

The solar UV-x-ray spectrum from 1.5 to 2000 Å

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001 (http://iopscience.iop.org/0953-4075/43/23/232001) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 87.139.90.56 The article was downloaded on 12/11/2010 at 16:36

Please note that terms and conditions apply.

Report Documentation Page			Form Approved OMB No. 0704-0188		
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.					
1. REPORT DATE				3. DATES COVERED	
JUL 2010		2. REPORT TYPE		00-00-2010	0 to 00-00-2010
4. TITLE AND SUBTITLE		1		5a. CONTRACT	NUMBER
The solar UV-x-ray	y spectrum from 1.5	to 2000 A	5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,Space Science Division,Washington,DC,20375				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release; distribut	ion unlimited			
13. SUPPLEMENTARY NO	DTES				
14. ABSTRACT This review illustrates the potential of UV?x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT	b. ABSTRACT	c. THIS PAGE	Same as	24	RESPONSIBLE PERSON
unclassified	unclassified	unclassified	unclassified Report (SAR)		

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 232001 (23pp)

TOPICAL REVIEW

The solar UV–x-ray spectrum from 1.5 to 2000 Å

G A Doschek¹ and U Feldman²

¹ Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA
 ² Artep, Inc., 2922 Excelsior Spring Ct, Ellicott City, MD 21042, USA

E-mail: ufeldman@ssd5.nrl.navy.mil

Received 5 May 2010, in final form 28 July 2010 Published 12 November 2010 Online at stacks.iop.org/JPhysB/43/232001

Abstract

This review illustrates the potential of UV–x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.

(Some figures in this article are in colour only in the electronic version)

1. Overview: the solar UV-x-ray spectrum from 1.5 to 2000 Å

The solar atmosphere contains plasma at all temperatures ranging from its visible light surface (the photosphere, about 5500 K) up to coronal temperatures of about $1-3 \times 10^6 \text{ K}$ when the Sun is not producing flares. In a flare, temperatures as high as $20-40 \times 10^6 \text{ K}$ can be produced. The spectrum produced by the hot atmosphere extends from the UV into the x-ray region and is an emission line spectrum with free–free and free–bound continua. The emission lines produced are a reflection of the elements present in the atmosphere and their ionization stages. At temperatures above about $2 \times 10^4 \text{ K}$ the ion abundance (X^{+z}) of a particular element is determined by electron impact ionization of the ion competing with radiative and dielectronic recombination. Ionization equilibrium is often assumed in which case these competing processes balance, i.e.

$$N(X^{+z})Q^{z} = N(X^{+(z+1)}) \left(\alpha_{r}^{(z+1)} + \alpha_{d}^{(z+1)} \right), \tag{1}$$

where *N* is the number density of the X^{+z} ion, *Q* is the ionization rate coefficient (cm³ s⁻¹) and α are the radiative and dielectronic recombination rate coefficients. These processes depend primarily on the electron temperature, although there

is also some electron density dependence. Three-body recombination is negligible at the electron densities of the solar atmosphere, and above about 5×10^4 K radiative transfer effects on line profiles of resonance lines are small except for very abundant elements such as hydrogen. The emission lines produced above 5×10^4 K can for the most part be considered to be optically thin. The emission lines are produced mostly by electron impact excitation, although dielectronic recombination produces strong lines in the x-ray region below 10 Å and proton impact excitation and radiative recombination must also be considered.

The solar atmosphere element abundances are cosmic, i.e. they reflect the average element abundances in the Universe. About 92% of the atmosphere is hydrogen, about 8% is helium and about 0.2% is composed of mostly elements with atomic number $Z \leq 28$ (Ni). Because of the processes governing element formation in stars, it turns out that the most abundant light elements have even atomic numbers, i.e. carbon, oxygen, neon, magnesium, silicon, sulfur, argon, calcium, iron and nickel are significantly more abundant than elements such as boron, fluorine and phosphorus. Table 1 shows examples of photospheric (Asplund *et al* 2009) and coronal (Laming and Feldman 2000) abundances frequently adopted in analyses of solar spectra. Iron produces the

Table 1. Solar abundances.			
Element	Photospheric abundance	Coronal abundance	
Н	12.00	12.00	
He	10.93	10.93	
С	8.43	8.52	
Ν	7.83	7.92	
0	8.69	8.83	
Ne	7.93	8.11	
Na	6.24	6.92-7.22	
Mg	7.60	8.18	
Al	6.45	7.09-7.39	
Si	7.51	8.16	
S	7.12	7.33	
Ar	6.40	6.59	
Ca	6.34	6.95-7.25	
Fe	7.50	8.10	
Ni	6.22	6.85	

strongest high-temperature lines in the solar spectrum because it is the heaviest abundant element and the highest degrees of iron ionization stages are produced at the highest temperatures relative to the temperature sensitivities of the other elements. Above the atomic number of calcium and below that of iron, the even atomic number nuclei are also not very abundant. The highest temperature lines of iron that have been observed are the Lyman- α lines of Fe XXVI at ~1.78 Å. In ionization equilibrium (e.g. Mazzotta *et al* 1998, Bryans *et al* 2009) Fe XXVI has its peak fractional abundance near 100 × 10⁶ K.

From the standpoint of plasma diagnostics, an optically thin spectral line yields three quantities of interest: the total intensity of the line, the profile of the line and the wavelength The intensities of the lines can be used to of the line. calculate electron densities, electron temperatures, element abundances, and can indicate the presence of non-thermal (non-Maxwellian) electrons via line ratios and absolute intensities. The profiles of the lines give information regarding ion temperatures, non-thermal mass motions and multiple plasma flows along the line-of-sight, all via the Doppler effect. The wavelengths give information about bulk plasma flows along the line-of-sight. The diagnostics available to explore different temperature regimes of the solar atmosphere depend on the elements and ions available and where in the UV-x-ray wavelength regions the spectral lines fall.

Plasma diagnostics are a powerful tool in testing models of coronal heating and energy release in flares and other transient activity such as coronal mass ejections (CMEs). However, the solar atmosphere is highly structured and variable in time, and therefore testing models requires plasma diagnostic information at different identifiable positions and times within the structures. These structures are frequently quite small (sub-arcsec; $1'' \simeq 730$ km at the Sun-Earth distance) which requires a spectrometer with high-resolution imaging capability. The ideal plasma diagnostic spectrometer requires imaging such that images of structures can be obtained in individual monochromatic spectral lines. Without the spatial information, plasma diagnostics is only useful in giving average properties of the atmosphere, and is very limited for testing particular theoretical models of atmospheric heating or rapid energy release.

It should be noted that single-line ratios sensitive to either temperature or density give a kind of average value for the plasma within the field-of-view of the observation, even when the spatial resolution is very high. For example, any observation will almost always contain several physically disconnected structures along the line-of-sight with different temperatures/densities. The effect of this on line ratios is discussed for densities by Doschek (1984). Nevertheless, line ratios are a powerful tool for gaining physical insight into solar plasma properties.

In the UV down to about H I Lyman- α (~1216 Å) aluminium is a highly efficient coating for optics and therefore normal incidence optics can be combined to produce either spatially resolved spectra or monochromatic solar imaging. For example, aluminium plus a thin protective layer of MgF₂coated optics was used on the S082B slit spectrograph on the Skylab manned space station (Bartoe et al 1977). If coatings such as SiC or BC are used, the wavelength range can be extended down to about 500 Å, with some loss of efficiency. SiC was used in the solar ultraviolet measurements of emitted radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) spacecraft (Wilhelm et al 1995). Another approach on SOHO was employed in the coronal diagnostic spectrometer (CDS), which used grazing incidence optics and gold coatings for the 150-800 Å spectral range (Harrison et al 1995). Below 500 Å multi-layer coatings on normal incidence optics can be used to go deep into the extreme ultraviolet, e.g., instrumentation on the CORONAS-I, F spacecraft (e.g. Zhitnik et al 1998, 2005) and the Hinode spacecraft (Culhane et al 2007). The extreme-ultraviolet imaging spectrometer (EIS) on the Hinode spacecraft uses SiMo multi-layer coatings on both a mirror and a grating to image two approximately 30-40 Å wavebands near 250 Å and 195 Å (Culhane et al 2007). Below about 170 Å and above about 25 Å most solar spectra observations have been made using grazing incidence optics and are quite limited (e.g. see Feldman et al (1988) for a review). While the spectra cover large wavelength ranges, the imaging capability is low or even non-existent. Below 25 Å extensive observations have been made using Bragg crystal spectrometers (BCS) (e.g. Doschek 1990). These instruments have obtained outstanding highresolution solar x-ray spectra, but again the imaging capability is low to zero. There has been some imaging using Bragg crystals as monochromators for a spectral line near the 90° Bragg condition. Some Bragg crystals can be formed into mirrors and at near 90° the incident radiation on the crystal is close to normal incidence and imaging can be achieved without too much astigmatism. So far only the Mg XII line at 8.42 Å has been imaged in this fashion (e.g. Urnov et al 2007).

