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EXECUTIVE SUMMARY 

This report summarizes SRI’s accomplishments from 07/01/05 to 06/30/10 on the, 
“Formation of Defect Microstructures and Electrical Transport in VOx” project. We have 
successfully carried out all tasks identified in our initial proposal and supplements and gained 
significant knowledge and understanding of electrical transport, optical properties, and electronic 
structures in vanadium oxide (VOx), the most favored material for uncooled microbolometers, 
and in related highly disordered systems. We have developed algorithms and quantitative 
modeling tools that compute a variety of transport properties and their dependence on defect 
microstructures in VOx. These tools are valuable for identifying VOx with appropriate 
compositions and defect structures for improved bolometer performance. Some of our results 
have been published in peer-reviewed journals and presented at professional conferences. In 
addition, we have established a close collaboration with experimentalists in both academia [the 
Multidisciplinary University Research Initiative (MURI) team led by Prof. Mark Horn at 
Pennsylvania State University] and industry (Dr. A. J. Syllaios from L3 Communications), who 
have been working on VOx and related systems. We have provided our understanding and 
physical insights to the experimentalists and helped analyze their experimental measurements. 
The collaboration with experimentalists has also broadened our research scope and helped us 
focus on the most relevant issues concerning VOx. 
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TECHNICAL ACHIEVEMENTS 

Uncooled infrared focal plane arrays (IR-FPAs) offer significant advantages over cooled IR-
FPAs, including reduced cost, weight, and power. Microbolometer arrays based on VOx have 
shown outstanding performance and have displaced cooled IR sensing products in many military 
and civil applications. The complex nature of VOx as well as the subtle techniques required to 
fabricate it, necessitates basic research to create new knowledge and understanding to facilitate 
rapid improvement in this critical technology. To this end, ARO awarded SRI a contract (Project 
48442 EL, Formation of Defect Microstructures and Electrical Transport in VOx) to perform 
theoretical studies on structural and transport properties of VOx. The overall goal of the study 
was to arrive at a comprehensive understanding of the electronic and lattice structures in VOx, in 
particular those associated with defect microstructures, and their effects on temperature- and 
temporal-dependent electrical transport in VOx. We have successfully performed all the project 
tasks and developed physical pictures and modeling tools to describe defect structures, electrical 
transport, and optical properties in highly disordered VOx systems. Our achievements in are 
described in detail below. 

1. ELECTRONIC STRUCTURE OF VOX  

Given similarities between VOx and amorphous Si, it is tempting to apply understanding of 
α-Si directly to VOx. However, that approach has encountered many irresolvable difficulties. 

1.1 NATURE OF CARRIERS IN VOX  

We noticed that among several significant differences between VOx and α-Si, the first and 
foremost is that carriers in the two systems have different origins. In α-Si the conduction and 
valence bands are made of extended s- or p-orbitals, and a well-defined band gap exists between 
the conduction and valence bands. Carriers responsible for electrical transport in α-Si occupy the 
impurity band within the band gap, and electrical conduction takes place either through hopping 
in the impurity band at low temperatures or activating carriers from the impurity band to the 
conduction band with extended wave functions at high temperatures. In contrast, carriers in VOx 
stay in the d-orbitals, which are much more localized than s- and p-orbitals, and the well-defined 
conduction and valence bands with extended wave functions are either absent or irrelevant to the 
electrical transport.  
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Figure 1 VO6 octahedron and its energy levels. The red sphere represents  
the V atom and blue spheres represent oxygen atoms. 

To understand the nature of carriers in VOx, we first examined the electronic structure in 
stoichiometric vanadium oxides. In VO, V2O3, and VO2, each V atom is surrounded by six 
oxygen atoms, forming an octahedron, in which, the 5-fold degenerate 3d orbital splits into a  
3-fold degenerate t2g orbital and a 2-fold degenerate eg orbital (see Fig. 1). The V octahedra in 
general are distorted, and the triply degenerate t2g further split, to one a1g and one doubly 
degenerate eg

π in V2O3 and one doubly degenerate π∗ and one c||. The typical value of this 
crystal-field splitting between t2g and eg is large, greater than 3 eV, and the typical splitting 
between the sub t2g levels is much smaller than 1 eV. 

 

 

Figure 2 Schematic band structure of VOx. The dashed line indicates the  
Fermi energy.  
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For x = 1.8 of VOx—the commonly used material for an uncooled bolometer—the average 
valence of V is 3.6, meaning that V ions in the system have mixed valence of 3+ (3d2) and 4+ 
(3d1), and t2g is partially filled. In disordered VOx, both t2g and eg states should be localized 
(Anderson localization) because all come from the same local d orbitals of the V atom. Thus, the 
process involving thermally excited electrons moving in the eg band is not effective, which 
makes VOx distinct from other amorphous semiconductors like α−Si. Because of the large 
splitting between t2g and eg and a much larger splitting between the V d-band and the O p-band, 
optical transitions with photon energy smaller than 1 eV must take place within the local t2g 
band, such as from eg

π to a1g as in V2O3, or from eg
π to π∗, as in VO2  (see Fig. 2).  Thus the 

optical gap in VOx usually does not indicate transitions from a localized state to an extended 
state in the conduction band as in α−Si. Although optical transitions between 3d orbitals in an 
isolated atom are dipole-forbidden, the admixture of V 3d orbitals and O 2p orbitals in VOx 
makes the transitions possible. 

1.2 ELECTRONIC STRUCTURE OF VOX: CLUSTER APPROACH   

Although the literature about optical absorption and electric transport in α-Si is extensive 
and the underlying electronic structure is fairly well understood, little is known about the 
semiconductor properties of VOx for the range of x values used for microbolometer applications. 
VOx exhibits unusual optical and transport properties, and a quantitative understanding of those 
properties is required to fully exploit the strengths of VOx in IR detection. To date, even a 
qualitative picture that consistently accounts for both optical and transport properties is lacking.  

Studies of VOx mostly concern 0.8 < x <1.3, which can be regarded as perturbations from 
VO. As Mott first pointed out, these VOx are disordered systems, and electric conduction is via 
electron hopping between localized states. Transport measurements indicate that at x = 0.8, the 
material is almost metallic, with the hopping activation energy near zero. As x increases, the 
activation energy, and accordingly the energy disorder, increases. A large hopping activation 
energy gives rise to a large temperature coefficient of resistance, which is desired for 
microbolometers. The typical value of x for VOx films used in microbolometers is 1.8, which is 
much closer to VO2 or V2O3 than to VO. Hence, VO2 serves as a better reference and starting 
point for considering the properties of VOx.  

Literature addressing VOx with x close to 1.8 is scarce. We searched the literature and 
compiled representative data of optical and transport properties of various VOx, developed a 
cluster model for VOx, and verified its validity by comparing theoretical results with 
measurements.  
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a. Common Building Block in VOx: VO6 

In VOx valence electrons stay in the d-orbitals, which are much more localized than the s- 
and p-orbitals, and the well-defined conduction and valence bands with extended wave functions 
are either absent or irrelevant to the electrical transport. This localization is further enhanced by 
the disorder in an amorphous VOx film due to Anderson localization, providing a solid 
justification for a cluster approach. The highly localized d-orbitals suggest that an atomic picture 
is a natural starting point for studying VOx. 

