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Unitary Root MUSIC and Unitary MUSIC with Real-Valued Rank Revealing Triangular Factorization1 

Nizar Tayem and Mort Naraghi-Pour 

Department of Electrical and Computer Engineering 

Louisiana Sate University, Baton Rouge, LA 70803 

Tel: (225) 578-5551, Fax (225) 978-5200, Email: mort@ece.lsu.edu 

Abstract-This paper presents two methods to estimate the 
two dimensional (2-D) direction of arrival (DOA) for 
coherent and non-coherent sources. The proposed methods 
have many advantages over existing schemes. First, they 
construct the data from a single snapshot in a Toeplitzform, 
whose rank is directly related to the DOA of signals, 
whether the signals are coherent or not; hence, the 
algorithm does not require any forwardlbackward spatial 
smoothing. Second, the two proposed methods can rapidly 
estimate the 2-D DOAs of incident signals without requiring 
singular value decomposition (SVD) or eigenvalue 
decomposition (EVD), even in the case of coherent signals 
and a single snapshot. The two methods are: (1) orthogonal 
projection real-valued rank revealing QRfactorization (OP­
RRRQR), and (2) orthogonal projection real-valued rank 
revealing LU factorization (0 P-RRRLU). The proposed 
methods reduce computational complexity and the cost at 
least by a factor of four by applying a unitary 
transformation, to the complex Toeplitz form to real data 
without forming the covariance matrix. The proposed 
algorithms employ the unitary root MUSIC and unitary 
MUSIC using cross array configuration to estimate the 2-D 
DOA azimuth and elevation angles without using the 
extensive 2-D MUSIC search. Hence, they can reduce the 
computational load and cost significantly and can be applied 
in real-time radar/sonar and commercial wireless systems. 
The simulation results show that the proposed algorithms 
can efficiently estimate the 2-D DOAs from different sources. 

1 This work was supported by a research contract from Air Force Research 
Laboratory/Clarkson Aerospace under Prime Contract Number F A8650-05-D-
1912. 

I. INTRODUCTION 
The problem of estimating the two-dimensional (2-D) 

direction of arrival (DO A), azimuth and elevation angles, 
for incident signals on an antenna array has received 
considerable attention in the field of array signal 
processing [1-13]. This problem has applications in many 
fields including radar, sonar, radio astronomy, seismic data 
processing, and mobile communication systems. Existing 
algorithms employ either eigenvalue decomposition (EVD) 
of the sample covariance matrix or singnlar value 
decomposition (SVD) of the data matrix to estimate the 
signal and noise space, and are computationally extensive 
and time consuming, especially when the number of 
antenna array elements N is larger than the number of 

, -4244-' 513-06/07/$25.00 ©20071EEE 

incident signals. Furthermore, many of these methods 
require a two dimensional search, complex pair-matching 
of the azimuth and elevation angle, have an estimation 
failure problem when the elevation angles are between 70° 
and 90°, need a large number of samples to estimate the 
covariance matrix, and fail when the sources are highly 
correlated or completely coherent. 

The 2-D DOA estimation problem in [1] requires an 
exhaustive 2-D peak search through all possible steering 
vectors. In addition, the sources must be non-coherent and 
a large number of snapshots are required to estimate the 
covariance matrix. In [2-5] the authors proposed a 2-D 
DOA estimation method using a different array 
configuration. While this method does not require a 2-D 
peak search, it has other drawbacks: (1) it requires a pair­
matching between the 2-D azimuth and elevation angle 
estimations, and (2) estimation fails when the elevation 
angle is between 70° and 90° or when the signal-to-noise 
ratio (SNR) is Low. 

The methods in [1-4, 6-13] require a large number of 
snapshots to estimate the covariance matrix. This 
covariance matrix will have a Toeplitz structure if the 
incident sources are uncorrelated and statistically 
stationary. However, if the incident sources are coherent 
(e.g., in a multipath environment), the covariance matrix is 
not Toeplitz. In order to obtain the Toeplitz structure, the 
preprocessing spatial smoothing technique [14-16] has 
been introduced in order to destroy the cross correlation 
between directional components; however, smoothing 
technique requiresa large number of snapshots and 
averaging the covariance matrices which increase the 
computational load and the complexity. 