A recent addition to the armada of solar spectrometers flown in orbit is the Extreme Ultraviolet Variability Experiment (EVE, Woods *et al* 2010) launched on the *Solar Dyanmics Observatory* (*SDO*). The prime objective of this instrument is the accurate spectral measurement of solar EUV irradiance. The instrument has relatively low spectral resolution (about 1 Å), but it observes the whole solar disc, covers a very broad wavelength range (50–1050 Å) and has 10 s time resolution. This instrument is important for calibrating other in-orbit

Spacecraft	Instrument	Wavelength range	Reference
Skylab	EUV spectroheliograph S082A	150–350 Å, 300–645 Å	Tousey <i>et al</i> (1977)
Skylab	EUV spectrograph S082B	970–3940 Å	Bartoe et al (1977)
Skylab	EUV spectroheliometer	280–1340 Å	Reeves et al (1977)
OSO-8	UV spectrometer (LPSP)	Six lines between 1000 and 4000 Å	Bonnet et al (1978)
OSO-8	UV spectrometer and polarimeter	1170–3600 Å	Bruner (1977)
Hinotori	Rotating Bragg x-ray spectrometers	1.72–1.95 Å, 1.83–1.89 Å	Tanaka (1982)
P78-1	Bragg x-ray spectrometers	Four narrow wavebands between 1.82 and 8.53 Å	Doschek (1983)
P78-1	Bragg x-ray spectrometers	McKenzie et al (1980)	
Solar Maximum Mission	Bragg x-ray spectrometers	1.4–22.5 Å	Acton et al (1980)
Coronas-I	Spectroheliograph	180–210 Å	Zhitnik et al (1998)
Coronas-F	Spectroheliograph (SPIRIT)	280–330 Å	Zhitnik et al (2005)
Yohkoh	Bragg x-ray spectrometers	Four bands between 1.76 and 5.11 Å	Culhane et al (1991)
SOHO	EUV spectrometer (SUMER)	390–1610 Å	Wilhelm et al (1995)
SOHO	EUV spectrometer (CDS)	150–800 Å	Harrison et al (1995)
SOHO	UV coronagraph spectrometer (UVCS)	Selected lines, 499–1242 Å	Kohl <i>et al</i> (1995)
Hinode	EUV imaging spectrometer (EIS)	170–210 Å, 250–290 Å	Culhane et al (2007)

Table 2. High resolution x-ray–UV orbiting spectrometers.

spectrometers and for solar flare observations, as it observes many important flare lines of highly ionized iron. In particular, flare densities can be estimated using a density-sensitive line ratio of Fe XXI lines.

A summary of the most important orbiting high-resolution x-ray–UV spectrometers since and including the *Skylab* manned space station is given in table 2 with references to papers that describe the instruments in detail. These experiments represent a worldwide effort to explore the high-temperature atmosphere of the Sun.

In order to understand the spectroscopic importance of different wavelength regions of the upper solar atmosphere, it is necessary to understand the nature of the solar atmosphere as a function primarily of electron temperature. In the next section we describe and illustrate the complexity of the upper solar atmosphere. We define upper solar atmosphere to be plasma at temperatures between about 2×10^4 and 3×10^6 K. We will treat transient phenomena such as solar flares separately. The temperature range we have chosen extends from what is called the upper chromosphere to temperatures of hot plasma trapped in magnetic flux tubes in so-called coronal active regions.

2. The upper solar atmosphere—morphology

2.1. The photosphere

As noted, the temperature of the white light Sun is about 5500 K in a region called the photosphere. Through about the last third of the solar interior, energy is transported to the surface by both radiation and convection. The convection zone appears in the photosphere as small convective cells called granules (about 1000 km in diameter) that last about 8–20 min before dissipating. In addition, a magnetic dynamo is produced in the convection zone, and magnetic flux erupts through the photosphere in small bundles (about 100 km in diameter) with field strengths of about 1–3 kG. This flux is transported over the photosphere by random gas motions, differential rotation of the Sun (the rotation rate of the Sun

is a function of solar latitude) and a meridional flow, which is a general circulation pattern that transports field from the solar equatorial regions towards its poles. The overall result is that the Sun has a general dipole magnetic field with north/south poles, and a complex toroidal component due to the photospheric circulation patterns.

The magnetic field *B* of the Sun contains energy; the energy density *U* is $U = B^2/8\pi$. The photospheric flux bundles erupt from below the Sun's surface and become the footpoints of magnetic loops. The motions of these footpoints twist and stress the magnetic field above the photosphere. It is believed by most solar physicists that the twisting and stressing of the field results in a conversion of magnetic to thermal energy which ultimately produces the solar atmosphere (e.g. Parker 1988). The most popular current energy conversion process is believed to be magnetic reconnection. In this process the field lines reconnect to a lower magnetic energy state than the initial state, the difference in energy going into plasma heating, particle acceleration and bulk plasma motions. Wave propagation and dissipation is another popular atmospheric heating mechanism.

2.2. The chromosphere and transition region

Above the photosphere the density of the gas drops abruptly and the gas is heated to temperatures that reach on the order of $1-2 \times 10^4$ K. For this reveiew we define 2×10^4 K as the upper temperature bound of the chromosphere. This region of the Sun is called the chromosphere because the emission of the Balmer line of hydrogen at 6563 Å produces a red ring around the Sun during a total solar eclipse. The chromosphere is composed of small, filamentary and highly dynamic magnetic structures organized into many different appearing forms. The physics of the chromosphere is not well understood and NASA has just selected the Interface Region Imaging Spectrograph (IRIS) Small Explorer Mission to study the physics of the chromosphere in detail at high spatial and spectral resolution. The sizes of chromospheric structures are of the order of a few tenths of an arcsecond (1" at the solar distance from the

Figure 1. A schematic view of the transition region (from Peter H 2001a Astron. Astrophys. 374 1108 (2001), reproduced with permission © ESO).

Earth is about 725 km) and thus very high spatial resolution is needed.

In the chromosphere the photospheric magnetic field begins to expand (due to the decreasing ratio of gas to magnetic pressure, i.e. the plasma beta) and its direction is not only radial, but horizontal as well. Regions where the field is believed to be mostly horizontal are called magnetic canopies. In the simplest models for heating the atmosphere to temperatures above the upper temperature bound of the chromosphere (which we define as 2×10^4 K), the field is considered to function as a conduit for plasma flow between chromospheric and coronal temperatures. This is the classical model of the solar upper atmosphere (e.g. Gabriel 1976). In this model the near-constancy of the thermal conductive flux from coronal to chromospheric temperatures produces a very thin plasma region with a temperature between about $2 \times$ 10^4 K and 8×10^5 K. This region that separates the corona from the chromosphere in classical models is called the transition region.

Many observations appear to contradict the classical transition region model (e.g. Feldman 1983, Dowdy et al 1986), although with the inclusion of dynamics the model is quite viable (e.g. Judge 2008, Judge and Centeno 2008). A major problem is the lack of sufficient spatial resolution to really resolve the transition region into different temperature region structures (e.g. Vourlidas et al 2010). Feldman (1983) called the transition region temperature structures unresolved fine structures (UFSs) while Dowdy et al (1986) postulated that they are cool loops, hotter than the chromosphere but cooler than the corona. In these scenarios the transition region is magnetically isolated from the corona. Coronal loops that connect with the chromosphere and have thin transition regions still exist (coronal funnels), but the transition region emission from these thin zones is far weaker than from the observed transition region structures that are magnetically isolated from the corona. Numerical simulations including physics such as wave propagation and radiative transfer are now being developed to explain the many fine-scale features of

Figure 2. SUMER spectral images of the transition region in lines of H I and S VI.

the chromosphere and transition region, and how these regions of the atmosphere interface with the corona (e.g. Peter *et al* 2006, Hansteen *et al* 2006). These models have so far been successful at explaining many features of the transition region. Figure 1 (from Peter 2001a) shows a schematic summary of the transition region as it now appears from numerous studies, both observational and theoretical.

We do wish to stress that the transition region is currently unresolved spatially. To illustrate this point dramatically, in figure 2 we show a section of the quiet Sun in spectral lines of H I Lyman- ϵ and S VI obtained from SUMER. Note that the

Figure 3. An active region as seen in monochromatic images recorded in different spectral lines of the upper transition region and coronal ions. The images were generated in raster mode by *Hinode*/EIS. Note the many loop-like structures.

structures in both images look extremely similar, even though the two lines are formed at much different temperatures. Since plasma at two different temperatures cannot occupy the same volume, it is clear that the differences between the emission in the two spectral images are below the resolving power of SUMER, which is currently about 1400 km, or 2".

