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Scientific Progress and Accomplishments 
 

 Georgia Institute of Technology 
Conducted analysis of motion capture data to develop methods for characterizing human motion 
under different loads and gaits 
Adapted lattice Boltzmann method to thermal signature computation 
Continued analysis of phenomenology and signatures associated with personnel and background 
materials; emphasis was on urban environments 

      Continued development of a multi-modal signature model; with a focus on:  
    developing a common signature model across the multiple sensor domains; 
   developing an urban scene simulation to support signature analysis; 
   addressing complex radiative transfer issues 
   developing thermal and reflective band human signature models 
  adding dynamic clutter elements (e.g., vehicles) to modeled scene 

 Investigated human motion detection and tracking algorithms 
 Continued development of a kinematic human motion model 
 Continued investigations into advanced algorithms for RF dismount detection and      
characterization 
Continued analysis of advanced post detection integration (PDI) techniques.  
Continued investigation of autoregressive (AR) modeling for dismount detection. 
 

 Florida Atlantic University 
 Continued research on methods for detecting personnel in low pixel count images and video 

sequences; motion-based approaches investigated 
Continued development of MatLab-based segmentation program for isolating  
candidate groups of pixels for human-likelihood testing. 
Continued development of Baysian-logic-based detection program using video-sequence  
features including (a) location in 3-D space as inferred from location in 2-D video projection,  
(b) velocity (speed and direction), and (c) up-down motion of center-of-mass characteristics 
Tested detection and tracking methodology with collected video sequences 

 
Massachusetts Institute of Technology 

   None  
 
 University of Mississippi 

Continued work on extension of Draper Lab algorithms for seismic and cadence frequency  
Continued adaptation of Boulic and Thalman human motion model to conduct initial  
theoretical studies of human motion 

 
Technology Transitions 

 
 Georgia Institute of Technology 

Proposal to DARPA for Phase II of DYME program on human motion modeling and RF/EO-
IR human signatures 
Teamed with Computer Sciences Corporation on TASER proposal to NGA 
Teamed with ATK on Ground Combat Vehicle Proposal 
Briefing to DIA on MURI work 



 
 University of Mississippi 

None 
 

 Massachusetts Institute of Technology 
None 
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Exploiting 3-D Models for Low-Resolution Motion Analysis
Diego F. Pava, William T. Rhodes PhD.
Department of Computer and Electrical Engineering and Computer Science 

Technology Lab

p p g g p
Motivation

•Given a video sequence of extremely
low resolution objects moving in a fixed
background (e.g., objects very far away

Approach

•The system has four blocks. In the
preprocessing block, regions of interest
are selected and histogram equalization

campus depicting humans walking on
natural scenes with occlusions. The
system was tested with one and two
objects at different speeds and occupying
12 to 30 pixels in the screen. All videosg ( g j y y

from the camera), we want to extract
the most information from the scene in
order to determine whether objects
may be human beings.

g q
is performed. In the background
subtraction block, foreground objects
are extracted. In the information
extraction block, the foreground video
is morphologically filtered the objects

Results and Conclusions

Th d d k d d

12 to 30 pixels in the screen. All videos
were tested for biological motion using
similarities matrixes.

is morphologically filtered, the objects
are tracked, and motion analyzed using
a similarity matrix. Finally, in the post
processing block, the data is stored in a
structure and visual information is
e e ated

•The system detected, tracked, and
classified as objects with biological
motion all subjects present in the videos
under the background restrictions.

•The system

Related work

•To identify an object in the very low
resolution regime, we need to extract
data from the object itself (motion size generated •The system

compensated for
wind movement
on the scene and
shades

data from the object itself (motion, size,
etc) and to use the knowledge of the
scene . The latter can be done by
dividing the scene in regions of
importance that minimizes decision
errors Experimentserrors. Experiments

•Each block was tested separately
using sample videos and images. Four
different videos were taken on the FAU

•The system has limitations in he
number of objects that can be present,
the complexity of occlusions, and is not a
real time application
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Extraction of human signature information from very-low-resolution video sequences  
 
Researchers:   
William T. Rhodes, Ph.D. 
Professor of Computer and Electrical Engineering and Computer Science 
Diego F. Pava 
Masters and Ph.D. degree student in electrical engineering 
 
Research at Florida Atlantic University, conducted by doctoral student Diego Pava under the 
direction of Prof. William Rhodes, centered on the development of methods for extraction of 
human signature information from very low resolution video sequences. Very low resolution is 
encountered when, for example, people are great distances from the camera and the field of view 
is large. In such cases, the humans may subtend only 10 to 15 pixels, a condition we might in 
fact take as defining very low resolution in this context. 
 
The key to the method lies in the identification of motion characteristics of low-resolution 
objects in their specific context. Objects of interest observed in a particular location in the video 
sequence must move in ways consistent with physical constraints. For example, an object 
observed moving though a patch of sky cannot be a person, but is more likely a bird or an 
airplane—or a butterfly if the motion path is erratic. Motion of a small-pixel-count object is more 
likely to correspond to human activity if the pixels are located in a portion of the video imagery 
consistent with a large distance. If moving objects in low-resolution 2D video imagery are placed 
in their 3D context, object uncertainties can often be removed. It should be noted that very low 
resolution imagery presents special difficulties because the blurring of the background into the 
moving part of the scene makes the application of techniques such as centroid tracking 
unreliable. 
 
The approach we took in addressing this problem ultimately requires that we have available to us 
a 3D model of the scene being viewed with our video camera. Exploiting our knowledge of the 
3D world from which we have extracted the 2D video projections, we can then reduce, often by 
extremely large amounts, possible uncertainties concerning the nature of what we are viewing.  
 
Figure 1 provides an illustration of the concept, albeit with 2D still images—i.e., no video—and 
without a true 3D representation of the scene available to us, only our own idea of what the 3D 
scene actually is. The left-hand part of the figure shows a small number of pixels extracted from 
somewhere in the larger image shown on the right (see caption).  
 
In a video image, we would observe some motion within this small number of pixels. Does that 
motion represent human activity, or something else? The question is largely resolved if we know 
where in the scene the pixels in question are observed. If they are observed in the circled region 
at the left, they probably represent a moving leaf, a lizard, or some other small animal or insect; 
if in the circled region on the right, they almost certainly represent one or two humans climbing 
along an ancient pathway. With several frames of video, the probability that the changing pixels 
represent human(s) can be more accurately determined through the observation of the motion 
itself:  Does it have an up-and-down component? Is the transverse motion consistent with people 
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struggling along a 2500 meter-high path? Most importantly, is the size of the moving pixel group 
consistent with people at that apparent distance?  
 

(a) (b)  
Figure 1.  The small group of pixels on the left may or may not correspond to one or more humans. The location of 
these pixels within a 3D scene—two such locations being indicated on the right—makes the likelihood of their 
representing humans much easier to determine, even in the absence of motion cues. Motion cues would, in this case, 
make correct identification almost certainly correct. 
 
The idea that even a subconscious understanding of a 3D setting can help disambiguate 
information contained in a 2D image is of course not new. What is relatively new is the greatly 
increased capability we have now to obtain and manage data on the 3D structure of settings of 
interest to us. Our ability to build a 3D model of buildings, trees, roadways, and the like from a 
stereo image pair has improved enormously over even the past decade, and today’s 
computational power and huge computer memories make fine-scale 3D databases, along with the 
attachment of contextual information, comparatively easy. It is thus much easier for us to assess, 
probabilistically, and by checks against the 3D database, whether a moving object in a 2D image 
is likely to be a human or, instead, a goat or a butterfly. These key ideas were presented in two 
conference papers, listed as publications 1 and 2 at the end of this section and available as added 
separate uploaded documents. 
 
The framework in which such disambiguation operates is of necessity probabilistic, and several 
methods, including traditional Bayesian, can be used. Of at least equal importance is the impact 
of very-low-resolution imagery on the image processing algorithms employed, and it was on this 
subject area that the work at FAU was concentrated. If an object of concern is so distant that it 
subtends only tens of pixels, then the normal approaches to motion tracking, such as optical flow 
methods, do not work well. Edges are fuzzy, and the interaction of the (usually) stationary 
background structure with the moving object structure creates additional problems. Indeed, most 
object detection studies employ video sequences where objects of interest are imaged at high 
resolution. The FAU research, by way of contrast, explored the very low resolution regime in 
order to assess how much information can be obtained in an early alarm system. The operation 
investigated had four stages—preprocessing, background modeling, information extraction, and 
post processing—and used context-based region-of-importance selection, histogram 
equalization, background subtraction, and morphological filtering techniques. The program was 
implemented in Matlab; output was presented in both data and visual form. The resulting system 
was capable of detecting and tracking low resolution objects (as low as 15 pixels in size) in a 
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controlled background scene. The system can serve as the basis for systems with much higher 
complexity. The work was documented in the master’s degree thesis—Ref. 3 at the end of this 
section—written by Mr. Pava, the FAU student working on this project.  
 
Pava’s thesis is available as a separate document accompanying this one. His major 
accomplishments are presented in the following. 
 
Regions of Importance:  A program was written that allows the user to select one or more 
regions of importance (ROI). Motion outside of those areas is ignored by subsequent portions of 
the program. When objects occupy just a few pixels in a scene, there are usually important 
portions of the video sequence where the presence of objects of such characteristics is unlikely or 
unimportant. Security applications may require some regions to be attended while others can be 
ignored. Furthermore, through the establishment of regions of importance, inevitable noise 
coming from unimportant regions can be ignored with a resulting improvement in overall 
performance of the system and computing resources management. Because regions of 
importance depend on so many factors, user-creation of ROIs is preferred over automatic 
approaches. The system employed in our study requires that the user draw with the mouse the 
ROI. A binary mask of the ROI is then created and applied to the video after the image 
enhancement. Figure 2 illustrates the ROI algorithm. 
 
 

 
Fig. 2.  The video sequence processing program allows manual selection of regions of importance. Motion/change 
outside of the specified regions is ignored. In the figures above, two different regions of importance were specified. 
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Histogram Equalization:  Contrast enhancement, accomplished by means of histogram 
equalization, was used to improve the behavior of low-resolution object tracking algorithms. In 
some cases the objects of interest were binarized. Figure 3 illustrates. The regions of importance 
are usually small regions where the analysis is in detail and hence where the enhancement of the 
contrast is most desired: the unimportant regions add pixels of different intensities; to take the 
histogram equalization over the whole scene could have the contrary effect of contrast 
enhancement. Take for example the scene depicted in at the bottom of Fig. 3, where histogram 
equalization over the whole picture will have an undesired effect. Contrast enhancement is 
desired because it facilitates the differentiation between the object and the background. The shirt 
of the person in the figure has less contrast than the pants as can be appreciated in the color and 
grayscale versions of the image. Note how after the contrast enhancement, the object and the 
background tend to be mostly black and mostly white which makes the object easier to 
recognize. 

 
 

       
 

Fig. 3.  Example of contrast enhancement by histogram equalization. Color information was first removed from the 
imagery. The bottom-left scene illustrates a case where global histogram equalization is not desired, since the scene 
brightness in the region of interest is more or less uniform. The benefits of histogram equalization are shown bottom 
right in the extraction of an object of interest:  left with histogram equalization, right without. 
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Background Subtraction:  Three different methods for background subtraction were investigated 
at the low-resolution extreme:  frame difference analysis, approximate median analysis, and 
mixture of Gaussians analysis. The approximate median analysis, the results of which are 
illustrated in Fig. 4, worked best for low-resolution imagery. 
 
 

 
Fig. 4. Thresholding applied to imagery subjected to approximate median algorithm background 
subtraction operation. 
 
Morphological Filtering:  Morphological filtering was also employed to remove salt-and-pepper 
noise from the contrast-enhanced imagery and to make it easier to establish motion vectors for 
moving object structures. The results of such filtering is illustrated in Fig. 5. 

 
Fig. 5.  Test of morphological filtering:  Left, image with test objects and Poisson and salt and pepper 
noise; right, image after morphological filtering. 
 
Tracking System:  Objects moving behind occluding objects can present proglems for motion 
analysis algorithms. A tracking system was developed that allowed temporarily occluded moving 
objects to be identified and successfully tracked. An example of the tracking algorithm operation 
is illustrated in Fig. 6. 
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Fig. 6. Example of tracking algorithm operation illustrating handling of occlusions.. 

 
The tracking system operated with more than one moving object in the region of importance, as 
illustrated in Fig. 7. 
 

 
 
Fig. 7. Illustration of tracking operation. Note that two people entered the scene. One person is tracked in 
blue, the other (who returned to the left) is tracked in red. See video for entire sequence. 
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Time Analysis:  The basic processing algorithms were subject to time analyses, which gave us an 
idea of how much time was required for different aspects of the processing. Comparative figures 
are shown in Fig. 8. 
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Fig. 8.  Time analysis of the different processing operations. 
 
In his thesis research Mr. Pava developed the following capabilities, all documented in his 
dissertation (Ref. 3): 

 Detecting foreground objects (as small as 8 pixel of height and 15 pixels in total). 
 Tracking objects and accumulate data along their trajectories. 
 Handling occlusions. 
 Implementing three different background subtraction algorithms. 
 Choosing several regions of importance in a video sequence  
 Handling noise due to weather conditions, video conditions, or random noise. 

 
His system was subject to the following restrictions: 

 A single, static camera setting. 
 Implementation time and memory capacity limits affect the video size and the amount of 

information that can be extracted. 
 Limited number of objects present on the video.  
 The system needs contrast between  in order to work. 
 The system needs for the object to be moving. 
 The solution for the occlusion problem is dependant in the condition of the scene. 
 A real time solution is not feasible with the current implementation. 

 
In addition, he reached the following conclusions: 

 The introduction of region of interest selection to the overall system improves the 
response of the system to noise. 

 The implementation of histogram equalization improves the contrast between the object 
and the background but also introduces more noise in the system.  
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 Of the background subtraction algorithms implemented, the approximate median method 
turned out to be the best option for most applications. Frame difference is fast and easy to 
implement but very susceptible to noise and very dependant on continuous movement of 
the object. Finally, mixture of Gaussians handles noise relatively well but is very slow 
and very difficult to tune. 

• Morphological filtering proved to be a valuable method for removing noise that leaked 
from the background in the subtraction operation. 

• The tracking system was able to detect and track objects occupying tens of pixels in the 
screen under controlled conditions.  

• In low resolution objects, color contrast between the object and the background is the 
feature that provides more information about the object. Ultimately permits the detection 
of such objects. 

• Information such as relative velocity, centroid, and position can be extracted from the 
system.  

• MATLAB proved to be an important tool when developing prototypes due to its built-in 
video processing and mathematical tools. For real time implementation the use of lower 
level languages is required. 

• The separation of the problem into blocks was designed to permit future improvements in 
each of the four blocks. This is a system that can be improved in each of its blocks 
separately allowing for future implementation to use all or part of the blocks and improve 
others. 

 

Publications (uploaded with this report) 

1. W. T. Rhodes and D. Pava, "Removing Ambiguity in 2-D Image Information by Means 
of 3-D Models," in Digital Holography and Three-Dimensional Imaging, OSA Technical 
Digest (CD) (Optical Society of America, 2008), paper DMA3.  

2. D. Pava and W. T. Rhodes, "Low-Resolution Motion Analysis in a 3-D Model," in 
Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) 
(Optical Society of America, 2010), paper JMA39.  

3. Diego F. Pava, Object Detection in Low Resolution Video Sequences, masters degree 
thesis, Department of Electrical Engineering, Florida Atlantic University, April 2009. 
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With augmenting security concerns and decreasing costs of surveillance and computing 

equipment, research on automated systems for object detection has been increasing, but 

the majority of the studies focus their attention on sequences where high resolution 

objects are present. The main objective of this work is the detection and extraction of 

information of low resolution objects (e.g. objects that are so far away from the camera 

that they occupy only tens of pixels)  in order to provide a base for higher level 

information operations such as classification and behavioral analysis.  The system 

proposed is composed of four stages (preprocessing, background modeling, information 

extraction, and post processing) and uses context based region of importance selection, 

histogram equalization, background subtraction and morphological filtering techniques. 

The result is a system capable of detecting and tracking low resolution objects in a 

controlled background scene which can be a base for systems with higher complexity. 
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Chapter 1 INTRODUCTION 

 

1.1 Motivation 

 

For years, automatic video recognition of moving objects has been one of the most 

rapidly developing topics in video image processing due to the great variety of fields 

that could potentially benefit from such advancement.. Robotic vision, medical imaging, 

space exploration, remote monitoring, and video surveillance are among the various 

fields that have attracted researchers to the problem of detecting and extracting 

information from moving objects. 

 

Over the past decade, a numerous algorithms have been proposed for moving-object 

tracking, but a solution that clearly outperforms the human vision system is still 

missing, leaving room for new researchers to come up with new ideas on how to 

improve existing methods or develop new ones. 

 

In this post 9/11 world, video surveillance has become a topic of great importance. 

Security is now a major concern not only to the government, but also to industries and 

the general public. With the prices of video surveillance systems dropping, each  day  it 
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becomes more common to find surveillance rooms where several screens receive video 

feeds from cameras distributed across a location under observation. 

  

Even in the case of large objects, security personnel can sometimes be overwhelmed 

with the amount of information they must process, leading them to make costly 

mistakes by overlooking important information or losing time and resources on 

unimportant information [2]. 

 

Now imagine that the objects moving occupy only a few pixels in the screen, either 

because they are very small or because they are so far away from the camera. In such a 

case the work of security personnel without computerized help would be virtually 

impossible. 

 

In this work effort is concentrated on the detection and extraction of information of such 

small objects in video sequences, especially in video sequences taken with conventional 

cameras.  

 

1.2 Problem Statement 

 

The task of detecting the presence of moving objects (human or vehicles for example) 

that are so far away as to only occupy a few pixels in the video sequence is not a simple 
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one. Blurring of background into the image of interest can degrade information 

exploited with conventional techniques such as shape and color. 

 

This work investigates systems able to detect low-resolution moving objects in video 

sequences and extract as much information from the imagery with a program that is 

simple, fast, reliable, and robust. 

 

1.3 Context and Scope 

 

This Multi-University Research Initiative (MURI) supporting this research is a five-

year, program that began in 2004. Participating universities are Georgia Tech, 

University of Mississippi, Florida Atlantic University, and MIT. The program PI is 

Prof. William T. Rhodes. 

  

Research centers on the detection of humans in traditionally difficult circumstances 

(e.g., inside buildings or tunnels, under camouflage, etc.). The program is focused on 

two primary areas:  human signature physics (i.e., what signals can be used to either 

uniquely register the presence of a human or provide a “hint” of human presence), and  

sensor networking., how can we combine and configure multi-modal sensors in a 

communication grid to enhance our ability to detect humans.  
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An important part of the MURI program is of an imaging nature and operate for large 

area coverage, at low resolution.  Yet, the basic nature of low image resolution has not 

been extensively investigated. Most image-based human detection schemes presume a 

comparatively high number of pixels on target. The objective is then to improve the 

knowledge of the fundamental nature of objects in the low resolution regime placing 

emphasis first on a characterization of fundamental phenomena associated with the size, 

configuration, and motion of images of objects at low resolution, for ultimately, apply 

this knowledge to the human detection problem.  

 

1.4 Main Contributions 

 

The following are the main contributions of this work: 

 

 Use of imaging processing techniques such as histogram equalization in order to 

extract as much information from the video as possible. 

 

 Using the knowledge of the 3D-scene in order to improve the speed and 

robustness of the program. [1] 

 

 Implementation and comparison of different background subtraction techniques 

with the goal of extracting relevant / moving objects from video frames. 
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 Implementation of morphological filtering techniques to complement the 

background subtraction techniques. 

 

 Tracking of low resolution moving objects present in the sequence. 

 

 Establishment of a framework for future FAU students and researchers who may 

concentrate efforts on related, more sophisticated topics of activity recognition. 

 

1.5 Overview of the Thesis 

 

This thesis is structured as follows: Chapter 2 provides background information on 

visual surveillance systems and algorithms. Chapter 3 describes in detail the proposed 

solution. Implementation aspects are contained in 0, experiments and results are 

included in Chapter 5, and Chapter 6 presents conclusions and possibilities for future 

work.



Chapter 2 BACKGROUND AND RELATED WORK 

 

In this chapter, an introduction to general concepts and algorithms associated with this 

thesis is provided.  

 

 

Figure 1: General framework of a visual surveillance system [2]. 

 

2.1 General Framework 

 

The general framework of a visual surveillance system is composed of the blocks 

shown in Figure 1. Each block will be briefly explained in the next subsections (adapted 

from [2]).  

 6
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2.1.1 Background Modeling 

 

A sequence is a set of consecutive frames recorded at the same location. The group of 

common elements within the sequence is referred to as the background. In Figure 1, we 

can see the general surveillance process. After the information is recorded by the 

camera, the system creates a model of the background. Some of the background 

modeling techniques involve averaging the pixel values over a certain number of frames 

where foreground objects are not present [3], [4]. Other approaches are based on 

adaptive Gaussian estimations [5], parameter estimation based on pixel processes [6], 

and approximate median method [7] 

 

2.1.2 Foreground Extraction 

 

The objective is to separate foreground from background in the video sequence. This is 

usually accomplished by subtracting the output of the previous block from each frame 

[8]. There are, however, other techniques such as temporal differencing [9] and optical 

flow [10] that can be used. 

 

The foreground can be represented in a binary image (the pixels corresponding to the 

foreground are labeled as one and those of the background labeled as zero) or a 

grayscale or color image where the foreground conserves its original characteristic. 
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2.1.3 Filtering 

 

Mathematical morphology is a tool used for extracting image components that are 

useful in the representation of shapes such as boundaries and skeletons [11]. Of special 

importance for this work is morphological filtering. 

 

Morphological filtering consists in a series of Boolean operations made to a binary 

image where objects occupy the region labeled as 1 and the background occupy the 

region labeled as 0. These techniques are used to remove unwanted elements in the 

sequence such as noise or non important moving objects. 

 

2.1.4 Tracking 

 

This block compares the group of characteristics that define each object in order to 

locate its position along the sequence ([12],[13],[14]). When an object is being tracked, 

important information such as position, velocity, centroid, distance from the camera, 

and periodicity becomes then available. For example, walking or running humans have 

characteristic periodic motion; this unique signature can be detected only after tracking 

a subject for a given period of time [15].  
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2.1.5 Actuator 

 

After the system has extracted all the information from the sequence, the actuator stage 

takes on the problem of decision making based in the information obtained The decision 

could be gathering information from different cameras to obtain advantages such as 

depth and overcome problems such as occlusion, or to raise an alarm so that the security 

personnel can take a closer look at an important event occurring. Camera installation 

[16] and calibration [17] are the kind of problems related to the functions associated 

with this block. 

 

2.2 Theoretical Background 

 

In this section, a theoretical description of algorithms relevant to this work is provided. 

 

2.2.1 Removing ambiguity in 2-D video by means of 3-D 

models [1] 

 

If moving objects in low-resolution 2D video imagery are placed in their 3D context, 

ambiguities concerning the identity of the objects can often be removed. In the 

identification of objects moving in a video sequence, the availability of a 3-D model of 



the scene can reduce, often greatly, uncertainties in the nature of what is being 

observed. 

 

 

Figure 2: Group of pixels (Left), probable position of the group (right). 

 

Figure 2 shows a group of pixels that could represent humans far away from the camera. 