In this paper, we present a new approach to solve the 
2-D DOA estimation problem. There are five main 
underlying ideas behind this approach. First, the proposed 
algorithm preserves the Toeplitz structure by mapping the 
(2N + 1) x 1 data vector from a single snapshot into an 
(N+ 1) x (N+ 1) Toeplitz matrix whose rank is related to the 

DOA of the incoming signals independent of whether the 
sources are coherent or not. Hence, the proposed nlethod 
does not use forward/backward spatial smoothing resulting 
in a reduction in the computational complexity and cost. 
Second, the proposed method uses only a single snapshot 
of the received signals to estimate the DOA of the incident 
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sources. This reduces the computational load drastically 
and makes the proposed method a good c.1ndidate for real­
time implementation. Third, to reduce the computational 
complexity and cost further, we employ the unitary 
transformation in [17] to convert the complex-valued 
Toeplitz data to real-valued data. Tlus reduces the 
processing time by ahuost a factor of four, since the cost of 
complex multiplication is four times that of real 
multiplication. Fourth, the two proposed methods can 
rapidly estimate the 2-D DOAs of incident signals without 
requiring SVD or EVD, even in the case of coherent 
signals and a single snapshot. The two methods are: (1) 
orthogonal projection real-valued rank revealing QR 
factorization (OP-RRRQR) and (2) orthogonal projection 
real-valued rank revealing LV factorization (OP-RRRLU). 
The rank revealing QR factorization [18-20] is precisely 
used to compute the subspace infOlmation and effectively 
update the signal information that can be used to track a 
moving source. The QR factorization is also applied to 
estimate the DOAs in the non-stationary environment of 
tracking moving sources. Fifth, we propose a cross array 
configuration that consists of two centro-symmetric 
uniform linear arrays in the z-x plane; then, the proposed 
unitary root MUSIC is applied to the array in the z axis to 
estimate the elevation angle. Subsequently, the unitary 
MUSIC method is used to estimate the azimuth by the use 
of the estimated elevation angle for each source. Finally, 
the proposed methods do not require any pair-matching 
between azimuth and elevation, they do not suffer from 
estimation failure, and avoid the 2-D search peak. 

The rest of this paper is organized as follows. Section 
II presents the proposed 2-D DOA methods. Section III 
shows simulation results, and in Section IV we draw our 
conclusions. 

II. SYSTEM MODEL 

A-Orthogonal projection with real-valuet! rank-revealing 
QRfactorization 

Figure 1 shows the proposed array configuration 
consisting of two symmetric uniform linear arrays (ULA) 
with inters pacing d equal to a half wavelength of incident 
signals. We assume that all the incident sources have the 
same c.1frier frequency. Each uniform linear array in Figure 
1 consists of 2N elements, and the element placed at the 
origin is numbered 0 for reference purposes. One array is 
placed on the z axis and the other on the x axis. Suppose 
that there are K narrow band sources where the k-th source 
has an elevation angle ek and an azimuth angle",» k=J, 
K. 
Step 1. Estimation of Elevation Angle ek 

For a given snapshot t, the output signal fi'om the k-th 
element on the z axis is given by 

2 

(1) 

where S i (t) is the signal from the i-th incident source, and 

nk (t) is the noise at the k-th element. 

If we use the element at the center of the array as a 
reference point, then the (2N + 1) x 1 output vector from 

the 2N + 1 antenna elements placed on the z axis can be 
written as 

Z( t)= Zo( /) = A(B) S(t)+N(t) (2) 

where 

is the (2N + 1) x K atTay response matrix, 

where 

(3) 

a(ed=[(uZ) 1 uf: r (4) 

is the corresponding (2N + l) x 1 array response vector, 

with 

Uk = exp (-} 211' d COS (Bk )/ A,), (5) 

where S(/) is the vector of received signals 

S(t) = [SI(t) s, (t) SK(f»)' (6) 

and 

(7) 

where N(t) is the (2N + 1) x 1 noise vector. Herein, the 

superscripts T and - denote the transpose and conjugate 
operations, respectively. 