2.3. The corona

Above about 8×10^5 K the plasma is considered to be part of the solar corona, the pearly white halo that surrounds the Sun during a total solar eclipse. This halo emission is due to Thomson scattering of visible disc radiation from the Sun by free electrons in what is considered a fully ionized coronal plasma. The connection between the corona and the chromosphere/transition region is not understood at present, principally because (in the opinion of the authors) the spatial resolution in the corona and transition region is not sufficiently high to connect structures seen in the corona decisively to the lower temperature transition region and chromospheric structures. The highest spatial resolution yet achieved in the corona is 1'', but a few tenths of an arcsec is believed to be needed to interface properly dynamical coronal phenomena with lower temperature dynamical phenomena. Another problem is that no presently operating space imaging spectrometer or imager has complete temperature coverage from the chromosphere/transition region into the corona. Thus, phenomena can escape observation by heating or cooling into temperature regions for which the observing instrument is not sensitive.

The basic coronal structure appears as a loop (i.e. plasma confined to a magnetic flux tube), and as temperatures increase from about 1×10^6 K to about 3×10^6 K the appearance of loops becomes more amorphous. The corona is bright and produces a bewildering array of loop and loop-like structures in active regions. Active regions are upper atmosphere areas over regions of the photosphere with enhanced magnetic field strengths. In particular sunspots, cooler areas of the photosphere, have very strong magnetic fields and coronal emission in active regions with complex sunspot activity in the photosphere is very strong and this is also where dynamical events such as solar flares occur. Figure 3 shows an active region seen in an image recorded in radiation from lines of a different upper transition region and coronal ions obtained from the EIS spectrometer on *Hinode*.

The heating of plasma in coronal loops is currently a hot topic in solar physics. A popular model is the nanoflare model (Patsourakos and Klimchuk 2006, Dahlburg *et al* 2009), where small flare-like reconnection events occur in sub-resolution magnetic field strands in loops. Another current idea under investigation is that dynamical events in the chromosphere propagate into the corona and thereby supply the heating (De Pontieu *et al* 2009). The test of these models depends critically on spectroscopic observations. In the nanoflare model, small amounts of loop plasma are heated to temperatures of about 1×10^7 K and therefore weak emission should be seen in a spectral line formed near this temperature. This weak emission

Figure 4. Images of the Sun illustrating the principal regions of the upper solar atmosphere. The images were recorded on different days and at different times. The transition region image was recorded by SUMER in a spectral line of S VI (933, Å), and the coronal image was recorded by the soft x-ray telescope on the *Yohkoh* spacecraft.

has in fact been seen in some cases (Shestov *et al* 2010). In the chromospheric heating model, plasma flowing into loops from the chromosphere should produce a significant Doppler signature on spectral lines emitted from loop plasmas (e.g. Peter 2001b). Testing these models is currently underway.

Figure 4 summarizes the morphology of the upper solar atmosphere in photospheric, chromospheric, transition regions, and coronal radiation. The four images were recorded on different days. Note that the white light image appears featureless except for sunspots although a higher resolution/contrast image would show the granules. The chromosphere and transition region images show very small structures covering the entire disc. The coronal image shows larger-appearing structures, reflecting the expansion of the magnetic field as the plasma β decreases. (The plasma β is the ratio of thermal to magnetic pressure.) However, recent results indicate that the corona is also composed of structures not yet resolved by current instrumentation. These sub-resolution structures reside within the larger loop-like envelops.

2.4. Solar activity

Solar activity takes many forms, from prominences, cool material suspended by magnetic fields in the corona, to solar flares and CMEs. Solar flares are relatively small areas of the solar atmosphere (from a few square arcsec to a few square arcmin) where coronal plasma is produced that can reach temperatures on the order of $20-40 \times 10^6$ K and electron densities of about $10^{11}-10^{13}$ cm⁻³. There is concurrent emission in the UV, radio, soft x-rays, hard x-rays (≤ 1 Å), and sometimes even white light. Figure 5 shows a typical signature of a flare in various radiations. The figure also shows the model (the so-called standard model) where flares are believed to

occur as a result of magnetic reconnection in the corona. In this model, reconnection heats plasma and accelerates highenergy particles. In the model some of these particles as well as a thermal conduction front move down the flux lines into the chromosphere where they heat the gas that flows upwards (chromospheric evaporation) into reconnected closed flux tubes (loops) producing the high coronal densities and multimillion degree soft x-ray emitting plasma (e.g. Reeves et al 2007). Also shown in figure 5 is an image of a flare above the limb seen mostly in a spectral line of Ca XVII (about 5×10^6 K) recorded by *Hinode*/EIS. This feature is actually a blend of Ca XVII, Fe XI (about 1.4×10^6 K) and O V (about 2×10^5 K) (see Ko *et al* (2009)), but in the flare image it is mostly Ca XVII, especially at the top of the loop structures. One of the continuing research goals using EIS is to investigate the plasma conditions in the region above the bright diamond ring-like area in the image where reconnection is supposed to occur in the standard model.

CMEs are thought by some to occur as a result of the same reconnection that produces flares and in this scenario are the result of the reconnection process above the reconnection region, in contrast to the flare just described that occurs below the reconnection region. The CME is an outward propagating flux rope into the corona that becomes enormous in size (see figure 6). The CME shocks the corona above it and piles up plasma into an outward propagating front. A reasonably accurate layman description of a CME is that it is a billion tons of gas moving at a speed of about a million miles an hour. Behind this front there is often cool plasma at prominence temperatures. Some CMEs can be observed all the way to the Earth. CMEs can shock interplanetary gas and produce solar energetic particles (SEPs) that are the worst culprits of space weather effects at the Earth.

Figure 5. A typical solar flare light in radiation of different wavelengths, a schematic of the standard model of a solar flare and an image of a solar limb flare recorded by *Hinode*/EIS.

Figure 6. Left panel: schematic of CME formation. Right panel: three-dimensional representation of an expanding CME and associated plasma. Bottom left: a white light image from the LASCO coronagraph on *SOHO*. The CME actually was ejected in the east–west direction. It has been rotated for ease in comparing with the top left panel.

There are many observational difficulties with the standard model described above. As an example, there can be a CME without any detectable signature below the postulated reconnection region on the solar disc (Robbrecht *et al* 2009).

3. Spectroscopy: the transition region

We define the transition region to be that region of the atmosphere between $\sim 2 \times 10^4$ and 8×10^5 K. Useful spectral lines for this region occur throughout a spectral range that extends from roughly 550 Å (O IV) up to 2000 Å. Table 3 shows a list of many major solar spectral lines up to flare temperatures useful for various diagnostic purposes. The temperatures of maximum ionization equilibrium are also shown. (A list of forbidden lines in the 500–1500 Å wavelength range, many of which are useful above the solar limb, is published by Feldman and Doschek (2007).) There are several sets of spectral lines that have proven useful for diagnosing the lower transition region. Strong lines such as the 1550 Å C IV doublet have been used to diagnose transient transition region phenomena, such as explosive events (e.g. Brueckner and Bartoe 1983). Explosive events are transient phenomena that occur over small spatial areas (≤ 1000 km) and last for a few tens of minutes and can produce upflowing plasma up to 400 km s⁻¹.

The temperatures in table 3 should be regarded as only a guide to the temperature of emission. In reality, the maximum temperature of emission is the product of the excitation rate coefficient and the fractional ion number density called the contribution function. This temperature varies with wavelength but can also be misleading. Figure 7 shows contribution functions for lines of O IV and O VI. In the O IV case, the two curves have different maximum temperatures, but in the O VI case the two maximum temperatures are about the same. However, the ratio of the two O VI lines is clearly a function of temperature. Readers are cautioned to work with the full contribution functions for a detailed understanding of the temperature behaviour of the lines in table 3.

Figure 8 shows a single C IV SUMER spectrum oriented in the solar north-south direction. The spectrum is stigmatic along the slit with a pixel size of 1''. At the position of the arrow note the strongly blueshifted blob-like appearing structure. Phenomena such as this are possibly due to magnetic reconnection (e.g. Innes et al 1997). The SUMER spectrum is part of a raster, and the contour to the left of the spectrum in the figure shows the spatial extent of the upflow, obtained from the raster image, which has a maximum speed of about 30 km s⁻¹. The chromosphere and lower transition region are the sites of most of the dramatic transient phenomena that exhibit large upflows or downflows and/or large turbulence or non-thermal motions (measured from line profiles). For example, in addition to explosive events short-lived transient transition region phenomena known as blinkers have also been studied (e.g. Harrison 1997, Harrison et al 2003). These events were discovered using CDS spectra. The corona around 10⁶ K is in comparison quite quiet, generally showing no large turbulent motions or directed plasma flows, or extended emission wings on spectral lines that might indicate jets

Topical Review

Figure 7. Contribution functions (cm³ s⁻¹ sr⁻¹), i.e. line intensities per unit emission measure. A nominal electron density of 2×10^9 cm⁻³ was used in order to illustrate the line temperature dependences.

from reconnection that is postulated to occur in the corona (e.g. Parker 1988). Spectra such as shown in figure 8 give information on the energetics of transient events from which quantities such as mass and energy input into the corona can be calculated. Some other good spectral lines for this kind of work are C III 977 Å, N V 1238, 1242 Å, and Si IV 1393, 1402 Å.