Just by watching the group of pixels there is no way of telling what they represent. If 

the group of pixels corresponds to the area encircled in the left of image b), then the 

probability of the group of pixels being humans is zero. However, if the pixels 

correspond to the area encircled to the right of the same image, a path in the Machu 

Picchu ruins, then the probability of the  group of pixels being humans walking along a 

path far away from the camera increases dramatically.  

 

If the system receives several frames of information and track for motion in the group 

of pixels, then the probability of assessing correctly whether the pixels  correspond to a 

human walking increases. If the motion makes sense in the 3D context (the pixel group 
 10
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moves along a path) and have certain characteristics such as periodicity [15], velocity 

(moving at human speed) and consistency (the objects does not suddenly disappear 

from the scene), then we can be relatively certain regarding the nature of the group of 

pixels and what they represent. The same applies for other objects of interest different 

from humans. 

 

In synthesis, in a complete solution, we can get better results if we can exploit our 

knowledge on the 3D models by creating regions of interest. These regions are those 

where the presence of meaningful moving objects are more probable and therefore need 

more computational resources to analyze. 

 

2.2.2 Histogram[18][11] 

 

Histograms are the basis for numerous spatial domain processing techniques. Histogram 

manipulation, in addition to providing useful image statistics, can also  be very useful 

when using image enhancement techniques Histograms are simple to implement in  

software and usually cheaper for hardware implementations, thus making them a 

popular tool. 

 

An image with low contrast has a narrow histogram, usually centered toward the middle 

of the grayscale, while a high-contrast image has the characteristics of covering a broad 

range of the grayscale and, in addition, having the pixels almost uniformly distributed. 



High contrast images present very few vertical lines in the histogram that are much 

higher than the others. A high contrast image will exhibit a large variety of gray tones 

and great detail and also will have high dynamic range.  

 

 

Figure 3: Examples of Histogram diagram for different kinds of pictures. [18] 

 

2.2.2.1 Histogram Equalization 

 

Let’s assume that a given image has a continuous range of intensity levels from 0 to 1 

and let p(r) be the probability density function (PDF) of the intensity levels. We proceed 

to perform the transformation: 


r

dwwprTs
0

)()(       (1) 

Gonzalez and Woods [18] show that the output of such a system will have a uniform 

PDF at the output po(s), thus: 
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The result, then, will consist on an image whose intensity is distributed equally 

throughout the range, or, in other words, a high contrast image. From the equation, it is 

clear that T(r) is simply, the cumulative distribution function (CDF) of the system. 

 

If instead of continuous signals, we are working with discrete intensity levels, then p(rj} 

is really the normalized histogram of the input image with j=0,1,2...L being the discrete 

intensity levels and the transformation T(rk) is then known as the Histogram 

Equalization. Since we are working with discrete values, integration becomes 

summation and the transform function is then 
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where nj is the number of pixels with the intensity level j and n the total number of 

pixels.   

 

Due to the discrete nature in the system, the output will not be completely uniform, 

although its dynamic range will increase dramatically. In Figure 3: Examples of 

Histogram diagram for different kinds of pictures. [18], the image in the lower right is 

the histogram-equalized version of the image in the upper left. 

 

It is important to note that by using histogram equalization the image is going to have 

its contrast enhanced, but that does not necessarily means that is going to be better 
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visually, For this study the contrast enhancement is performed as a middle step and 

therefore is not important if the image  is better visually or not since this step is 

transparent to the user. 

 

2.2.3 Background Subtraction 

 

The Background Modeling and Foreground Extraction blocks mentioned in section 2.1 

can be merged into a single block denoted Background Subtraction. This block 

represents one of the most common approaches to the problem of detecting moving 

objects in video sequences. In the background subtraction scheme, each frame is 

individually compared to a reference background model pixel by pixel. the current pixel 

deviates significantly from the background model, it is considered to be a foreground 

object and labeled as foreground. Background subtraction is thus usually the first step 

prior to other implementations such as position tracking, velocity of the objects and the 

alarm system.  

 

Several background subtraction algorithms have been proposed, each of them with its 

own advantages and limitations. There are, however, certain requirements. The 

algorithm must be robust; it must adapt to changes in the environment such as wind, 

rain or illumination changes; it must be fast enough so that the information being 

analyzed is still meaningful; and lastly it must consume as little computing resources as 

possible. 



The algorithm used to separate the foreground from the background impacts the 

quantity of noise present in the output. Figure 4 shows the background subtraction 

process.  

 

 

Figure 4. Background subtraction process, background model (left), input frame (center) and 

foreground extraction (right). 

 

Some of the most frequently used background subtraction techniques are: [19]: 

 

 Frame differencing: This method is perhaps the simplest background 

subtraction method available. In this method, each frame is subtracted from the 

previous frame and the difference is then compared with a threshold. If the 

difference is bigger than the threshold then the pixel is foreground, otherwise it 

is background. The equation of the algorithm is as follows: 

ThresholdFramesFramesForeground ii  1   (4) 

This approach has two important advantages. First, the fact that the background 

is constantly changing makes this algorithm a fast adapting one. It adapts 

quickly to changes in illumination and shadows as well as to changes in the 

 15



 16

weather conditions of the video.  Besides, is simple to implement and therefore 

it is fast and consumes less resources than other approaches. 

 

But it has also serious flaws. All the objects must be moving constantly because 

the moment they stop they will be recognized as background in subsequent 

frames. Furthermore, the inside of the objects would be recognized as 

background if the objects are big enough with little internal structure.  

 

 Temporal median filter: In this algorithm, the information from previous 

frames is accumulated in order to get the average value for each pixel [20]. The 

median method creates a buffer of the last N frames and models the background 

as the median of those frames. This approach has proven to be very robust and 

have good performance in most applications. It is also very adaptative as the 

frame difference approach (although not as fast to adapt). However, this 

approach consumes a lot of memory resources as it is necessary to store several 

frames. 

 

 Approximate Median Method: A good approximation to the median 

approach was created by McFarlane and Schofield in 1995 and is currently 

known as the approximate median method.  In this method each pixel in the 

current frame is compared with the one in the background, if the pixel in the 

current frame is larger then the background intensity is incremented by one, if 

on the other hand the background pixel is larger then it is decreased by one. The 



background will then tend to be a good approximation of the median being the 

time of stabilization a function of the number, the size and velocity of the 

objects moving. This method will have less memory usage at the expense of 

some stabilization time 

 

 Mixture of Gaussians (MoG): This technique takes into account 

changing elements in the background such as moving trees or falling snow. In 

order to create the model of the background, a combination of different 

Gaussian pdf’s is required to model each pixel [21]. 

 

In MoG, the background is not modeled as a frame of values. Instead, the model 

is purely parametric with each pixel location represented by a number (mixture) 

of Gaussian functions that sum together to form a probability distribution 

function of the form: 

 (5) 

The μ corresponds to the mean of each Gaussian component that can be thought 

of as an educated guess of the pixel value in the next frame assuming that pixels 

are usually background. The ω, which is the weight, and the σ which is the 

standard deviation of each component, can be thought as measures of our 

confidence in that guess (higher weight and lower standard deviation equals 

higher confidence). There are usually 3 to 5 Gaussian components per pixel, 

depending on memory limitations. 

 17
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To determine if a given pixel is part of the background, a comparison is made 

between the current pixel to the Gaussian components tracking it. If the pixel 

value is within a scaling factor of one of component's standard deviation σ, then 

it is considered part of the background. Otherwise, it's foreground.  

 

 Running Gaussian average: In this approach, a Gaussian probability 

density function (pdf) is compared to the last n frames of a video sequence, and 

the average for each pixel is updated according to its previous values [22].it is a 

mixture between the Gaussian and the median approximation. 

 

 Kernel density estimation (KDE): The KDE calculates the pdf of a 

random variable, instead of assuming a Gaussian distribution for each pixel, the 

“true” pdf is extracted according to the values of previous frames [23]. 

 

 Co-occurrence of image variations: Blocks are used over individual 

pixels. It is based on the fact that neighboring blocks of pixels belonging to the 

background should experience similar variations over time [24]. 

 

 Eigenbackgrounds: In this technique eigenvectors1 of the background 

are obtained by averaging a specific number of frames. The new frames are then 

projected to the eigenspace and back again to the image space; in this process 
 

1 “Let A be a p by p matrix and w a p-element vector. If it is true that Aw =  w for some scalar  , then w 
is an eigenvector of A and l is the corresponding eigenvalue. That is, an eigenvector of a matrix is a 
vector such that when we multiply the matrix by the vector we get the vector back again except that it has 
been multiplied by a particular constant, called the eigenvalue” [25] 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Random_variable
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the static portions of the sequence are revealed. The frame is then subtracted 

from the model therefore obtaining the foreground and background components 

([25],[26]). 

 

2.2.4 Morphological filtering [11] 

 

Morphology is technique for the analysis and processing of geometrical structures based 

on set and lattice theory.  Let Z be the set of integers. The sampling process used to 

transform the continuous environment in a digital image may be organized as a grid on 

the XY-plane, if each center of the grid is associated with an integer pair of numbers 

(x,y) and is assigned a intensity value (which could be a real number) then the image is 

said to be a digital image. 

 

Groups of neighboring grid centers (referred to in imaging processing as pixels) can be 

thought as sets, and Boolean algebra can be applied to them. Morphological operations 

are then Boolean algebraic operations applied to the mapping of selected regions in a 

digital image. They can perform tasks such as finding the skeleton of a figure, filtering 

and restoration. To apply such methods we first transform the digital image into a 

binary one where the meaningful sectors are labeled one and the rest labeled zero. 

 



 

Figure 5: Basic Boolean operations. 

 

2.2.4.1 Dilation and Erosion 

 

Dilation and erosion are the building blocks of many operations in morphological image 

processing. 

 

 Dilation is an operation that enlarges the objects present in a binary 

image.  The extent to which the objects grow depends on a controlling object 

referred to as the structuring element. 

 

E being the entire grid system, dilation is defined mathematically as: 
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(6) 

In the equation, Bs is the symmetric of B, which means Bs is the group of 

elements b such that –b belongs to B.  In other words, the dilation of image A by 

the structuring element B is the set consisting of all structuring element locations 

when the symmetric of B overlaps with at least a portion of A. In that sense, 

dilation behaves in a similar manner to the 2-D convolution, and like 

convolution, dilation is commutative . 

   (7) 

 

 

Figure 6: Example of dilation (green blocks are the ones added to the original). 
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 Erosion is the opposite of dilation; it shrinks the objects present in a 

binary image, the extent to which the objects thin depending again on a 

controlling object referred to as the structuring element. 

 

E being the entire grid system, mathematically, dilation is defined as: 

   (8) 

Which means that the erosion of A by B is the set of all structuring element 

locations where the structuring element does not overlap with the background of 

A. Note that erosion is not commutative. 

 

 

Figure 7: Example of erosion (the green blocks are the ones that will disappear from the image). 
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2.2.4.2 Opening and Closing. 

 

 Opening is simply the erosion of A by a structuring element B followed 

by a dilation of the output by the same structuring element. In synthesis: 

  (9) 

Opening is then the Union of all possible locations of structuring element B 

where B  fits entirely inside A. 

 

 

Figure 8: Example of Opening. 
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Figure 9: Example of Opening in a more complex binary image (structuring element a 20 pixel 

square). 

 

 Closing is simply the dilation of A by a structuring element B followed 

by an erosion of the output by the same structuring element. In synthesis: 

   (10) 

Closing is then the complement of the union of all possible locations of 

structuring element B where B fits entirely outside A. 
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Figure 10: Example of closing. 
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Figure 11: Example of closing with a more complex binary image (structuring element a 20 pixel 

square) 

 

2.2.5 Tracking  

 

Several solutions have been explored to the problem of tracking objects across multiple 

frames. A classification can be made according to the way they combine the following 

set of parameters [27]: 
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 Object representation: Objects can be represented according to their shapes 

(primitive shapes, silhouettes, contour, etc) and appearances (templates, active 

and multiview models, probability densities, etc). The representations depend 

greatly on the application. For small objects, point representation is appropriate 

in video sequences. 

 

 Feature selection for tracking: The object should be distinguishable from 

any other object present in the scene. For that purpose, tracking systems could 

look for a particular feature that is unique to the object. Among the features we 

find: color, edges, optical flow, and texture. The most common feature is color; 

however, combinations of different features usually improve tracking 

performance. 

 

 Object detection: Every tracking method requires mechanisms for finding 

new objects. Classification can be made between techniques that achieve this 

goal by using information from a single frame and techniques that use 

accumulated information from a sequence of frames, such as background 

subtraction techniques. 

 

 Object Tracking: Correlates the different instances of an object along the 

frames that compose a video sequence. The output of this block is the object’s 

trajectory.  

 



A synthesis of the parameter taxonomy of the tracking system is shown in Figure 12: 

Taxonomy of tracking parameters [28]. 

 

 

Figure 12: Taxonomy of tracking parameters 

 

2.2.6 Finite State Machines [29] 

 

A Finite State Machine (FSM) is an abstract machine that is used to describe behavior. 

It consists in a set of states, a set of inputs events, a set of outputs, and a set of transition 

functions which completely describe the behavior of a system.   The current state of a 
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FSM is determined by the past events of the system and by the events occurring at the 

moment. If the event occurring fulfills certain conditions, then a transition between 

states occurs. The general  logic of a FSM can be seen in Figure 13. 

 

 

Figure 13: Finite State Machine Logic. 

 

A FSM can be represented graphically with a state diagram similar to the one depicted 

in Figure 14: State diagram.. 

 

 

Figure 14: State diagram. 
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When the output of the FSM depends on the current state as well as on the input, the 

FSM is known as a Mealy machine.
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Chapter 3 PROPOSED SOLUTION 

 

3.1 General Description 

 

The proposed solution follows the guidelines of surveillance systems highlighted in 

Chapter 2.  This version of the system is not intended to work in real time due to 

restrictions in memory usage and computational resources. Instead, a sample video is 

collected and processed in order to obtain the needed information; the system then 

analyzes this information and displays it so that the user can see the results in different 

forms. 

 

3.1.1 Block Diagram 

 

Figure 15: Block Diagram. shows the general block diagram for the proposed solution: 



 

Figure 15: Block Diagram.  

 

The Preprocessing block receives the information from the source and transforms it so 

that the essential information from the video is analyzed while unimportant information 

is ignored. The Background Modeling block receives the preprocessed information and 

separates the background from the foreground. Once modeled, the Information 

Extraction block obtains important data from the background and foreground. Lastly, 

the Postprocessing block receives and organizes this data so that the user can visualize 

the results obtained. 

 

3.2 Detailed Description 
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3.2.1 Preprocessing 

 

3.2.1.1 Block Diagram 

 

The Block diagram for the preprocessing block is composed of four stages: a Data 

Acquisition block, where the information from the camera is received; a Color-to-

grayscale converter block, where the data is transferred to grayscale matrix form;  a 

prompt requesting the user to choose regions of importance that take advantage of the 

knowledge of the scene in the process; and, finally, an Image Enhancement block, 

where there is further data manipulation to optimize the information extracted. 

 

 

Figure 16: Block diagram of the Preprocessing. 

 

3.2.1.2 Data Acquisition 
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The Data Acquisition block receives the video stream from the surveillance camera, 

decompress the data if compressed, and transform it from color-indexed to truecolor 

form if necessary. 

 

The output of this block is a 4-D matrix containing the color video information. This 

matrix will also be used in the post processing block in order to present the results to the 

user. 

 

3.2.1.3 Color to Grayscale Converter 

 

In regular high definition object recognition systems, color may give important 

information about the nature of the object. For example, in one study, color is used for 

human recognition in high-definition images by exploiting the fact that skin color in 

human beings has a distinctive distribution in the chromaticity diagram [30]. 

 

However, as the objects become smaller or are located farther away from the camera, 

color information is less important except with respect to contrast. Since contrast can be 

achieved also in grayscale, and since grayscale video leads to systems more 

computationally efficient (use less memory and are usually faster) for background 

modeling analysis, the  conversion is preferred. 
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3.2.1.4 Region of Importance 

 

When objects occupy just a few pixels in a scene, there are usually important portions 

of the video sequence where the presence of objects of such characteristics is unlikely 

or unimportant. Security applications may require some regions to be attended while 

others can be ignored. Furthermore, through the setting regions of importance (ROI), 

inevitable noise coming from unimportant regions can be ignored with a resulting 

improvement in overall response of the system and computing resources management. 

 

Because regions of importance depend on so many factors, user-created ROIs are 

preferred over automatic approaches.  The system employed in this study requires that 

the user draw with the mouse the ROI. A binary mask of the ROI is then created and 

applied to the video after the image enhancement. 

 

3.2.1.5 Image Enhancement 

 

A small object can be sensed if its contrast is large enough for our visual system (or the 

computer vision system) to detect. Contrast depends on multiple factors such as color 

difference (not only hue difference but saturation and brightness as well), level of 

illumination of the scene, quality of the camera, etc. 
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Although most of these features are out of the control of the object detection system, 

some improvement can be achieved through the application of image processing 

techniques. For our system we implement histogram equalization to the image in order 

to enhance the contrast between foreground objects and the background.  

 

3.2.2 Background Modeling 

 

3.2.2.1 Block Diagram 

 

The block diagram for the Background Modeling Block is composed of two stages. The 

first stage selects which of the three types of background subtraction algorithm is to be 

used, while the second stage actually implements the algorithm on the video, separating 

the foreground from the background. The input of this stage is the video after the 

histogram enhancement and with the unimportant regions extracted. The output is a 

binary video with zero representing the background and 1 representing the foreground 

pixels. 

 



FROM PREPROCESSING 
BLOCK ALGORITHM SELECTOR

FRAME DIFFERENCE

APPROXIMATE MEDIAN

MIXTURE OF GAUSSIANS

TO INFORMATION 
EXTRACTION BLOCK

 

Figure 17: Block diagram of the Background Subtraction algorithm. 

 

3.2.2.2 Algorithm Selector 

 

The Algorithm selector prompts the user to choose between three background 

subtraction algorithms:  Frame difference, Approximate Median, and Mixture of 

Gaussians. These three algorithms were explained in section 2.2.3.  

 

3.2.2.3 Algorithm Implementation 

 

According to the Algorithm Selector, the program implements one of the three 

algorithms available. The three algorithms were selected because they are quite 

different in their approach. Frame difference is very fast and easy to implement but is 

susceptible to noise and requires continuous movement, as explained in section 2.2.3. 
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Mixture of Gaussians is complex and elegant but takes a significant amount of time and 

computer resources, and its optimization is more difficult due to it having many 

variables (the other two implementations only have one variable). Finally, Approximate 

Median is of middle complexity, being as easy to optimize as the frame difference 

method but with added robustness and being less susceptible to noise. 

 

The three algorithms have as output a binary image for each frame of the video, with 

zero representing the background and one representing the foreground. The images still 

contain some noise due to the different conditions of the video sequence. 

 

3.2.3 Information Extraction 

 

3.2.3.1 Block Diagram 

 

The block diagram for the Information Extraction Block is composed of two stages. The 

first stage is a morphological filtering that handles the noise present after the 

background subtraction. The second stage is a tracking and information extraction 

system, which analyses the images and provides information about objects present in 

the video and their properties (position, velocity, etc). 

 

Figure 18: Information Extraction Block diagram. 
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3.2.3.2 Morphological Filtering 

 

The result of the background subtraction operator contains some unwanted noise. The 

morphological filtering operation is intended to reduce the noise as much as possible. 

Morphological filtering  in background subtraction systems but in the case of low 

resolution objects  special care has to be taken. 

 

Due to the nature of the object (objects occupying just a few pixels), a morphological 

operation could easily either remove important information (even remove the object 

entirely) or allow noise to pass.  The morphological filters were chosen to reduce 

spatially small noise components. Noise comparable to or bigger in size to the object is 

handled partially in the selection of the Region of Interest (section 3.2.1.4) and partially 

by the buffering system in the tracking algorithm (section 3.2.3.3). 

 

3.2.3.3 Tracking System 

 

.The tracking system implemented is a Mealy finite state machine with three definite 

states:  a buffer state, an active state, and an inactive state. The diagram is shown in 

Figure 19: Tracking system state diagram. 

 



UPDATE

 

Figure 19: Tracking system state diagram. 

 

 Buffer State: When a new object is detected, the buffer state keeps track of the 

object in the first three frames; this is done to avoid the appearance of ghost 

objects 

 

The buffer state saves system resources by allowing the FSM to keep track only 

of persistent objects in the video. When the object has been in the buffer state 
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for three consecutive frames, its information is compared with that of the 

Inactive State to check if the new object is in fact an old object that previously 

disappeared due to an occlusion.  If no object in the inactive list is comparable to 

the new object, then the object is labeled as a new object and its information is 

transferred to the Active State. 

 

 Active State:  The active state keeps track of the objects while they are present in 

the video and after they have passed the buffer state. The active state keeps track 

of the centroid position, past centroid positions, and the index for each of the 

pixels that compose the object.  

 

If an active object disappears in the middle of the video, the ID of the object is 

stored in the Inactive State. and the Active State stops tracking it until the buffer 

state finds a match between a new object that appeared in the middle of the 

video and the stored inactive object. When that happens, the buffer state 

transfers the information to the Active State and the tracking is resumed.  

 

 Inactive State: The inactive state is the only state of the system where 

information about the physical properties of the object is not stored or generated. 

Instead, it keeps a list of IDs or pointers of the objects that were being tracked 

by the Active State and that disappeared in the middle of the video, probably 

because of an occlusion.  

 



When an object is ready to go out of the buffer state, the inactive state sends the 

ID to the buffer state where a comparison is made to check whether or not the 

new object is in fact an inactive object reappearing. 

 

To determine if an object in the current frame is the updated version of an object being 

tracked, the first step is to create an extended bounding box around the object being 

tracked and check for centroids of objects inside this region in the current frame.  If 

there is only one object in that region, then it is considered a match and the information 

for that object is updated accordingly. If, on the other hand, there are more than one 

object inside the region, the system compares the object sizes of the candidates with that 

of the previous frame to decide which one is a match. Lastly, if there are no matches, 

the object is either discarded or transferred to the inactive state if it has been a persistent 

object An object is considered persistent when it has been in the active list for some 

minimum number of frames. The process can be seen in Figure 20: Object tracking 

based on bounding box and centroid position.. 

 

 

Figure 20: Object tracking based on bounding box and centroid position. 
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3.2.4 Postprocessing 

 

3.2.4.1 Block Diagram 

 

The post processing stage organizes the data obtained from the data extraction stage and 

presents it to the user.  The data generated is a video presentation, which is a 

visualization of the results, and a cell containing all the information (centroid, bounding 

box, pixels coordinates and instantaneous velocity) from each object tracked by the 

system along the frames where the object was present. The block diagram is as follows: 

 

 

Figure 21:  Postprocessing Block Diagram. 

 

3.2.4.2 Video Presentation 
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The video presentation generates an output video that is like the original video but with 

the objects detected being circled and the trajectory highlighted,  The video presentation 

does not present exact data but it gives a good idea of how the system is behaving. It is 

also an ideal early alarm system telling the user where the activity is in the video so that 

the user can understand the data from the cell. 

 

3.2.4.3 Data Cell 

 

A cell is a matrix where each of its elements is of different nature (e.g., one of the 

elements is a vector, another one is a matrix, another is a string of characters, etc). The 

cell generated by the program stores information from new objects such as the frame in 

which it appeared, the history of the position  of the centroid and the list of pixels of the 

object, the bounding box information, and the instantaneous velocity. 
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Chapter 4 IMPLEMENTATION 
 

MATLAB Version 7.6 and its Image Processing Toolbox (IPT) Version 6.1 were the 

main tools used to implement the algorithms. Four MATLAB functions were created 

for the system: 

 

 Function preproc.m: Implements all the preprocessing operations from data 

acquisition up until region of importance analysis. 