In the proposed method, we map the output data vector 
Z(t) with dimension (2N + 1) x 1 to a Toeplitz 

Hermition data matrix with dimension (N+l)x (N+l) . 
The advantage of introducing the Toeplitz Hermition data 
matrix is that it has a rank that is related to the DOA of the 
sources independent of whether the sources are coherent or 
not. TIus matrix, denoted Y, is given by 

Zo Z_l Z_2 Z_N 

Zl Zo Z_l Z_(N_I) 

Y= Z2 ZI Zo Z_(N_') (8) 

ZN ZN _I ZN _2 Zo 
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where we have dropped the time index t. 
Assuming a noise free case the Hermitian Toplitz data 

matrix in (S) can be rewritten in terms of B ( II ), <1>;, and 

S as follows 

Y =[ B( e)S B( e) <1>; (e)S 
where 

(10) 

is the «( N + 1) x K) array response matrix where 

b(lIk)= [1 Uk ... un T (11) 

and 

u; 0 0 

<1>' - 0 u; 0 
= diag(U; u; U~) 1 -

0 0 
(12) 

0 0 u~ 
The square Hermitian Toeplitz in (10) can be decomposed 
as follows 

Y = WDW H (13) 
where 

1 1 1 1 

'4 U, U, UK 

W= U; u; 2 
U3 

2 
UK (14) 

'4N 
N 

U2 
N 

U3 
N 

UK 

and 
0 0 

0 

Y = B(e)DB(e)H (16) 

Unitary transformation Method for Toeplitz data 
Let J represent the exchange matrix (i.e., l's on the 
antidiagona1 and O's elsewhere) as 

J=[ ... ~l (17) 

Note that J = JH = J-1 

Toeplitz matrices are persymmetric, meaningthat they are 
symmetric about their southwest-northeast diagonal. For 
such a matrix P 

JpT J = P 
(IS) 
Let U be an.MXA1 matrix defined as 

1 [I J] 
G= ,fi jJ - jI 

(19) 

where J and J are exchange and identity matrices, 
respectively, with dimensions (M 12)x (M 12), and G IS a 

unitary matrix which satisfies 
G'J =G. (20) 

Equation (19) holds for anM even. In the case where M is 
odd, the unitary matrix G can be written as 

G=_l_[: ~ : 1 (21) 
.J2 7J 0 --p 

where J and J have dimensions of 

«(M -1)/2)x(M -1)/2) and Q = [0,0, ... ,0] 

(15) Construct the output data of the proposed method as D{l S2 

0 0 

0 SK 

Since Y = WD W H and the diagonal signal matrix D 
is of full rank, the rank of Y is the same as that of W. The 
matrix Win (14) has the structure of an (N + 1) xK 

Vandermonde matrix. The rank of W is equal to the 
l\1inimum of (N + 1) and K; hence, rank of W is equal 

toK. This means that the rank of the Hermition Toeplitz 
data matrix is equal to the number of DOAs of the sources 
whether the sources are coherent or not. Therefore, all the 
incident sources can be detected even if the sources are not 
coherent because the Toep1itz data matrix structure will be 
preserved in both scenarios (i.e., coherent and non-coherent 
sources). 

If W matrix in (13) is the same as the collection of 
array response vectors from different directions in B( e) in 

(11), then equation (13) can be rewritten as 

3 

follows 

'¥ = Y + JY"J (22) 
If we pre-multiply the construct data in (22) by G, post­

multiply by G H and take the conjugate, we get 

(G,¥G H)' =[ G(Y +Jy"J)GHJ 

(23) 

Note that because Y is a Toeplitz matrix thenJY* J = yH. 
Using JJ=J, we can rewrite (23) as follows 

(G,¥U H)' =G'JJY"JJGT +G'JJyTJJGT 

=G'J(JY'J)JGT +G'J(JyTJ)JGT 

= G'J(y H +Y)JGT 

Ifwe substitute (20) for (24), we get 

(G,¥G H)' =G(Y +y H)GH 

=G'¥G H 

(24) 

(25) 
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Therefore, G'¥GH is a real-valued matrix; the 

decomposition of G'¥GH requires only a real computation 
which means the computational load and cost will reduce 
significantly without effecting the accuracy of the DOAs. 