The transition region lines have also been used to study plasma flows in loops. As mentioned, loop-like structures are the dominant structures in the solar atmosphere. Typically, the line profiles in a rastered region of the solar disc are fit with Gaussian line profiles and their intensities, widths and centroids are determined. No solar instruments to date have had absolute wavelength calibrating sources, and therefore a decision must be made as to what are the rest wavelengths of the spectral lines being used. This is often done by making an assumption, e.g., the chromosphere is stationary on average, or a quiet Sun coronal region exhibits no net flow on average. It is desirable that an absolute wavelength capability be part of a future spectroscopy experiment. For best results an on-board calibration lamp would be desirable, but this is presently very difficult to implement at EUV wavebands.

Table 3. Important solar UV-x-ray spectral lines	s .
--	------------

H11yar 1215.64 and H1Lyman series 0.01 He I 584.32 0.02 He I 584.32 0.02 C II 1036.34, 1037.02, 1334.55, 1335.76, 1335.71 0.022 C III 970.20, 1136 multiplet, 1247.38, 1906.68, 1908.73 0.071 C IV 1548.20, 1550.77 0.1 N W 1238.82, 1242.80 0.2 O I 1302.16, 1304.86, 1306.03 0.01 O II 7303 and 835 multiplets 0.045 O III 730 and 825 multiplet, 121.81, 1218.34, 1371.29 0.25 O VII 72.93, 750 multiplet, 121.81, 1218.34, 1371.29 0.25 O VII 72.93, 73.760 multiplet, 121.83, 1218.34, 127.29 0.25 O VII 71.60, 1623.63 1.0 O VIII 18.97 2.5 Ne VII 405.22, 895.18 0.40 Ne VIII 401.50 and 1000 multiplets 0.40 Ne VIII 401.52 0.63 Ne VIII 401.52 0.63 Ne VIII 401 multiplet, 190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 401 multiplet, 802.07 0.04 Ng	Ion	Wavelengths (Å)	$10^{-6} \times \text{Temperature (K)}$
He I 584.32 0.02 He II 553.2, 303.78 and 1640 multiplet 0.1 C II 1036.34, 1037.02, 1354.35, 1335.66, 1335.71 0.022 C III 977.02, 1175 multiplet, 247.38, 1906.68, 1908.73 0.071 N III 685, 990 and 1750 multiplets 0.079 N IV 765.15, 1483.32, 1486.50 0.14 N V 1238.82, 1242.80 0.2 O I 1302.16, 1304.86, 1306.03 0.01 O II 875 multiplets, 1660.81, 1666.15 0.089 O V 279.93, 554, 788 and 1401 multiplets 0.16 O V 729.3, 576 multiplet, 121.381, 1218.34, 1371.29 0.25 O VII 12.60, 1623.63 1.0 0.50 VIII 401, 560 and 1000 multiplets 0.40 0.40 Ne VIII 405, 122.895.18 0.50 0.45 Mg VII 401, multiplet, 40.47, 436.73, 772.28 0.63 0.45 Mg VIII 415 multiplet, 430.47, 436.73, 772.28 0.79 0.46 Mg IX 806.70, 75.7 1.0 0.45 Mg XI 0.45 Mg VIII 416 multiplet, 1892.03 0.016 0.51 <td>Η I Lyα</td> <td>1215.64 and H I Lyman series</td> <td>0.01</td>	Η I Lyα	1215.64 and H I Lyman series	0.01
He II 256.32, 303.78 and 1640 multiplet 0.1 C II 103.634, 1037.02, 1334.53, 1335.56, 1335.71 0.022 C III 977.02, 1176 multiplet, 1247.38, 1906.68, 1908.73 0.071 N III 685, 990 and 1750 multiplets 0.01 N IV 765.15, 1483.23, 1248.50 0.14 N V 1238.82, 1242.80 0.02 O I 1302.16, 1304.86, 1306.03 0.01 O III 735 multiplet 1666.15 0.089 O IV 279.35, 554, 788 and 1401 multiplets 0.16 0.16 O VI 729.34, 73.30, 818.39.4, 184.12, 1031.92, 1037.61 0.32 0.25 O VII 12.09, 1623.63 1.0 0.50 0.63 N W 1 455.22, 895.18 0.50 0.63 0.63 Ne X II 1345, 1248.08 2.0 0.63 0.63 Ne X I 1345, 1248.08 2.0 0.63 0.63 Ne X I 1345, 1248.08 2.0 0.63 0.63 Ne X II 1345, 1248.08 0.63 0.63 0.63 Mg XI 401 multiplet, 190.07, 1191.64, 1805.97, 1806.5 0.45 <td< td=""><td>He I</td><td>584.32</td><td>0.02</td></td<>	He I	584.32	0.02
C II 1036.34, 1037.02, 1354.33, 1335.06, 1335.71 0.0022 C III 9702, 1176 multiplet, 1247.38, 1906.68, 1908.73 0.071 C IV 1548.20, 1550.77 0.1 N IV 654.59, 990 and 1750 multiplets 0.079 N IV 751.5, 1483.32, 1486.50 0.14 V 1238.82, 1242.80 0.2 O I 1302.16, 1304.86, 1306.03 0.01 O II 835 multiplet, 1306.03 0.01 O II 835 multiplet, 1660.81, 1666.15 0.0485 O V 729.93, 554, 788 and 1401 multiplets 0.16 O V 729.93, 750 multiplet, 1213.81, 1218.34, 1371.29 0.25 O VI 172.93, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 O VII 18, 97 2.5 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 465.22, 895.18 0.50 Ne VIII 455.22, 895.18 0.50 Ne VIII 70.41, 780.32 0.63 Ne VII 445, 1248.08 2.0 Ne X 12.13 4.5 Mg VII 401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 401 multiplet, 190.07, 172.28 0.79 Mg IX 368.07, 705.72 1.0 Mg X 600.79, 624.97 1.1 Mg X 600.79, 624.97 1.1 Mg X 600.79, 624.97 1.1 Mg X 600.79, 624.97 1.1 Mg X 1917, 997.44 4.0 Mg XII 8.42 7.9 A11II 1844.72, 1862.79 0.044 S1 II 1304.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 S1 VII 240.00, 249.12 0.35 S1 VII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 S1 XII 303.318, 5808.5 1.6 S1 XII 305.51, 224.44, 125.44, 125 S1 XII 305.51, 224.44, 125 S1 XII 305.51, 224.44, 127 S1 S1	He II	256.32, 303.78 and 1640 multiplet	0.1
C III 977.02, 1176 multiplet, 1247.38, 1906.08, 1908.73 0.071 N III 658, 990 and 1750 multiplets 0.079 N V 765.15, 1483.32, 1436.50 0.14 N V 1238.82, 1242.80 0.22 OI 1302.16, 1304.86, 1306.03 0.01 OII 835 multiplet 0.045 OIII 703 and 835 multiplets, 1660.81, 1666.15 0.089 OIV 279.93, 554, 788 and 1401 multiplets 0.16 O V 629.73, 760 multiplet, 1213.81, 1218.34, 1371.29 0.25 O VII 122.93, 173.08, 183.94, 184.12, 103.192, 1037.61 0.32 O VII 21.60, 1623.63 1.00 O VII 12.00, 1623.63 0.00 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 401, 560 and 1000 multiplets 0.43 Ne VII 401, 560 and 1000 multiplets 0.45 Ne VII 401, 560 and 1000 multiplets 0.45 Mg VII 401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 401 multiplet, 868.11 0.63 Mg X 109.79, 624.97 1.11 Mg XI 9.17, 997.44 4.0 Mg X 109.79, 624.97 1.11 Mg XI 9.17, 997.44 4.0 Mg XI 9.17, 997.44 4.0 Mg XI 9.17, 997.44 4.0 Mg XII 9.17, 997.44 4.0 Mg XII 9.17, 997.44 4.0 Mg XII 9.17, 997.44 4.0 Si III 1364.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si III 1206.51, 1294 multiplet, 1892.03 0.032 Si IV 457.82, 458.16, 1122 multiplet, 1393.76, 1402.77 0.063 Si VII 275 multiplet, 1493.76, 1402.77 0.063 Si VII 275 multiplet, 1393.76, 1402.77 0.063 Si VII 275 multiplet, 1393.76, 1402.77 0.063 Si VII 275 multiplet, 304.38, 949.22, 1440.49, 1445.76 0.79 Si XI 233.290 and 345 multiplet, 593.76, 1402.77 0.063 Si VII 275 multiplet, 307.75, 20.0 Si XII 257.76, 259.53, 20.42, 4196.26, 1213.00 1.3 Si XII 303.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XII 256.66, 491.44 2.5 Si XII 366, 291 and 242 multiplets 1.0 Si XII 256.66, 491.44 2.5 Si XII 105 and 1492 multiplets 2.5	CII	1036.34, 1037.02, 1334.53, 1335.66, 1335.71	0.022