 

 Function bgsub.m:  Implements the background subtraction selecting between 

three different types of algorithms. It is a part of the background modeling 

block. 

 

 Function morfil.m: Implements the morphological filtering. It is .part of the 

background modeling block. 

 

 Function Tracksys.m:  Implements the tracking system, data analysis, and the 

post processing operations. 



The following is the flowchart of the functions with their respective inputs, outputs, and 

the block to which each of them belongs. 

 

A
V

I

FG
M
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trackingdata

 

Figure 22: Functional flowchart. 

 

4.1 Preprocessing 

 

4.1.1 Data Acquisition 
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Before running the program the video should be in AVI format, so if the original video 

is in another format such as MPG, WMV or MOV a conversion is needed prior to the 

operation. The freeware Simplified Universal Player Encoder and Renderer (SUPER©) 

from eRightSoft [31] were used when it was necessary to convert formats.  

 

From the AVI file, information is extracted using the aviinfo function from the IPT. If 

the video is in indexed color format it is first converted to RGB format using IPT 

function ind2rgb. With the function aviread, the RGB AVI video is then stored in a 4-D 

matrix structure named videooriginal with dimensions height, width, number of frames, 

and a fourth dimension of magnitude three for storing separately the R, G and B 

component of the video.  

 

videoinfo=aviinfo('C:\MATLAB\R2006a\work\TESIS\prueba.avi'); 
switch videoinfo.ImageType 
    case 'truecolor' 
video=aviread('C:\MATLAB\R2006a\work\TESIS\prueba.avi'); 
    case 'indexed' 
video=aviread('C:\MATLAB\R2006a\work\TESIS\prueba.avi'); 
video=ind2rgb(video); 
end 

 

4.1.2 Color to Grayscale Converter 

 

The conversion from color to grayscale is performed by the IPT function rgb2gray, and 

the grayscale version of the video is then stored in a 3-D matrix named videogray. 

 

videogray=zeros(videoinfo.Height,videoinfo.Width,videoinfo.NumFrames,'
uint8'); 
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for n=1:videoinfo.NumFrames 
     videogray(:,:,n)=rgb2gray(video(n).cdata); 
end 

 

4.1.3 Region of Importance 

 

The mask of the Region of Importance is generated using function roipoly from the IPT. 

As a sample to be displayed to the user, the program shows the second frame.  

 

baseimage=videogray(:,:,2); 

 

The user is then prompted to draw a polygon with the mouse around the ROI. After the 

enter key is pressed the user is asked whether another ROI is needed for the image or 

not. This is because some images may have different ROIs that are not connected.  

 

baseimage=videogray(:,:,2); 
[MASK R C]=roipoly(baseimage); 
question='y'; 
while question=='y' 
    clc 
    question=input('Do you want to declare another region of interest? 
(Y/N)\n','s'); 
    if question=='y' 
        [MASKTEM RTEM CTEM]=roipoly(I); 
        MASK=MASK|MASKTEM; 
    elseif question=='n' 
    else  
        error('wrong input') 
    end 
end 
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When the user tells the program that there are no more ROIs in that particular video, the 

MASK is then created and used to remove the unimportant regions. The result is stored 

in a 3-D Matrix named vidsol, which is the output of the preprocessing block. 

 

 MASKuint8=uint8(MASK); 
vidsol=zeros(videoinfo.Height,videoinfo.Width,videoinfo.NumFrames,'uin
t8'); 
for z=2:videoinfo.NumFrames 
     vidsol(:,:,z-1)=videogray(:,:,z).*MASKuint8; 
end 

 

4.1.4 Image Enhancement 

 

Function histeq performs histogram equalization in the video (see Section 2.2.2.1), In 

order to take real advantage of the function, there are some previous considerations to 

take into account. 

 

As seen in Section 4.1.3, the regions of importance are usually small regions where the 

analysis is in detail and hence where the enhancement of the contrast is most desired: 

the unimportant regions add pixels of different intensities; to take the histogram 

equalization over the whole scene could have the contrary effect of contrast 

enhancement. Take for example the scene depicted in Figure 23: Scene where 

histogram equalization over the whole picture will have an undesired effect.: 

 



 

Figure 23: Scene where histogram equalization over the whole picture will have an undesired effect. 

 

The region of importance is inside the red box. Since  the surrounding is visibly darker 

than the region of importance, a histogram equalization over the whole scene would 

enhance contrast of the whole picture leading to less contrast in the region of 

importance due to the histogram compensating for the dark region. 

 

To avoid this, preproc.m takes the values inside the region of importance and extracts 

the mean over those values; it then assigns the mean value to the unimportant region. 

This is done by creating an ANTIMASK (the negative of the MASK obtained in 4.1.3) 

and multiplying it by the mean and storing it in variable meanmask.  The system then 

adds the meanmask to the vidsol obtained from the previous section and stores the new 

video in variable vidhis. Finally, histeq is perform over vidhis, and the video is once 

again masked and stored in variable vidsol. 
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        ANTIMASK=~MASK; 
        [I,J,V] = find(vidsol(:,:,2)); 
        meanbck=floor(mean(V)); 
        ANTIMASKuint8=uint8(ANTIMASK); 
        meanmask=ANTIMASKuint8*meanbck; 
         
        for z=1:videoinfo.NumFrames 
            vidhis(:,:,z)=vidsol(:,:,z)+meanmask; 
        end 
 
        for n=1:videoinfo.NumFrames 
            vidhiseq(:,:,n)=histeq(vidhis(:,:,n)); 
        end 
         
        for n=1:videoinfo.NumFrames 
            vidsol(:,:,n)=vidhiseq(:,:,n).*MASKuint8; 
        end 

 

4.2 Background Subtraction 

 

The Background subtraction block (selector and implementation) are all executed 

simultaneously. 

 

4.2.1 Algorithm Selection 

 

The background subtraction algorithm is implemented in the MATLAB function bgsub. 

The selection of the algorithm is made in the calling of the function. 

 

function [FGM time] = bgsub(vidsol,varargin), 
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where FGM is the output video with the background pixels at zero value and the 

foreground pixels at one, and time stores how many seconds the program took to 

analyze the video. The different options to call bgsub are: 

 

 bgsub(vidsol,'FrameDifference', threshold):  Uses the frame difference 

algorithm to analyze the video vidsol. The variable threshold set the comparison 

parameter of the frame difference algorithm (see Sections 2.2.3 and 3.2.2.3) 

 

 bgsub(vidsol,'ApproxMedian', threshold):  Uses the approximate median 

algorithm to analyze the video vidsol. The variable Threshold sets the 

comparison parameter similar to the frame difference method (see Sections 2.2.3 

and 3.2.2.3) 

 

 bgsub(vidsol,'MoG', threshold, components, sdthreshold, alpha, initialsd): Uses 

the Mixture of Gaussians algorithm. Threshold is the comparison parameter, 

components are the number of Gaussian components (typically 3 to 5), 

sdthreshold is the positive deviation threshold, alpha is the learning rate, and 

initialsd is the initial standard deviation value (see the set of equations 8 in 

Section 4.2.2.3) 

 

If the parameters are not specified so that only vidsol and method are given, the system 

takes the default values specified in Section 4.2.2.3. 
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4.2.2 Algorithm implementation 

 

4.2.2.1 Frame Difference 

 
The first frame is used as the base background and stored in the bg variable. The 

threshold is set to 70 and temporary processing variables are declared. 

 

thr=70; 
bg=vidsol(:,:,1); 
 [Height Width Numframes]=size(vidsol); 
fg = zeros(Height, Width); 
FGMfd=zeros(Height, Width ,Numframes-1); 

 

The frame is then compared with bg pixel by pixel. If the absolute difference between 

the pixels is above the threshold the pixel is set to 255, otherwise the pixel is set to 0. 

After the image for that particular frame is created, bg is set to take the value of the 

current frame and the process starts again. 

 

for n = 2:Numframes 
    diframes = abs(double(vidsol(:,:,n)) - double(bg));   
    for m=1:Width                
        for l=1:Height 
            if ((diframes(l,m) > thr)) 
                fg(l,m)=255; 
            else 
                fg(l,m) = 0; 
            end 
        end 
    end 
    bg=vidsol(:,:,n); 
    FGMfd(:,:,n-1)  = uint8(fg);            
end 

 



 54

At the end the foreground is stored in the 3-D Matrix FGMfd. 

  

4.2.2.2 Approximate Median 

 

The approximate median follows the same steps as the frame difference method. The 

difference is that bg is not replaced for the current frame at the end. Threshold is set in 

50 in this case. 

 

thr=50; 
bg=vidsol(:,:,1); 
 [Height Width Numframes]=size(vidsol); 
fg = zeros(Height, Width); 
BGM=zeros(Height, Width ,Numframes-1); 
FGMam=zeros(Height, Width ,Numframes-1) 

 

Instead of merely replacing the entire bg with the current frame, the first frame is used 

as a model and after the frame difference comparison, if the value for a particular pixel 

in the current frame is greater than the stored value in bg, the pixel in bg is updated by 

increasing its model value by 1. If, on the other hand, the value of the intensity of a 

particular pixel in the current frame is less than its bg model counterpart, then the bg 

model pixel intensity is decreased by 1. At the end the foreground is stored in the 3-D 

Matrix FGMam and background in the 3-D Matrix BGM. 

 

for n = 2:Numframes 
    diframes = abs(double(vidsol(:,:,n)) - double(bg));   
    diframes = uint8(diframes); 
    for m=1:Width                 
        for l=1:Height 
            if ((diframes(l,m) > thr)) 
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                fg(l,m) = 255; 
            else 
                fg(l,m) = 0; 
            end 
            if (vidsol(l,m,n) > bg(l,m))           
            bg(l,m) = bg(l,m) + 1;            
            elseif (vidsol(l,m,n) < bg(l,m)) 
            bg(l,m) = bg(l,m) - 1;      
            end 
        end 
    end 
FGMam(:,:,n-1)  = fg;           
BGM(:,:,n-1)  = bg;  
end 

 

4.2.2.3 Mixture of Gaussians 

 

As stated in section 2.2.3, for a Mixture of Gaussians algorithm to succeed, three to five 

Gaussian components are needed. In the system implemented for this work, three 

components were implemented mainly because of computational reasons. 

 

The initialization of variables is as follows; the values were chosen according to [21] 

with slight trial and error adjustments. 

 

Components = 3;                         % number of gaussian 
components  
M = 3;                                  % number of components 
Dev = 2.5;                                % positive deviation thr. 
alpha = 0.01;                           % learning rate  
threshold = 0.25;                          % foreground threshold 
initialsd = 6;                            % initial standard deviation  
w = zeros(Height,Width,Components);         % initialize weights array 
mean = zeros(Height,Width,Components);           % pixel means 
sd = zeros(Height,Width,Components);       % pixel standard deviations 
difframes = zeros(Height,Width,Components); % difference of each pixel   
p = alpha/(1/Components);                        % initial p variable  
rank = zeros(1,Components);                      % rank of components  

 



The mean 3-D matrix is initialized with random numbers between 1and 255, the 3-D 

weight matrix is initialized with 1/3 for each component, and the standard deviation 3-D 

matrix is initialized with the initial value of 6. 

 

for i=1:Height 
     for j=1:Width 
         for k=1:Components             

      mean(i,j,k) = rand*range;     % means random (0-255) 
             w(i,j,k) = 1/Components;    % weights uniformly dist 
             sd(i,j,k) = initialsd;      % initialize to 
initialsd             
         end 
     end 
end 

 

The frame difference operation is similar to the other algorithms implemented in the 

system, but this time, difframes is a 3-D matrix of three components instead of the 2-D 

matrix of the other methods. 

 

for m=1:Components 
    difframes(:,:,m) = abs(vidsoltemp - double(mean(:,:,m))); 
end 

 

For each pixel, if the absolute value of the difference is less than the positive deviation 

threshold multiplied by the standard deviation, there is a component match and the 

weights and standard deviation matrixes are updated as follows: 
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with α the learning rate, μ the mean, σ the standard deviation, pixel the current pixel 

value, and w the weight. 

 

If, on the other hand, the absolute value of the difference is more than the positive 

deviation threshold multiplied by the standard deviation, there is a no match and only 

the weight matrix is decreased, as follows: 

ww )1(         (11) 

 

ComponentMatch = 0; 
   for k=1:Components                        
        if (abs(difframes(i,j,k)) <= Dev*sd(i,j,k))        
           ComponentMatch = 1;                          %  
           w(i,j,k) = (1-alpha)*w(i,j,k) + alpha; 
           p = alpha/w(i,j,k);                   
           mean(i,j,k) = (1-p)*mean(i,j,k) + p*vidsoltemp(i,j); 
          sd(i,j,k) = sqrt((1-p)*(sd(i,j,k)^2) + 
p*(vidsoltemp(i,j) ...             - mean(i,j,k)).^2); 
         else                                     
           w(i,j,k) = (1-alpha)*w(i,j,k);      
         end 
    end 

             

The weights are normalized over the three components and the weight matrix is 

updated. The background is then updated by the mean multiplied by the weight. 

 

w(i,j,:) = w(i,j,:)./sum(w(i,j,:)); 
bg_bw(i,j)=0; 
for k=1:Components 

bg_bw(i,j) = bg_bw(i,j)+ mean(i,j,k)*w(i,j,k); 
end 

             

If there is no match, a new Gaussian component is created with the mean just obtained 

and the initial standard deviation. 
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 if (match == 0) 

[min_w, min_w_index] = min(w(i,j,:));   
      mean(i,j,min_w_index) = double(fr_bw(i,j)); 
      sd(i,j,min_w_index) = initialsd; 
end 

 

The confidence that the algorithm has that a given pixel is in the background is reflected 

by larger associated weights and smaller associated standard deviations. In this case w/σ 

will give a good measure of how confident the guess is. In order to model the new 

background we organize the component from the most confident to the least confident 

and take the first M components (M could vary and depends on computational 

resources). 

 

rank = w(i,j,:)./sd(i,j,:);                          
rank_ind = [1:1:Components]; 
for k=2:Components                

for m=1:(k-1) 
       if (rank(:,:,k) > rank(:,:,m))                      
                rank_temp = rank(:,:,m);   
                  rank(:,:,m) = rank(:,:,k); 
                  rank(:,:,k) = rank_temp; 
                  rank_ind_temp = rank_ind(m);   
                  rank_ind(m) = rank_ind(k); 
                  rank_ind(k) = rank_ind_temp;     

end 
  end 

             

The  foreground is then extracted by comparing it with the background model. 

 

            fg(i,j) = 0; 
            while ((match == 0)&&(k<=M)) 
  
                if (w(i,j,rank_ind(k)) >= threshold) 

   if (abs(difframes(i,j,rank_ind(k))) <=                        
Dev*sd(i,j,rank_ind(k))) 

                        fg(i,j) = 0; 
                        match = 1; 
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                    else 
                        fg(i,j) = fr_bw(i,j);      
                    end 
                end 
                k = k+1; 
            end 
        end 

 

The  result is stored in 3-D Matrix  FGM. 

 

4.3 Information Extraction 

 

4.3.1 Morphological Filtering 

 

For the morphological filtering, using IPT function bwmorph, we perform several tasks. 

First we remove isolated foreground pixels with ‘clean,’ isolated background pixels 

with ‘holes’ and ‘majority,’ and connect adjacent pixels with ‘bridge’: 

 

filtered(:,:,n)= bwmorph(FGMBW(:,:,n),'clean'); 
filtered(:,:,n) = bwmorph(filtered(:,:,n),'bridge'); 
filtered(:,:,n) = bwmorph(filtered(:,:,n),'close'); 
filtered(:,:,n) = bwmorph(filtered(:,:,n),'majority'); 
filtered(:,:,n) = imfill(filtered(:,:,n),'holes'); 

 

Finally we perform an opening operation using the 3-pixel shaped disk as the 

structuring element. 

 

se=strel('diamond',3); 
filtered(:,:,n)=imopen(FGMBW(:,:,n),se); 
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4.3.2 Tracking System 

 

The tracking system and the post processing block are implemented in the MATLAB 

function tracksys.m. The call for such a function is as follows: 

 

[videofinal trackingdata] = tracksysCHANGES(videooriginal,filtered) 
 

with videooriginal being the original color video, filtered being the output from the 

morphological filtering block, and videofinal and trackingdata being the video 

presentation and the cell as described in Section 3.2.4.3. 

 

The global variables and initial states of the most important variables of the function are 

as follows: 

 

buffer=3; 
height=tempsize(1);  
width=tempsize(2); 
persistency=9; 
externalbox = [ hormargin width-hormargin vermargin height-
vermargin ];  
labeledframe=zeros(height,width); 
activeIDlist=[]; 
inactiveIDlist=[]; 
bufferlist=[]; 
trackedlist=[]; 

 

These variables are important for the rest of the algorithm; Table 1 shows the purpose 

of each of the variables. 
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NAME FUNCTION 
buffer Determines the size of the buffer (default in 3). 
height Height of the video sequence. 
width Width of the video sequence. 
persistency The minimum number of frames an object should be being 

tracked before it can go to the inactive state. 
externalbox Is a margin created across the video in order to distinguish 

when an object appeared “in the middle” of the video (e.g. 
because it was being occluded or when it appeared because it 
just entered the sight of the camera. 

labeledframe Contains the information about the label of the objects for the 
current frame 

currentframestats Contains the statistical information about each object from 
the current frame. 

activeIDlist Keeps the list of pointers or IDs to each object being tracked 
inactiveIDlist Keeps the list of pointers or IDs to each object that 

disappeared inside the externalbox 
bufferlist Keeps all the information from the objects while they are still 

in the buffer state. 
trackedlist Keeps all the information from the objects that had being or 

are being tracked. 

Table 1: Tracking System variables. 

 

The system extracts the information from the current frame and stores it in the cell 

labeledframe. The information is obtained by first extracting the number of objects 

present in the frame with the IPT function bwlabel and then extracting the centroid, the 

list of pixels, and the bounding box with the IPT function regionprops. 

 

labeledframe=bwlabel(filtered(:,:,currentframe)); 
currentframestats = 

regionprops(labeledframe,'Centroid','PixelIdxList','BoundingBox'); 

The extended bounding box is created from the bounding box extracted from the 

regionprops with a 10 pixel extension in all directions. This is done because we are 

dealing with very small objects and hence with very small bounding boxes. If the 
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bounding box is small then objects moving fast would have their centroids outside the 

region. 

 

currentboundingbox = trackedlist(currentID).boundingbox; 
centroidrow = currentframestats(newobjectnumber).Centroid(2); 
centroidcolumn = currentframestats(newobjectnumber).Centroid(1); 
largerbox=zeros(1,4); 

if currentboundingbox(1)>10 
         largerbox(1)=currentboundingbox(1)-10; 
      else 
         largerbox(1)=0; 
      end 
      if currentboundingbox(2)>10 
         largerbox(2)=currentboundingbox(2)-10; 
      else 
         largerbox(2)=0; 
      end 
      if largerbox(1)+currentboundingbox(3)+20<width 
         largerbox(3)=largerbox(1)+currentboundingbox(3)+20; 
      else 
         largerbox(3)=width; 
      end 
      if largerbox(2)+currentboundingbox(4)+20<height 
         largerbox(4)=largerbox(2)+currentboundingbox(4)+20; 
      else 
         largerbox(4)=height; 
      end 

 

All the candidates are obtained by comparing the centroid of the objects with the 

extendedbox. Each candidate ID is stored in a temporal vector called possiblematch. 

 

       if centroidrow >= largerbox(2) && ... 
          centroidrow <= (largerbox(2) + largerbox(4)) && ... 
          centroidcolumn >= largerbox(1) && ... 
          centroidcolumn <= (largerbox(1) + largerbox(3)) 
          possiblematch = [possiblematch newobjectnumber]; 
       end 

 

The decision-making process of finding the match between the current object and the 

objects being tracked as explained in Section 3.2.3.3 is implemented as follows. 
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case 0                     
if size(trackedlist(currentID).Centroids,1)>persistency && ... 
  centroidrow >= externalbox(1) && ... 
  centroidrow <= externalbox(2) && ... 
  centroidcolumn >= externalbox(3) && ... 
  centroidcolumn <= externalbox(4) 
  inactiveIDlist=[inactiveIDlist currentID]; 
else    
  removefromactive = [removefromactive existentobjectnumber]; 
end 
case 1 
  matchID = possiblematch; 
trackedlist(currentID).Centroids = 

[trackedlist(currentID).Centroids; 
currentframestats(matchID).Centroid]; 
trackedlist(currentID).prevCentroid = 

currentframestats(matchID).Centroid; 
  trackedlist(currentID).boundingbox = 
currentframestats(matchID).BoundingBox; 
  trackedlist(currentID).PixelIdxList = 
currentframestats(matchID).PixelIdxList; 
   currentframestats(matchID) = []; 
otherwise 
   trackedobjectsize = length(trackedlist(currentID).PixelIdxList); 
   sizedifference = []; 
for candidatenumber = 1:length(possiblematch) 
   currentobjectsize =    
length(currentframestats(possiblematch(candidatenumber)).PixelIdxList)
; 
   sizedifference(candidatenumber) = abs(trackedobjectsize - 
currentobjectsize); 
end 
matchID = possiblematch(find(sizedifference == min(sizedifference))); 
matchID = matchID(1); 
%...Repeat steps from case 1 
End 

 

Note that when there are no candidates for a match, implying that the object 

disappeared from the scene, the system checks to determine whether the object was 

inside the externalbox when it disappeared. If so, it sets the pointer information to the 

inactive state. 

 

After all the objects from the active state have been attended, the next step is to track 

the objects from the buffer state. The way the system tracks objects in the buffer state is 
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similar to the way just showed for the active state with the exception that no pointer is 

ever sent to the inactive state; instead when an object disappears it is erased from the 

buffer. 

 

When an object has been in the buffer for three frames and its initial centroid was inside 

the externalbox, then the object is compared with the inactive list in size and distance 

from the last known location, and then a decision is made. If there is no match with the 

inactive list then the object is updated in the active list as a new one. 

 

if   centroidcolumnb >= externalbox(1) && ... 
     centroidcolumnb <= externalbox(2) && ... 
     centroidrowb >= externalbox(3) && ... 
     centroidrowb <= externalbox(4) && ... 
     length(inactiveIDlist)~=0 
     distance=[]; 

for currentinactive = 1:length(inactiveIDlist) 
currentdistance=sqrt((centroidrowb-

trackedlist(inactiveIDlist(currentinactive)).prevCentroid(
2))^2+ ... 

            (centroidcolumnb-
trackedlist(inactiveIDlist(currentinactive)).prevCentroid(1))^2); 
            distance=[distance currentdistance]; 
      end 
      [minvalue index]=min(distance); 
      activeIDlist=[activeIDlist inactiveIDlist(index)]; 

trackedlist(inactiveIDlist(index)).Centroids = 
[trackedlist(currentID).Centroids; 
bufferlist(bufferobjectnumber).Centroids]; 

trackedlist(inactiveIDlist(index)).prevCentroid = 
bufferlist(bufferobjectnumber).prevCentroid; 

trackedlist(inactiveIDlist(index)).boundingbox = 
bufferlist(bufferobjectnumber).boundingbox; 

trackedlist(inactiveIDlist(index)).PixelIdxList = 
bufferlist(bufferobjectnumber).PixelIdxList; 

                    removefrominactive = [removefrominactive index]; 
              removefrombufferlist = [removefrombufferlist 
bufferobjectnumber]; 

else 
      nextID = length(trackedlist) + 1; 

%...Fill information the same way as in the other part of the if 
statement. 

end 
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The remaining objects from labeledframe not yet identified are then new objects and 

handled in the following statement. 