We note that in crystalline VO, V2O3, and VO2, as well as in the Magneli phases of in 
VnO2n-1, each V atom is surrounded by six O atoms, forming an octahedron. In the Magneli 
phases and nonstoichiometric VOx in general, oxygen vacancies (point defects) are eliminated 
through the formation of extended planar faults or shear planes, which restores the octahedral 
coordination of the six O atoms surrounding every V atom. However, different arrangements of 
some adjacent octahedra from those in the unperturbed lattice result; for example, face-sharing 
instead of edge-sharing at a shear plane. Thus, the fundamental building block in both 
stoichiometric and nonstoichiometric vanadium oxides is the VO6 octahedron. 

b. Stoichiometric VOx: Charged single VO6 clusters  

A V atom has an electronic structure of 3d34s2, and the d-orbital occupations in VO2, V2O3, 
and VO are 1, 2, and 3, respectively. In a VO6 octahedron, the 5-fold degenerate 3d orbital splits 
into a 3-fold degenerate t2g orbital and a 2-fold degenerate eg orbital, with the gap much greater 
than 1 eV. Thus, in all these vanadium oxides, t2g is partially occupied. Moreover, electric 
transport and optical transitions with a photon energy smaller than 1 eV must involve only t2g 
states. Given that the t2g orbital is a combination of dxy, dyz, and dxy, which form only weak π 
bonding with the surrounding O p-orbitals, the electrons in t2g levels are rather localized 
compared with eg states. By studying such clusters, we gained insights into electronic structures 
of amorphous VOx, which would be difficult, if not impossible, by employing conventional 
solid-state band-structure approaches. What distinguishes one vanadium oxide from another in a 
VO6 cluster is the effective charge of the system. Because the formal valence of O is always 2-, 
and the formal valence of V is 4+ for VO2, 3+ for V2O3, and 2+ for VO, the effective charge of 
the VO6 cluster is 8- for VO2, 9- for V2O3, and 10- for VO. We also needed to specify the bond 
lengths/angles in the calculations because the electronic structure depends sensitively on the 
cluster geometry. To make our results realistic and useful, we used the same bond lengths/angles 
as those in the low-temperature single crystal of the corresponding compound. For example, to 
calculate the electronic structure of VO2, we considered a VO6 cluster with an effective charge of 
8- and the coordinates of V and O atoms obtained from the low-temperature rutile VO2 structure. 
We employed a commercial code, Dmol3, to perform first-principles electronic structure 
calculations for these clusters. 
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Figure 3  Electronic structure of a single cluster (VO6)8-. Black bars represent 

individual energy levels, and the electron occupation of each energy 
level is represented by the height of the corresponding blue bar, with  
1 being fully occupied and 0 being empty. The inset shows the 
coordinates of V (silver) and O (red) atoms in the cluster. 

 

We calculated a VO6 with an effective charge of 8- to mimic the polycrystalline VO2 film. 
The coordinates of V and O atoms in the cluster were extracted from the low-temperature rutile 
VO2, and the structure was distorted with respect to a symmetric octahedron. The theoretical 
results are summarized in Fig. 3, which plots both the energy levels and their occupations. The 
HOMO and LUMO have the same spin orientation. The optical gap of this material should be the 
energy difference between the HOMO and LUMO, which is 0.9 eV—in good agreement with the 
gap of 0.86 eV inferred from experiment. In this structure, the HOMO is completely occupied, 
and the LUMO is completely unoccupied; in band language, the valence band is “full” and the 
conduction band is “empty.” Thus, there is no carrier in the system, and the transport activation 
energy in the semiconducting phase is used to create carriers. 

c.  Nonstoichoimetric VOx: charged double VO6 clusters 
As discussed above, when we changed the effective charge of a VO6 cluster from 8- to 9-, 

the corresponding material changed from VO2 to V2O3. Because we could vary the charge only 
by an integer in this first-principles method, a single VO6 cluster apparently was inadequate to 
describe VOx with 1.5 < x < 2. To overcome this limitation, we considered two adjacent VO6 
clusters instead of a single cluster. By varying the total charge of such a double cluster, we were 
able to study the electronic structures of VO1.75, VO1.25, and VO0.75, among which VO1.75 falls in 
the range of x values for microbolometers. In these double-cluster calculations, we set the bond 
lengths/angles to the values of a nearby stoichiometric compound. For example, to study the 
electronic structure of VO1.75, we considered a few edge-sharing double clusters with an effective 
charge of 13- and coordinates of V and O atoms from the rutile VO2. 
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Figure 4 Electronic structure of the strongly coupled edge-sharing double 

cluster (V2O10)13-. The symbols are the same as those in Fig. 3. The 
inset shows the coordinates of V (silver) and O (red) atoms in the 
double cluster. 

 
For the amorphous VO1.8 film in Fig. 4., the formal valence of V is +3.6, which is not an 

integer. To study such a system with a fractional charge, we had to go beyond single cluster 
calculations. Here we considered a double edge-sharing VO6 cluster with an effective charge of 
13- to simulate VO1.75, a compound sufficiently close to VO1.8. Again, the coordinates of V and 
O atoms were obtained from the low-temperature rutile VO2. In VO2, there are two kinds of 
edge-sharing double VO6 clusters., with one having a much shorter V-V distance (more strongly 
coupled) than the other. First, we focused on the strongly coupled double cluster. We found in 
this system that electrons at the two V atoms align their spins antiparallelly. The introduction of 
an extra electron to the system, which changes the effective charge from 12- as in VO2 to 13- as 
in VO1.75, results in a drastically different electronic structure than that in Fig. 3. In the double 
cluster, as shown in Fig. 4, there is a doubly degenerate level at the Fermi level. These two 
degenerate levels have opposite spins and are both partially occupied. The degeneracy is easy to 
understand because the two V atoms have the opposite spin orientations, and the extra electron 
with spin either up or down would result in the same spin configuration. The optical absorption 
occurs when the electron in the two partially occupied states is excited to the next empty level, or 
when the electron in the highest fully occupied level is excited to these partially occupied states. 
The energy required is 0.7 eV for the former transition and 0.72 eV for the latter. Both the lowest 
empty and highest filled levels are doubly degenerate for up- and down-spin electrons, which 
guarantees that the optical transitions 
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d. Intercluster interactions 
Calculating the electronic structure of a single or double VO6 cluster gave us discrete energy 

levels. Those levels form energy bands when the wave function overlap (interaction) between 
adjacent clusters is taken into account. The bandwidth is proportional to the interaction and can 
be estimated by calculating the level splitting between adjacent clusters. For example, by 
comparing the results for VO2 from the single cluster (VO6)8- and weakly coupled double cluster 
(V2O10)12- calculations, we deduced the interaction strength between clusters, which is half the 
energy splitting.  

If the intercluster interaction is weaker than the on-site Coulomb interaction (Hubbard 
interaction), significant energy is required for an electron to hop to a singly occupied d-orbital, 
and the system is a Mott insulator. Otherwise, it is a metal or a Fermi liquid. When disorder is 
present, as in amorphous VOx films, Anderson localization occurs. Therefore in VOx films both 
Mott and Anderson localizations may be important to electrical transport. 

We then calculated the electronic structure of the weakly coupled edge-sharing double 
clusters for VO1.75 (see Fig. 5). We found that the electron spins at the two V atoms are parallel 
and that a small energy splitting, W = 0.2 eV, exists between the two levels near the Fermi 
energy. Because these levels belong to the same spin multiplets, optical transitions between these 
levels are forbidden do not occur The splitting energy W characterizes the coupling (t = W/2) 
between the two V atoms in this double cluster, as well as the width of the energy band formed 
by these partially occupied states at different clusters. The small value of W suggests that the 
band is narrow and that these partially occupied states will become localized in the presence of 
even weak energy disorder, according to the Anderson localization theory, and that electric 
transport is through electron hopping between these partially occupied states. The transport 
activation energy is therefore the energy required for an electron located at one V atom to move 
to an adjacent V atom,i.e., the Coulomb energy between the hopping electron and the hole left 
behind, 

 Ea = e2/εR   . (1.1) 

Here, ε is the dielectric constant of the material, and R (= 3.12 Å) is the distance between the 
two V atoms in this weakly coupled double cluster if we approximate ε in the VO1.8 film with the 
value of VO2, which is 18.3 parallel to the tetragonal c-axis and 39 perpendicular to the axis. 
Because the transport activation energy should correspond to the largest energy required for 
electron hopping, we used the smaller dielectric constant ε = 18.3 and find Ea = 0.25 eV.  
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Figure 5 Electronic structure of the weakly coupled edge-sharing double 

cluster (V2O10)13-. The symbols are the same as those in Fig. 3. The 
inset shows the coordinates of V (silver) and O (red) atoms in the 
double cluster. 