C IV 1442.01, 1330.7 NIII 635, 990 and 1750 multiplets 0.079 NIV 765.15, 1483.32, 1486.50 0.14 NV 765.15, 1483.32, 1486.50 0.2 OI 1302.16, 1304.86, 1306.03 0.01 OII 835 multiplet 0.045 OII 703 and 835 multiplets, 1660.81, 1666.15 0.089 OIV 279.93, 554, 788 and 1401 multiplets 0.16 OV 629.73, 760 multiplet, 1213.11, 1218.34, 1371.29 0.25 OVI 127.93, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 OVII 21.60, 1623.63 1.0 OVIII 18.97 2.5 Ne VI 401, 560 and 1000 multiplets 0.40 Ne VII 465.22, 895.18 0.50 Ne VIII 770.41, 780.32 0.63 Ne VIII 455.22, 895.18 0.50 Ne VIII 770.41, 780.32 0.63 Ne IX 13.45, 1248.08 2.0 Ne X 12.13 8.45, 1248.08 2.0 Ne X 12.13 8.45, 1248.08 4.5 Mg VII 401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 315 multiplet, 430.47, 436.73, 772.28 0.79 Mg IX 368.07, 705.72 1.0 Mg X 609.79, 624.97 1.1 Mg XX 609.79, 624.97 1.1 Mg XX 609.79, 624.97 1.1 Mg XX 609.79, 624.97 1.1 Mg XXI 8.42 7.9 AIIII 1854.72, 1862.79 0.044 Si III 1206.51, 1294 multiplet, 1892.03 0.032 Si VII 246.00, 249.12 0.35 Si VIII 315.75, 1262.71, 1533.43, 1808.01, 1816.93 0.016 Si III 1206.51, 1294 multiplet, 1892.03 0.032 Si VII 246.00, 249.12 0.35 Si VIII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si IX 223, 290 and 345 multiplet, 1393.76, 1402.77 0.063 Si VIII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si IX 223, 290 and 345 multiplet, 392.05 1.6 Si VIII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si IX 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si XII 303.318, 580.85 1.6 Si XIII 303.318, 580.85 1.6 Si XIII 303.318, 580.85 1.6 Si XIII 304.81, 72 5.5 Si XIII 303.318, 580.85 1.6 Si XIII 304.81, 72 5.5 Si XIII 303.318, 580.85 1.6 Si XIII 304.81, 72 5.5 Si XIII 304.81, 72 5.5 Si XIII 304.81, 72 5.5 Si XIII 305.75, 162.56, 1072.99 0.11 SV 786.48, 1204.30 0.16 SV V 786.48, 1204.30 0.16 SV VIII 188.472, 145.77 3.2 SV 756.49, 144.577 3.2 SV 756.49, 144.577 3.2 SV 756.49, 144.577 3.2 SV 756.41, 104.445.77 3.2 SVV		9//.02, 11/6 multiplet, 124/.38, 1906.68, 1908.73	0.071
N II 063, 990 and 1/30 multiplets 0.019 N V 1238.82, 1242.80 0.2 O I 1332, 16, 1304.86, 1306.03 0.01 O I 335 multiplets, 1600.81, 1666.15 0.045 O III 703 and 835 multiplets, 1600.81, 1666.15 0.089 O V 279.93, 554, 788 and 1401 multiplets 0.16 O V 629.73, 760 multiplet, 1213.81, 1218.34, 1371.29 0.25 O VII 12.08, 1623.63 1.0 O VIII 21.65 and 1000 multiplets 0.40 Ne VII 465.22, 895.18 0.50 Ne VII 455.22, 895.18 0.63 Ne X 12.13 4.5 Mg VII 434 multiplet, 868.11 0.63 Mg VII 434 multiplet, 430.47, 436.73, 772.28 0.79 Mg XI 9.17, 97.44 4.0 Mg XII 135.81, 163.23 0.032 Si II 130.43, 1808.01, 1816.93 0.016 Si II 130.43, 1808.01, 1816.93 0.016 Si III 130.43, 1808.01, 1816.93 0.016 Si II		1548.20, 1550.77 685, 000 and 1750 multiplate	0.1
NV 123.8, 21, 242, 80 0.2 01 1302.16, 1304.86, 1306.03 0.01 01 835 multiplets, 1660.81, 1666.15 0.089 01W 279.93, 554, 788 and 1401 multiplets 0.16 0V 279.93, 554, 788 and 1401 multiplets 0.16 0V 279.93, 554, 788 and 1401 multiplets 0.16 0V 172.93, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 0VII 11.60, 1623.63 1.0 0VIII 18.97 2.5 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 475.22, 895.18 0.50 Ne X 12.13 4.5 Mg VII 13.45, 1248.08 2.0 Ne X 12.13 4.5 Mg VII 315 multiplet, 868.11 0.63 Mg VII 315 multiplet, 840.47, 346.73, 772.28 0.79 Mg XI 809.79, 624.97 1.1 Mg XI 84.07, 705.72 1.0 Mg XI 84.71, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si III 1304.37, 1526.71, 1533.43	N III N IV	765 15 1483 32 1486 50	0.079
1 1302.16, 1304.86, 1306.03 0.01 01 1302.16, 1304.86, 1306.03 0.01 01 835 multiplets, 166.031, 1666.15 0.089 01 703 and 835 multiplets, 1131.81, 1218.34, 1371.29 0.25 01 713 and 835 multiplet, 1218.31, 1218.34, 1371.29 0.25 01 12.09, 1623.63 1.0 01 8.97 2.5 Ne VI 40.50 and 1000 multiplets 0.40 Ne VI 40.522, 895.18 0.50 Ne VII 470.4780.32 0.63 Ne X 1.34.4 multiplet, 868.11 0.63 Ne X 1.34.4 multiplet, 868.11 0.63 Mg VII 431 multiplet, 430.47, 436.73, 772.28 0.79 Mg X 90.79, 624.97 1.1 Mg XII 91.79.744 4.0 Mg XII 1304.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si III 100.65, 1.1294 multiplet, 1892.03 0.032 Si VII 275 multiplet, 1049.22 0.63 Si VIII 275 multiplet, 1049.22 0.63 Si VIII 275 multiplet, 347.42, 356.05, 638.94 1.3	NV	1238 82 1242 80	0.14
61 835 multiplets, 1660.81, 1666.15 0.045 0 III 703 and 835 multiplets, 1660.81, 1666.15 0.089 0 IV 279.35, 554, 788 and 1401 multiplets 0.16 0 V 629.73, 760 multiplet, 1213.81, 1218.34, 1371.29 0.25 0 VII 121.293, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 0 VII 21.293, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 0 VIII 18.97 2.5 Ne VI 401.560 and 1000 multiplets 0.40 Ne VII 405.22, 895.18 0.50 Ne VII 13.45, 1248.08 2.0 Ne X 13.45, 1248.08 2.0 Ne X 13.45, 1248.08 2.0 Mg VII 434 multiplet, 868.11 0.63 Mg VIII 315 multiplet, 80.47, 36.73, 772.28 0.79 Mg XI 368.07, 705.72 1.0 Mg X 609.79, 624.97 1.1 Mg XII 81.42 7.9 A1III 185.472, 1862.79 0.042 Si III 100.65, 1.124 multiplet, 1892.03 0.0162 Si VII 246.00, 249.12 0.35 Si V		1302 16 1304 86 1306 03	0.2
Sim 0.009 OII 703 and 835 multiplets, 1660.81, 1666.15 0.009 OIV 279.93, 554, 788 and 1401 multiplets 0.16 OV 629.73, 760 multiplet, 121.38, 121.83, 41.371.29 0.25 OVII 172.93, 173.08, 183.94, 184.12, 1031.92, 1037.61 0.32 OVIII 21.60, 1623.63 0.40 Ne VII 405.22, 895.18 0.50 Ne VII 405.22, 895.18 0.50 Ne XI 13.45, 1248.08 2.0 Ne XI 13.45, 1248.08 2.0 Ne XI 13.43 multiplet, 868.11 0.63 Mg VI 413 multiplet, 868.11 0.63 Mg XI 368.07, 705.71, 1533.43, 1808.01, 1816.93 0.016 Si III 136.07, 79 1.1 Mg XI 9.17, 997.44 4.0 Mg XII 8.42 7.9 Al III 1854.72, 1862.79 0.04 Si III 1206.51, 1294 multiplet, 1393.76, 1402.77 0.063 Si VIII 275 multiplets, 047.0, 950.14 1.0 Si X 253 and 272 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multipl	01	835 multiplet	0.045
O IV 279.93, 554, 788 and 1401 multiplets 0.16 O V 629.73, 760 multiplet, 1213.81, 1218.34, 1371.29 0.25 O VI 12.60, 1623.63 1.0 O VIII 21.60, 1623.63 1.0 O VII 12.60, 1623.63 0.63 Ne VII 401, 560 and 1000 multiplets 0.40 Ne VII 465.22, 895.18 0.50 Ne VII 13.45, 1248.08 2.0 Ne X 12.13 4.5 Mg VI 401 multiplet, 190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 341 multiplet, 868.11 0.63 Mg VII 3460.7, 705.72 1.0 Mg XI 860.7, 705.72 1.0 Mg XII 842 7.9 Mg XII 842 7.9 SI II 1206.51, 1294 multiplet, 1892.03 0.016 Si III 1304.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si VII 246.00, 249.12 0.35 0.53 Si VII 225.30 ad 272 multiplets, 694.70, 950.14 1.0 0.63 Si XII 303.318, 580.85 1.6 0.53 0.11	0 III	703 and 835 multiplets, 1660.81, 1666.15	0.089
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0 IV	279.93, 554, 788 and 1401 multiplets	0.16
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O V	629.73, 760 multiplet, 1213.81, 1218.34, 1371.29	0.25