 

    for remaininobjectnumber = 1:length(currentframestats)    
        bufferlist(length(bufferlist)+1).Centroids    = 
currentframestats(remaininobjectnumber).Centroid; 
        bufferlist(length(bufferlist)).prevCentroid   = 
currentframestats(remaininobjectnumber).Centroid; 
        bufferlist(length(bufferlist)).boundingbox    = 
currentframestats(remaininobjectnumber).BoundingBox; 
        bufferlist(length(bufferlist)).PixelIdxList   = 
currentframestats(remaininobjectnumber).PixelIdxList; 
    end 

 

4.4 Post processing 

 

4.4.1 Video Presentation 

 

At the beginning of the tracksys function videofinal is equated to videooriginal. After 

each frame is analyzed, videofinal is separated in its R,G, and B components. 

 

R = videofinal(:,:,1,currentframe); 
G = videofinal(:,:,2,currentframe); 
B = videofinal(:,:,3,currentframe); 

  

The trail is drawn in videofinal by connecting the different centroids using the function 

func_drawline [32]. The function func_drawline connects two points with a gray line. 

By manipulating each color separately we can choose a color for each object detected. 
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currentr = round(trackedlist(currentID).Centroids(centroidnumber,2)); 
currentc = round(trackedlist(currentID).Centroids(centroidnumber,1)); 
nextr = round(trackedlist(currentID).Centroids(centroidnumber + 1,2)); 
nextc = round(trackedlist(currentID).Centroids(centroidnumber + 1,1)); 
colorselector = mod(currentID,3); 
switch colorselector 
    case 0 
    R = func_Drawline(R,currentr,currentc,nextr,nextc,255); 
    G = func_Drawline(G,currentr,currentc,nextr,nextc,0); 
    B = func_Drawline(B,currentr,currentc,nextr,nextc,0);  
    case 1 
    R = func_Drawline(R,currentr,currentc,nextr,nextc,0); 
    G = func_Drawline(G,currentr,currentc,nextr,nextc,255); 
    B = func_Drawline(B,currentr,currentc,nextr,nextc,0);  
    otherwise 
    R = func_Drawline(R,currentr,currentc,nextr,nextc,0); 
    G = func_Drawline(G,currentr,currentc,nextr,nextc,0); 
    B = func_Drawline(B,currentr,currentc,nextr,nextc,255);  
end 

 

The system also draws the bounding box. The corners of the boundingbox are found as 

follows: 

 

r1 = floor(trackedlist(currentID).boundingbox(2)); 
c1 = floor(trackedlist(currentID).boundingbox(1)); 
r2 = floor(trackedlist(currentID).boundingbox(2) + 
trackedlist(currentID).boundingbox(4)); 
c2 = floor(trackedlist(currentID).boundingbox(1) + 
trackedlist(currentID).boundingbox(3)); 
 

Then the bounding box is drawn by connecting (c1,r1) with (c1,r2), (c1,r2) with (c2,r2), 

(c2,r2) with (c2,r1), and (c2,r1) with (c1,r1). 

 

R = func_Drawline(R,r1,c1,r1,c2,255); 
R = func_Drawline(R,r1,c2,r2,c2,255); 
R = func_Drawline(R,r2,c2,r2,c1,255); 
R = func_Drawline(R,r2,c1,r1,c1,255); 
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4.4.2 Data Cell 

 

The Data cell with all the information of the objects is called trackingdata. The 

information is obtained from the  trackedobject and activeIDlist cells. 

 

currentID = activeIDlist(existentobjectnumber); 
trackingdata(currentframe).object(existentobjectnumber).ID = 

currentID;      

trackingdata(currentframe).object(existentobjectnumber).boundingbox = 

trackedlist(currentID).boundingbox;      

trackingdata(currentframe).object(existentobjectnumber).currentpoint = 

trackedlist(currentID).prevCentroid; 

         

The instantaneous velocity is found by finding the distance between two contiguous 

centroids. 

 

numberofcentroids = size(trackedlist(currentID).Centroids,1); 
currentcentroid = trackedlist(currentID).prevCentroid; 
previouscentroid = trackedlist(currentID).Centroids(numberofcentroids-
1,:); 
trackingdata(currentframe).object(existentobjectnumber).velocity = 
round(norm(currentcentroid - previouscentroid)); 
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Chapter 5 EXPERIMENTS AND RESULTS 

 

In this chapter, a summary of the results that were obtained is provided. Three videos 

were fully analyzed, the first one with a person walking trough multiple occlusions, the 

same scene with the person running instead of walking, and a different scenario with 

two persons present and one occlusion. The scenes present manmade features such as 

walls and sidewalks and natural features such as sunlight and trees. 

 

All the programs were tested on two computers. The first computer is an HP-Pavilion 

dv5-1004nr Laptop PC with 2.1GHz AMD Turion X2 Mobile ZM-80 processor, 

4,096MB DDR2 SDRAM 667MHz, ATI Mobility Radeon HD 3200 video card, and 

Windows Vista Home Premium Edition. The version of MATLAB in that computer is 

Version 7.6.0.324 (R2008a), and the Image Processing Toolbox (IPT) installed is 

Version 6.1. The second computer is a Dell Precision Workstation 650 with Intel Xeon 

Dual Processor (3.06 GHz and 3.2 GHz respectively), 4GB of SDRAM, 128MB nVidia 

QuadroFX 1000 video card and Windows XP SP2 Professional. The version of 

MATLAB in that computer is Version 7.2.0.232 (R2006a) and the IPT installed is 

Version 5.2. 
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5.1 Preprocessing 

 

5.1.1 Data Acquisition and grayscale conversion 

 

When using the aviread function of the IPT, it is important to have in mind that AVI 

files can be created from a variety of compression codecs. In order for aviread to work 

properly, it is necessary to make sure that the proper codec is installed on the PC. The 

codec can be found with the aviinfo function.  

 

MATLAB has a serious limitation in memory usage, so the maximum size of the video 

that can be handled depends on the machine running the program. The Laptop could 

handle videos of up to 800 frames, while the workstation could handle videos of up to 

600 frames. The test videos had 314, 311 and 235 frames respectively. 

 

5.1.2 Region of Importance 

 

Figure 24: Example of selection of region of importance. shows a typical surveillance 

scene, with multiple paths, occlusions, and shades. The objective of the system is to 

detect objects that are near the building at the end of the scene in the orange and red 

regions. 

 



 

Figure 24: Example of selection of region of importance. 

 

From the scene, it is clear that the majority of the video provides no information to the 

task, Instead, it can be an important source of noise.  As can be seen, outside the region 

of importance there are shadows and vegetation that could affect negatively the 

background subtraction algorithm. 

 

The preproc function prompts the user to select the regions of importance with the 

mouse; after their selection a mask of the regions selected is applied. Note that the 

system has the capability of allowing multiple regions even though they are not joined.  

Also note that the regions do not have to be rectangular but can be polygonal.  
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Figure 25: Selection of the region of importance  

 

5.1.3 Image Enhancement 

 

The following test image was used to prove the contrast enhancing capability of the 

histogram equalization. 
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Figure 26: Contrast enhancement test image 

 

The image is divided in four quadrants each of them is painted with a shade of green in 

the value from 100 to 104. The MATLAB script testcontrast reads the image and then 

performs the histogram equalization. The output shows us the input test image and its 

histogram and the output contrast-enhanced image and its histogram. The result can be 

seen in the following Figure. 
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Figure 27: Contrast enhancement test. a) Input image,  b) output image, c) histogram of the input 

image, d) histogram of the output. 

 

Consider the following figure that shows a picture of the surface of the moon with poor 

contrast and its respective histogram: 
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Figure 28: Moon surface with poor contrast (image and histogram). 

 

After the histogram equalization, the change in the level of detail is evident. 
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Figure 29: Moon surface after the histogram equalization. 
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For the system, contrast enhancement is desired because it facilitates the differentiation 

between the object and the background. Consider the following figure that depicts a 

person walking in the distance and occupying just a few pixels. The shirt of the person 

has less contrast than the pants as can be appreciated in the color and grayscale versions 

of the image. Note how after the contrast enhancement, the object and the background 

tend to be mostly black and mostly white which makes the object easier to recognize.. 

 

 

Figure 30: Contrast enhancement applied to the videos. Video in color, grayscale, and contrast 

enhanced, respectively. 

 

The result is that more information can be extracted as more pixels from the objects are 

detected by the foreground. At the same time, there is more noise in the system due to 
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the contrast enhancement that will enhance changes in the scene as well as the object-

background contrast. 

 

 

Figure 31: Object with the histogram equalization versus object without contrast enhancement. 

.   

The image on the left has more information but the system has more overall noise, while 

the image on the .right has better noise handling but some information is lost in the 

process due to poor contrast in some regions. 

 

5.2 Background Subtraction 

 

One of the traditional methods for comparing background subtraction algorithms is the 

use of the ground-truth comparison [33].  In such a scheme, background subtraction 

algorithms are compared with images annotated by hand and the result is analyzed using 

detection theory techniques.   
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Figure 32: Ground truth example (manually annotated segmentation). 

 

In high-resolution images, ground Truth analysis is useful because the limits between 

objects and background are well defined. In low-resolution images, however, the object 

is blended with the background in such a way that for some regions it is not clear if a 

given pixel is a part of the object or the background. 

 

 

Figure 33: Very low resolution object. 
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Rather than through the ground-truth analysis, the algorithms were compared when 

applied to the same set of videos. Prior to the comparison, a tuning process was applied 

to the Frame Difference and the Approximate Median methods. The Mixture of 

Gaussian Method is a multivariate parametrical method and thus its tuning is rather 

complex. In this case, values were moved around the ideal set (see Section 4.2.2.3).  

 

5.2.1 Frame Difference 

 

With the same set of videos, the frame difference algorithm was applied with a varying 

value for the threshold.  For comparison, one particular frame of the video was chosen. 

The chosen frame was the one where the objects and a fair amount of noise were present. 

When the threshold is low enough, considerable noise from the background is leaked 

into the foreground.  On the other hand, when the threshold is too high, information from 

the foreground is lost, since the system understands it as background.  The objective is 

then to find a point where the most information from the foreground pixels remains 

while the level noise is reduced.  An example of the threshold comparisons follows. 

 



 

Figure 34:  Threshold comparison for the Frame Difference algorithm. 

 

The value of the threshold was varied from 10 to 120; the two objects present are clearly 

visible around the middle of the frame from a threshold value of 30.  For threshold 

values over 90 there is almost no noise, but the objects are disappearing as well. At 120, 

one of the objects is completely lost. 

 

The analysis of three videos showed that a threshold value of 70 exhibited a good 

balance between preventing noise from leaking and keeping the most information about 

the objects present.  For that reason, 70 is the default value for the frame difference 

algorithm, although the MATLAB function bgsub allows the user to change the 

threshold parameter from the call. 
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5.2.2 Approximate Median 

 

A technique similar to frame difference was applied to the Approximate Median. An 

example of the results is as follows: 

 

 

Figure 35:  Threshold test of the approximate median algorithm. 

 

Again the threshold is varied from 10 to 120.  Objects are visible even when the 

threshold value is 10, and information about the objects is retained until the threshold 

has a value of 60. Beyond that point information is clearly lost. 

 

From the analysis of three videos, a threshold value of 40 exhibits good balance and 

stability.  For that reason, 40 is the default value for the Approximate Median algorithm.  
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The MATLAB function bgsub allows the user to change the threshold parameter from 

the call. 

 

5.2.3 Mixture of Gaussians 

 

Because the Mixture of Gaussians algorithm has many parameters, the tuning problem 

was approached one parameter at a time, sweeping the algorithm for a particular 

parameter and then sweeping another parameter with the previous one fixed at the best 

response. This approach is far from ideal, since it does not take into account possible 

interaction between parameters. 

 

 

Figure 36: Parameter test of the mixture of Gaussians. 
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The figure shows a change in the threshold parameter between 0.25 and 0.75 in the top 

four images, a change in the learning rate between 0.01 and 1 in the middle four images, 



and a change in the positive deviation parameter in the bottom four images. The best 

results were stored as default for the bgsub function, although the user can change the 

parameters from the call. 

 

5.3 Morphological filtering 

 

To test the morphological filter, a random image was created using the Microsoft 

program Paint.  The image consists of three random object-like groups of pixels that can 

be seen in the following image: 

 

 

Figure 37: Test image for the morphological filter operation. 
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The test consisted then in adding artificial noise to this image and using the 

morphological filter to eliminate the noise. First random Gaussian noise was added with 

a normalized mean of 0.1 and a normalized variance of 0.007. 

 

 

Figure 38: Image with Gaussian random noise (left), same image after the morphological filter 

(right). 

 

The same procedure was repeated with Salt and Pepper noise, Poisson and Salt and 

Pepper noise, and with a randomly constructed noise created in paint. The results are as 

follows: 
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Figure 39: Image with Salt and Pepper noise and output (top), image with Poisson and salt and 

pepper noise and output (middle), and image with artificially constructed noise and output. 
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The morphological system was able to clean most of the noise with little loss of 

information of the images. Some of the noise remained as is expected but the reduced 

noise can be handled either by the region of importance or by the buffer state in the 

tracking system (see Sections  3.2.1.4 and 3.2.3.3). 

 

When the morphological operations were implemented in the test video, a reduction of 

the noise was appreciable: 

 

 

Figure 40: Grayscale image (bottom), background subtraction algorithm (top-left), and 

morphological filter output (top-right). 
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The noise that remained after the morphological filtering operation is due to vegetation 

moving with the wind. Note that the noise is in a region outside the usual region of 

importance, while the information loss of the foreground was acceptable.  

 

5.4 Information Extraction and post processing 

 

Each of the videos that were tested featured different scenarios. First a person is walking 

through multiple occlusions caused by nearby trees. The person occupies a maximum 

height of 18 pixels. The variable videofinal shows the tracking of the centroid trough the 

screen. 

 

 

Figure 41: Tracking  system. 
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 The handling of occlusions can be seen in the following figure: 

 

 

Figure 42: Occlusion handling of the tracking system. 

 

From the figure, the system stops tracking the object once it disappears due to the 

occlusion. As soon as the object reappears at the other side, the previous information is 

retrieved and updated with the new. 
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The second video is identical to the first but with the subject running instead of walking. 

This is intended to show that the system does not lose track of an object when it is 

moving faster. The final results are similar to those of Figure 42: Occlusion handling of 

the tracking system. 

 

The third video consisted of two persons, one walking while the other was almost still, 

as in hiding. The maximum height of either person in the video was 8 pixels. 

 

 

Figure 43: Tracking of video No. 3. 

 

The first object’s trajectory is being tracked as well as the second object (in red), which 

is barely moving. 
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The trackingdata cell stores the data obtained from the analysis., videofinal providing the 

visual aid but with the real information lying in the cell. The information from object 1 

in frame 30 can be seen as follows. 

 

 

Figure 44: The trackingdata cell. 

 

The cell is constructed so that information is easily retrieved for future developments. 

 

5.5 Time Analysis 

 

The following table shows the time in seconds that each algorithm spends on both 

computers. 
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LAPTOP WORKSTATION 
Video 1 Video 2 Video 3 Video 1  Video 2  Video 3 Block Function 
(311 Fr) (314 Fr) (235 Fr) (311 Fr) (314 Fr) (235 Fr)

preproc.m 
With His. 
Eq. 23.76 22.98 20.94 25.72 24.62 22.54Preprocessing 

Without  17.35 17.24 14.68 18.79 17.65 13.97
bgsub.m 

FrameDiff 8.86 8.00 6.78 8.02 7.54 5.67
ApproxMed 242.86 255.02 177.45 11.19 10.98 8.25
MoG 2461.08 2422.79 1807.44 1637.33 1681.16 1296.81

Background 
Mod. 

morfil.m 51.16 50.50 35.35 79.13 78.62 56.71
Info Extraction 
and 
Postprocessing tracksys.m 8.03 11.14 11.18 14.58 23.61 16.43

 

Table 2: Time analysis of the functions. 

 

As can be seen the preprocessing algorithm time depends mostly on whether or not 

histogram equalization is used, and post processing algorithm depends mostly on how 

many objects are present.  Also, morfil depends mostly on the video length. 

 

Certain results of the background subtraction algorithm are worth mentioning. The frame 

difference algorithm is fast, but very susceptible to noise, as seen in section 5.2.1. 

Approximate median is slower than the frame difference (although in the workstation it 

is almost as fast, perhaps because the workstation uses Windows XP while the laptop 

uses Windows Vista) but it provides more stability and less noise. Finally, Mixture of 

Gaussians, even though it is a high complexity algorithm, has a response and stability 

similar to or worse than the approximate median, but is 300 times slower.  
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

 

This chapter presents conclusions and directions for future work. 

 

6.1 Conclusions  

 
This thesis presented a working system for detection of low resolution objects in video 

sequences. 

 

The proposed system is capable of: 

 

 Detecting foreground objects in video sequences, proven to work with objects as 

small as 8 pixel of height and 15 pixels in total. 

 

 Tracking objects and accumulate data along their trajectories. 

 

 Handling occlusions. 

 

 Implementing three different background subtraction algorithms. 
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 Choosing several regions of importance in a video sequence. 

 

 Handling noise due to weather conditions, video conditions, or random noise by 

using a conjunction of four mechanisms: A selection of a region of importance, 

a selection of the background subtraction algorithm, the morphological filters 

operation, and the buffer state of the tracking system. 

 

On the other hand, the system is subject to the following restrictions: 

 

 A single, static camera setting. 

 

 Implementation time and memory capacity limits affect the video size and the 

amount of information that can be extracted. 

 

 Limited number of objects present on the video. The system was designed to 

handle objects as relevant events so limitation both in memory and time of 

analysis would limit the number of objects that can be present at a given time. 

 

 The system needs a minimum of contrast between the object and the background 

in order to work. 
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 The system needs for the object to be moving across the scene: a standing object 

or an object that is moving but stops doing so for a long time will eventually 

blend with the background and will therefore not be detectable. 

 

 The solution for the occlusion problem behaves relatively well with a small 

number of objects present, but it is very dependant in the condition of the scene. 

 

 A real time solution is not feasible with the current implementation unless more 

sophisticated equipment is used such as dedicated computing systems. 

 

Through study and experimentation, this work has reached the following conclusions: 

 

 The introduction of region of interest selection to the overall system improves 

the response of the system to noise such as climatic conditions, wind, and 

movement of shades. 

 

 The implementation of histogram equalization improves the contrast between 

the object and the background but also introduces more noise in the system. 

Depending on the application and the condition of the scene, the histogram 

equalization can be a useful technique. 

 

 Of the background subtraction algorithms implemented, the approximate median 

method turned out to be the best option for most applications because it is fast, 
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easy to implement, and handles noise relatively well. Frame difference is fast 

and easy to implement but very susceptible to noise and very dependant on 

continuous movement of the object. Finally, mixture of Gaussians handles noise 

relatively well but is very slow and very difficult to tune. 

 

 Morphological filtering proved to be a valuable method for removing noise that 

leaked from the background in the background subtraction operation. 

 

  The tracking system was able to detect and track objects occupying tens of 

pixels in the screen under controlled conditions such as relatively simple 

background, stable weather and lightning conditions. 

 

 In low resolution objects, color contrast between the object and the background 

is the feature that provides more information about the object. Ultimately it is 

this feature that permits the detection of such objects. 

 

 Information such as relative velocity, centroid, and position can be extracted 

from the system.  

 

 MATLAB proved to be an important tool when developing prototypes due to its 

built-in video processing and mathematical tools. For real time implementation 

the use of lower level languages is required. 
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 The separation of the problem into blocks was designed to permit future 

improvements in each of the four blocks. This is a system that can be improved 

in each of its blocks separately allowing for future implementation to use all or 

part of the blocks and improve others. 

 

6.2 Future Work 

 

Possible areas for future work related to this thesis include: 

 

 The data extracted in the cell trackingdata can be used for finding periodicity in 

the movement in order to help determine whether the object is human or not. 

 

 The information from cell trackingdata can also be used to find probable 

distance, velocity, and size of the object using the context of the scene as an aid. 

That would give the system more information about the nature of the object. 

 

 If an implementation in real time based on this system could be developed, 

videofinal will constitute a good early alarm device for security applications. 

 

 If a system with several cameras is used, the system could constitute a trigger 

event that will direct cameras that are closer to the object to track and focus on 

the object in order to extract more valuable information.. 
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 The region of importance can be improved if, instead of a binary mask, a  mask 

with several levels of importance can be implemented. The system then would 

not rule out any information but instead will organize the information according 

to its importance. 

 

 A system that automatically evaluates if histogram equalization is worthy could 

be developed. 

 

 More background subtraction algorithms have been implemented and 

researched; implementing the system with more complex background 

subtraction algorithms could improve the response of the system.  

 

 A more complex occlusion handling could involve probability and predictors; 

furthermore, more data can be incorporated in the tracking and the occlusion 

handling algorithm than merely position and size. 

 

 A wide variety of videos with varying conditions and objects could improve the 

overall evaluation of the system. 

 

 Optimization of the code, migration to other programming language, or 

hardware implementation must be taken into account for a real time 

implementation.
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Abstract: If moving objects in low-resolution 2D video imagery are placed in their 3D context, ambiguities 
concerning the identity of the objects can often be removed. We consider the case of detecting distant humans 
that subtend only tens of pixels in digital video. We also make observations on what appears to be a potential 
paradigm shift regarding what constitutes an image.  2007 Optical Society of America. 
 
OCIS codes: (100.0100) Image Processing; (110.2960) Image Analysis; (110.6880) Three-dimensional image acquisition 

 
1. Introduction:  A problem to be addressed 

Assume that you are given the task of detecting the presence of humans through the aid of a wide-field-of-view 
video camera. Assume further that humans of interest could be quite near to your camera, subtending many pixels of 
the video imagery, or quite far, subtending very few. In the latter case, the problem is much more difficult, because 
the number of pixels associated with the moving object—human nor not human?—can be so much smaller, perhaps 
numbering only in the tens. Low-resolution imagery, as would be encountered with sufficiently distant objects, 
presents additional difficulties, because the blurring of the background into the moving part of the scene makes the 
application of such techniques as tracking the center of mass of the object unreliable.  

 
2. A possible solution:  Exploit knowledge of the 3D scene 

The approach we are taking in addressing this problem requires that we have available to us a 3D model of the scene 
being viewed with our video camera. Exploiting our knowledge of the 3D world from which we have extracted the 
2D video projections, we can then reduce, often by extremely large amounts, possible uncertainties concerning the 
nature of what we are viewing.  