 
The agreement between this estimate and the experimental value, 0.3 eV is reasonably good. 

This activation energy is much larger than the coupling (t = 0.1 eV) between adjacent V-V atoms, 
which justifies neglecting the coupling in estimating the Coulomb energy. Because the distance R 
changes only slightly among various VOx film, the transport activation energy is essentially 
determined by the dielectric constant, which generally increases with the carrier density. Thus we 
expected that as x is reduced, the dielectric constant would increases and the activation energy 
would decrease, which is what was observed experimentally. Moreover, 0.3 eV seems to be the 
maximal activation energy possible in VOx if it has a Coulombic origin. 

The optical absorption spectrum of the epitaxial VO1.28 film suggests an optical gap of 0.2 eV 
in this system. Here we used the cluster calculations to identify its origin. We considered a double 
cluster with a certain effective charge to simulate VO1.25. The coordinates of V and O atoms in 
such a cluster are extracted from the low-temperature corundum V2O3 structure. The corundum 
V2O3 structure has two kinds of adjacent double VO6 clusters: one is face-sharing, and the other is 
edge-sharing. The effective charge is 13- for the former and 15- for the latter. We calculated both 
types of double clusters, and the results are summarized in Fig. 6. We found that in both clusters 
the electron spins at the V atoms are antiparallel and that doubly degenerate and partially occupied 
states appear at the Fermi level. The transition from the partially occupied states to the lowest 
empty states requires energy of 0.27 eV in the face-sharing double cluster and 0.32 eV in the edge-
sharing one. The transition from the highest filled states to the partially occupied states requires 
energy of 0.93 eV in the face-sharing double cluster and 0.92 eV in the edge-sharing one. Thus the 
observed optical gap is due to the transition from the partially occupied states to the lowest empty 
states, and the calculated value of 0.27 eV explains the experimental value of 0.2 eV fairly well.  
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Figure 6 Electronic structure of the face-sharing double cluster (V2O9)13- (a) 

and the  edge-sharing double cluster (V2O10)15-. The symbols are the 
same as those in Fig. 3. The insets show the coordinates of V (silver) 
and O (red) atoms in the corresponding double cluster. 

2.  ELECTRICAL TRANSPORT IN VOX 

Because of the very localized d orbitals and large density of states in VOx, we expected that 
the most probable hopping distance would be comparable to the lattice constant and that Mott’s 
formula, which is based on a continuum model, might become inapplicable. To account for 
discrete hopping distances in VOx, we considered a 3-dimensional (3D) cubic lattice, in which 
each site represents a V with a random energy and electrons can hop between any two lattice 
sites. Thus, variable-range hopping, if possible, is automatically included in the model. Here only 
t2g orbitals are considered because the energy splitting between eg and t2g in VO2, according to 
the electron spin resonance experiment, is about 3 eV. We calculated the conductivity according 
to that definition.  

2.1. DC CONDUCTIVITY 

a. Model and approach 
To describe the temperature-dependent conductivity in VOx, we carried out a numerical 

calculation on a 3D cubic lattice, in which electrons can hop between any two sites. The hopping 
probability between sites i and j in the presence of an electric field E can be written as 

  

€ 

w ji = wij
0e−e

 
E ⋅
 
R ji / kBT ,   (2.1) 

where jiij rrR 
−=  and 0

ijw  has the Miller-Abrahams form; i.e.,  
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wij
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ε ri( ) −ε rj( )
kBT
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 
 
 

 

 
 
         for    ε(ri) <ε(rj) (2.2) 

and 
( )ijij Rw αη 2exp0 −=                          for ε(ri) >ε(rj) (2.3) 

 
where ε(ri) is the carrier energy at site i, which follows some specified distribution. We solve the 
steady-state master equations for the system 

∑ −−−=
j ijijjiji ffwffw )]1()1([0 ,           (2.4) 

where fi is the carrier occupation number at site i. Having obtained the solution of fi to Eq. (2.4), 
we can then calculate the current density, 

€ 

J =
e
S

[wij f j (1− f i) − w ji f i(1− f j )]
i>s, j<s
∑ ,     (2.5) 

where S is the cross-sectional area and i >s, j <s denotes sites lying to the left and right of the 
cross section. The electrical conductivity σ can be obtained by σ = J/E.  

In the linear-response regime, it has been shown that calculating conductivity is equivalent 
to finding an effective conductance of a random impedance network [8] in which each pair of 
sites, i and j, is connected by a resistance Zij 

( ) ( ) ( ) ( ) 000200021 1/1/ jiijBijjiBij wffTkewffTkeZ −=−=−  (2.6) 

where 0
if  is the equilibrium occupation of site i, 

€ 

f i
0 =

1
1+ e[ε (ri )−µ ] / kBT . 

To calculate the effective conductance of this impedance network, imagine that two contacts 
are attached to two opposite surfaces of the lattice through which a constant current I is supplied.  
The effective conductance G can be obtained by calculating the voltage drop V between the two 
contacts, G = I/V.  In the calculations a very large hopping probability between a contact and the 
lattice surface to which the contact is attached was used, which meant that the interfacial 
resistance between the contacts and the lattice is very small. The results are insensitive to the 
specific value of hopping probability assumed between the contact and the lattice surface and the 
system size.  

Our numerical results and the experimental data were in excellent agreement when the 
energy disorder follows a uniform distribution between [-Δ, Δ] with Δ = 0.54 eV and the wave-
function delocalization parameter is set α = 3.9 Å-1 (the lattice constant is fixed a = 3 Å), as 
shown in Fig. 7. Our model accounts for crossover of the conductivity with decreasing 
temperature. Above the crossover temperature, the conductivity has an activated behavior, 
whereas below that temperature, the conductivity has a weaker temperature dependence and can 
be fitted into exp(-(T0/T)1/4) behavior. The activated behavior occurs when electrons hop only 
between the nearest-neighboring sites in the lattice. 
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Figure 7.  Logarithm of conductivity σ  versus inverse temperature. Circles are experimental data 
from De Wames’s group. The solid line shows the results of our model using a uniform 
energy distribution [-Δ ,  Δ]  with Δ  = 0.54 eV and α  = 3.9 A-1. The dot-dashed line shows 
the results of a system where electrons can hop only to the nearest neighbors.  

In this lattice model, we assumed that every site contains one electronic state for transport 
and thus the density of the states is 1/2a3Δ = 3.4x1022 1/(cm3 eV). We also assumed that every 
electronic state in the model is localized, which is reasonable because the disorder 2Δ is much 
greater than the bandwidth in an ordered stoichiometric VOx (~ 0.1 eV). In a one-dimensional 
disordered system, it has been shown that 

€ 

αa ≈ 0.1142(Δ / t0)
2  [E.N. Economou, Green’s 

Functions in Quantum Physics, Spinger-Verlag, Berlin, 1983], where t0 is the transfer integral of 
the adjacent atom (half of the band width in 1d). If Δ/t0 is 10, α would be 3.8 Å-1, close to the 
value in the numerical calculations. 

