

[Davis 2008]

Davis, E. Green Benefits Put Thin-Client Computing Back On The Desktop Hardware Agenda.

Forrester Research, 2008.

[Dean 2004]

Dean, J. & Gamawhat, S. “MapReduce: Simplified Data Processing on Large Clusters.” Sixth

Symposium on Operating System Design and Implementation (OSDI’04). San Francisco, CA, De-

cember, 2004. http://labs.google.com/papers/mapreduce-osdi04.pdf

[DoD 2000]

U.S. Department of Defense (DoD). Joint Vision 2020.

http://www.fs.fed.us/fire/doctrine/genesis_and_evolution/source_materials/joint_vision_2020.pdf

(2000).

[DOE 2008]

U.S. Department of Energy (DoE). The SMART GRID: An Introduction. DoE, 2008.

[DOE 2010]

U.S. Department of Energy. Energy Star Data Center Energy Efficiency Initiatives.

http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency (2010).

[EUSES 2010]

EUSES Consortium. EUSES: Home. http://eusesconsortium.org/ (2010).

[Foster 2008]

Foster, I., Yong, Zhau, Ioan, R. & Lu, S. “Cloud Computing and Grid Computing 360-Degree

Compared,” 1-10. Proceedings of the Grid Computing Environments Workshop (GCE ’08). Aus-

tin, TX (USA), November 12-16, 2008. DOI 10.1109/GCE.2008.4738445.

[Gartner 2009]

Gartner. Hype Cycle for Emerging Technologies. Gartner, 2009.

[Google 2010a]

Google. Google App Engine. http://code.google.com/appengine/ (2010).

[Google 2010b]

Google. Google Apps for Business | Official Website.

http://www.google.com/apps/intl/en/business/index.html (2010).

[Hinchcliff 2010]

Hinchclife, D. Ten Emerging Enterprise 2.0 Technologies to Watch. ZDNet.

http://www.zdnet.com/blog/hinchcliffe/ten-emerging-enterprise-20-technologies-to-

watch/1224?tag=mantle_skin;content (2010).

[Huang 2008]

Huang, C., Lan, K., & Tsai, C. “A Survey of Opportunistic Networks,” 1672-1677. 22nd Interna-

tional Conference Advanced Information Networking and Applications – Workshops (AINAW

2008). March 25-28, 2008. IEEE, 2008.

http://www.fs.fed.us/fire/doctrine/genesis_and_evolution/source_materials/joint_vision_2020.pdf
http://www.energystar.gov/index.cfm?c=prod_development.server_efficiency
http://eusesconsortium.org/
http://dx.doi.org/10.1109/GCE.2008.4738445
http://www.google.com/apps/intl/en/business/index.html
http://www.zdnet.com/blog/hinchcliffe/ten-emerging-enterprise-20-technologies-to-watch/1224?tag=mantle_skin;content
http://www.zdnet.com/blog/hinchcliffe/ten-emerging-enterprise-20-technologies-to-watch/1224?tag=mantle_skin;content
http://labs.google.com/papers/mapreduce-osdi04.pdf
http://code.google.com/appengine/

19 | CMU/SEI-2010-TN-019

[IBM 2010]

IBM. IBM Computing on Demand.

http://www-03.ibm.com/systems/deepcomputing/cod/index.html (2010).

[Intel 2010]

Intel Corporation. Intel and the Environment – Eco-Smart Computing Inside.

http://www.intel.com/about/corporateresponsibility/environment/ecosmart.htm (2010).

[Jhingan 2010]

Jhingan, H. “Mobile Device Protection Should Move to Top of Security Agenda.” Voice & Data.

http://voicendata.ciol.com/content/news/110080402.asp (2010).

[Johnson 2010]

Johnson, L., Levine, A., Smith, R., & Stone, S. The 2010 Horizon Report. Austin, Texas: The

New Media Consortium. 2010. http://www.nmc.org/pdf/2010-Horizon-Report.pdf

[Kephart 2003]

Kephart, J. & Chess D. “The Vision of Autonomic Computing.” Computer 36, 1 (January 2003):

41-50.

[Kwang 2010]

Kwang, K. Mobile Security Risks Persist But Limited for Now. ZDNet Asia.

http://www.zdnetasia.com/mobile-security-risks-persist-but-limited-for-now-62201532.htm

(2010).

[Lilien 2006]

Leszek Lilien, Z., Kamal, Huma, & Gupta, Ajay. “Opportunistic Networks: Challenges in Specia-

lizing the P2P Paradigm,” 722-726. 17th International Conference on Database and Expert Sys-

tems Applications (DEXA’06). Krakow, Poland, September 4-8, 2006. IEEE, 2006.

[Luckham 2008]

Luckham, D. & Schulte, R. (editors). Event Processing Glossary - Version 1.1. Event Processing

Technical Society. 2008. http://complexevents.com/wp-content/uploads/2008/08/epts-glossary-

v11.pdf

[Mahmoud 2007]

Mahmoud, Q. (Ed.) Cognitive Networks: Towards Self-Aware Networks. Wiley, 2007.

[Maier 1998]

Maier, M. “Architecting Principles for Systems-of-Systems.” Systems Engineering, 1, 4 (1998):

267-284.

[MapReduce 2010]

MapReduce.org. MapReduce.org. http://www.mapreduce.org/ (2010).