Figure 1 provides an illustration of the concept with 2D still images—i.e., no video—and without a true 3D 
representation of the scene available to us, only our own idea of what the 3D scene actually is. The left-hand part  

 

(a) (b)
 

Figure 1.  The small group of pixels on the left may or may not correspond to one or more humans. The location of these pixels within a 3D 
scene, two such locations being indicated on the right, makes the likelihood of their representing humans much easier to determine, even in the 
absence of motion cues. 
 



of the figure shows a small number of pixels extracted from somewhere in the larger image shown on the right. In a 
video image, we would observe some motion within this small number of pixels. Does that motion represent human 
activity, or something else? The question is largely resolved if we know where in the scene the pixels in question are 
observed. If they are observed in the circled region at the left, they probably represent a moving leaf, a lizard, or 
some other small animal or insect; if in the circled region on the right, they almost certainly represent one or two 
humans climbing along an ancient pathway. With several frames of video, the probability that the changing pixels 
represent human(s) can be more accurately determined through the observation of the motion itself:  Does it have an 
up-and-down component? Is the transverse motion consistent with people struggling along a 2500 meter-high path? 
Most importantly, is the size of the moving pixel group consistent with people at that apparent distance?  

The idea that even a subconscious understanding of a 3D setting can help disambiguate information contained in 
a 2D image is of course not new. What is relatively new is the greatly increased capability we have now to obtain 
and manage data on the 3D structure of settings of interest to us. Our ability to build a 3D model of buildings, trees, 
roadways, and the like from a stereo image pair or other forms of 3D scene observation has improved enormously 
over even the past decade, and today’s computational power and huge computer memories make fine-scale 3D 
database representations, along with the attachment of contextual information, comparatively easy.  

The human detection problem can rely on many forms of information, all conditioned on being consistent with 
location in the scene. Thus, the probability that a moving object is a human in the scene of Fig. 1(b) depends on such 
things as the speed and up-and-down amplitude of the object being consistent with human locomotion at the 
assumed feet-on-the-ground distance, the vertical position y vs. the horizontal position x of the object, and so forth. 
Similar principles can be applied to other possible moving objects, such as vehicles, airplanes, boats, etc.  

The framework in which such disambiguation operates is of necessity probabilistic, and several methods to be 
discussed in the presentation, including traditional Bayesian, can be used. Of at least equal importance is the impact 
of very-low-resolution imagery on the image processing algorithms employed. If an object of concern is so distant 
that it subtends only tens of pixels, then the normal approaches to motion tracking, such as optical flow methods, do 
not work well. Edges are fuzzy, and the interaction of the (presumably) stationary background structure with the 
moving object structure presents problems. These issues will also be addressed in the talk and examples given. 
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Challenging GMTI Problem
UNCLASSIFIED

g g
• Smaller platforms smaller antennas and radar subsystems more 

clutter, lower SNR
Challenging environments clutter and RFI adversely affect detection• Challenging environments clutter and RFI adversely affect detection 
performance, dense target environments

• Threat “systems” are different dismounts, individual vehicles

smaller 
platforms
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Dismount Modeling
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g
Dismount Walking at 1.85 m/s• Human body modeled using 

12 body parts
– Spherical head

– Cylindrical or ellipsoidal 
t d ltorso, arms, and legs

• Kinematic model applied to 
move each body party p
– Body part centers give 

phase histories

B d i i i– Body part orientations give 
radar cross section (RCS)

• P. van Dorp and F.C.A Groen, “Human walking 
estimation with radar.”

• R. Boulic, N. Magnenat Thalmann, and D. 
Thalmann “A global human walking model
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Dismount Radar Cross Section
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RCS of a Dismount, Average = -0.53686 dBsm
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Simulated Dismount Spectrogram
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Dismount and Vehicle Radar Measurements
FOUO

Vehicle Spectrogram GTRI has acquired data from 
a mixture of vehicles and Vehicle
dismounted combatants

Vehicle with Dismount Spectrogram
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Comparison of Measurements and Simulation
FOUO

p
MeasurementSimulation

• Simulated and measured spectrograms shows good agreement 
in the amplitude and frequency of the oscillationsin the amplitude and frequency of the oscillations

• Simulated spectrogram shows a smoother and more periodic 
structure than the measured spectrogram
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Dismount Model with a Fluctuating Velocity
• In the real world, people do not walk in a 

perfectly smooth manner as described 
by the previous dismount model

g y

y p
• Adjust model to allow time-varying 

fluctuations in the model parameters
• Velocity parameter controls manyVelocity parameter controls many 

aspects of the dismount walking model
• Average walking speed
• Amplitude and frequency of the• Amplitude and frequency of the 

oscillations of the body parts
• Fluctuating velocity model allows time-

varying fluctuations of the averagevarying fluctuations of the average 
velocity

•
• is a normally distributed

( ) ( )α α= − − + Δ21 1 nv n v n v
Δv• is a normally distributed 
random variable with a zero mean 
and unit variance

• The decorrelation factor controls

Δ nv

α
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Comparison of Measurements and Simulation
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Dismount Spectrograms for the              
S ll UAV R d S t
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Small UAV Radar System

Simulated Dismount with Simulated Dismount withSimulated Dismount with 
Noise

Simulated Dismount with 
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Realized vs. Optimal SNR Using Linear Phase Filters
UNCLASSIFIED

p g
• Processing dismount signals with linear phase filters is generally 

sub-optimal

• The full integrated SNR is not achieved

• The loss between the optimal SNR and the realized SNR is defined 
as the SNR lossas the SNR loss

SNR LossSNR
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Higher-Order Phase Filters
UNCLASSIFIED

g
• Algorithms

Linear phase (FFT)

• Dwell lengths
1/8 step (64 pulses 65 5 ms)– Linear phase (FFT)

– Quadratic phase
π ⎛ ⎞24 at

• 1/8 step (64 pulses, 65.5 ms)
• 1/2 step (256 pulses, 262 ms)

2 steps (1024 pulses 1 05 s)
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Quadratic Phase Filtering Example
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Q g p
• Example results for the 262 ms 

dwell (1/2 step)
• Requires testing over 2 parameters

SNR over Average Velocity and Time

• Requires testing over 2 parameters
• Average velocity
• Acceleration

• Current implementation tests all 
possible combinations of velocity 
and acceleration

SNR Loss
SNR over Acceleration and Time
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SNR Losses for a 1/8 Step Dwell (65.5 ms)
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p ( )
Stationary Velocity Simulation Subject 1 Measurement

Fluctuating Velocity Simulation Subject 2 Measurement
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SNR Losses for a 1/2 Step Dwell (262 ms)
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p ( )
Stationary Velocity Simulation Subject 1 Measurement

Fluctuating Velocity Simulation Subject 2 Measurement
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SNR Losses for a 2 Step Dwell (1048 ms)
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p ( )
Stationary Velocity Simulation Subject 1 Measurement

Fluctuating Velocity Simulation Subject 2 Measurement
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Post-Detection Integration (PDI)
UNCLASSIFIED

g ( )
• The complex phase histories of dismounts are difficult to match to 

using fully coherent integration techniques over long dwells
PDI i t ti l l ti t thi bl• PDI is a potential solution to this problem
– Divide long dwell data into a series of short CPIs

Non coherently combine Doppler bins from the short CPIs– Non-coherently combine Doppler bins from the short CPIs

CPI length: 64 pulses
PDI length: 16 CPIs

CPI length: 16 pulses
PDI length: 64 CPIsPDI length: 16 CPIs PDI length: 64 CPIs
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PDI on a DC Signal
UNCLASSIFIED

g
• PDI is less efficient than full coherent processing for a linear phase 

signal
The greater the number of PDIs the less efficient the PDI becomes• The greater the number of PDIs, the less efficient the PDI becomes

• PDI “steepens” the ROC curves

1024 Pulse DC Signal1024 Pulse DC Signal
PDI 

Length
Optimal 
Gain (dB)

PDI Gain 
(dB)

PDI Loss 
(dB)

Efficiency

2 3.0 2.5 0.5 82%
4 6.0 4.8 1.2 80%
8 9.0 7.0 2.0 78%
16 12.0 9.2 2.9 76%
32 15.1 11.1 3.9 74%
64 18.1 13.0 5.1 72%
128 21.1 14.8 6.3 70%
256 24 1 16 5 7 5 69%256 24.1 16.5 7.5 69%
512 27.1 18.2 8.9 67%
1024 30.1 19.8 10.3 66%

*PDI gains calculated at a Pd of 90%
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PDI on Dismount Signals
UNCLASSIFIED

• Dwell length of 2 steps (1024 pulses)
• Best performance at a CPI length of 16 pulses (PDI length of 64)

– 7 dB loss from optimum (2 dB from CPI, 5 dB from PDI)

• Similar performance for CPI length of 64 pulses (PDI length of 16)
– 8 dB loss from optimum (2 dB from CPI, 3 dB from PDI, 3 dB from ??)

Fluctuating Velocity Simulation Subject 2 Measurement
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Sinusoidal PDI 
UNCLASSIFIED

• Because of the time-varying properties of a dismount signal, the peak 
dismount power can move through Doppler bins over time

• Linearly combining Doppler bins is not optimal• Linearly combining Doppler bins is not optimal

• Potential solution: Use a sinusoid to combine Doppler bins

Fluctuating Velocity Simulation• 16 pulse CPI Fluctuating Velocity Simulationp

– Dismount does not 
significantly move through 
Doppler bins over timeDoppler bins over time

– Sinusoidal PDI shows little 
improvement in performance

• 64 pulse CPI

– Dismount does move through 
Doppler bins over timepp

– Sinusoidal PDI results in a        
2 dB improvement in 
performance

GTRI_B-23
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Overall Detection Performance
D ll l th f 2 t (1024 l )

UNCLASSIFIED

• Dwell length of 2 steps (1024 pulses)
• Sinusoidal PDI

• Simulated data: Losses similar to the coherent sinusoidal filter
• Measured data: Performance slightly better than sinusoidal filter

• Optimal PDI
• Calculated using known peak Doppler bins• Calculated using known peak Doppler bins
• Losses of about 5 dB from optimum (2 dB from FFT and 3 dB from PDI)

Fluctuating Velocity Simulation Subject 2 Measurement

GTRI_B-24
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Characterization Potential 
UNCLASSIFIED

• Gait characteristics vary from person to person
• The dismount torso moves with a nearly sinusoidal motionThe dismount torso moves with a nearly sinusoidal motion

– Gait frequency: How often subject takes steps

– Gait phase: When target starts taking stepsp g g p

– Gait amplitude: Degree of oscillation of the torso

• Micro-Doppler of arms and legs can also be considered
• Detection algorithms naturally estimate some gait parameters

– Sinusoidal phase filtering

– Improves detection performance

( ) ( )( )0
4 sin 2t v t A ftπφ π α
λ

= + +

– Characterizes target
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Gait Estimation of Different Subjects (1 of 3)
FOUO

j ( )
• Measured data from 3 different subjects

• Subject 1: Simulated

Subject 3 (measured)

• Subject 2: Measured (similar to subject 1)
• Subject 3: Measured

• Subjects walk radially toward the radarSubjects walk radially toward the radar
• Subjects walk at their normal walking 

speed

Subject 2 (measured)Subject 1 (simulated)
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Gait Estimation of Different Subjects (2 of 3)
FOUO

j ( )
• Subjects 1 and 2 walk at similar speeds and have similar gait 

frequencies
• Subject 3 walks slower, but with a higher gait frequency
• Subject 3 is shorter that subjects 1 and 2 and must take faster 

steps to maintain the same walking speedsteps to maintain the same walking speed

Radial Velocity Estimates Gait Frequency Estimates
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Gait Estimation of Different Subjects (3 of 3)
UNCLASSIFIED

j ( )
5’0” Height Subject6’6” Height Subject

Radial Velocity Estimates Gait Frequency Estimates
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Outline
UNCLASSIFIED

• Introduction

• Dismount modeling and measurements

• Dismount algorithm development

• SummarySummary

GTRI_B-29
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Summary
UNCLASSIFIED

y
• Developed a physiological dismount model and integrated the 

model into a legacy simulation environment

• Losses due to linear phase filtering – a standard radar fare – are 
significant 2 dB for 66 ms dwell, 6 dB for 262 ms dwell, 10 dB for 
1.1 s dwell

• Effective dismount detection schemes must maximally aggregate 
energy

N li h filt h i ifi t d t ti f• Nonlinear phase filters show significant detection performance 
improvement better match to actual target phase history

• Sinusoidal PDI shows improved detection performance andSinusoidal PDI shows improved detection performance and 
robustness

• Detection algorithms also show potential for characterization

GTRI_B-30
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Lattice Boltzmann MethodLattice Boltzmann MethodLattice Boltzmann MethodLattice Boltzmann Method
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The Current Thermal Model

• The current method of solving the heat equation is 
based on a semi-implicit finite difference method.based on a semi implicit finite difference method.

• Modeled object is placed in isolation and may 
exchange radiatively with an implicit sky and ground.exchange radiatively with an implicit sky and ground.

• Multiple objects are modeled separately and do not 
thermally interact.thermally interact.

• Computation of radiation exchange factors is 
memory and time consuming.y g

• Solution procedure is not directly linked to the 
Scene-Simulation Database.

2



Radiative Exchange

• Current method uses ray tracing algorithm to find the 
geometric view factors.geometric view factors.

• For each surface node, every other surface node must be visited.

• If geometry changes, the exchange factors must be recomputed.If geometry changes, the exchange factors must be recomputed.

• Current software has an upper limit on the number of surface 
nodes.

• Limit was placed when available memory was much smaller.

• Simply changing the limit value and recompiling does not produce a 
ki t blworking executable.

• Limits the complexity of the scene making urban environments difficult 
to model.

3



Solutions Explored

• Rewriting finite difference method:

• To handle complex scenes implicit ground was removed• To handle complex scenes, implicit ground was removed.

• Computation of radiative exchange was based on ray tracing algorithm just with 
more surface nodes.

• Lattice Boltzmann method:

• Has been successfully applied to combined conduction and radiation problem in 
two dimensions (Asinari, 2010).( , )

• Since the formulation is readily adaptable to parallel processing, it has the 
potential to require dramatically lower computation time (Mishra, 2006).

Thi ld b th i l b i f l ti d f th• This could become the numerical basis for a new solution procedure for the 
combined conduction, convection, and radiation problem in complex urban 
environments.

4



Increasing Allowed NumberIncreasing Allowed Number 
of Surface Nodes

• Time needed to compute 
total view factor 
i th bincreases as the number 
of nodes to the third 
power.

• Exchange with sky is 
over estimated due to 
ground not extending to 
infinityinfinity.

• Scene complexity is 
increased by requiring 

li it d texplicit ground to 
determine thermal 
shadows.
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Lattice Boltzmann Method

• Developed as a computational fluid dynamics algorithm 
by discretizing the Boltzmann equation (Succi 2001)by discretizing the Boltzmann equation (Succi, 2001).

• Physical properties are modeled by particle distribution 
function (PDF) (Mishra Lankadasu & Beronov 2005)function (PDF) (Mishra, Lankadasu, & Beronov, 2005).

• Macroscopic limit equations are recovered by examining 
how the PDFs behave when disturbed by a smallhow the PDFs behave when disturbed by a small 
perturbation (Ho, 2002).

• Solution procedure is alternating interaction andSolution procedure is alternating interaction and 
propagation steps (Mishra, Lankadasu, & Beronov, 2005).

6



Lattice Boltzmann Method Advantages

• Simple implementation (Wolf-Galadrow, 2005).
• Readily adaptable to parallel processing (Wolf-Galadrow• Readily adaptable to parallel processing (Wolf-Galadrow, 

2005).
• Handles complex geometry and boundary conditions a d es co p e geo et y a d bou da y co d t o s

(Wolf-Galadrow, 2005).
• Simple physical interpretation (Wolf-Galadrow, 2005).
• Unconditionally stable in linear regime when physical 

phenomena do not propagate faster than the speed of 
sound in the medium (Succi 2001)sound in the medium (Succi, 2001).

• Transient problem is solved directly with no iterations at 
each time step (Asinari 2010)

7
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Lattice Boltzmann Method

• Domain of interest is mapped onto a 
lattice.EquationKineticΩ=∇⋅+

∂
∂

iii
i fef r

• PDFs (Mishra, Lankadasu, & Beronov, 
2005):

• Exist at the lattice sites and evolve Velocity Lattice
Functionon Distributi Particle

q
∂

i

i

iii

e
f

f
t

r

according to kinetic equation.

• Propagate along lattice direction at lattice 
speed.

• Interact at lattice sites according to collision T t
OperatorCollision 
Speed Lattice

∑
Ω
=

i

vi

fT

cer

g
operator.

• Temperature and heat flux a related 
directly to PDFsfluxHeat 

eTemperatur

∑
∑

=

=

i
ii

i
i

efq

fT
rr

• Collision operator contains all of the 
physics (Mishra, Lankadasu, & 
Beronov, 2005).
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The Lattice

• Explicit discretization of phase 
space.
Ph i l h• Physical phenomena are 
smoothed out over many lattice 
spacings (Wolf-Galadrow, 
2005).

• Has particular velocities and 
weights regardless of physical 
phenomena modeled (Wolf-
G l d 2005)Galadrow, 2005).

• Must have sufficient symmetry 
to reproduce macroscopic 

h (W lf G l dphenomena (Wolf-Galadrow, 
2005).
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D1Q2 Lattice

S dL ixΔ

ConstantRelaxation

SpeedLattice

t
t

cv

Δ
+=

Δ
=

ατ ConstantRelaxation
22cv

+=τ

10
(Mishra & Roy, 2007)



D2Q9 Lattice

C t tR l ti3

Speed Lattice

t
t
xcv

Δ
+

Δ
Δ

=

α ConstantRelaxation
22cv

+=τ

11(Mishra & Roy, 2007)



D3Q27 LatticeD3Q27 Lattice

cv velocities cv√2 velocities cv√3 velocities

3

Speed Lattice

t
t
xcv

Δ
Δ
Δ

=

α Constant Relaxation
2

3
2

t
cv

Δ
+=

ατ

12(He & Luo, 1997)



Kinetic Equation

• BGK single relaxation time 
model used (Mishra, 
Lankadasu & Beronov

( )
( ) ( )

1

trTwtrf

ff

eq

i
eq

ii

rr
τ

=

−=Ω

Lankadasu, & Beronov, 
2005):

• Simplest representation of collision operator.

( ) ( )
( ) ( )

( ) ( )( )
...,,

,,

trftrft
trfttterf

trTwtrf

eq

iii

i
q

i

rr

rrr

−
Δ

−

=Δ+Δ+

=

p
• Uses largest relaxation time of system a relaxation constant, τ.

• PDFs evolve to a simple

( ) ( )( )

PDF
operatorCollision 

,,

f

trftrf

i

i

iiτ
Ω

• PDFs evolve to  a simple 
form of the kinetic equation 
(Mishra, Lankadasu, & 
Beronov, 2005).

weightDirection
constant Relaxation

PDF umEquillibri

w

f eq
i

τ

• A Chapman-Enskog
expansion will recover the 
heat equation  velocityLattice

Position
weightDirection 

e
r
w

i

i

r

r

13

eTemperaturT



Chapman-Enskog Expansion

• PDFs are expanded to 
first order in a small 

t (H 1997)
( )2)1()0( εε Offf iii ++=

parameter, ε (Ho, 1997).
• PDF at new time step is 

Taylor expanded about

( )fff iii

( ) ( ),., trfttterf iii =Δ+Δ+
rrr

Taylor expanded about 
time t (Ho, 1997).

• Plugging both 
expansions into the

( )2. tOfteft iiit Δ+∂Δ+∂Δ+ αα

)1()1()1()0()0( ∑∑∑∑∑ εexpansions into the 
kinetic equation and 
summing over the lattice 
velocities reproduces 
th h t ti (H 0

0
2

)1()1()1()0()0(

=∇−∂

=⋅∇+∂

−∂−∂−=∂+∂ ∑∑∑∑∑

TT

qT

ffeffef

t

i
i

i
ii

i
it

i
ii

i
it

α

τ
εεε ββββ

r

the heat equation (Ho, 
1997).

0∇∂ TTt α
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The Algorithm

Initialize using initial 
temperature field

Update PDF using 
kinetic equation

Propagate PDF to 
next lattice site

Apply boundary 
conditionsconditions

Compute new
Terminate 

runCompute new 
temperature field

(Mi h L k d & B 2005)
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YesNo
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Evaluation of Lattice Boltzmann Method

• Serial version of lattice Boltzmann method was 
implemented to evaluate accuracyimplemented to evaluate accuracy

• Analytic solutions were found for simple 
conduction problems in one, two, and three p , ,
dimensions

• Results from lattice Boltzmann method were 
d l i d GTSi i lcompared to analytic and GTSig numerical 

results
N i l lt f d t b i t t• Numerical results were found to be consistent 
with GTSig; however, computation time was high 
due to poor implementation of the algorithm
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Fixed Wall TemperatureFixed Wall Temperature
in One Dimension

• Homogeneous object 
with uniform cross 
section

⎫⎧ ⎞⎛

section

• West wall , x=0, 
temperature suddenly 
l t d
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Fixed Wall TemperatureFixed Wall Temperature
in One Dimension

• Absolute error between 
analytic and numerical 
solutions was taken to besolutions was taken to be 
the difference between the 
analytic solution and the 
numerical normalized by 
the west wall temperaturethe west wall temperature.

• We can see that the lattice 
Boltzmann method starts 
the simulation with athe simulation with a 
higher error but rapidly 
decreases.

• We anticipate the that error• We anticipate the that error 
is due to the step function 
nature of the boundary 
conditions.
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Fixed Wall TemperatureFixed Wall Temperature
in One Dimension

• Taking the mean absolute 
error over the domain at eacherror over the domain at each 
time point, we see that the 
error in the lattice Boltzmann 
method quickly approaches q y pp
zero; whereas the error in the 
GTSig results increases.

W t th t b d• We expect the error to be due 
to the unphysical nature of 
the west wall boundary 
conditioncondition.
Numerical Method Time Elapsed [s]

GTSig: Finite Difference 1.529976
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Time Dependent Wall TemperatureTime Dependent Wall Temperature
in One Dimension

⎪
⎧ ≤≤+Δ ttTtT 0 West wall , x=0, Temperature raised 

over finite time
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Time Dependent Wall TemperatureTime Dependent Wall Temperature
in One Dimension

• We note that the error in 
the lattice Boltzmann 
method has dropped by anmethod has dropped by an 
order of magnitude to the 
same level as the GTSig
results.

• Comparing the GTSig
results with the previous 
example, we see that the 
error is approximately theerror is approximately the 
same.

• We can also see that the 
oscillatory behavior hasoscillatory behavior has 
been removed from the 
lattice Boltzmann results 
as expected.
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Time Dependent Wall TemperatureTime Dependent Wall Temperature
in One Dimension

• Looking at the mean 
error, we again that the 
l tti B ltlattice Boltzmann 
method rapidly 
approaches the analytic 
solution.solution.

• We also see that the 
GTSig solution is 
approaching the analyticapproaching the analytic 
solution but at a slower 
rate than the lattice 
Boltzmann method.
Numerical Method Time Elapsed [s]

GTSig: Finite Difference 2.157286
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Fixed Wall TemperatureFixed Wall Temperature
in Two Dimensions
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Fixed Wall TemperatureFixed Wall Temperature
in Two Dimensions

• Again the mean error over the 
domain was found to 
decrease rapidly for the latticedecrease rapidly for the lattice 
Boltzmann method while the 
GTSig error increased.

• While the numerical results 
i thare encouraging, the 

computation time was high 
due to serial implementation 
of the algorithm.

• Maximum errors for both 
GTSig and the lattice 
Boltzmann method were 
confined to the corners where 

fthe temperature is ill defined
Numerical Method Time Elapsed [s]

GTSig: Finite Difference 27.208329
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Lattice Boltzmann Method 387.877949



Fixed Wall TemperatureFixed Wall Temperature
in Three Dimensions
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The model is constructed through three primary phases of development.