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O VI	172.93, 173.08, 183.94, 184.12, 1031.92, 1037.61	0.32
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	O VII	21.60, 1623.63	1.0
Ne VII401, 560 and 1000 multiplets0.40Ne VIII465.22, 895.180.50Ne VIII77.041, 780.320.63Ne XI13.45, 1248.082.0Ne X12.134.5Mg VII401 multiplet, 1190.07, 1191.64, 1805.97, 1806.50.45Mg VII434 multiplet, 868.110.63Mg VIII315 multiplet, 430.47, 436.73, 772.280.79Mg IX669.79, 624.971.1Mg XII8.427.9Al III1854.72, 1862.790.04Si III1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1892.030.032Si VII275 multiplet, 1049.220.63Si VII275 multiplet, 1049.220.63Si VII275 multiplet, 1049.220.63Si XII30.318, 580.851.6Si XII30.318, 580.851.6Si XIII63.814.726.3Si XIII61813.0SI II105.814.726.3Si XIII619.814.720.02Si XIII619.814.720.02Si XIII615.814.726.3Si XIII615.814.720.30Si XIII615.814.720.30Si XIII615.814.720.20Si XIII615.814.720.20Si XIII615.814.720.20Si XIII615.814.720.20Si XIII615.814.720.20Si X	O VIII	18.97	2.5
Ne VII $465.22, 895.18$ 0.50Ne VIII $770.41, 780.32$ 0.63Ne X $13.45, 1248.08$ 2.0Ne X 12.13 4.5Mg VI401 multiplet, $1190.07, 1191.64, 1805.97, 1806.5$ 0.45Mg VII 314 multiplet, $480.47, 436.73, 772.28$ 0.79Mg IX $368.07, 705.72$ 1.0Mg XI $90.79, 624.97$ 1.1Mg XI $9.17, 997.44$ 4.0Mg XII 842 7.9Al III $1854.72, 1862.79$ 0.04Si III $1206.51, 1294$ multiplet, 1892.030.032Si IV $246.00, 249.12$ 0.63Si VII $2160.51, 1294$ multiplet, 1892.030.032Si VII 2275 multiplet, 1049.220.63Si VII 275 multiplet, 1049.220.63Si VII $314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.760.79Si X223 and 272 multiplets, 694.70, 950.141.0Si X223 and 272 multiplets, 347.42, 356.05, 638.941.3Si XII605, 814.726.3Si XII605, 814.726.3Si XII605, 814.726.3Si XII605, 814.720.20Si X253.04, 272 multiplets0.02Si XII655, 814.720.20Si XII655, 814.720.20Si XII655, 814.720.20Si XII655, 814.720.20Si XII655, 814.720.20Si XII257.16, 259.52, 264.24, 1196.26, 1213.001.3$	Ne VI	401, 560 and 1000 multiplets	0.40
Ne VIII770.41, 780.320.63Ne IX13.45, 1248.082.0Ne X12.134.5Mg VI401 multiplet, 1190.07, 1191.64, 1805.97, 1806.50.45Mg VII434 multiplet, 868.110.63Mg VII315 multiplet, 430.47, 436.73, 772.280.79Mg X609.79, 624.971.1Mg XI90.79, 624.970.04Si II1364.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si II1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si II1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1393.76, 1402.770.063Si VII246.00, 249.120.35Si VII246.00, 249.120.35Si VII223, 290 and 345 multiplet, 393.76, 1402.770.063Si XI233, 290 and 345 multiplet, 64.70, 950.141.0Si X253 and 272 multiplets, 347.42, 356.05, 638.941.3Si XII303.318, 580.851.6Si XIII663, 814.726.3Si XII49.41, 520.672.0Si XII658, 814.726.3Si XII633.344.520.20Si XI333.8, 944.520.20Si XI259.52, 264.24, 1196.26, 1213.001.3Si XI259.52, 264.24, 1196.26, 1213.001.3Si XI255.44, 204.300.16Si XII255.52, 255.50.32Si XII255.64, 41.442.5Si XII256.66, 491.442.5Si XII256.66, 491.44 <td>Ne VII</td> <td>465.22, 895.18</td> <td>0.50</td>	Ne VII	465.22, 895.18	0.50
Ne IX13.45, 1248.082.0Ne X12.134.5Mg VI401 multiplet, 1190.07, 1191.64, 1805.97, 1806.50.45Mg VIII315 multiplet, 868.110.63Mg VIII315 multiplet, 430.47, 436.73, 772.280.79Mg IX368.07, 705.721.0Mg XI9.17, 997.444.0Mg XII8.427.9Al III1854.72, 1862.790.04Si III1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1892.030.032Si VI245.00, 249.120.35Si VI246.00, 249.120.35Si VII214.00, 249.120.63Si XII203 and 345 multiplets, 694.70, 950.141.0Si X223, 290 and 345 multiplets, 694.70, 950.141.0Si XII303.318, 580.851.6Si XIII499.41, 520.672.0Si XIII499.41, 520.672.0Si XIII65, 814.726.3Si XIII605, 814.726.3Si XIII404.300.16S VI93.38, 944.520.20S VI750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII186, 291 and 242 multiplets1.8S XII125 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.040.00S XVI4.732.0<	Ne VIII	770.41, 780.32	0.63
Ne X 12.13 4.5 Mg VI 401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5 0.45 Mg VII 315 multiplet, 868.11 0.63 Mg VIII 315 multiplet, 430.47, 436.73, 772.28 0.79 Mg X 660.79, 624.97 1.1 Mg XI 9.17, 997.44 4.0 Mg XII 8.42 7.9 Al III 1854.72, 1862.79 0.04 Si II 1304.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si IV 457.82, 458.16, 1122 multiplet, 1393.76, 1402.77 0.063 Si VII 246.00, 249.12 0.35 Si VII 275 multiplet, 1049.22 0.63 Si VII 275 multiplet, 303.76, 4402.77 0.063 Si XII 203.318, 580.85 1.6 Si XI 233.a02.72 multiplet, 694.70, 950.14 1.0 Si X 253 and 272 multiplet, 694.70, 950.14 1.0 Si XI 203.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XII 6.16 500.25 0.02 SI II 1	Ne IX	13.45, 1248.08	2.0
Mg VI401 multiplet, 1190.07, 1191.64, 1805.97, 1806.50.45Mg VII434 multiplet, 868.110.63Mg VII315 multiplet, 430.47, 436.73, 772.280.79Mg X609.79, 624.971.1Mg X90.79, 624.971.1Mg XI8.427.9Al III1854.72, 1862.790.04Si II1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si II1206.51, 1294 multiplet, 1892.030.032Si VI426.00, 249.120.35Si VII275 multiplet, 1049.220.63Si VII275 multiplet, 1049.220.63Si XII233.318, 580.851.6Si XI233.318, 580.851.6Si XII203.318, 580.851.6Si XII303.318, 580.851.6Si XII303.318, 580.851.6Si XII499.41, 520.672.0Si XII6.1813.0SI II1253.79, 1259.530.02SI VI933.38, 944.520.20Si VII94.53, 20.600.79Si XII96.291 and 242 multiplets1.8SX257.16, 259.52, 264.24, 1196.26, 1213.001.3SX II186, 291 and 242 multiplets1.8SXIII256.66, 491.442.5SXV5.040.0SXIII256.66, 491.442.5SXV5.040.00XVII188 multiplet, 324.48, 288.45, 299.502.0XIII256.66, 491.442.5SXIV417.61, 445.773.2 <td>Ne X</td> <td>12.13</td> <td>4.5</td>	Ne X	12.13	4.5
Mg VIII434 multiplet, 868.110.63Mg VIII315 multiplet, 430.47, 436.73, 772.280.79Mg IX368.07, 705.721.0Mg XI9.17, 997.444.0Mg XII8.17, 997.444.0Mg XII1854.72, 1862.790.04Si III1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1892.030.032Si IV457.82, 458.16, 1122 multiplet, 1393.76, 1402.770.063Si VII246.00, 249.120.35Si VII275 multiplet, 1049.220.63Si VIII314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.760.79Si X223, 290 and 345 multiplets, 694.70, 950.141.0Si X253 and 272 multiplet, 347.42, 356.05, 638.941.3Si XII303.318, 580.851.6Si XIII6.65, 814.726.3Si XIII6.65, 814.726.3Si XIII6.65, 814.726.3Si XIII1015 and 1193 multiplets0.002SI II1015 and 1193 multiplets0.050SI V750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79S IX225 multiplet1.0S XI255.95, 20.64.24, 1196.26, 1213.001.3S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIV417.61,	Mg VI	401 multiplet, 1190.07, 1191.64, 1805.97, 1806.5	0.45