The ratio, α3/kBN(EF), in the numerical calculations is 2.0 x 107 (K), and T0/[α3/kBN(EF)] = 
18, which is twice as large as 7.6 from the original Mott’s formula, but is in the middle of the 
range, 2.54 – 1.74, among various treatments. The most probable hopping distance is  
R = (3/8α)(Τ0/Τ)1/4,  which  corresponds to 3.19 Å at T = 300 K and 4.4 Å at T = 80 K. 

We developed several codes using different algorithms and/or boundary conditions to 
compute the electrical conductivity in VOx. These codes not only ensure the reliability and 
accuracy of our numerical results but also provide efficient options for different situations. For 
example, when the disorder is strong and the carrier hopping distance is considerably shorter 
than the system size, the code using the sparse-matrix technique will be more effective. 
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b. Extension of Mott’s variable range hopping theory 
The variable-range-hopping theory by Mott is probably the most important and original 

theory to describe electrical transport in disordered systems and won Mott the Nobel Prize in 
physics in 1977. In the course of computing the electrical conductivity in VOx and explaining the 
experiments, we found that the original variable-range-hopping theory can be extended.  

Mott’s theory makes two assumptions: (1) the average hopping distance is much greater 
than the lattice constant, and continuum expressions are justified; and (2) the hopping distance 
has a very narrow distribution (δ-function like) and a single “most probable hopping distance” 
can describe electron hopping accurately. 

Figure 8 shows the distribution of hopping distance from our simulations, which is defined by 

€ 

D(R2) ≡
| Iij (Rij

2 = R2) |
i≠ j

∑
| Iij |

i≠ j∑
  . (2.7) 

 

 
Figure 8 Histograms showing the distribution of hopping distances at several 

temperatures. 

Here Iij is the current through the resistance Zij between sites i and j of the impedance network. 
For the parameters used in Fig. 7, hopping to the nearest neighbors (R2/a2 = 1) is always dominant. 
As the temperature decreases, next-nearest-neighbor hopping becomes more and more important. 
The contribution from hopping beyond next nearest neighbors (R2/a2 ≥ 3) is negligible. Thus, the 
variable-range hopping here means that electrons can hop either to the nearest neighbors or to the 
next-nearest neighbors, which are not much farther than the lattice constant. If a single “most 
probable hopping distance” did exist, as assumed in Mott’s theory, it would be the nearest 
neighbor (R = a), and the temperature dependence of conductivity would always have an activated 
behavior, as shown by the dot-dashed line in Fig. 7. It is obvious that Mott’s theory is not 
applicable to this situation.  
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2.2 AC ELECTRICAL TRANSPORT IN VOX 

AC conductivity measurements can provide information about the transport mechanism and 
the absolute value of hopping frequency and become particularly important in characterizing 
electric transport in strongly disordered systems, where the Hall effect and magnetoresistance 
measurements do not yield as much useful information as do crystalline semiconductors. To 
support the MURI team’s experimental efforts in characterizing electric transport in VOx and α-
Si, we augmented our original proposal with tasks to develop modeling tools for AC 
conductivity and thermopower calculations.  

a. Impedance network  
To calculate the AC conductivity in a disordered system like VOx, we studied the master 

equation in the linear approximation with respect to an external AC electrical field,  

   

€ 

 
E (t) =

 
E exp(iωt),                                  (2.8) 

where ω is the field frequency. The time-dependent master equation for a disorder system in a 
3D lattice reads 

   ,  (2.9)   
where fm is the electron occupation on site m, and wnm is the electronic hopping rate from site m 
to site n in the presence of the external field. The general solution to the master equation can be 
written as  

   , (2.10) 

where f0
m is the equilibrium occupation at site m, determined by the Fermi-Dirac distribution, 

    , (2.11) 

with a common chemical potential (Fermi level) µ across the system. In the presence of an AC 
electric field, the occupation changes, which can be attributed to a shift in local chemical 
potential, δµm,  

   . (2.12) 

If we expand δfm in terms of the applied field, and keep only the linear terms of E, the 
master equation can be written as  

   , (2.13) 
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where Rm is the position vector of site m, and  
 

 

 

 
Hence the calculation of AC conductivity is reduced to finding an effective conductance of a 

random impedance network at frequency ω. In this network every two sites m and n are 
connected by a resistance Zmn, and each site m is attached with a capacitance Cm and a source of 
voltage −E⋅Rm. We numerically solve the linear equations (2.13) with complex coefficients to 
compute the effective conductance. 

If valence electrons are highly localized, as in VOx films used in microbolometers, possible 
electron hoppings are limited to sites in a few near neighboring sites. Consequently, the matrix in 
Eq. (2.13) will be sparse, which allows study of a large system using sparse-matrix techniques. 
However, the matrix is both complex and asymmetric, and the commonly used conjugated 
gradient method for a symmetric matrix does not work in this case. We used a generalized 
minimum residual method, which works for asymmetric matrices, to solve Eq. (2.13), and the 
system size in our calculations is 32x32x32 sites. 

b. Numerical results 
We considered a cubic lattice with 32x32x32 sites in the presence of energy disorder and 

calculated its AC conductivity with different field frequencies. The hopping probability between 
sites i and j has the Miller- Abrahams form; i.e., 

€ 

wij
0 = ν exp −2α Rij( )exp

ε ri( ) −ε rj( )
kBT

 

 
 
 

 

 
 
 
                 for ε(ri) <ε(rj), 

and  

€ 

wij
0 = ν exp −2α Rij( )                                  for ε(ri) >ε(rj) , 

where ε(ri) is the carrier energy at site i, and jiij rrR 
−=  is the distance between sites i and j. 

Here ν determines the hopping frequency and is usually believed to be comparable to the optical 
phonon frequency of the system. We expect that by varying the interplay of ν and the AC field 
frequency ω, the transport behavior will change. 
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Figure 9 plots the conductivity versus logarithm of ω/ν at room temperature. The site energy 
is assumed to follow a uniform distribution between [-Δ, Δ], and the lattice constant is a = 3 Å 
and the wave function localization parameter is α = 3 Å-1. A steep increase occurs in the AC 
conductivity around ω/ν =10-8, before (low-frequency) and after (high-frequency), which the 
conductivity is largely independent of ω. Because the typical hopping probability is ν exp(-2α 
a), which is about 1.5x10-8 ν for the parameters we used, the conductivity jump occurs when the 
AC frequency is similar to the electron hopping frequency. This steep change in conductivity 
with varying field frequencies allows determination of the absolute value of ν, which is 
important for establishing a quantitative and predictive electric transport model. 

 

Figure 9. Real part of conductivity as a function of ω /ν  in a 32x32x32 cubic lattice  
with energy disorder. Circles and squares correspond to Δ  = 0.1 and 
0.2 eV, respectively. Other parameters are α  = 3 Å-1 and a = 3 Å. 

Figure 10 plots the temperature dependence of AC conductivity for different field 
frequencies. Solid, dashed, and dot-dashed lines describe results with ω/ν = 10-10, 10-8, and 10-3, 
which belong, respectively, to the low-frequency, crossover, and high-frequency regimes 
illustrated in Fig. 9. Conductivity increases with frequency, and the increase is more pronounced 
at low temperatures than at high temperatures. The conductivity increase is a consequence of the 
disorder: with increasing frequency, during half a period of the external field, charge carriers can 
move through clusters of decreasing size. Thus with an increase of frequency, well-conducting 
regions of finite size become more and more effective. At high temperatures electron hopping is 
essentially limited to nearest neighbors, and a high field frequency cannot further reduce the 
electron moving distance. Consequently, the conductivity increase is not significant at higher 
temperatures.     
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Figure 10. Real part of conductivity as a function of inverse temperature  in a  

32x32x32 cubic lattice with energy disorder. Solid, dashed, and dot-
dashed lines correspond to ω /ν  = 10-10, 10-8, and 10-3, respectively. 
Other parameters are α  = 3 Å-1, a = 3 Å and Δ  = 0.1 eV. 