[Microsoft 2010a]

Microsoft Corporation. Live Mesh Beta. http://www.mesh.com/ (2010).

http://www.intel.com/about/corporateresponsibility/environment/ecosmart.htm
http://voicendata.ciol.com/content/news/110080402.asp
http://www.nmc.org/pdf/2010-Horizon-Report.pdf
http://www.zdnetasia.com/mobile-security-risks-persist-but-limited-for-now-62201532.htm
http://complexevents.com/wp-content/uploads/2008/08/epts-glossary-v11.pdf
http://complexevents.com/wp-content/uploads/2008/08/epts-glossary-v11.pdf
http://www.mapreduce.org/
http://www-03.ibm.com/systems/deepcomputing/cod/index.html
http://www.mesh.com/

20 | CMU/SEI-2010-TN-019

[Microsoft 2010b]

Microsoft Corporation. Windows Azure Platform. http://www.microsoft.com/azure/ (2010).

[Miller 2009]

Miller, R. Google Unveils Its Container Data Center. Data Center Knowledge. 2009.

http://www.datacenterknowledge.com/archives/2009/04/01/google-unveils-its-container-data-

center/

[Murugesan 2008]

Murugesan, S. “Harnessing Green IT: Principles and Practices.” IEEE IT Professional (January-

February 2008): 24-33.

[O’Sullivan 2004]

O’Sullivan, D. & Igoe, T. “Physical Computing: Sensing and Controlling the Physical World with

Computers.” Course Technology PTR. 2004.

[OUSDATL 2008]

Office of the Undersecretary of Defense for Acquisition, Technology, and Logistics. DoD Systems

Engineering Guide for Systems of Systems. January, 2008. Office of the Undersecretary of De-

fense for ATL, Washington, DC.

[Raghavendra 2006]

Raghavendra, C. S., Sivalingam, K., & Znati, T. (Eds.). Wireless Sensor Networks. Springer,

2006.

[Salesforce 2010a]

Salesforce.com. Cloud Computing – salesforce.com. http://www.salesforce.com/platform/ (2010).

[Salesforce 2010b]

Salesforce.com. salesforce.com. http://www.salesforce.com/crm/products.jsp (2010).

[Strickland 2008]

Strickland, Jonathan. How Utility Computing Works. HowStuffWorks.com. 2008.

http://communication.howstuffworks.com/utility-computing.htm

[Strowd 2010]

Strowd, H. & Lewis, G. T-Check in System of Systems Technologies: Cloud Computing

(CMU/SEI-2010-TN-009). Software Engineering Institute, Carnegie Mellon University, 2010.

http://www.sei.cmu.edu/library/abstracts/reports/10tn009.cfm

[Sullivan 2007]

Sullivan, K. “Edge Programming.” Proceedings of the 29th International Conference on Software

Engineering Workshops. IEEE, 2007.

http://www.cs.virginia.edu/~sullivan/ULS1/ULS07/sullivan.pdf

http://www.datacenterknowledge.com/archives/2009/04/01/google-unveils-its-container-data-center/
http://www.datacenterknowledge.com/archives/2009/04/01/google-unveils-its-container-data-center/
http://communication.howstuffworks.com/utility-computing.htm
http://www.cs.virginia.edu/~sullivan/ULS1/ULS07/sullivan.pdf
http://www.microsoft.com/azure/
http://www.salesforce.com/platform/
http://www.salesforce.com/crm/products.jsp
http://www.sei.cmu.edu/library/abstracts/reports/10tn009.cfm

21 | CMU/SEI-2010-TN-019

[Voyles 1999]

Voyles, R. & Khosla, P. “Gesture-Based Programming: A Preliminary Demonstration,” 708-713.

Proceedings of the 1999 IEEE International Conference on Robotics & Automation.

Detroit, Michigan, May 10-15, 1999. IEEE, 1999.

[Yahoo 2010]

Yahoo. Introducing the Yahoo! Open Strategy. http://developer.yahoo.com/yos/intro/ (2010).

[Zoho 2010]

Zoho Corporation. Email, Hosting, CRM, Project Management, Office Suite, Document Manage-

ment, Remote Support. http://www.zoho.com/ (2010).

http://developer.yahoo.com/yos/intro/
http://www.zoho.com/

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

September 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Emerging Technologies for Software-Reliant Systems of Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Grace A. Lewis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-019

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report presents general computation trends and a particular set of emerging technologies to support the trends for software-reliant

systems of systems (SoSs). Software-reliant SoSs now tend to be highly distributed software systems, formed from constituent software

systems that are operated and managed by different organizations. These SoSs are moving from a directed management structure (in

which constituent systems are integrated and built for a specific purpose) to a virtual one (in which there is no central authority or central-

ly agreed purpose). This shift is introducing a need for new technologies to deal with the lack of central authority or centrally agreed pur-

pose.

14. SUBJECT TERMS

SoS, system of systems, cloud computing, green computing, end user programming

15. NUMBER OF PAGES

29

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Emerging Technologies for Software-Reliant Systems of Systems
	Emerging Technologies for Software-Reliant Systems of Systems
	Table of Contents
	List of Tables
	Abstract
	1 Introduction
	2 General Computing Trends
	3 Emerging Technologies
	4 Conclusions
	References