Mg IXI315 multiplet, 430,47, 436,73, 772.280.79Mg IX368,07, 705.721.0Mg X609.79, 624.971.1Mg XII9.17, 997.444.0Mg XIII1854,72, 1862.790.04Si II1304.37, 1526,71, 1533,43, 1808.01, 1816.930.016Si III1206,51, 1294 multiplet, 1892.030.032Si VI245,00, 249.120.35Si VII246,00, 249.120.35Si VII246,00, 249.120.63Si VIII214,00, 249.120.63Si VIII212,320 and 345 multiplets, 694.70, 950.141.0Si X223, 290 and 345 multiplets, 694.70, 950.141.0Si X253 and 272 multiplets, 347.42, 356.05, 638.941.3Si XII303.318, 580.851.6Si XIII6.65, 814.726.3Si XIII648, 1204.300.02SI II1253.79, 1259.530.02SI II1253.79, 1259.52, 266, 1072.990.11S V786.48, 1204.300.16S VI93.38, 944.520.20S VIII198.55, 202.600.79S XI225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII215 multiplet, 227.48, 234.48, 288.45, 2	Mg VII	434 multiplet, 868.11	0.63
Mg IX368.07, 705.721.0Mg X609.79, 624.971.1Mg XI9.17, 997.444.0Mg XII8.427.9Al III1854.72, 1862.790.04Si II1206.51, 1294 multiplet, 1892.030.032Si IV126.02, 249.120.35Si VII246.00, 249.120.35Si IVI275 multiplet, 1049.220.63Si VII223, 290 and 345 multiplets, 694.70, 950.141.0Si X223, 290 and 345 multiplets, 694.70, 950.141.0Si XII303.318, 580.851.6Si XII499.41, 520.672.0Si XIII499.41, 520.672.0Si XIII6.5, 814.726.3Si XIII6.5, 814.726.3Si XIII6.5, 814.726.3Si XIII6.5, 814.720.050SI V750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VIII93.38, 944.520.20S VIII93.38, 944.520.20S VIII93.38, 944.520.20S XIII215 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XIII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XVII47.320.0S XVII47.3 <td>Mg VIII</td> <td>315 multiplet, 430.47, 436.73, 772.28</td> <td>0.79</td>	Mg VIII	315 multiplet, 430.47, 436.73, 772.28	0.79
Mg X609.79, 624.971.1Mg XI9.17, 997.444.0Mg XII8.427.9Al III1854.72, 1862.790.04Si III1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1892.030.032Si IV457.82, 458.16, 1122 multiplet, 1393.76, 1402.770.063Si VII246.00, 249.120.35Si VII275 multiplet, 1049.220.63Si VII275 multiplet, 1049.220.63Si XI203 and 272 multiplets, 694.70, 950.141.0Si X253 and 272 multiplets, 47.42, 356.05, 638.941.3Si XI303.318, 580.851.6Si XII409.41, 520.672.0Si XIII6.65, 814.726.3Si XIII6.65, 814.726.3Si XIII6.1813.0SI II1253.79, 1259.530.02SI II1015 and 1193 multiplets0.050SI V750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79SIX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII256.66, 491.442.5S XIII256.66, 491.442.5S XIII256.66, 491.442.5S XIII256.66, 491.442.5S XIII256.66, 491.442.5S XIII256.66, 491.442.5S X	Mg IX	368.07, 705.72	1.0
Mg XI9.17, 997.444.0Mg XII8.427.9Al III1854.72, 1862.790.04Si II1304.37, 1526.71, 1533.43, 1808.01, 1816.930.016Si III1206.51, 1294 multiplet, 1892.030.032Si IV457.82, 458.16, 1122 multiplet, 1393.76, 1402.770.063Si VI275 multiplet, 1049.220.63Si VII215 multiplet, 1049.220.63Si VII223, 290 and 345 multiplets, 694.70, 950.141.0Si X223, 290 and 345 multiplets, 694.70, 950.141.0Si X253 and 272 multiplets, 347.42, 356.05, 638.941.3Si XII303.318, 580.851.6Si XII6.58814.72Si XIII6.58814.72Si XIII6.581.30Si XII6.57814.72Si XIII1015 and 1193 multiplets0.050SI V750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VII933.38, 944.520.20S VIII198.55, 202.600.79S XII225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII215.666, 491.442.5S XIV4.7320.0Ar VIII585.75, 885.550.32Ar VIII70.24, 713.810.40Ar XII188 multiplet, 1392.12	Mg X	609.79, 624.97	1.1
Mg XII 8.42 7.9Al III $1854.72, 1862.79$ 0.04 Si II $1304.37, 1526.71, 1533.43, 1808.01, 1816.93$ 0.016 Si III $1206.51, 1294$ multiplet, 1892.03 0.032 Si VI $457.82, 458.16, 1122$ multiplet, $1393.76, 1402.77$ 0.063 Si VI $246.00, 249.12$ 0.35 Si VII 275 multiplet, 1049.22 0.63 Si VII $223, 290$ and 345 multiplets, $694.70, 950.14$ 1.0 Si X $223, 290$ and 345 multiplets, $694.70, 950.14$ 1.0 Si X $223, 290$ and 345 multiplets, $694.70, 950.14$ 1.0 Si X $223, 290$ and 345 multiplets, $694.70, 950.14$ 1.0 Si X 253 and 272 multiplets, $347.42, 356.05, 638.94$ 1.3 Si XI $303.318, 580.85$ 1.6 Si XII $499.41, 520.67$ 2.0 Si XIII $6.65, 814.72$ 6.3 Si XIII $6.5, 814.72$ 6.3 Si XIII $6.5, 814.72$ 0.02 Si NI 105 and 1193 multiplets 0.02 Si V 750 multiplet, $89.67, 815.95, 1062.66, 1072.99$ 0.11 S V $786.48, 1204.30$ 0.16 S VII $933.38, 944.52$ 0.20 S VIII $198.55, 202.60$ 0.79 S IX 225 multiplet 1.0 S X $257.16, 259.52, 264.24, 1196.26, 1213.00$ 1.3 S XII $286.66, 491.44$ 2.5 S XIII $256.66, 491.44$ 2.5 S XIV 4.74 4.73 Ar VIII $700.24, 713$	Mg XI	9.17, 997.44	4.0
AI III 1854.72, 1862.79 0.04 Si III 1304.37, 1526.71, 1533.43, 1808.01, 1816.93 0.016 Si III 1206.51, 1294 multiplet, 1892.03 0.032 Si VI 246.00, 249.12 0.35 Si VII 215 multiplet, 1049.22 0.63 Si VII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si X 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XII 403.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XII 6.18 13.0 S III 1253.79, 1259.53 0.02 SI III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VII 93.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3	Mg XII	8.42	7.9
Si II 1304.37, 1526.71, 1535.45, 1808.01, 1816.93 0.016 Si III 1206.51, 1294 multiplet, 1892.03 0.032 Si IV 457.82, 458.16, 1122 multiplet, 1393.76, 1402.77 0.063 Si VI 246.00, 249.12 0.35 Si VII 275 multiplet, 1049.22 0.63 Si VIII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si IX 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XII 303.318, 580.85 1.6 Si XIII 6.65, 814.72 6.3 Si XIII 6.65, 814.72 6.3 Si XII 6.18 13.0 S II 1253.79, 1259.53 0.02 S III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S X 255 multiplet 1.8 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 <t< td=""><td>ALIII</td><td>1854.72, 1862.79</td><td>0.04</td></t<>	ALIII	1854.72, 1862.79	0.04
S1 III 1206.51, 1294 multiplet, 1892.05 0.032 Si IV 457.82, 458.16, 1122 multiplet, 1393.76, 1402.77 0.063 Si VI 246.00, 249.12 0.35 Si VII 275 multiplet, 1049.22 0.63 Si IX 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XI 303.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XIV 6.18 13.0 SI II 1253.79, 1259.53 0.02 SI III 1015 and 1193 multiplets 0.050 S V 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 215 multiplet, 1392.12 1.6 </td <td>Si II</td> <td>1304.37, 1526.71, 1533.43, 1808.01, 1816.93</td> <td>0.016</td>	Si II	1304.37, 1526.71, 1533.43, 1808.01, 1816.93	0.016
Si IV 457.82, 438.16, 1122 multiplet, 1395.76, 1402.77 0.005 Si VI 246.00, 249.12 0.63 Si VII 275 multiplet, 1049.22 0.63 Si VII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si X 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 233 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XI 303.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XII 499.41, 520.67 2.0 Si XII 6.65, 814.72 6.3 Si XII 6.18 13.0 S III 1015 and 1193 multiplets 0.0050 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 186, 291 and 242 multiplets 1.8 S XII 126.66, 491.44 2.5 S XII <td>S1 III S: IV</td> <td>1206.51, 1294 multiplet, 1892.03</td> <td>0.032</td>	S1 III S: IV	1206.51, 1294 multiplet, 1892.03	0.032