The first phase is the physical model, during which we construct a digital representation of 
a human, we typically call it the ‘mesh.’ 

The 2nd phase is a combination of two parts, the first of which is acquisition of motion 
capture data and a digital model of an articulated skeleton.  The 2nd part is the pairing of 
the digital skeleton to the target mesh This allows motion of the skeleton to be projectedthe digital skeleton to the target mesh.  This allows motion of the skeleton to be projected 
upon the vertices which comprise ‘control points’ of the mesh. 

The 3rd and final phase is only concerned with signature generation.  Once the mesh is 
articulated and accurately reproducing skeletal motion, it is fed into a program where we 
classify groups of faces into ‘surface nodes.’   These surface nodes are comprised of faces 
which share similar position, orientation, and underlying structure(s).  Once the mesh has 
been ‘noded,’ material properties such as reflectivity, thermal conductivity, and similar 
properties are assigned to the nodes and a signature is generated using those values.  
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The physical model is generated in an open‐source program called ‘Make Human.’  The 
Make Human program is an active project in the open‐source community and is regularly 
updated with features on a monthly basis.  Nightly builds of the program are available for 
download at www.makehuman.org

Within makehuman, a user may manipulate the model at multiple levels of detail: global 
region  local

There are 5 primary global variables which can be manipulated and appliedThere are 5 primary global variables which can be manipulated and applied 
uniformly across the entire  model: Age, Gender, Tone, Weight, and Stature.  
Once the generic properties of a model have been customized, additional changes can be 
performed on a regional basis, so an arm, the face, the chest or other body regions may be 
customized independent of the rest of the body.  A user has the flexibility to create a more 
“realistic” human, with uneven distribution of weight, muscle mass, or similar features.  
The local settings allow a user to change the appearance of individual muscle groups, so 
you can change the location of the knee, size/shape of the nose, ears, and similar details.
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We export a make human model as a .obj file (generic 3d model file‐type) at full detail.  Full 
detail typically means approximately 16 – 28000 faces, an excessive amount of detail.  This 
level of detail is entirely unnecessary, particularly when simulating sensors with resolutions 
on the order of centimeters.  We reduced the number of faces with tools in the 3d 
modeling program, Blender.  Blender is another open source program, which is also 
currently under active development.  Blender allows one to reduce the number of vertices 
by a specific percentage whilst maintaining the original shape of the object as faithfully as 
possiblepossible.  

Once the level of detail is reduced to an ‘appropriate’ level the 1st phase of model 
generation is complete.
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Passive markers are entirely indistinguishable from one another within a camera’s field of 
view.  As such, if a marker is “lost” from view and later recovered, the system regards those 
instances as two distinct markers.  

Furthermore, if one marker is occluded by another marker during a motion there is no 
means of distinguishing the two markers from one another after the occlusion.

Range is severely limited in this system Since the light has to travel to the marker andRange is severely limited in this system.  Since the light has to travel to the marker and 
return to the camera(s), the lamps have to be, initially, very bright and the environment 
very dark to ensure enough contrast to properly track just the markers and not any bright 
environmental reflectors (clothes, skin, etc )

Markers are mounted on the surface of the target and need to be as close to the joints as 
possible.  Since they must remain visible at all times the system is unsuitable to be used 
over top of body armor or street clothes.  

8



Note however, that all of these advantages do nothing to help solve one of the primary 
difficulties with optical systems, the requirement of line of sight by two cameras on every
marker to allow for adequate tracking of those markers.  As such, obscuring of markers by 
any environmental objects or the subject’s body and motion represents loss of data and 
comprises the integrity of the captured motion.  

Markers cannot be worn underneath clothing, and any additional layers between the 
marker and the body opens the system up to noise and problems with picking upmarker and the body opens the system up to noise and problems with picking up 
movement of the garments rather than the actual motion of the subject

9



Owing to the restrictions of the suit, there might still be great difficulty in recording any 
motion where the user leaves his/her feet to simulate crawling or similar motions.  
Additionally, suit bulk could also hamper any interaction with external objects, particularly 
with vehicle mount/dismount.

Some systems use a kind of ‘elastic’ sensor, which returns information that is partially 
based on the stretch felt by the sensor.  These sensors are sensitive to wear and tear and 
data quality is likely to degrade over time and multiple usesdata quality is likely to degrade over time and multiple uses.
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The only drawback with this system is short battery life and sensitivity to objects with large 
amounts of ferrous material.  Vehicle mounting and dismounting is easily recorded, 
provided the vehicle does not contain large amounts of metal.  We contracted specifically 
with an individual who uses this type of system and he was currently working on solving 
the problem of recording motion in and around large trucks and hummvees.  

In general, however, magnetic interference is non‐existent so long as the user does not 
make physical contact with a large metal objectmake physical contact with a large metal object.

The gyroscopes and accelerometers are used to determine relative joint locations and 
orientations, while the magnetic sensors are used to orient and locate the subject in global 
space using the Earth’s magnetic field as the basis of measurment.
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There are limited datasets of motion capture available for public consumption.  The two 
primary sources are the Advanced Computing Center for the Arts and Design (ACCAD) of 
Ohio State University and the Carnegie Mellon University (CMU) data sets.  Both of these 
datasets were created with optical systems and are of variable quality.  The CMU dataset is 
much larger the data available at ACCAD, though it covers a wide range of completely 
irrelevant motions, including human impressions of dinosaurs and animals.  Furthermore, 
descriptions of subject characteristics are entirely unavailable for the data, making it 
impossible to draw conclusions regarding gait’s relationship to weight height age and seximpossible to draw conclusions regarding gait s relationship to weight, height, age, and sex. 

Furthermore, all the data is of a very short duration, requiring extensive looping to 
construct motions on time‐scales greater than 5 seconds.  
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Note the difference in the upper graph vs. the lower graph.  The left graph of the looped 
i i h i i f h f h h h i i k imotion is the z‐position of the center of mass throughout the entire motion.  Every peak is 

of an identical magnitude and periodicity.  As a result, the frequency power spectrum is 
incredibly clean.  However, there exists a discontinuity in the loop, as the interpolation 
scheme is not perfect, and can create sharp changes in the motion which can distort the 
frequency power spectrum.

In contrast, the lower graphs represent an entirely un‐looped motion over 600 frames ( 10s 
) Qualitatively every stride is approximately the same though the relative heights of the).  Qualitatively, every stride is approximately the same, though the relative heights of the 
peak, sharpness of the lower peaks, and depth of the valleys all vary considerably across 
the motion.  Furthermore, there is an apparent cresting in z‐position throughout the 
motion.  The resulting frequency power spectrum is considerably dirtier and of a lower 
magnitude, however, it contains substantially more low‐frequency motion.  This includes a 
3rd frequency of considerable magnitude at approximately 3.5 Hz.  Such a peak is non‐
existent in the upper data and could be exploited as a motion unique to the individual, 
considered separate from the primary peaks which will follow the frequency of motion ofconsidered separate from the primary peaks which will follow the frequency of motion of 
the arms and legs.  

Furthermore, the lower motion reveals the trend to favor one side throughout the entire 
recording, indicating it as a real phenomenon particular to this individual.  The upper data, 
since it is merely a repetition of an individual going through a single stride, can only be 
assumed to accurately reflect the motion of this individual in the long‐term.  However, this 
effect may fade over time, become more pronounced, or disappear altogether depending 
upon running surface and other externalities. 
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By simply altering the method of interpolation which computes the brief 2 frame interval 
between loops we have non‐trivially affected the frequency power spectrum of the motion 
signal.  Given this change, these small signals can be attributed primarily to the 2 artificially 
produced frames, making them poor candidates for exploitation with regards to human 
identification and signature determination.  Unfortunately, these smaller high frequency 
features would be the source of most of the difference between two independent motions, 
as the largest two components will, for a given rate of stride, be nearly identical.  As such, 
by compromising these small differences we are self‐limiting the “useful” portion of theby compromising these small differences, we are self limiting the  useful  portion of the 
signal and compromising methods derived of this data set.
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This video is a comparison between our original method of constructing motion via a 
constrained inverse kinematics (IK) system, downloaded and looped motion capture data, 
and GTRI acquired motion capture data.

Subject Left – IK motion
Subject Center – Free and looped motion capture data (CMU)
Subject Right – GTRI acquired motion capture data

Note the ‘stiffness’ of the figure at left relative to the captured motions.  The two captured 
motions have similar fluidity and natural appearance, however, the center motion is clearly 
looped over one or two strides.  Also note the head position of the center subject, pointed 
down and to our left.  
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The data was collected from a single male subject over a period of 3 days.  Prior to the data 
collect a list of scenarios and actions was compiled to provide a framework to guide the 
collection of data, and ensure the recording of motions relevant to our research interests.  
Every action or interaction was recorded a minimum of three times to ensure data quality 
and to capture natural variation in the subject’s motion.  
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Persons in the figure are, from left to right:  Dr. Michael Cathcart, Brian Kocher (Tech Temp), 
and Roger Nelson (Motionwerx).  Brian Kocher is wearing the suit which mounts all the 
sensors.  Clothes can be and were worn overtop of the suit and sensors during the 
recording sessions.  The yellow/black combination are meant to make it easier to visually 
identify parts of the body and their motions in video recorded alongside the motion 
capture.  Velcro patches are used to hold on the sensors.  The gray box at the center of the 
torso is the base‐station to which all the sensors are wired.  It is capable of transmitting 
data via a tethered or wireless signaldata via a tethered or wireless signal.
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The hierarchical structure of the skeleton is based upon each bone having a single parent.  
However, a parent may have multiple children and all chains typically end at a single master 
bone which dictates the motion of the skeleton in global space.  In our case, this master 
bone is located at the waist.  A sample chain is organized as follows:
Hips  LeftUpLeg LeftLeg LeftFoot LeftFootHeel ‘End Site’
The ‘End Site’ marks the end of the final bone in the chain.  The bones are linked in that the 
“top” of a child bone is located at the “bottom” of its parent.  Bones are drawn in the 
program between these endpoints labelled head and tail respectivelyprogram between these endpoints, labelled head and tail, respectively.  

All the motions we recorded were taken at a sampling rate of 60Hz, though there is some 
flexibility as to the sampling rate, with 30Hz being another “standard” rate.  Typically, data 
is recorded at the highest efficient rate and may be down‐sampled if some reduction in 
data density is required.  
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There is little/no post‐processing aside from removal of extra frames.  The system 
employed by Motionwerx always makes sure the recorded subject is ‘grounded’ and 
prevents a recording from drifting in the vertical.  This is done via an algorithm which 
locates the lowest control point of the recorded subject and using it as the ground 
reference.  This system can be disabled if recordings of stair climbing or other activities 
during which no limbs are grounded (run/jog). 

Once I am happy with the motion I can bind it to a skeleton a process outlined in the nextOnce I am happy with the motion I can bind it to a skeleton, a process outlined in the next 
slide 
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This slide explains the basic rules which dictate how the vertices of the mesh are influenced 
by the motion capture derived skeleton.  

Vertices are assigned to at least one bone with a  specific weight parameter which ranges 
between 0 and 1.  This weight parameter only comes into play when more than one bone 
has influence over a vertex.  In these cases, the resulting motion is a result of a weighted 
linear combination of the bones’ motions projected onto the vertex.  The coefficients of 
the linear combination are determined by the weight parameter of each bonethe linear combination are determined by the weight parameter of each bone.  
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This slide provides a visual representation of the binding process, displaying one of the 
interfaces by which bone weights are assigned.

The top segment of the image has the lower right leg selected in the skeleton at image left 
paired with an image of the subsequent vertices assigned to that bone colored by weight.  
The colorbar at the left provides information of the weights displayed.  Red is maximum, 
green lies at approximately ½ weight, and the lighter/darker shades of blue lie around 
approximately ¼ to zeroapproximately ¼ to zero.  

The lower segment of the image is of a similar pairing, this time of the upper‐right leg of 
the skeleton and corresponding colored vertices.  

In both cases, the dark blue is a weight of zero.  
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This video illustrates the combination of a straight line walk with a 90 degree turn to the 
subject’s right.  Once the turn is complete the movement is patched once again with a 
simple straight line walk.  This represents a chain of 3 motions strung together

The plot below is the z position of the center of mass of the person throughout the walk.  
The joints are not entirely apparent, though the different phases of the motion are clearly 
visible, with the turn having much larger vertical variation than the straight walking 
sections While artifacts are produced by the combining of motions they are much lesssections.  While artifacts are produced by the combining of motions, they are much less 
likely to have an effect on any statistical or fourier analysis of the data because of their 
rarity (2 points in this case).  By choosing to match the motions at points where the posture 
is nearly identical for both frames the transition may be further improved.  The greatest 
difficulty in matching motions from different data‐sets lies in the general “angle” of the 
body, as a subject tends to lean slightly to one side over time.  In the turning segment, the 
subject is clearly leaning over into the turn.  
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This slide presents an example of a simple motion, consisting simply of a walk in a straight 
line duplicated for a single instance, producing a walk in a straight line of approximately 
twice the length of the original.  There is still some limited introduction of artifacts in the 
motion, however, the effects of these artifacts is minimized by their rarity (one instance for 
this particular example).  Furthermore, by using a bezier interpolation scheme and 
choosing  suitable frames to “match” for the looping, the transition between the original 
and duplicate phases may be greatly improved, mostly eliminating any visual or statistical 
artifacts in the datasetartifacts in the dataset.  

Suitable frames in this case mean frames where the posture of the individual is 
approximately identical.  In this case the individual had the left leg planted with the right 
leg just beginning to come forward on a swing phase.  The arms are typically in nearly 
identical positions and are generally simple to match.  The difficulty comes in “timing” the 
transition properly so the leg swing appears smooth and natural without a sudden jerk 
forward or slowing down.
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Once the motion is complete, the model may be exported and linked to a signature model.  
The first step of this process involves exporting the exterior mesh of the individual as a 
simple OBJ file, which is a standard computer modeling format written in plaintext and 
readable by any text editor.  The 3d model is loaded into a face‐selection program 
developed at GTRI and the faces of the model are grouped into “surface nodes.”  Surface 
nodes are created based on a number of criteria, including but not limited to orientation, 
location, underlying structure (blood vessels), covering (clothing), and material composition 
(walls of a building vs windows)(walls of a building vs. windows). 

The image above illustrates the grouping of the face, with patches representing the large 
carotid arteries which flow up the neck and across the jaw line.  The nose is divided into 
several portions, and the eye sockets are grouped together but not lumped in with the eyes 
themselves as the eyes will have a vastly different thermal signature than the skin surface 
of the face.  

It is worth noting that the same mesh may be used for any number of motions and the 
surface nodes of that mesh may be used interchangeably.  So long as the number of faces 
and vertices remains the same and the vertex associations not altered (vertex assigned to 
face A not reassigned to B), the list of surface nodes will remain accurate.  This remains 
true even if the location of the vertices is changing, as is the case with motion.  In that 
case, a single surface node list will apply across all frames of the motion, regardless of thecase, a single surface node list will apply across all frames of the motion, regardless of the 
deformation of the mesh.  
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This is a sample scene generate in optical wavelengths with two humans running between 
buildings.  Taking 3 independent samples of motion capture data solves the issue of 
“stepping in time” displayed in the sample image.  An additional step to disguising repeated 
instances of the same motion in a scene include changing the relative phase of the motion 
in different subjects.  Using this phasing method, a relatively small number of motions may 
be used to generate a scene with many humans present.  
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See Alan Thomas’ briefing for details, as it chronicles the development of this motion 
tracker in detail.
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Motion Tracking Results – This data tracks the pixel motion for different sections of the 
body from the frontal aspect view.  There are slight signals in the torso and full‐body, but 
the periodic motion is relatively robust in the arms and the latter half of the leg data, 
possibly due to the subject’s approach to the camera.
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Motion tracking results – Side aspect
results in this view are much more robust, displaying a clear oscillatory 

pattern for both horizontal and vertical signals
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These images represent one possible camera configuration within the digital environment.  
Using this configuration, we can generate the same motion viewed from multiple vantage 
points to test existing motion detection and tracking methods without leaving the 
computer or purchasing a single camera.

The lower right diagram illustrates cameras ( blue polygons ) positioned about a circle of a 
specific range centered upon the mid‐point of the subjects path.  The configuration of 
cameras at 45’ increments was used for Dr Alan Thomas’ work of the motion trackercameras at 45  increments was used for Dr. Alan Thomas  work of the motion tracker.
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Take special note of the power spectrum in this image.  This graph is the Frequency Power 
Spectrum of the z – motion of the centroid of the full body.  For the 0lbs walk, The primary 
frequency component is approximately 0.6 hz, followed by a lower 2ndary component at 
approximately 1.3‐1.4 hz.  On the burdened samples, The primary component is located at 
approximately 1.5 Hz, with a secondary component nearly equal to the primary at 0.8 Hz, 
or slightly greater than ½ of the primary.  It is the relative strength of these components 
that should draw your attention, as it reflects a decrease in frequency attributable to the 
right arm hanging at the target’s side instead of swaying naturallyright arm hanging at the target s side instead of swaying naturally.
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The relationships between the unburdened and burdened datasets appears to have 
changed relative to the slower walking speed.  Now all datasets have a primary spike at a 
higher frequency component, albeit this frequency has shifted higher, to approximately 1.8 
Hz and 2 Hz, respectively.  However, note the increase in magnitude of the components.  
This trend is not apparent in the backpack data, nearly disappearing altogether in the fast 
speed.
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Results for the backpack at different weights are inconclusive.  Additional data may provide 
a better basis for comparison
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There is a clear trend for increasing fundamental frequencies alongside increasing walking 
speeds.  Furthermore, there appears to be greater noise in the signal from the “fast” walk, 
indicating energy which is being misdirected into parts of the motion which are un‐related 
to the base gait.  These tertiary components indicate instabilities and energy which is 
wasted because of strain as a result of a difficult pace or possible burden on the individual.  
Furthermore, note that while the black, blue, and green lines may have higher frequency 
components, the red line, which represents the largest burden, always  has high frequency 
components and a slightly higher amount of noise clustered around the primary peakscomponents and a slightly higher amount of noise clustered around the primary peaks.  
This particular brand of noise could be used to detect concealed burdens if it is observed in 
recordings of other individuals.
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For each graph, the colors of the line correspond to weights in the following manner:
Black – 0lbs
Blue ‐‐ 10lbs
Green ‐‐ 35lbs
Red ‐‐ 50lbs
Generally speaking, increased magnitudes of power spectra are observed for all additional 
weight trials (with the exception of two of the average walk trials).  Perhaps the walk is 
“stiffer” with weight in the backpack compared to a walk without the backpackstiffer  with weight in the backpack compared to a walk without the backpack.
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There is a nearly linear increase in fundamental frequencies which corresponds to an 
increase in walking speed.  The fastest walking speeds also lead to the greatest amount of 
energy concentrated in the highest frequency regime.  Such high frequency components 
indicate increasing instabilities in the motion as a result of energy being shunted off of the 
fundamental motion and frequencies to inefficient and generally non‐vital components.  
These non‐vital components are attributable to tics, trips or other errors in gait as a result 
of a large departure from the natural cycle/pacing of the individual.
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L Finch, H Barbeau, B Arsenault,. Physical Therapy/Volume 71, Number 11/November 1991, 
842  855

Image to be added here from the book from the library: “Gait Analysis, An Introduction” 
Michael W. Whittle
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The graph represents the angle between the vector representing the left (blue) and right 
(red) legs and vector pointing up the z‐axis.  The phase of motion can be determined 
through examination of the slope of each line.  The pattern that emerges starts at a peak to 
a sharp, albeit “shallow” valley, peaks again, then a much deeper valley over a longer 
period of time, followed by another slow rise to a peak.  The slope of the line represents 
the rate of change of the angle with the vertical.  

The sharp/shallow peak represents a time when the angle with the vertical rapidly changesThe sharp/shallow peak represents a time when the angle with the vertical rapidly changes 
through a minimum back to an extrema.  This period of motion represents the swing phase 
of that leg, when the corresponding foot has left the ground and is being rapidly brought 
forward of the body.  The valley is shallower because the airborne leg is swung slightly 
outward as it passes the midline so as not to collide with the planted leg.  Once the leg is 
planted it goes through a slower, steadier phase of motion which corresponds to the stance 
phase, when it is supporting the body and moving an individual smoothly forward.
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As you can see, every swing phase of the left leg corresponds to jump in height of the 
center of mass of the subject.  By examining the relationship between these areas of 
increased height, we may judge whether or not an individual favors the right or left side 
and infer a motivation for that perturbation of motion.  
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As more energy is shifted out to higher frequencies it could indicate instability in the gait of 
the subject being examined as a result of a greater departure from that individuals natural 
pace and/or stress and strain placed on the individual as a result of mass.  In each of the 
above cases, the red line, which represents the data taken while carrying a backpack of 
50lbs, has peaks at higher frequencies than the other data points.  Furthermore, there 
appears to be a bit more noise around the peaks for the heavier backpack, possibly 
indicating instabilities as a result of the burden.
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By computing the mean length of the swing phase and mean length of the stance phase, 
we can estimate the proportion of each stride dedicated to each.  Several studies of gait 
and obesity indicate that as an individual’s weight increases, the amount of time dedicated 
to the stance phase increases for each leg.  This in turn leads to a longer period of time for 
which both legs are planted, termed the “double support” phase.  