2.3 THERMAL POWER IN VOx 

The thermal power in a disordered system provides information about the sign of the charge 
of the majority carriers and the Fermi level position, and helps identify the transport mechanism 
in materials. In addition it offers a good opportunity to test theoretical models because it is 
sensitive to material parameters.  

Thermal power can be calculated by two ways: (1) finding the current density in the 
presence of a temperature gradient and then determining the thermal power by requiring zero 
total current and a uniform chemical potential; and (2) calculating the energy flux in the absence 
of a temperature gradient and finding the Peltier heat, which is the product of the temperature 
and the thermal power. We used the latter approach. 

We solve the steady-state master equations for the system in the presence of an applied 
electric field,  

€ 

0 = [wmn fm (1− fn ) − wnm fn (1− fm )]
n∑ .                              (2.14) 

Having obtained the solution of fm, we then calculate the charge flux (current) across a plane 
normal to the electric field, 

 

€ 

I = e [wmn fm (1− fn ) − wnm fn (1− fm )]
m<s,n>s
∑ ,                             (2.15)  
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where m <s, n >s denotes sites lying to the left and right of the cross section, and e is the 
absolute value of the electron charge. Similarly, we calculate the energy flux 

€ 

q =
1
2m<s,n>s

∑ εm + εn( ) wmn fm (1− fn ) − wnm fn (1− fm )[ ] , (2.16) 

where εm is the electron energy at site m. The Peltier heat can be obtained by 

€ 

Π =
e
I

q −µ, (2.17) 

where µ is the common Fermi energy throughout the system, and the Seeback thermal power is 

 

€ 

S =Π /eT . (2.18) 

If valence electrons are highly localized, as in VOx films used in microbolometers, possible 
electron hoppings are limited to sites within a few near neighboring sites. Consequently, the 
matrix in Eq. (2.14) will be sparse, which allows study of a large system using sparse-matrix 
techniques. We used a generalized minimum residual method, which works for both symmetric 
and asymmetric matrices, to solve Eq. (2.14). 

Figure 11 plots the thermal power as a function of temperature. The site energy is assumed 
to follow a uniform distribution between [-Δ, Δ], and the lattice constant is a = 3 Å and the wave 
function localization parameter is α = 3 Å-1. At low temperatures, the thermal power is negative 
with a large magnitude, whereas at high temperatures it is positive with a small magnitude. A 
positive (negative) thermal power indicates that on average the carrier energies are above 
(below) the Fermi level. Hence the calculated results suggest that at low temperatures the carriers 
responsible for transport are mainly localized below the Fermi level. As temperature increases, 
these carriers move toward the Fermi level and eventually surpass it. At high temperatures, these 
carriers essentially dwell on the Fermi level. 

 
Figure 11 Thermal power as a function of temperature in a 32x32x32 cubic 

lattice with energy disorder. Other parameters are α  = 3 Å-1, a = 3 Å 
and Δ  = 0.4 eV. 
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3. MICROSTRUCTURES IN VOX AND THEIR SIGNATURES IN LINEAR TRANSPORT 

The MURI team led by Prof. Mark Horn from Penn State, which has extensively studied 
structural and transport properties of VOx samples grown under various conditions, has found 
that microstructures or nanocrystals are ubiquitous in VOx thin films. However, it is unclear how 
these microstructures affect electrical transport. For example, samples with multiple 
microstructures can have a very similar DC conductivity and temperature dependence, compared 
with truly amorphous samples with few microstructures.  

Because these microstructures are a main source of the noise that limits performance of 
microbolometers, it is important to identify their experimental signatures and to study how they 
affect transport properties. According to our modeling results on nonlinear conductivity in VOx, 
one of the signatures is nonlinear electrical conductivity under a strong electric field. 

3.1 DESCRIPTION OF MICROSTRUCTURES  

To model how the microstructures or nanocrystals influence electrical transport in VOx and 
other disordered systems, the microstructures need to be described quantitatively, but at the same 
time their essential physics also need to be determined. To this end, we noticed that within these 
microstructures the electronic structure is similar to that in a crystal; however, for a length scale 
larger than the size of the microstructures, the electronic structure exhibits the characteristics of a 
disordered system. We incorporated these structural effects by introducing a spatial correlation 
between electron energies at different sites, with the correlation length being the microstructure 
size. A representative correlation can be written as 

 

 

 (3.1) 

Here εi is the electron energy (random variable) on site i, Rij = |ri-rj| is the distance between 
sites i and j (ri is the location of site i), and L is the correlation length. Spatially correlated 
disorder is not unique in VOx and has been cited to explain both electron and energy transport in 
various disordered systems. 

Because common numerical tools can generate only independent (uncorrelated) random 
numbers, to numerically generate spatially correlated energy disorder that satisfies the 
correlation function of Eq. (3.1), finding a new “space” where the correlated disorder becomes 
decoupled is necessary. We noticed that in the momentum space the disorder becomes decoupled 
among different momentum q as clearly seen when εi is substituted by its Fourier transform, 

 

 

 (3.2) 
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where N is the total number of lattice sites. Equation (3.1) then becomes  

 

. (3.3) 
 
Thus in the momentum space the energy disorder Φ(q) for different q becomes decoupled 

and has a q-dependent variance. For the cubic lattice we used to study transport, q has only 
discrete values. We generated a random Φ(q) from a Gaussian distribution with the q-dependent 
variance as in Eq. (3.3) for each and every q. Then we Fourier-transformed the obtained Φ(q), 
according to Eq. (3.2), back to εi, which would have the desired spatial correlation. Figure 12 
shows the spatial correlation in the random site energies generated by this approach. 

 

 
Figure 12 Spatial correlation of numerically generated random electron 

energies in the lattice. Circles and squares correspond to L = 12 and 
1.2 Å, respectively. The inset plots the distribution of electron 
energies, which shows a same variance for the two cases.     

3.2 EFFECT OF MICROSTRUCTURE ON TRANSPORT 

We examined how the domain size, or equivalently, the correlation length, L, influences the 
transport behavior in VOx films. Figure 13 shows conductivity and thermal power as functions of 
temperature for systems with different correlation lengths. As correlation length increases, 
conductivity also increases, while the overall temperature dependence of the conductivity 
changes little. However, the temperature dependence of the thermal power can change 
dramatically as the domain size changes. These results suggest that the thermal power 
measurements provide information about the microstructures of VOx films, which is particularly 
important in microbolometers because the microstructures are likely to determine operation 
speed and noise level. 
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Figure 13. Conductivity and thermal power as a function of inverse temperature 

 in a 32x32x32 cubic lattice with different correlation lengths. Other 
parameters are the same as those as in Fig. 12.  

4. DYNAMICS OF DEFECT MICROSTRUCTURES 

Bulk nonstoichiometric vanadium oxides, which often conform to the generic formula, 
VnO2n-1, are also called Magneli phases. Crystalline Magneli phases have large unit cells, 
especially when n is large. A thin amorphous film of VOx, the material form used for an 
uncooled bolometer, however, is unlikely to accommodate the large unit cells of the Magneli 
phases, which suggests that the ordered Magneli phases are probably unimportant to a VOx film. 

Because the Magneli phases are defined by the general stoichiometric formula, VnO2n-1 = 
V2O3 + (n-2)VO2, and can be regarded as a mixture of VO2 and V2O3, an amorphous VOx film 
should consist of many domains of VO2 or V2O3, and the distribution of these domains should be 
temperature-dependent. 