The proposed method uses the orthogonal projection 
real-valued rank revealing QR factorization to estimate the 
2-D DOA elevation and azimuth angle from coherent Inon­
coherent sources by using the real data matrix in (25). The 
necessary information about the noise subspace or the 
signal subspace can be extracted using the rank revealing 
QR factorization [18-20]. One of the reasons that QR 
factorization is widely used in adaptive applications is that 
in RRQR the signal information can be effectively updated, 
making the algorithm suitable to track moving sources. 

The real data matrix G'¥GH in (25) with dimensions 
(N + 1) x (N + 1) using the QR factorization can be 

expressed as the product of a real and orthogonal 
(N + 1) x (N + 1) matrix and an (N + 1) x (N + 1) rank­

revealing upper triangular matrix with real entries. Then 
the factorization of G'¥GH can be written as 

G'f'G
H 

= QR = Q[R~1 ~::J (26) 

where Rl1 IS an (KxK) matrix, IS 

an Kx(N-K+l) matrix and R22 IS an 

(N - K + I) x (N - K + I) matrix, and all real matrices. The 

QR factorization in (26) is called rank-revealing QR 
factorization if R22 has a small norm. Since R22 is very 

small, the basis of the noise space can be obtained from the 
above R factor. Let V represent any vector in the null 
space of R, i.e., RV = O. To [md the structure of V, we 

partition V into VI with K components and v2 with (N­

K + 1) components. Then RV = 0 implies that 

[Rn R12l[::J = 0 (27) 

so that Rn VI + R,2 v2 = 0 . Since Rll is a non-singular 

matrix, VI can be written in terms of v2 as follows 

VI = -RI-I1R12Vl 

Thus V can be written as 

V = [::J = [~:~~~2 ]V2 

(28) 

(29) 

To [md the basis of the null space of R, we choose any 
set of N -K + I linearly independent vectors; for example, 
the columns of the N -K + I dimensional identity matrix. 
The basis for the null space of the upper triangular matrix 
R, which is also the null space ofG,¥G H

, is therefore given 
by 

4 

E< = [-R,~l R12 ] 
I N - K +l 

(30) 

It is important to observe that the columns of E z are 

not orthonormal in contrast to the null space which can be 
derived from the SVD or EVD techniques. We now note 
that the subspace spanned by the columns of E z is 
orthogonal to the subspace spanned by the columns 
of B(e), where the column of B(e) contains the 

information about the AOAs of incident sources. This is 
similar to the well-known MUSIC algorithm in which the 
eigenvector of the noise subspace is orthogonal to the 
steering vector of the signal subspace. To find the AOAs, 

we search the minimum peaks of liE: B( e)ll. Since the 

basis of E z is not orthonormal we use the orthogonal 

projection onto this subspace to improve the performance 
by making the basis of the null space of E z orthonormal. 

Since we consider the uniform linear array, the 
proposed method employs the root MUSIC [21] to 
estimate the AOAs for the incident signals. The proposed 
unitary root MUSIC converts the power spectrum of the 
MUSIC algorithm into a polynomial whose roots contain 
information about the elevation angle e as 

yl(e)=BH(e)GHE<E<HGB(e) (31) 

Since the RRQR factorization is for the real-valued 
111atrix instead of the c0111plex-valued 111atrix in 
conventional Root MUSIC, then the complexity of the 
proposed method Unitary Root MUSIC in (31) is about 
four times lower than the conventional Root MUSIC. 

To make the basis of E z orthonormal we use the 

orthogonal projection onto this subspace, which is given 
by 

(32) 

(33) 

Now equation (31), using orthogonal projection, becomes 

F;l = B( et GHWPB( e) (34) 

The roots of the polynomial in (34) can be used to 
estimate the elevation angle ek of the incident signals. 

Step 2. Estimation of Azimuth Angle (A with Estimate ek 

The estimate ek obtained in Step I will be used for 

estimation of the azimuth DOA (A 
The proposed orthogonal projection real-valued rank 

revealing QR factorization will employ the signal vector X 
received at the ULA in the x axis direction and the MUSI C 
algorithm. By doing this we can avoid the failure problem 
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in the joint azimuth and elevation angle estimation and 
pair-matching problem. 