By comparing the ratios for each phase, I wanted to see if the same was true of a ‘normal’ 
individual who was carrying loads of varying magnitudes in this case 0 10 35 and 50 lbsindividual who was carrying loads of varying magnitudes, in this case 0, 10, 35, and 50 lbs.  
A solid positive result would mean an approximately linear decrease in the ratio concurrent 
with a steady increase in weight.  While a majority of cases studied did show a decrease in 
ratio, the effect did not appear to scale with the weight.  This researcher recommends a 
second look at the problem with a wider dataset.
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The biggest obstacle to more in‐depth analysis and decisive conclusions is a limited sample 
size of the data.  Currently, all the GTRI motion capture data is sourced from a single 
individual.  It is currently not possible to evaluate the relative variability of gait in one 
subject versus another subject.  As such, it is difficult to characterize if the observed 
changes in gait will be visible across multiple individuals.  Additionally, development of a 
gait “profile” which can be applied to individuals based on their height, estimated weight, 
etc, would be a useful tool for identification.  Departures from a predicated profile would 
act as a target signature Such a profile would have to adequately predict the gait of a wideact as a target signature.  Such a profile would have to adequately predict the gait of a wide 
variety of individuals, and successful development depends upon a reasonably large sample 
of individual gaits with which to test and validate the profile(s).  
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This slide continues the discussion of an optimum gait or profile for each individual.  
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Outline

• Scene Generation Process

• Scene Simulation

• Scene Visualization

Signature Generation Procedure• Signature Generation Procedure

• Urban Scene Developmentp

• Physically Based Ray Tracing
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Scene Modeling

• Interesting scenarios are not static
• We created a system that updates object positions 

and signatures as a function of timeg

• Need a means to recreate dynamic situations
W t th ti d i t t k• We compute the motions and signatures at key 
moments of time and store the results in the scene 
simulation database for later usesimulation database for later use
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Scene Generation Process

Create 
andand 

Position 
Geometry

Insert DataInsert Data 
into Scene 
Simulation  

Compute 
D i

Database
View/Check 

M d l d Dynamic 
Models

Modeled 
Scene
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Scene Creation

• A Scene is
• A collection of static elements

• Buildings roads treesBuildings, roads, trees

• Dynamic elements
• Cars, people, animals

• And their interactions
• Shadows, obscuration, wind induced motion

5



Scene Creation

• A scene has a 
coordinatecoordinate 
system

A i• A scene is 
associated with 
a dynamica dynamic 
aspect termed 
the “simulation”the simulation .
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Geometry Representation

• Surfaces are 
represented by a 
polygon meshpolygon mesh

• Stored in Scene-
SimulationSimulation 
Database as a 
“mesh”

• Vertices are in 
the local 
coordinatecoordinate 
system of object
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Scene Representation

• Scene is represented 
as a graph in the g p
Scene-Simulation 
Database
Contains all objects• Contains all objects, 
“scene nodes,” and 
their relations

• Associated with a 
dynamic aspect 
termed the 
“ i l ti ” th t“simulation” that 
evolves the time 
dependant features
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Scene Node

• Each scene node has:
• A unique identifier, “name”

A t i d fi iti• A geometric definition, 
“mesh”

• A position and orientation, 
“matrix”

• A scene node is a unique 
instantiation of a mesh
E h d h• Each scene node has a 
transformation from local 
to global coordinates
A d h• A scene node may have 
child scene nodes

• Child inherits all 
transformations of the parent

9

transformations of the parent



Parent-Child Scene Nodes

• A child scene node 
inherits all of theinherits all of the 
transformations of 
the parentthe parent

• This allows objects 
that move together 
to be easily 

t dcomputed

10



Simulation
• The simulation is the timeThe simulation is the time 

evolution of the scene

• The simulation tracks the 
time and updates the 
animations and signatures 
as a function of time

• The key frames are the 
times when locations and 
signatures of scene nodessignatures of scene nodes 
are known exactly
• Visualizer uses a linear 

interpolation if time isinterpolation if time is 
between two key frames  

• The simulation is used for 

11

image generation



Object MotionObject Motion

Independent parts Deformable bodies
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Independent Motion

• Utilize Parent-Child At Rest Child Child
O i t ti scene node relations

• The child scene node

Coordinates Animation Orientation

The child scene node 
is animated in its local 
coordinate system 

d th i th

Local
Coordinates

Parent
Animation

Parent
Orientation

and then receives the 
parent animationGlobal

Coordinates
Parent

Coordinates
Scene

Orientation
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Independent Motion

• Vehicle motion is one example
• The vehicle is modeled as a vehicle body (parent scene node) and• The vehicle is modeled as a vehicle body (parent scene node) and 

four wheels (child scene nodes)
• The physically based vehicle dynamics model and its interface with 

th S Si l ti D t b i d ib d i “Fi t P i i l
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the Scene-Simulation Database is described in “First Principles 
Based Vehicle Dynamics Model” by Keith Prussing



Deformable Bodies

• Pose for each key time 
is stored in Sceneis stored in Scene-
Simulation Database

At i ti• At a given time, 
simulation determines 
which pose to drawp

• Global position is 
determined by centerdetermined by center 
of mass motion

15



Putting it All Together

• We load a scene 
d i l tiand simulation 

into the visualizer

• We produce a 
series of bitmap p
frames

We compile the• We compile the 
frames into a 
movie

16

movie



The Wire Frame Product

17



The Wire Frame Product
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Signature Generation Procedure

• For signature generation one must first  
determine:determine:
• The geographic location of the scene

• The date and time of the simulation

• The current weather conditions of the scene

• The sensor waveband(s) 

• The relationship of scene elements

19



Signature Generation Procedure
With the scene scenario established one must select the• With the scene scenario established, one must select the 
source of the signature data:

Measured data from representative sensor in the waveband of• Measured data from representative sensor in the waveband of 
interest, or

• Modeled data from model of choice

• This signature data is stored in the Scene-Simulation 
Database

• The simulation process accesses the Scene-Simulation 
Database to retrieve signatureDatabase to retrieve signature
• The signature can change with time and/or change in scene 

geometry

20



Signature Model Data Sources

• External Sources
• ASTER database (0.3 – 14 µm)( µ )
• NEF – Non Conventional Exploitation Factors 

database

• Lack of sufficient multispectral data for 
signature model development (particularly for 

l d t ti i ) it t thpersonnel detection issues) necessitates the 
development of the Scene-Simulation Database.

• This database approach provides flexibility for 
storing and accessing multi-source data.

21



Signature Model Data Sources
• Internal (EOSL) Sources E ample Car dataInternal (EOSL) Sources

• Spectrometers
• Cary (300 – 3000 nm)

Example Cary data

y ( )
• Ocean Optics (200 – 1100 nm)
• B&W Tek (900 – 1700 nm)

ASD (350 2500 nm)• ASD (350 – 2500 nm) 
• Radiometer

• D&P TurboFT (2.5 – 16µm)
• Hyperspectral Imager

• Telops Hyper-Cam (8 – 11µm)
• Other Imagers

Measured spectral data 
is integrated over • Other Imagers

• Sensors Unlimited (900 – 1700 
nm)

• FLIR ParthFindIR (8 – 14 µm)

g
wavebands of interest to 

provide signature 
estimates for materials in

22

FLIR ParthFindIR (8 14 µm)
• FLIR A40M (8 – 14 µm)

estimates for materials in 
the scene.



Measured Signature Data
H h l i i d b d• Human thermal signatures are estimated based on an average 
human skin temperature and available imagery.  

Radiance from 
Planck’s BB at 33°C 

cheek skin 
temperature

Simulated imagery

Scaling of 
intensity in 

FLIR iFLIR images
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Thermal Signat re ModelingThermal Signature Modeling
GTSIG

ARE viewable area

.XWEA – weather 
input

.PAR – thermal 
network definition

.IN – scene 
scenario 

RCN radiation

FAC – object geometry

.ARE – viewable area 
of surface nodes 

.RCN – radiation 
exchange among 

nodes 

.FAC – object geometry

GTSIG

24

.RAD – radiance by facet



Thermal Network
• The thermal network defines the heat transfer through the entire• The thermal network defines the heat transfer through the entire 

model.
• The model itself is divided up into volumes (nodes) that are 

connected in the networkconnected in the network.
• For each connection that participates in heat transfer, one must 

define conduction or convection.

td ti ik ( )W A )( 2

l
kACOND = hACONV =

tyconductivik = ( )mC
W areaA = )( 2m

lengthl = )(m coefftransferheath __= ( )Cm
W

2

VCCAP pρ=
⎞⎛

density=ρ
⎞⎛

heatspecificC p _= volumeV =
3

• For each node, one must define the capacitance for the volume.
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Thermal Network
Surface Node

Window (0.01 m thick)

Surface Node  

Interior Node 1  

Fl (0 10 thi k)

Door (0.05m thick)

Floor (0.10m thick)Interior Node 2  

Interior Node 3  

Wall and Roof (0.25m thick)

Interior Node 4 
(back surface) 

Th ti t t f th h l i
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The connection structure for the hovel is 
shown.  The hovel is used for the test scene.  



Signature Model

• The same geometry may 
be positioned at different

Signature 
Model

be positioned at different 
locations and orientations 
(i.e. each scene node).

Orientation Orientation Orientation • For signature purposes, 
each scene node is treated 
as a unique object.

Orientation 
& Location 

1

Orientation 
& Location 

2

Orientation 
& Location 

3

• The output radiances are 
painted on every facet on 
every scene node in the

Scene 
Node1

Scene 
Node2

Scene 
Node3

every scene node in the 
Scene-Simulation 
Database.Signature 

3
Signature 

2
Signature 

1
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GTSIG output

Facing North Facing South

T t (ºC) d di ( W/ 2 ) t t f f t t ti• Temperature (ºC) and radiance (µW/cm2sr) are output for every facet at every time 
step.

• Signature of each facet is pre-computed using desired algorithm and stored at key 
times in the Scene Simulation Databasetimes in the Scene-Simulation Database.  

• Simulation interpolates to determine signature at specific rendering time.

• In addition to GTSIG calculated values, radiance, reflectance, or any other value 

28
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from any source can be rendered on facets.



Test Scene – Hovels + Background
• The signatures are visualized on the scene 

geometry They are scaled to a colormap (0 255geometry.  They are scaled to a colormap (0 – 255 
grayscale).

• Three geometric objects:

• Hovel mesh
• Background between hovels mesh
• Background tile mesh 

• 19 unique scene nodes:

• Four hovels
• One background between hovels
• 14 background tiles

• Signatures calculated separately for each scene 
node with GTSIG for the following parameters:

• Noon on February 23, 1986
• Eglin AFB FL• Eglin AFB, FL
• 8-12 waveband

• Signature colormap:

• 2812 µW/cm2sr 0

North

29

2812 µW/cm sr 0
• 5480  µW/cm2sr 255



Test Scene – Hovels + Background

Scene Node 4, faces South

N

• Local ground around hovel allow us toLocal ground around hovel allow us to

see the interaction of the hovel with its

background.  

• We can see thermal shadows on the

North sides of all the hovels, 

underneath the posts, and on the 
N

30
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Urban Scene

• The hovel test scene was expanded to include a variety of structures.

• In addition to the hovel geometry was created for two houses a sedan a truck

31

• In addition to the hovel, geometry was created for two houses, a sedan, a truck, 
and a jeep.  



Urban Scene

GTSIG models were created for the two houses and the• GTSIG models were created for the two houses and the 
background.

• The radiance output from the GTSIG models were inserted into 

32

p
the Scene-Simulation Database for visualization.



Urban Scene

N

Long wave IR visualization of urban scene at noon on February 23 1986 Florida

N
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Long wave IR visualization of urban scene at noon on February 23, 1986, Florida.  



Visible Image Rendering

• LuxRender is a freeware renderer for generating visible band images.
• Materials and corresponding reflectances are assigned independently to the each facet 

group on the object.   g p j
• Input data files for LuxRender are exported from the scene simulation database. 
• With these data LuxRender generates a color image.  

• The resulting image represents what the average human eye would see and not a

34

• The resulting image represents what the average human eye would see and not a 
specific sensor.



PBRT

• Physically Based Ray Tracing1

• Allows rendering of shadows much better than rasterization
• Can model emitting and reflecting objects
• Has a “sun model” that is a projection light source at the 

proper intensity in the waveband of interestproper intensity in the waveband of interest. 
• Many ray tracers, including PBRT and LuxRender, run in RGB 

space and use the CIE 1931 color space to create the proper 
dynamic range for the final imagedynamic range for the final image

• PBRT has been modified to run in only one band
The final images are thus the exact radiance values generated by• The final images are thus the exact radiance values generated by 
the scene.

• PBRT interfaces with the Scene-Simulation Database via Matlab
to retrieve signature information for rendering

35

to retrieve signature information for rendering

1PBRT is GNU Public Licensed by Matt Pharr and Greg Humphreys



PBRT Movie – Truck in Hovel Test Scene

• Materials are assigned to every facet group in the scene and the definitions as well 
as spectral reflectance data is stored in the Scene-Simulation Database.  
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• Movie rendered at 400 nm



PBRT Movie – Vehicles in Urban Scene

37

• Movie rendered at 400 nm



GPU Architecture
• GPUs (Graphical Processing Units) have hundreds of low precision ALUs 

(Algorithmic Logic Units) in comparison to the handful of high precision ALUs 
found on today’s CPUs

• All of the GPU ALUs can operate in parallel inside parallel “Blocks” that form the 
GPU

• Current GPUs are optimized for floating point calculations

• GPU ALUs have been speeding up and becoming more powerful since NVIDIA’s 
push for a GPGPU (General Purpose GPU) architecture

38Image from: 
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf



Implementing Code on the GPU

• There can be hundreds of Blocks 
(multiprocessors) on a GPU with at 
most 512 Threads (ALUs) per blockmost  512 Threads (ALUs) per block 
(depending on the graphics card)

• Each Thread is capable of running 
in parallel with all other threads and 
can preform floating point 
calculations

• Depending on how memory is 
allocated, Threads  and Blocks can 
cooperate to finish the same task

• Threads can also be chained 
together to form a processing 
“pipeline” to preform complex tasks

39
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Image from: 
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf



GRT: First Test

• Looking at two triangles 
with intensities of 2 
W/m^2 and 1 W/m^2W/m 2 and 1 W/m 2

• Rendering Time  <  1s

Ri d t fl ti• Rings due to floating 
point error – can be 
removed by changing 
code from single tocode from single to 
double precision 
floating point data
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Motivation
• Demonstrate utility of mobile y

camera arrays

• Array cameras are small, 
lightweight, and inexpensiveg g , p

• Multi-band and multi-directional 
environmental monitoring

• Data transmitted to a central 
collection unit for processing   

• Support multimodal signature pp g
modeling 

• Motion detection algorithms

Si lt i t b d d t• Simultaneous inter-band data 
verification

• Validate scene models

2



Background
• Inexpensive, high-resolution camera p , g

prevalence suggests usefulness of 
arrays

• 8 Megapixel cell phone camera g p p
resolution

• Cell phone battery life of ~10 
hours

• Covert imaging device supported  

• Desired collection system 
biliti i l dcapabilities include

• Mobility
• Compatible with multiple sensorsCompatible with multiple sensors
• Tunable data input rate and 

storage
Permit real time recording views

3

• Permit real-time recording views



Camera Info (1 of 2)Camera Info (1 of 2)
FLIR PathFindIR Goodrich SWIR

• 0 9 1 7 µm• 0.9 – 1.7 µm

• InGaAs CCD

• 320 x 256 pixel 
resolution

• Size < 9.5 in³

4



Camera Info (2 of 2)Camera Info (2 of 2)
Visual Camera NIR Camera

• 0.75 – 1.05 µm

• 320 x 240 pixel 
resolution

• $110 (includes 
longpass filter)

5



Constructing the NIR camerag
1) Begin 
with typical 3) Remove      

IR filteryp
VIS camera IR filter

4) Reinstall2) Remove 4) Reinstall 
lens and 
cover with 
VIS filter

2) Remove 
camera lens

VIS filter

Step
1
2

Sensor Spectrum

IR FilterIR Filter

6

3
4 VIS FilterVIS Filter

400nm 1100nm750nm



Spectral Coverage
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Camera Arrangement (L to R): LWIR, Vis, NIR, SWIR
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System Connection Diagram
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Digital Video RecorderDigital Video Recorder
Compatible with any composite 
video sensor

1.5 Terabytes of data stored on 
3 internal hard drivesvideo sensor

Up to 16 video and 4 audio input 
channels

3 internal hard drives

D1 (704x480) resolution and 480 
fps divided over the 16 inputs

DVR F tDVR Front

10DVR Back



Data Collection Setup
LWIR Vis NIR SWIR

• Monitor/laptop port permits 
active view of camera dataactive view of camera data

• Tripod mount gives stability 
while enabling 360º views

• DVR processes up to 1 Gigabit 
of data per second

• Setup can accommodate more 
DVR units and cameras

11



Passenger Vehicle Imageryg g y

LWIR SWIRLWIR SWIR

NIR
12

NIR VIS



Foliage ComparisonFoliage Comparison

LWIR SWIRLWIR SWIR

NIR VIS
13

NIR VIS



Traffic VideoTraffic Video

LWIR SWIRLWIR SWIR

VISNIR
14

VISNIR



Disturbed Earth after WateringDisturbed Earth after Watering

LWIR SWIRLWIR SWIR

NIR VIS
15

NIR VIS



Camouflaged Military VehicleCamouflaged Military Vehicle

LWIR SWIR

NIR VIS
16
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Sensor system + bandpass filters = 
material characterization
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Accomplishments

• Built material 
discrimination system y
foundation

Recorded 704x480• Recorded 704x480 
resolution video at 30 
fpsfps

• Covered LWIR, SWIR, 
NIR, and Vis spectral 
bands

18



Accomplishments (Cont.)

• Cheaply converted 
VIS cameras to NIR

• Demonstrated utility 
of portable MSof portable MS 
sensor network

• Developed a 1st

generation mobile 
sensor web

19



Motion Analysis of Video to Motion Analysis of Video to yy
Support Personnel Detection Support Personnel Detection 

Alan M ThomasAlan M. Thomas
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Motivation

• The ability to associate data related to a single target is a 
preliminary step to performing multi-sensor data fusion.

• We desire a method for associating data from multiple EOIR 
sensors as well as RF micro-Doppler signals, and ultra-sonic 
signals.g

• The analysis of motion/gait may provide the mutual information 
necessary for performing the data association.

• We are also interested in exploring the possibility of performing 
identification based upon gait as observed in imagery.

• Furthermore, the ability to point out anomalous or hostile 
behavior is desirable. 

2



Change DetectionChange Detection

In developing

• f

In developing 
our motion 
analysis y
methods the 
following 
idvideo 

sequence was 
used as a testused as a test 
case.

3



Change DetectionChange Detection
The pixel-wise p
difference 
between 
consecutiveconsecutive 
frames was used 
as the basis for 
detecting motion 
in video. 

4



Change DetectionChange Detection
The resulting g
images are then 
blurred through 
convolution withconvolution with 
a Gaussian filter 
and a threshold 
is applied 
(1.3*mean) to 
yield an imageyield an image 
with binary 
values.

5



Track Formation
• Need a means for associating targets over timeg g

• We begin by giving a target window to each blob.

• In the next frame if the centroid of a blob falls within the target• In the next frame, if the centroid of a blob falls within the target 
window of a target in the previous frame, then the two are 
associated together and a track is begun. The process is 
repeated iteratively

6

repeated iteratively.



Track FormationTrack Formation
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Motion and Gait Analysis –Motion and Gait Analysis 
Discrimination

• The motion of moving objects has the potential to be 
used as a characteristic in discriminating between 
h d th i titihumans and other moving entities

• As a simple example, the speed of most vehicles is 
outside the bounds of realistic human movement.

• A more detailed look at motion in video may yield y y
potential methods for discriminating humans from 
animals, other vehicles, and the natural movemnet of 
vegetationvegetation.  

8



M ti d G it A l i F iMotion and Gait Analysis - Fusion
• If we can fuse from different sensors (and sensor• If we can fuse from different sensors (and sensor 

modalities), then more information  can be brought to 
bare on what is and is not human.  

• The ability to associate data related to a single target 
is a preliminary step to performing multi-sensor data 
fusion.

• We desire a method for associating data from multiple g p
EOIR sensors as well as RF micro-Doppler signals, 
and ultra-sonic signals.

• The analysis of motion/gait may provide the mutual 
information necessary for performing the data 

i ti
9

association. 



Motion and Gait Analysis
• For each frame a “pixel velocity” is formed by calculating the• For each frame a pixel velocity  is formed by calculating the 

centroids of the respective blobs and taking there differences 
in consecutive images

• For a set of blob centroids {(xj, yj)} the pixel velocity in frame j 
is calculated as Vj = (xj-xj-1, yj-yj-1). 

• A history of such pixel velocities may then be considered as a 
signal over time.

10



Motion and Gait AnalysisMotion and Gait Analysis
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Motion and Gait AnalysisMotion and Gait Analysis
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Motion and Gait AnalysisMotion and Gait Analysis
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Motion and Gait AnalysisMotion and Gait Analysis
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Different ViewpointsDifferent Viewpoints

• In order to explore the effects on perceived gait 
due to changes in perspective, we will consider 
the same motion from different viewpointsthe same motion from different viewpoints

•Five different camera positions were considered 
relative to a simulated linear path.

15



Different PartsDifferent Parts

•The perceived motion of the arms legs 
and torso were considered in addition 
to the full body motion.

16



0 Degrees0 Degrees
•Full Body •Torso

•Arms •Legs•Arms •Legs
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45 Degrees45 Degrees
•Full Body •Torso

•Arms •Legs•Arms •Legs
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90 Degrees90 Degrees
•Full Body •Torso

•Arms •Legs•Arms •Legs
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135 Degrees135 Degrees
•Full Body •Torso

•Arms •Legs•Arms •Legs
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Observations
Ob i h lk i f h i f• Observing the walkers motion from the perspective of a camera 
introduces additional frequencies that are not present in the 
original 3D motion. This is essentially an aliasing phenomena 
i t d d b di i lit d ti d t i kiintroduced by dimensionality reduction and geometric masking 
issues. Furthermore, the way that this aliasing presents itself is 
perspective dependent

• The full body motion illustrated in the plots is a complex 
summation of the motions of the various body components. 
Plots are included of the “arms”, “legs”, and “torso” toPlots are included of the arms , legs , and torso  to 
illustrate this fact. 

• From the 90° aspect one can see that these three components 
show significant high frequency behavior which becomes 
smoothed out when combined into the full body motion. 

21



Observations

• The predominant frequency in the full body motion seems 
to reflect the frequency of the “legs” modified by the q y g y
periodic motion of the other body parts. 

• Thus, the high frequency behavior of the full body 
appears to be a weighted sum of the other components. 

• While the average horizontal displacement will be related 
to the full body speed, variations about this average (i.e., 
the high frequency behavior) will be related to the 
individual’s specific body motion characteristics (e.g., p y ( g ,
arm swing frequency, foot motion, leg position, etc).

22



f f

Observations
• For the backside view the high frequency behavior of the 

horizontal motion is indicative of the rotational sway (i.e., 
yaw) in the body, primarily the torso as the “torso” data y ) y p y
show, while the high frequency variations in the vertical 
direction result from the “bobbing” motion of the 
individual. 

• Deviations of the velocity components from a constant 
average for nonorthogonal views result from the g g
perspective size changes and obscuration in the body 
image. The degree of this deviation can be related to the 
view angle and corrections applied to the data.view angle and corrections applied to the data.
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Vehicle Dynamics ModelVehicle Dynamics Model
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Vehicle Dynamics Model

• Due to the prevalence of untracked 
passenger vehicles in urban environmentspassenger vehicles in urban environments, 
an accurate model of vehicle motion was 
developed.p

• Motion had to be constrained by physical 
properties of the vehicle and by the driverproperties of the vehicle and by the driver 
interaction.

R ti h d t th S Si l ti• Routine had to access the Scene-Simulation 
Database (SSDB) to get scene information 
and write the results.

2

and write the results.



Vehicle Dynamics Modeling

• Modeled as five rigid 
bodies.

• Body and four wheels.y

• Rigid body equations are 
used to model motion.

C t f ti• Center of mass motion.
• Rotations about center of 

mass.

Ph i l ti• Physical properties 
influencing motion:

• Mass,
• Track width,
• Wheel base.

3



Geometric Parameters of Vehicle Motion

Description Symbol
Distance to front axle ℓf
Distance to rear axle ℓr
Track width ℓw
Center of mass height h
Geometric wheel radius r

Side view

Geometric wheel radius rg

Loaded wheel radius rh

Effective wheel radius reff

Rear viewWheel side view

4

Rear viewWheel side view



Coordinate Systems

• Three coordinate 
systems are neededy
• Global , Body, and 

Wheel.
All i ht h d d ith• All right handed with x 
forward.

• Two standards for the 
z axis:
• SAE: z-down
• ISO: z-up

• ISO Standard used for 
greater intuition

5

greater intuition.



Equations of Motion
• Forces initially• Forces initially 

resolved in the body 
coordinate system 
then rotated to plane 

f ti f
p

of motion for 
computation.

• Simplest forms of

Forces acting upon a vehicle

Simplest forms of 
forces used 
(Rajamani, 2006):

• Elementary gravity
Force Symbol
Gravity Fg

• Elementary gravity,
• Quadratic Drag,
• Tire Rolling

Aerodynamics Drag Fd

Front Wheel Fwf

Tire Rolling 
Resistance,

• Dugoff Tire Model.