We have developed a model to describe the dynamics of these domains when the system is 
subjected to an abrupt temperature change. The dynamics of these microstructures are important 
for bolometer applications because they determine how fast the system can respond to a 
temperature change and may be the source of the inconvenient image retention during the device 
operation.  

The chemical-potential difference Δµ of VO2 and V2O3 differs because of their different 
densities, 

  Δµ = -(3/2) kBT log (m1/m2), (4.1) 

where m1 and m2 are densities of VO2 and V2O3. The average size of domains can be estimated 
by the balance between the volume energy gain and the surface energy cost. If we assume that 
the domains are spheres, the free energy of a domain is 

 F = -4π(Δµ)L3/3 + 4π sL2, (4.2)  

where s is the surface energy for a unit area. By requiring δF/δL = 0, we have  

  L = 2 s/(Δµ). (4.3) 
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Thus, the average domain size becomes smaller as the temperature increases. If the system 
temperature suddenly drops, as it does when a strong IR signal arrives, the domains adjust their 
sizes to reach equilibrium at a lower temperature. The diffusion current should be proportional to 
the gradient of the chemical potential difference, 

     J ∝ ∇µ ≈ Δµ/L ∝1/L2      (4.4)  

On the other hand, the diffusion current is the consequence of change in the domain size,         

J ∝ dL/dt.  

Hence the time-evolution of L should follow 

 dL/dt ∝ 1/L2 (4.5)  

and we obtain a generic behavior of L(t) 

 L(t) ~ t1/3.       (4.6) 

This time dependence of the domain size implies that the resistance will slowly decay to its 
equilibrium value with the following form, 

    ΔR/R0 ∝ exp [-(t/τ)1/3], (4.7) 

after the system receives a large current signal. This theory explains the observed long-tail decay 
of the resistance after the system is subjected to a large current pulse. The dynamics of the 
microstructures may be the source of image retention—a serious problem that adversely affects 
the sensitivity of VOx-based microbolometers. 

5 DISTINCT ELECTRICAL TRANSPORT MECHANISMS IN VOx AND α-SI:H 

 In developing models to understand electrical transport in VOx, we found that the 
conductivity in VO1.8 can be quantitatively explained by electron hopping among localized d 
states, and that the crossover is due to the transition from long-range hoppings at low 
temperatures to strictly nearest-neighbor hoppings at high temperatures. This mechanism 
suggests that VOx differs markedly from many conventional disordered semiconductors such as 
α-Si, whose properties are cited in the literature. To demonstrate that VOx indeed has a unique 
transport mechanism, we analyzed transport data of hydrogenated α-Si measured by Dr. A. J. 
Syllaios and compared them with those of VOx.  

Figure 14 shows the measured electrical conductivity of a VOx film as a function of 1000/T 
for temperatures from 80 to 560 K. A crossover in conduction behavior occurs at T = 300 K. For 
T >300 K, the electrical conductivity data can be described by the Arrhennius formula, σh(T) = 
σ0

h exp(-Ea/kBT), where Ea = 0.182 eV and σ0
h = 1.4 x 103 (Ω cm)-1. For T <300 K, the 

conductivity is described by Mott’s 1/4-law for variable-range hopping σl(T) = σ0
l(T) exp[-

(T0/T) ¼], where the prefactor σ0
l(T) = 7.91 x 1015/T1/2 and T0 = 3.66 x 108 K. Of note, the value 

of σ0
h, is identical to the observed minimum metallic conductivity in VOx.  
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Figure 15 shows the measured temperature-dependent conductivity in the α-Si:H thin film. 
The conductivity can also be fitted by σh(T) = σ0

h exp(-Ea/kBT), with Ea = 0.226 eV and σ0
h = 

38.98 (Ωcm) -1 for T >250 K; and σl(T) = σ0
l exp[-(T0/T)1/4], with σ0

l(T) = 1.64 x 106 and T0 = 
5.57 x 107 K for T <200 K. Although the transport data for VOx and α-Si:H appear to be similar, 
close scrutiny reveals a significant difference. In α-Si:H, the total conductivity for the entire 
measured temperature range can be described by the summation of the two contributions, 

σ (T) = σl(T)+σh (T), (5.1) 

with σl(T) dominating at low temperatures and σh(T) at high temperatures. Thus, electron 
conduction in α-Si has two parallel channels: one is the thermal activation of electrons from 
localized impurity states to the extended conduction band; the other is hopping among localized 
states in the impurity band. The two-channel model also describes electrical transport in 
chalcogenide glass and other disordered semiconductors.  

 
Figure 14. Logarithm of electrical conductivity for an 

unsuspended 16x16 mm2 VOx film as a function 
of inverse temperature. 
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with σl(T) dominating at low temperatures and σh(T) at high temperatures. Thus, electron 
conduction in α-Si has two parallel channels: one is the thermal activation of electrons from 
localized impurity states to the extended conduction band; the other is hopping among localized 
states in the impurity band. The two-channel model also describes electrical transport in 
chalcogenide glass and other disordered semiconductors.  

In VOx, however, such a two-channel model does not fit the transport data of VO1.8. If the 
fitted expression σl(T) = σ0

l(T) exp[-(T0/T)1/4] is extrapolated to T >300 K, as shown in Fig. 15, 
it would be greater than the measured conductivity σ(T). Hence, the data suggest that at high 
temperatures variable-range hopping becomes unavailable to electrons.  

The distinct transport mechanisms in VOx and α-Si originate from their fundamental 
differences in electronic structure. In VOx the valence electrons are from very localized 3d 
orbitals, whereas in α-Si the valence electrons are from delocalized 3s and 3p orbitals. In 
addition, amorphous VOx is a heavily defective oxide, and the origin of the disorder is in the 
compositional variation due to variable cation valence. For x = 1.8, roughly 40% of V ions have 
a valence of 3+ (3d2), as in V2O3, and the remaining 60% have a valence of 4+ (3d1), as in VO2. 
The weak bonding between d orbitals makes them susceptible to disorder; they become localized 
due to structural and composition disorders in amorphous VOx via Anderson localization. Thus, 
it is reasonable to assume that VOx is a Fermi glass with 3d orbitals at each V atom randomly 
distributed, and that electron conduction in this band takes place only via hopping between 
individual localized states. This assumption is corroborated because σ0

h, the extrapolated value 
of σh(T) as T → ∞, is the same as the minimum metallic conductivity, which is obtained when 
the carrier mean free path becomes equal to the lattice constant. The different transport 
mechanisms in VOx and in α-Si:H are illustrated in Fig. 16. 

 
Figure 15 Logarithm of electrical conductivity 

for an unsuspended α-Si:H film as a 
function of inverse temperature. 
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Figure 16 Schematic diagrams showing the electronic structure and conduction 

paths in VOx (left panel) and α-Si:H (right panel). In VOx the Fermi 
energy EF is located in the t2g band and the conduction is due to 
electron hopping between localized states in the t2g band, as denoted 
by the blue arrow. In α-Si:H the Fermi energy EF is located at the 
valence-band tail. EC and EV are the mobility edge in the conduction 
and valence bands, respectively. Both carrier hopping between 
localized states (denoted by blue arrow) and excitation to the mobility 
edge (denoted by red arrow) contribute to the total conductivity. The 
excitation energy extracted from σh(T) corresponds to Ea = EF-EV.  