The ((2N+ 1)x1) signal vector received from the 
symmetric uniform linear array which is a function of 

(el/I>!) on x-axis is given by (X_N • • XO""XN r . In the 

proposed method we map the ((2N + 1) x 1) vector to the 
(N + I) x (N + I) Toeplitz data matrix as follows 

Xo X_I X_2 X_ N 

.x; Xo X_I X_(N _I ) 

X= x 2 .x; Xo X_(N _2) (35) 

x N X N _1 X N _2 Xo 

The data matrix in (38) can be rewritten in terms of 

<1>',S, and C(e,¢)as 

x=[c«(e,q:»S c(e,q:»<p;(e,q:»s 

cce,¢) = (c(ej, ¢J), c(e2,¢2), 

c( e,q:»(<p;(e,q:»r' S ]+Qx 
... , C(eK,¢K») (36) 

... , (ektl (37) 

_ (. 2JTd sin ek cos q:>k J ek - exp - ] 
.It. 

e; 0 0 

<1>' -
0 e; 0 

= diag(e; e; 2-
0 0 

(38) 

0 0 e; 
where Qx is a complex noise variable. Using the unitary 

transformation we convert the complex data matrix in (36) 
to real data as follows 

y=x + JX'J 

(39) 

By applying the same rank revealing QR factorization 
procedure in (26)-(34) on GYG H

, the null space Ex can be 

found in the same way. The orthogonal projection onto this 
subspace is given by 

( 
H )-1 H 

Qo =Ex Ex Ex Ex ( 40) 

The azimuth angle estimation 1> can be obtained using 

the estimation e which is already found in Step 1. By 

employing the proposed Unitary MUSIC search peak 1>k 
can be found from the maximum peaks of the following 
power spectrum as 

p(~,q:»=----~H~--l--------­
c(ek,q:» GHE"E"HGc(ek,q:» 

(41) 

5 

for source k, k=1, ... , K where Ex is similar to Ez in (30). 
Note that the 2-D DOA dimensional search reduces 
approximately to a I-D search since the number of sources 
is very small. In addition, the complexity of the proposed 
Unitary MUSIC method in (41) is about four times lower 
than the conventional MUSIC [24]. 

B- Two-Dimensional DOA Estimation with orthogonal 
projection and real rank revealing LU factorization 

In this section we present a method to obtain the 2-D 
DOA estimation azimuth and elevation angles from 
coherent/non-coherent sources using real rank revealing 
LU factorization. This method is referred to as orthogonal 
projection real rank revealing LU factorization (OP­
RRRLU). Rank revealing LU factorization [23] can reduce 
the complexity over that of (RRQR) by a factor of two. 

The RRRLU factorization of G'l'GH can be written as 

U(YY)wU H =LU=L[U11 U12
] (42) o U22 

where U11 IS an (K x K) matrix, U12 IS 

an Kx(N-K+l) matrix and U22 IS an 

(N -K + 1) x (N -K + 1) matrix, and with real entries. 

Since U11 is a non-singular matrix with full rank equal to K 
and U22 has a small norm, the factorization in (42) is 
referred to as real rank revealing LU factorization. The 
basis of the noise space can be obtained from U as follows: 
the upper triangular matrix U represents the null space of Y. 
Since U22 has a very small norm, the upper triangnlar 
matrix U can be written as 

(43) 

where W is a permutation matrix that represents the row 
and column interchanges. Let q represent any vector in the 
null space of U, i.e., 

Uq=O (44) 

To [md the structure of q, we partition q into q, with K 

components and q, with (N-K + 1) components. Equation 

(43) can be written as 

[U11 U12 ][::J = 0 => U11 q, +U'2 q2 = 0 (45) 

From (45) and the fact that U11 is full rank with rank K, 

q, can be written as 

ql = -u1-iUI2 Q2 (46) 

Using Equations (47-48) vector q can be written as 

[
-U,-" Un ] 

q= q2 
I N - K +l 

(47) 

To find the basis for the null space of U, we choose any set 
of N-K + 1 linearly independent vectors. The most obvious 
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choice is the set of linearly independent columns of the 
identity matrix. A basis for the null space of the upper 
triangular matrix U, also the null space of Y, is therefore 
given by 