6

Rear Wheel Fwr



Wheel Forces

• This is the force that 
generates forward motion 
of a vehicleof a vehicle

• It is the sum of the rolling 
resistance and the Dugoff
Tire Model (RajamaniTire Model (Rajamani, 
2006).

• Depends on the load, Fz, steering angle δ and sidesteering angle, δi, and side 
slip angle, αi, (Jazar, 2008).

• Total force and torque is 
the vector sum of forcesthe vector sum of forces 
and torques generated by 
each wheel (Jazar, 2008).

7



Dugoff (1969) Tire Model
σ

• Analytic model of 
longitudinal and
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=

y

x

fCF

fCF

λ
σ
α

λ
σ

σ

α

σ

1
tan
1

longitudinal and 
lateral forces 
produced by one tire.

( )
( ) ( )( )
( )

+

+
=

+
z

y

CC

F

ασ

σμλ

σ

ασ tan2

1
1

2/122
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uniform pressure it 
tire contact patch.
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• Breaks down at large 
slip values.

⎪⎩ wgr ω

Description Symbol

Longitudinal Tire Stiffness Cσ
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slip values.
Lateral Tire Stiffness Cα

Rotational velocity ωw



Computation Routine

• Routine can be 
broken into four

Read scene node 
data from SSDBStart

broken into four 
steps:

Q th SSDB
Read user control 

parameters• Query the SSDB.

• Acquire user control 
parameters

parameters

C t iti fparameters.

• Numerically integrate 
the equations of 

ti

Compute position for 
each key frame as 
animation matrices

motion.

• Write the results to 
the SSDB

Write animation 
matrices to SSDB End

9

the SSDB.



Scene Node Data

• Scene orientation is 
taken to be global 

Read scene node 
data from SSDBStart

g
coordinate system.

• A specified ground 
scene node is taken

Read user control 
parametersscene node is taken 

as plane of motion.
• Vehicle mesh is taken

parameters

C t iti fVehicle mesh is taken 
from scene node 
assignment.
G t i t

Compute position for 
each key frame as 
animation matrices

• Geometric parameters 
are taken from vehicle 
mesh. Write animation 

matrices to SSDB End

10



User Control Parameters

• Initial position and 
heading are taken as

Read scene node 
data from SSDBStart

heading are taken as 
inputs.

• Engine speed as a Read user control 
parametersg p

function of time 
simulates driver 
adjusting gas pedal.

parameters

C i i f
j g g p

• Equivalent steering 
angle as a function 

f ti i l t

Compute position for 
each key frame as 
animation matrices

of time simulates 
driver turning the 
steering wheel. Write animation 

matrices to SSDB End

11



Equivalent Steering Angle

• Defined as cotangent 
average of inner and outer 
steering angles (Jazarsteering angles (Jazar, 
2008).

• Can be decomposed into 
left and right steeringleft and right steering 
angles for a front wheel 
drive vehicle using 
Ackerman steering 
condition (Jazar 2008)condition (Jazar, 2008).

• Steering angles are used 
to determine wheel forces 
and the final orientation of

Ackerman Steering Geometry 
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Compute Position and Store the Data

• Position and orientation 
computed numerically 

i d d

Read scene node 
data from SSDBStart

using second order 
Runge-Kutta method.

• Coordinates are used to Read user control 
parametersCoordinates are used to 

compute the animation 
matrix for the vehicle 
body and each wheel as 
a separate child scene

parameters

C i i fa separate child scene 
node.

• Animation matrices are 
itt di tl t th

Compute position for 
each key frame as 
animation matrices

written directly to the 
SSDB.

Write animation 
matrices to SSDB End
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One Degree of Freedom Model

• Vehicle 
constrained to 
move on amove on a 
line.

B d t• Body cannot 
rotate about 
any axis.y

• Wheels are 
constrainedconstrained 
by rolling 
condition.

14



One Degree of Freedom Model

• By assuming  
constant 
accelerationacceleration 
and maximum 
upper velocity, 

l d fa closed form 
solution is 
possible.possible.

• Simplest non-
trivial motiontrivial motion 
used to verify 
the algorithm.

15



One Degree of Freedom Model

• The absolute error 
was taken to be thewas taken to be the 
difference between 
the analytic and 
numerical results.

• The error in position 
was found to be on 
h d f 0 01%the order of 0.01% 

when the absolute 
error is divided by 
th di fthe radius of a 
wheel.

16



One Degree of Freedom Model

• By varying the 
maximum velocity, itmaximum velocity, it 
was found that the 
error does increase 
with the maximum 
velocity, but the 
error remains below 
0.1%. 

• Variation of time 
step found that a 
ti t f 1/30time step of 1/30 s 
was adequate.

17



Three Degree of Freedom Model

• Vehicle is 
constrained to 

i lmove in a plane.

• Straight line g
motion compared 
to one DOF 
model and foundmodel and found 
to be within 
numerical error 
of one DOF 
model.

18



Three Degree of Freedom Model

• To examine the qualitative features of the model, a variety 
of meneuvers were simulated. 

• Parametric plots of the motion and plots of the phase 
space coordinates as a function of time are provided on 
the next three charts for a vehicle:the next three charts for a vehicle:
• Moving forward and making a left turn.
• Performing a lane change.
• Moving forward and making a u-turn.

• In all motions, we see that:
• The vehicle is indeed constrained to move in the plane.
• The coordinates change in the physically expected manner at a reasonable rate.

19



Three Degree of Freedom Model

E l t t f hi l

20

Example output of vehicle 
making a moving left turn



Three Degree of Freedom Model

Example output of vehicle making 

21

a lane change at 25 MPH



Three Degree of Freedom Model

Example output of vehicle 
making a u turn at speed

22

making a u-turn at speed



Five Degree of Freedom Model

• Vehicle is 
constrained to 
move in a plane.

Vehicle may• Vehicle may 
rotate about the 
body x and ybody x and y 
axes.

23



Five Degree of Freedom Model

• Again, a the following meneuvers were simulated to examine the 
results of the model and the results are displayed on the followingresults of the model and the results are displayed on the following 
three charts. 

• Circular motion, left turn, and lane change

• The qualitative features of the motion are seen to agree with the three 
degree of freedom model and physical expectations.

W th t th h th hi l i t i t t t t th hi l ll• We see that the when the vehicle is turning at a constant rate, the vehicle rolls as 
would be expected.

• When the vehicle begins to turn, it will also rotate about the body x and y axes at 
ll la small angle.

• Exact results for motion were not available from the literature for 
comparison.

24
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Five Degree of Freedom Model

Example output of vehicle 
moving in a circle with 5 DOF

25

moving in a circle with 5 DOF



Five Degree of Freedom Model

Example output of vehicle 
making a moving left turn

26

making a moving left turn 
with 5 DOF



Five Degree of Freedom

Example output of vehicle making a 

27

lane change at 25 MPH with 5 DOF
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Signal Processing for Detection of Human Signals 

 
Charles E Rohrs, MIT 

 
 
1.  Publications: 
 
Peer reviewed conference publication: 
 
M.B. Rudoy, C.E. Rohrs, J. Chen, "Signatures of Walking Humans from Passive and 
Active Acoustic Data using Time-Varying Vector Autoregressions," in the Proceedings 
of the 41st Annual Asilomar Conference on Signals, Systems, and Computers, (Asilomar, 
CA), November 4-7, 2007. 
 
 
 
2.  Scientific Personnel 
 
Charles E Rohrs, Research Scientist,  50% time supported, 50% time worked 
Alan Oppenheim,  Professor,  5% time supported,  more time worked as academic year 
salary is paid by MIT 
 
Students: 
Melanie Shames,  50% time supported,  50% time worked 
Tom Baran, 25% time supported, 25% time worked 
Rajiv Divi, not supported, involved in discussions 
Shay Maymon, not supported, significant contributions 
 
 
3.  Inventions Reported   none 
 
 
4. Research Summary and Accomplishments: 
 
 
Processing to Produce Signature of Human Footsteps by Fusing of Active and Passive 
Ultrasound Signals.  Signature can be used to Differentiate Human from Dog Footsteps. 
 
The process involves treating active ultrasound spectrogram as image data to 
automatically extract two signals, one related to movement of limbs and the other related 
to movement of torso. A third signal from passive ultrasound is also used.  The three 
signals are then used to identify parameters in a Vector Autoregressive (VAR) system.  
These parameters create the Signature.  The Signature is used in a Support Vector 
Classifier to detect human footsteps in noise and to differentiate human footsteps from 
other animal footsteps, in particular, a test case of a dog.  The results show clear 
separation of the three possibilities: noise, human, or dog. 
 



 
 

Human, dog or no target decision regions in VAR parameter signature space. 
 
 
  
Merging Data from N Sensors, Each Sampling at 1/N the Nyquist Rate.  Estimating the 
Delay to Each Sensor and the Target’s Position. 
 

Consider a bandlimited signal that is captured simultaneously by N sensors.  If each 
sensor samples the signal at a rate somewhat greater than the Nyquist rate divided by 
N and if the delay to each sensor is known, the original signal can be reconstructed 
using appropriate interpolation functions. The research accomplishment comes from 
recognizing that, if the interpolation is performed with other than the correct delays, 
energy is produced in thea frequency band slightly above the highest frequency where 
energy is present in the original signal.  Adjusting the delays in the reconstruction 
until this energy is minimized finds the correct delays and reconstructs the original 
signal. Efficient search algorithms were developed.  Linearizing versus the delay 
makes it a Newton search that converges quickly. This is a significant development in 
multisensory fusion. Differing gains of different sensors are also easily found at the 
same time.  Delay estimates are proportional to the difference in distance from the 
source to each sensor so information about the targets position becomes available. 

 
 
5.  Technology Transfer 
 
Began initial discussions with group at BAE System, New Hampshire 
Found contact and established interest with group at MIT Lincoln Lab, expect significant handoff 
of technology that differentiates human vs. animal footstep signatures. 
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Key AccomplishmentsKey Accomplishments

• Passive broadband footstep detection
Acti e Doppler sonar• Active Doppler sonar

• Multi modal sensor performance
Combined passive and active ultrasonic sensors– Combined passive and active ultrasonic sensors

– Addition of radar
• Cadence frequency analysisCadence frequency analysis
• Range analysis
• Light vehicle discriminationLight vehicle discrimination
• Future sensor concepts
• Technology transfergy
• Student research

1986



Footstep Measurement SummaryFootstep Measurement Summary
• Experimentally observed two components of human footsteps

– Low frequency component (below 500 Hz-1 kHz) is generatedq y p ( ) g
by force normal to the surface.

– High frequency component is generated by the tangential force.
Frequency range depends on properties of the contactingq y g p p p g
surfaces and may be extend to the ultrasonic frequencies.

• Floor covering changes the footstep vibration signature.
• The low-frequency vibration component is reduced by walking• The low-frequency vibration component is reduced by walking

“stealthily”.
• The high-frequency component increases the probability of

footstep detectionfootstep detection.
• Airborne signal attenuate less rapidly at higher frequencies than

seismic signals leading to the use of microphones for footstep
detectiondetection

• UM is patenting a high-frequency detection technology for footstep
detection.

1986



Ultrasonic Doppler SONARUltrasonic Doppler SONAR

f (• Records motion of human body components (e.g. torso, 
head, arms, legs, etc)
Si l i ti l t th ti f th d• Signal is proportional to the cross section of the measured 
area (e.g. stronger signal for torso than arms/legs)

• May be useful for identifying a person by their whole body• May be useful for identifying a person by their whole body 
oscillations while walking.

• UM is patenting a high-frequency Doppler sonar detectionUM is patenting a high frequency Doppler sonar detection 
technology.

1986



Human Passive and Active Signatures. Human Passive and Active Signatures. 
Sonar and radar carrier frequency modulation 
by human motion (Doppler signature).

Active signatures
y ( pp g )

FM modulated reflected signal

Sonar,radar...
FM modulated reflected signal

Sound

Transmitted signal
Sound

Seismic

Sound and seismic signals generated by        
h d i f

Seismic

human dynamic forces. 
Electromagnetic field modulation due to motion
IR and video surveillance

Passive signatures

1986

IR and video surveillance



Multi Modal SensorMulti Modal Sensor
PerformancePerformance

1986



Recent Research ResultsRecent Research Results

Synchronization between Human Synchronization between Human 
Passive and Doppler Signatures. Passive and Doppler Signatures. 
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Processing Human Motion SignalsProcessing Human Motion Signalsg gg g

T2Time window ≈ Footstep signalT2Time window ≈

Time domain of  a seismic signal    

Footstep signal

Spectrogram formationFFT

Overlapping ≈ T1

Maximize signal to noise
BPF

RMS
Envelope formation

STFT
Cadence spectrogram

Cadence freq FFT

1986



Technology TransferTechnology Transfer
• Technology transition to other Government agencies

– Dr James Sabatier served on ARL red team for Textron intruder detection systems
– US Armament Research, Development, and Engineering Center (ARDEC) involved in 

signal processing researchsignal processing research
– Joint data collection exercises with ARDEC and ARL in October 2008 and with ARDEC in 

May 2009.  These included tests at Yuma Proving Ground.
– Proposals written to DHS and ONR – not funded
– Related effort for light vehicle detection funded by ARL through ARO
– Spin-off technology research program using “natural microphones” for obscured vehicle 

detection funded by US Army NVESD
UM led Personnel Detection academic study group conducted first meeting at ARL in– UM-led Personnel Detection academic study group conducted first meeting at ARL in 
June 2009 on human, light vehicle, and tunnel detection. 49 participants from academia, 
industry, and government organizations.  Included are 12 international participants.  
Future meetings are planned.
Dr Sabatier selected for an IPA assignment to ARL for research in human light vehicle– Dr Sabatier selected for an IPA assignment to ARL for research in human, light vehicle, 
and tunnel detection 

– Cadence frequency signal processing applied to acoustic signals from sperm whales for 
US Navy Space and Naval Warfare Systems Command

– UM research program transitioned to US Army Armament Research, Development, and 
Engineering Center (Contract W15QKN-09-C-0163)

– Formation of NATO Panel SET-158 “Disposable Multi-Sensor Unattended Ground Sensor 
Systems for Detecting Personnel,” Chair by James Sabatier, 2010-2012.
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Technology Transfer Technology Transfer 
• Publications and Professional Meetings

– Published in J. Acoust. Soc. Am.
Presented and published in proceedings– Presented and published in proceedings 
• SPIE Defense and Security Symposium
• Military Sensing Symposium on Battlefield Acoustics and Magnetic 

S iSensing
• IEEE International Conference on Technologies for Homeland Security 
• NATO Research and Technology Organisation Symposium on gy g y

Battlefield Acoustic Sensing for ISR Applications.
– Presented at the Acoustical Society of America

• Intellectual Property• Intellectual Property
– Patent application filed for ultrasonic human detection technology and 

cadence frequency signal processing
R h di l fil d d i kl i t h l– Research disclosure filed on dynamic speckle sensing technology

– UM spin-off company formed to develop ultrasonic human detection 
technology (SOAIR, LLC)
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PublicationsPublications
• Peer-Reviewed

– Alexander E. Ekimov and James M. Sabatier, “Vibration and sound ,
signatures of human footsteps in buildings,” J. Acoust. Soc. Am., 120(2), 
762-768 (2006).

– Alexander E. Ekimov and James M. Sabatier, “Ultrasonic wave generation , g
due to human footsteps on the ground,” J. Acoust. Soc. Am., 121(3), 
EL114-EL119 (2007).

– Alexander Ekimov and James M. Sabatier, “Human motion analyses , y
using footstep ultrasound and Doppler ultrasound”, J. Acoust. Soc. Am., 
Vol.123, No 6, p. EL149 - EL154, (2008).  Virtual Journal of Biological 
Physics Research - May 15, 2008, Volume 15, Issue 10 

– Alexander E. Ekimov and James M. Sabatier, “Rhythmic Analysis of 
Human Motion,” Submitted Fall 2009, J. Acoust. Soc. Am.
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PublicationsPublications
• Conference Proceedings

– Alexander E. Ekimov and James M. Sabatier, “The velocity response to the 
h f t t f ” P di f th Milit S i S ihuman footstep force,” Proceedings of the Military Sensing Symposium on 
Battlefield Acoustic and Seismic Sensing, Magnetic and Electric Field Sensors, 
9 pp. (2005).

– Alexander E Ekimov and James M Sabatier “Broad frequency acoustic– Alexander E. Ekimov and James M. Sabatier, Broad frequency acoustic 
response of ground/floor to human footsteps,” Proc. SPIE, Vol. 6241, 202-209 
(2006).

– Alexander E. Ekimov and James M. Sabatier, “Passive and active ultrasonic ,
methods for human motion detection,” Proc. of the Military Sensing Symposium 
on Battlefield Acoustic and Seismic Sensing, Magnetic and Electric Field 
Sensors, 8 pp. (2006).
Al d E Eki d J M S b ti “Ult i th d f h– Alexander E. Ekimov and James M. Sabatier, “Ultrasonic methods for human 
detection,” Proc. NATO Research and Technology Organisation Symposium on 
Battlefield Acoustic Sensing for ISR Applications, 8 pp.  (2006).
Alexander E Ekimov and James M Sabatier “Passive ultrasonic method for– Alexander E. Ekimov and James M. Sabatier, Passive ultrasonic method for 
human footstep detection,” Proc. SPIE, Vol. 6562, DOI: 10.1117/12.716899 
(2007).
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PublicationsPublications
• Conference Proceedings (Continued)

– Alexander E. Ekimov and James M. Sabatier, “Evaluation of the range of 
h f t t d t ti ” P Milit S i S i B ttl fi ldhuman footstep detection,” Proc. Military Sensing Symposium on Battlefield 
Acoustics and Magnetic Sensing (2007).

– Alexander Ekimov and James M. Sabatier, “Human detection range by active 
Doppler and passive ultrasonic methods ” Proc SPIE Defense and SecurityDoppler and passive ultrasonic methods,  Proc. SPIE Defense and Security 
Symposium (2008).

– James M. Sabatier and Alexander Ekimov, “Range limitation for seismic 
footstep detection,” Proc. SPIE Defense and Security Symposium (2008).p , y y p ( )

– Alexander E. Ekimov and James M. Sabatier, “Detection and analysis of 
broadband acoustic signatures from walking humans in quiet and noisy 
environments,” Proc. Military Sensing Symposium on Battlespace Acoustics 

d M ti S i (2008)and Magnetic Sensing (2008).
– James M. Sabatier and Alexander Ekimov, “A Review of Human Signatures in 

Urban Environments Using Seismic and Acoustic Methods,” Proc. IEEE 
International Conference on Technologies for Homeland Security (2008)International Conference on Technologies for Homeland Security (2008). 

– Alexander E. Ekimov and James M. Sabatier, “Orthogonal sensor suite and the 
signal-processing algorithm for human detection and discrimination,” Proc. 
SPIE Vol. 7303, DOI 10.1117/12.818823 (2009).
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SPIE Vol. 7303, DOI 10.1117/12.818823 (2009). 



Conference PresentationsConference Presentations
• Acoustical Society of America

– James M. Sabatier and Alexander Ekimov, “Vibration signature of human 
footsteps on the ground and in buildings ” J Acoust Soc Am 118 2021footsteps on the ground and in buildings,  J. Acoust. Soc. Am. 118, 2021 
(2005).

– Alexander Ekimov and James M. Sabatier, “Adaptive mechanical model of 
human footsteps ” J Acoust Soc Am 119 3390 (2006)human footsteps,  J. Acoust. Soc. Am. 119, 3390 (2006)

– Alexander Ekimov and James M. Sabatier, “Ultrasonic signatures of 
human motion,” J. Acoust. Soc. Am. 121, 3115 (2007)

– Alexander E. Ekimov and James M. Sabatier, “Directivity pattern of 
footstep sound at ultrasonic frequencies,” J. Acoust. Soc. Am. 122, 3061 
(2007)

– Alexander E. Ekimov and James M. Sabatier, “Human Recognition by 
active and passive acoustic signatures,” J. Acoust. Soc. Am. 123, 3725 
(2008).

– James M. Sabatier and Alexander E. Ekimov, “Orthogonal acoustic sensor 
package for human detection in quiet and noisy environments,” J. Acoust. 
Soc. Am., 124, 2508 (2008)
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Conference PresentationsConference Presentations
• Acoustical Society of America

– Asif Mehmood, Paul Goggans, and James Sabatier, “Instantaneous 
f l i f lt d D l i l i B ifrequency analysis of ultrasound Doppler signal using Bayesian 
probability,” J. Acoust. Soc. Am. 125 2537 (2009). 

– Alexander E. Ekimov and James M. Sabatier, “Human detection algorithm 
for seismic and ultrasonic detectors ” J Acoust Soc Am 124 2499for seismic and ultrasonic detectors,  J. Acoust. Soc. Am., 124, 2499 
(2008).

– Christopher L. Peters, Vyacheslav Aranchuk, James M. Sabatier, “Motion 
Analysis of an Oscillating Target Using Laser Speckles, Mid-SouthAnalysis of an Oscillating Target Using Laser Speckles, Mid South 
Chapter of the Acoustical Society of America Meeting, Conway, AR, 
March 6-7, 2009.

– Natalia Sidorovskaia, Philip Schnexnavder, Alexander Ekimov, James 
S b i G E I d J li W I “Rh h i l i fSabatier, George E. Ioup, and Juliette W. Ioup, “Rhythmic analysis of 
sperm whale broadband acoustic signals,” J. Acoust. Soc. Am. 125, Issue 
4, 2738 (2009). 

• ARL Study Group on Detection of Humans Light Vehicles and Tunnels• ARL Study Group on Detection of Humans, Light Vehicles, and Tunnels
– Alexander Ekimov and James M. Sabatier, “Human motion 

characterization,” Human, Light Vehicle and Tunnel Detection Study 
Group Army Research Laboratory June 16-17 2009
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Student ParticipationStudent Participation
• Five graduate students:

– Asif Mehmood, PhD awarded in Electrical Engineering, dissertation 
completed entitled “Human Motion Detection using Ultrasound Dopplercompleted entitled Human Motion Detection using Ultrasound Doppler 
Vibrometer and Bayesian Model Selection”

– Morris Mitchell, MS candidate in Physics
– Christopher McNeil, MS awarded in Physics
– Randy Ware, MS awarded in Electrical Engineering
– Christopher Peters, MS awarded in Physics

• Three undergraduate students:
– Celeste Sabatier completed a senior thesis in Physics entitled “Studying 

the Harmonic Motion of the Human Body via Ultrasonic Motion Detector 
and Ultrasonic Doppler Vibrometer.”
Tatsiana Aranchuk BS in Electrical Engineering– Tatsiana Aranchuk, BS in Electrical Engineering

– Bradley Stroud, BS in Physics, University of Central Arkansas
• Two high school students (summer research projects):

– Julia Chang (Mississippi School for Math and Science)
– William Panlener (Mississippi School for Math and Science)
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SummarySummaryyy
• Ultrasonic human detection technologies demonstrated under field 

conditions
• Rhythmic analysis of human motion signatures showed the 

equivalence of fundamental (cadence) frequency for signals fromequivalence of fundamental (cadence) frequency for signals from 
orthogonal sensors.

• Application of orthogonal sensors and common signal processing 
algorithms extended the distance of human detectionalgorithms extended the distance of human detection.

• Strong technology transfer effort involves other research 
organizations

• Research has been transitioned to other Army agencies and has 
potential for the commercial market
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