6. ELECTRICAL CONDUCTIVITY AT HIGH ELECTRIC FIELDS AND THE EFFECT OF 
MICROSTRUCTURES 

6.1 Model and algorithm 
To quantitatively study high-field electrical transport in VOx and the manifestation of 

microstructures in nonlinear transport, we developed a versatile lattice model to calculate the 
conductivity of a disordered system. We began with the same 3D cubic lattice in which electrons 
can hop between any two lattice sites thereby automatically including variable-range hopping  in 
the model. An applied electric field, E, tilts the energy difference between sites i and j  

 , (6.1) 

and the hopping probability becomes 

 . (6.2) 

To study high-field electrical transport, we needed to solve the steady-state master 
equations,  

 , (6.3) 
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in the presence of a strong electric field, E. These equations are nonlinear, and solving them is a 
significant numerical challenge. On the other hand, for electrical transport under a weak field, 
Eq. (6.3) can be linearized, with linear equations solved to compute the electrical conductivity. 

We developed an iteration approach to solve these nonlinear equations accurately. From the 
master equation (6.3), we express fi as 

 

. (6.4) 
 

In Eq. (6.4), we scaled all hopping rates by ∑kwki to avoid very large or small numbers. 
Using the above equation, we updated fi using implicit iterations until the accuracy criterion was 
satisfied. Specifically, if we obtain fi

n-1 (1 <i <N, N is the total number of the lattice sites), as the 
solution after step n-1, then to calculate fi at the next step (n), in the right-hand side of the above 
equation we used fj

n for j <i and fj
n-1 for j >i. We found that if we used explicit iteration (i.e., fj

n-1 
for all j), the iteration scheme did not converge.  

Figure 17 describes the effect of correlated energy disorder on the electrical conductivity, 
plotting conductivity at field E and temperature T, σ(E,T), normalized by the low-field 
conductivity at temperature T, σ(T), as a function of E for two correlation lengths. For L = 1.2 Å, 
which is much smaller than the lattice constant a, the electron energies at different sites are 
essentially independent (uncorrelated). For L = 12 Å, the spatial correlation extends to a few 
lattice constants, and the electron energies, although still random, tend to be closer to each other 
for vicinal sites.  

Figure 17 shows that when the energy disorder is not spatially correlated, as described by 
the triangles; the field dependence is very weak, and consequently a much higher electric field is 
required for the sizable deviation of σ(E,T) from σ(T), which is not consistent with the 
experiment data in Fig. 18. When the electron energies are spatially correlated, as described by 
the squares, σ(E,T) starts to deviate significantly from σ(T) around 104 V/cm, as observed 
experimentally.  

Our results suggest that to understand the strong nonlinear conductivity observed in VOx, 
the spatial correlation in electron energies must be taken into account. This spatial correlation 
originates from microstructures (domains) and nanocrystals in VOx films. Our numerical results 
also indicate that the spatial correlation manifests itself in the field dependence of conductivity, 
but remains hidden in the temperature dependence of conductivity.  
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7.  MODELING 1/f NOISE 

Currently, microbolometer performance is limited by 1/f noise and image retention, which 
are likely to originate from nonequilibrium kinetic processes with a broad distribution of 
relaxation times. Understanding the noise origin is a crucial step in identifying and fabricating 
materials with lower noise levels. 1/f noise has been observed in many systems, including metals, 
semiconductors, and various devices. The underlying physical mechanism of the observed 
ubiquitous 1/f noise remains subject to intense debate. However, a system exhibiting 1/f noise 
must have a broad distribution of time scales in its nonequilibrium dynamics. Because electron 
energy varies greatly from site to site in these systems, electron hopping between neighboring 
sites is a highly stochastic process, which involves diverse time scales. We found that these 
diverse time scales in the hopping conduction can give rise to 1/f noise over an extended 
frequency range, which is further widened if the system exhibits a strong Meyer-Neldel 
behavior. 

 

 
 

 
 

 
 

 
 

 
 

 
 

7.1 MODEL AND APPROACH 

The excellent agreement between theory and experiment on electrical transport suggested 
that this lattice model captures essential physics of VOx and was a good starting point to study 
1/f noise. To model 1/f noise, we examined the time evolution of the system under a random 
external input. Specifically, the time-dependent carrier occupation at site i, fi(t), is described by 
the differential equation, 

€ 

dfi

dt
= f j (1− fi)w ji − f i(1− f j )wij[ ]

j
∑ − gi(t), (7.1) 

 

 
Figure 18. Normalized conductivity, σ(E,T)/σ(T), as a 

function of applied electric field E for 
different temperatures measured in VO1.8.  
Data were measured by Dr. Roger 
DeWames’s group. 
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where gi(t) is a random function and wij is the hopping probability from site i to site j, which can 
be expressed as 

€ 

wij = ν exp −2αR( )e(ε i −ε j ) / 2kBT , (7.2) 

where kB is the Boltzmann constant and T the temperature, εi is the carrier energy at site i, R = |ri 
-rj| is the distance between sites i and j, α-1 is the localization length of electrons, and ν is the 
frequency of electron hopping attempts.   
 

A change in the carrier occupation fi can be described equivalently by a deviation of the 
chemical potential µi from its equilibrium value (Fermi level) µ0, and in the linear-response 
regime,     

€ 

δf i(t) = β µi −µ0( ) f i
0 1− f i

0( ) ≡ βξ i f i
0 1− f i

0( ) , (7.3) 
 
where β = 1/kB T. The above differential equations become linear 
 

€ 

f i
0 1− fi

0( ) dξ i

dt
= w ji f j

0 1− f i
0( )ξ i − wij f i

0 1− f j
0( )ξ j[ ] −

j
∑ f i

0 1− f i
0( )ηi(t), (7.4) 

where 

€ 

gi(t) ≡ f i
0(1− f i

0)ηi(t). The above equations can be written as 
 

€ 

dξ i

dt
− Aijξ j =ηi(t)

j
∑ ,     (7.5) 

where the matrix Aij is  

€ 

Aij =
1

f i
0 1− f i

0( )
wki fk

0 1− f i
0( )

k
∑
 

 
 

 

 
 δij − wij fi

0 1− f j
0( )

 

 
  

 

 
  .   (7.6) 

 
The time evolution of ξi is largely determined by the eigen modes of matrix A. For the kth 

mode, the eigenvalue λk and its corresponding eigenvector xk satisfy  

 
 

€ 

Axk = λkxk . (7.7)
  

And the chemical-potential fluctuation in the system, written as ξ  = (ξ1, ..., ξi,...)T, is a linear 
combination of the eigen modes, 
 

€ 

ξ = ξk
k
∑ xk . (7.8) 

 
Hence we can write the above differential equations in terms of the independent modes 
 

€ 

dξk

dt
− λkξk =ηk (t), (7.9) 
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and its Fourier transform in the frequency space 
 

€ 

iω ˜ ξ k ω( ) − λk
˜ ξ k ω( ) = ˜ η k ω( ). (7.10) 

 
If we consider each input pulse ηk as an independent random event, 

€ 

ηk (t)ηk (t') = Dkδ(t − t') (7.11) 
 

where Dk is the averaged intensity of the random pulses for the kth mode. The spectral density of 
ηk is wk(

€ 

f ≡ω /2π > 0 ), according to the Wiener-Khintchine theorem,  

€ 

wk ( f ) = 2 ˜ ξ k (ω) ˜ ξ k (−ω) =
2Dk

ω 2 + λk
2 . (7.12) 

To determine Dk, we use the equipartition law, that the chemical-potential (voltage) 
fluctuation in a circuit is 

€ 

1
2

Cξk
2 =

1
2

kBT = dfwk ( f ) =
Dk

2λk
0

∞

∫ , (7.13) 

where C is the capacity of the circuit. We have Dk = 2kBT λk/C. The total spectral density, 
including all the modes, is then 

€ 

w( f ) = wk ( f ) =
k
∑ 4kBT

C
λk

ω 2 + λk
2

k
∑ . (7.14) 

Thus, to calculate the noise spectrum, we need to find all the eigenvalues of the matrix A. It 
is easy to see that one eigenvalue is λ0 = 0, which corresponds to the equilibrium situation, where 
fi follows the Fermi-Dirac distribution with the Fermi level at µ0. All other eigenvalues must be 
negative, λk <0, because any fluctuation will decay over time. 