Q = [-U,-iU12] (4S) 
I N -K+l 

Note that columns of Q are not orthonormal as the ones 
provided by SVD or EVD. We observe that the null spaces 
of (OP-RRRQR) in (30) and the one in (4S) for the 
proposed OP-RRRUL have the same form and dimensions. 
We use the orthogonal projection onto this subspace to 
improve the performance by making the basis of the null 
space of V orthonormal. The columns of the null space of 
V become orthornnal as follows 

QO=Q(QHQr'Q
H (49) 

By applying the same procedure used in Section A, the 2-D 
DOA estimation can be found using the proposed 
orthogonal projection real rank revealing LU factorization. 
Note that the difference between the two proposed methods 
is how to construct the null spaces to estimate the azimuth 
and elevation angles for the incident sources 

III. SIMULATION RESULTS 
For simulation, the spacing between the two adjacent 

elements in the uniform linear array was set to a half 
wavelength of the incoming signals. Further, one single 
snapshot per trial and 50 independent trials in total were 
tested. The performance of the two proposed methods (OP­
RRRLU) and (OP-RRRQR) were tested when the sources 
are coherent. 

Figures 2 through 5 show the plots of 2-D DOAs for 
the two proposed methods (OP-RRRQR) and (OP­
RRRLU), respectively. We considered K=3 coherent 
sources, SNR= 10 dB, and eleven elements were assumed 
in each antenna array (the element at the origin is common 
to both arrays). The elevation and azimuth angles of the 
two sources were set to (75°, 60°), (90°, SOO), and (1l0°, 
95°) for sources 1, source 2, and source 3 , respectively. 
Fifty independent trials were performed for each figure. 
Figures 2 and 3 show the histogram plot for the elevation 
angle and the power spectrum plot for the azimuth angle, 
respectively, for the proposed (OP-RRRQR) method. It is 
observed clearly in Figures 2 and 3 that the proposed 
algorithm gives accurate 2-D elevation and azimuth DOA 
estimations both sources and an exact peak occurred at 
(75°,60°), (90°, SOO), and (110°, 95°) in almost all the cases. 
Figures 4 and 5 show the histogram for the elevation angle 
and the power spectrum for the azimuth angle using the 
proposed (OP-RRRLU). From these figures we observe 
that (OP-RRRLU) gives an accurate estimation for the 
azimuth and elevation angles for the three sources, and a 
clear peak occurs at the exact directions. Note that the two 
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proposed methods can estimate the 2-D DOA estimation 
efficiently. However, the complexity of (OP-RRRLU) is 
lower than that of (OP-RRRQR) by a factor of two. 

I'(4§)ONCLUSIONS 
In this paper, we propose two methods for estimating 

the 2-D direction of arrival, employing the Root MUSIC 
and MUSIC algorithm for coherent and non-coherent 
sources. The received data is arranged into a Toeplitz 
matrix which enables us to perform the estimation using 
only a single snapshot and detect the incident sources 
whether they are coherent or not without any spatial 
smoothing. In addition, the unitary transform successfully 
employs to transfer the complex data of RRQR and RRLU 
factorization to real data. Moreover, it does not require 
pair-matching between elevation and azimuth angle 
estimation. These advantages make our proposed method 
suitable for real time implementation. 

_~==:=-~-=--=--:::~~~-J;j. __ ~"-~~~~.i!~ ___ ---> 

_____ ~""'~--'"-".Y_(;Il 

Figure. 1. Block diagram for pfOJXlsed algoritlun for joint 2-D DOA 
elevation and azimuth angle 
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Figure 6. Histogram of elevation estimations in the 2-D DOA 
estimations for three coherent sources at [(75°, 60°), (90°, 80°), (110°, 
95') 1 using the (OP _ RRRQR) Method 
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Figure 7. Power spectrum of azimuth estimations in the 2-D DOA 
estimations for three coherent sources at [(75°, 60°), (90°, 80°), (110°, 
95')] using the (OP _RRRQR) Method 
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Figure 8. Histogram of elevation estimations in the 2-D DOA 
estimations for three coherent sources at [(75°, 60°), (90°, 80°), (110°, 
95')] using the (OP _RRRLU) Method 
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Figure 9. Power spectrum of azimuth estimations in the 2-D DOA 
estimations for three coherent sources at [(75°, 60°), (90°, 80°), (110°, 
95')] using the (OP _RRRLU) Method 
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