7.2 MEYER-NELDEL RELATION 

In VOx and many other disordered materials, the Meyer-Neldel relation has been observed. 
If the temperature-dependent conductivity is written as 

€ 

σ(T) =σ 0e
−Ea / kBT , (7.15) 

the prefactor σ0 is found to exponentially increase with the activation energy Ea, 

€ 

σ 0 ∝eEa / kBTMN       (7.16) 

where TMN is the Meyer-Neldel temperature. In VOx, from fitting to the conductivity data for a 
variety of VOx ranging from x = 0.8 to x = 1.8, TMN = 801 K is obtained. 

To date, no theory satisfactorily explains the seemly universal Meyer-Neldel relation. One 
plausible argument is that as the energy barrier Ea for electron hopping increases, the possible 
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paths for the hopping quickly grow. The observed Meyer-Neldel relation in VOx suggests that 
the prefactor ν in Eq. (7.2) should not be a constant, but, rather, a function of the energy 
difference between the two sites,  

.

€ 

wij = ν 0e
(ε i −ε j ) / kBTMN exp −2αR( )e(ε i −ε j ) / 2kBT  (7.17) 

We consider a cubic lattice with 32×16×16 sites and the lattice constant a = 3 Å. First we 
generate the site energy εi,  a random that follows a certain distribution and then calculate the 
matrix A. Then we find all the eigenvalues λk of A and compute the spectral density w(f) 
according to Eq. (7.14). The matrix A is large, with dimension of 81922, and has 8191 negative 
λk. All the calculations presented in this paper are for room temperature, T = 300 K. 

Figure 19 shows the calculated noise spectral density w(f) as a function of dimensionless 
ω/ν0 for different  Meyer-Neldel temperatures. We see that the spectral density is virtually a 
constant at very low frequencies and has an asymptotic behavior of 1/ω2 at very high 
frequencies. There is an intermediate range that the spectral density has an approximately 1/ω 
dependence. From Fig. 19, the frequency range where the noise shows a 1/f behavior strongly 
depends on the Meyer-Neldel temperature, TMN. For a system with a strong Meyer-Neldel 
behavior, i.e., small TMN, the 1/f noise persists over a broad frequency range. 

 

 

     

 

 

 

 

 

 

 

Figure 19. Noise spectral density w(f) as a function of  for different Meyer-Neldel 
temperatures. The site energy is uniformly distributed in [-Δ ,Δ ] with Δ  
= 0.5 eV, and the Fermi energy is  -0.3 eV. The electron localization 
parameter is set α  = 5 Å-1.  
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If we assume that the noise spectral density has a power-law dependence on the frequency, 

€ 

w( f ) = w0ω
γ , (7.18) 

the exponent γ can be obtained from 

€ 

γ =
d lnw
d lnω

. (7.19) 

Figure 20 plots the exponent γ as a function of ω/ν0 from the spectral densities illustrated in 
Fig. 19 and clearly shows the frequency range of 1/f noise where  γ ≈ -1.   

 
Figure 20 Exponent γ  as a function of ω /ν 0 obtained from Fig. 19. 
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Because the noise spectral density is determined by the eigenvalues λk of matrix A, 
according to Eq. (7.14), different noise behaviors indicate different distributions of these 
eigenvalues. Figure 21 plots the distribution of ln |λk| for these different Meyer-Neldel 
temperatures. For a system showing a strong Meyer-Neldel behavior, the eigenvalues λk and 
their associated time scales -1/λk have a broad distribution. 

 
 

Figure 21 Distribution of  ln|λk| for different Meyer-Neldel temperatures. The 
parameters are as shown in Fig. 19. 

 

8. COHERENCE DYNAMICS OF PHOTOSYNTHESIS 

Recent multicolor photon-echo experiments revealed a long-lasting quantum coherence 
between excitations on donors and acceptors in photosynthetic systems. Identifying the origin of 
the quantum coherence is essential for fully understanding photosynthesis. In our generic model, 
a strong intermolecular steric restoring force in densely packed pigment-protein complexes 
results in a spatial correlation in conformational (static) variations of chromophores, which in 
turn induces an effective coupling between high-frequency (dynamic) fluctuations in donor and 
acceptor. The spatially correlated static and dynamic fluctuations provide a favorable 
environment for maintaining quantum coherence, which consistently explains the photon-echo 
measurements. Of note, the macroscopic and primitive elastic energy, when acting collectively, 
can provide a favorable environment for protecting the microscopic and delicate quantum 
coherence in strongly fluctuating biological systems. Figs. 22 and 23 compare our calculated 
photon-echo signals with experimental results.  
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Figure 22. Photon-echo signals obtained from our calculations. 

 
 

 
Figure 23. Photon-echo signals obtained from experiments. 

 
COLLABORATION WITH ACADEMIA AND INDUSTRY  

Because of the importance of uncooled IR detection to the military, the Department of 
Defense has made significant investments in perfecting microbolometer technology and is 
funding projects at several companies and universities to study VOx. To share our results and 
insights gained from this project, we worked closely with both experimentalists and theorists in 
the MURI team to analyze experimental data and model VOx systems from first-principles 
calculations. In particular, we analyzed the AC conductivity data from Prof. Mark Horn’s group, 
and provided strategies for modeling VOx defect structures through first-principles calculations. 
We suggested pertinent experiments to understand transport in VOx and α-Si thin films based on 
our modeling results, and gained insight into these systems. Prof. Mark Horn from Penn State 
University, Dr. A. J. Syllaios, and Dr. Mingliang Zhang, a postdoc from Prof. David Drabold’s 
group at Ohio University visited SRI during the last two years. 



35 

PUBLICATIONS  

Z. G. Yu, M. A. Berding, and H. Wang, “Spatially correlated fluctuations and coherence 
dynamics in photosynthesis,” Phys. Rev. E 78, 050902 (Rapid Communications) (2008).  

M. A. Berding and Z. G. Yu, “Defect microstructures and their effects on electrical transport 
in VOx,” Proc. MSS 2006.  

M. A. Berding, Z. G. Yu, and R. E. DeWames, “Electronic structures, optical absorption, 
and electrical transport in VOx,” Proc. MSS 2007. 

Z. G. Yu and M. A. Berding, “Carrier transport under strong electric fields in VOx for 
microbolometers,” Proc. MSS 2009. 
R. DeWames, Z. G. Yu, and D. Lohrman, “Electrical conduction and long relaxation times 
in non-crystalline VOx and α-Si:H microbolometer infrared detectors,” Proc. MSS 2010. 
Z. G. Yu and M. A. Berding, “Numerical simulation of 1/f noise in VOx for 
microbolometers,” Proc. MSS 2010.  

R. E. DeWames, A. J. Syllaios, Z. G. Yu, and M. A. Berding, “Distinct electrical transport 
mechanisms in noncrystalline VOx and a-Si:H,” to be submitted to Appl. Phys. Lett. 

CONFERENCE PRESENTATIONS 

Z. G. Yu, “Spatially correlated fluctuations and coherence dynamics in photosynthesis,” 
2009 APS March Meeting, Pittsburgh, Pennsylvania, March 16-20, 2009. 

RECOGNITION OF RESEARCH ACCOMPLISHMENTS 

Our paper, “Carrier transport under strong electric fields in VOx for microbolometers,” was 
selected as the best paper at the 2009 MSS workshop.  