Si VII 240,00, 249,12 0.63 Si VII 275 multiplet, 1049,22 0.63 Si VII 314,31, 316,20, 319,83, 944,38, 949,22, 1440,49, 1445,76 0.79 Si XI 223, 290 and 345 multiplets, 694,70, 950.14 1.0 Si X 253 and 272 multiplets, 347,42, 356,05, 638,94 1.3 Si XI 303,318, 580,85 1.6 Si XII 499,41, 520,67 2.0 Si XII 6.65, 814,72 6.3 Si XII 6.65, 814,72 6.3 Si XII 6.18 13,0 S III 1015 and 1193 multiplets 0.0050 S IV 750 multiplet, 809,67, 815,95, 1062,66, 1072,99 0.11 S V 786,48, 1204,30 0.16 S VI 933,38, 944,52 0.20 S VII 933,38, 944,52 0.20 S VII 938,55, 202,60 0.79 S IX 225 multiplet 1.0 S X 257,16, 259,52, 264,24, 1196,26, 1213,00 1.3 S XII 186, 291 and 242 multiplets 1.8 S XIII 256,66, 491,44 2.5 S XII 126,66, 491,44	SI IV	457.82, 458.16, 1122 multiplet, 1595.76, 1402.77	0.063
51 VII 215 Intriplet, 1049.22 0.03 Si VIII 314.31, 316.20, 319.83, 944.38, 949.22, 1440.49, 1445.76 0.79 Si IX 223, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XI 303.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XIV 6.18 13.0 S II 1253.79, 1259.53 0.02 S III 1015 and 1193 multiplets 0.050 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XV 5.04 10.0 S XVI 47.73	SI VII	240.00, 249.12 275 multiplet 1040.22	0.55
Si Viii 213, 290 and 345 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 694.70, 950.14 1.0 Si X 253 and 272 multiplets, 694.70, 950.14 1.6 Si XI 303.318, 580.85 1.6 Si XI 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XIV 6.18 13.0 SI II 1253.79, 1259.53 0.02 S III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VII 188 multiplet, 1392.12 1.6	SI VIII	215 multiplet, 1049.22 314 31 316 20 310 83 944 38 949 22 1440 49 1445 76	0.03
Si X 253 and 272 multiplets, 347.42, 356.05, 638.94 1.3 Si XI 303.318, 580.85 1.6 Si XII 499.41, 520.67 2.0 Si XIII 6.65, 814.72 6.3 Si XII 6.65, 814.72 6.3 Si XII 6.65, 814.72 6.3 Si XIV 6.18 13.0 S II 1253.79, 1259.53 0.02 S III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 186, 291 and 242 multiplets 1.8 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 256.66, 491.44 2.5 S XV 5.04 10.0 S XVI 417.61, 445.77 3.2 S XVI 40.73 20.0 Ar VII 585	SiIX	223 290 and 345 multiplets 694 70 950 14	1.0
Si Xi 303.318, 580.85 1.6 Si Xi 499.41, 520.67 2.0 Si XII 6.65, 814.72 6.3 Si XIV 6.18 13.0 S II 1253.79, 1259.53 0.02 S IV 750 multiplet, 809.67, 815.95, 1062.66, 1072.99 0.11 S V 786.48, 1204.30 0.16 S VI 933.38, 944.52 0.20 S VIII 198.55, 202.60 0.79 S IX 225 multiplet 1.0 S X 257.16, 259.52, 264.24, 1196.26, 1213.00 1.3 S XII 186, 291 and 242 multiplets 1.8 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VIII 700.24, 713.81 0.40 Ar XII 188 multiplet, 1392.12 1.6 Ar XIII 205 and 242 multiplets 2.5 Ar XIII 205 and 242 multiplets 3.2 Ar XIII 20	Si X	253 and 272 multiplets 347 42 356 05 638 94	13
Si XII499.41, 520.672.0Si XIII $6.65, 814.72$ 6.3 Si XIV 6.18 13.0 S II $1253.79, 1259.53$ 0.02 S III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, $809.67, 815.95, 1062.66, 1072.99$ 0.11 S V $786.48, 1204.30$ 0.16 S VI $933.38, 944.52$ 0.20 S VIII $198.55, 202.60$ 0.79 S IX 225 multiplet 1.0 S X $257.16, 259.52, 264.24, 1196.26, 1213.00$ 1.3 S XI $186, 291$ and 242 multiplets 1.8 S XII 215 multiplet, $227.48, 234.48, 288.45, 299.50$ 2.0 S XIII $256.66, 491.44$ 2.5 S XIV 5.04 10.0 S XVI 4.73 20.0 Ar VII $585.75, 885.55$ 0.32 Ar VII $585.75, 885.55$ 0.32 Ar XII $126.49, 218.29, 224.25, 1018.79, 1054.59$ 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XVI $215.49, 218.29, 224.25, 1018.79, 1054.59$ 2.0 Ar XIV 188 and 257 multiplets 3.2 Ar XVI $215.49, 218.29, 224.25, 1018.79, 1054.59$ 2.6 Ar XIV 188 and 257 multiplets 3.2 Ar XIV $215.49, 218.29, 224.25, 1018.79, 1054.59$ 2.6 Ar XIV $215.49, 218.29, 224.25, 1018.79, 1054.59$ 3.2 Ar	Si XI	303.318, 580.85	1.6
Si XIII6.65, 814.726.3Si XIV6.1813.0S II1253.79, 1259.530.02S III1015 and 1193 multiplets0.050S IV750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VIII700.24, 713.810.40Ar XII125.49, 218.29, 224.25, 1018.79, 1054.592.0Ar XIII205 and 242 multiplets3.2Ar XVI188 and 257 multiplet3.2Ar XVI125.49, 218.29, 389.144.0	Si XII	499.41, 520.67	2.0
Si XIV 6.18 13.0 S II $1253.79, 1259.53$ 0.02 S III 1015 and 1193 multiplets 0.050 S IV 750 multiplet, $809.67, 815.95, 1062.66, 1072.99$ 0.11 S V $786.48, 1204.30$ 0.16 S VI $933.38, 944.52$ 0.20 S VII $198.55, 202.60$ 0.79 S IX 225 multiplet 1.0 S X 225 multiplet 1.0 S X $257.16, 259.52, 264.24, 1196.26, 1213.00$ 1.3 S XI $186, 291$ and 242 multiplets 1.8 S XII 215 multiplet, $227.48, 234.48, 288.45, 299.50$ 2.0 S XIII $256.66, 491.44$ 2.5 S XIV $417.61, 445.77$ 3.2 S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII $585.75, 885.55$ 0.32 Ar VII $700.24, 713.81$ 0.40 Ar XII $215.49, 218.29, 224.25, 1018.79, 1054.59$ 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XVI $215.424.01$ 3.5	Si XIII	6.65, 814.72	6.3
S II1253.79, 1259.530.02S III1015 and 1193 multiplets0.050S IV750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XII186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XII1188 multiplet, 1392.121.6Ar XII215.49, 218.29, 224.25, 1018.79, 1054.592.0Ar XII205 and 242 multiplets3.2Ar XIV188 and 257 multiplets3.2Ar XIV188 and 257 multiplets3.2Ar XV221.15, 424.013.5Ar XVI353.92, 389.144.0	Si XIV	6.18	13.0
S III1015 and 1193 multiplets0.050S IV750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VII198.55, 202.600.79S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XI186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XI1188 multiplet, 1392.121.6Ar XII205 and 242 multiplets2.5Ar XIV188 and 257 multiplets2.5Ar XIV188 and 257 multiplets3.2Ar XVI353.92, 389.144.0	S II	1253.79, 1259.53	0.02
S IV750 multiplet, 809.67, 815.95, 1062.66, 1072.990.11S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XI186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XII118 multiplet, 1392.121.6Ar XIII205 and 242 multiplets2.5Ar XIV188 and 257 multiplets2.5Ar XIV188 and 257 multiplets3.2Ar XVI353.92, 389.144.0	S III	1015 and 1193 multiplets	0.050
S V786.48, 1204.300.16S VI933.38, 944.520.20S VIII198.55, 202.600.79S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XI186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XII215.49, 218.29, 224.25, 1018.79, 1054.592.0Ar XIII205 and 242 multiplets2.5Ar XIV188 and 257 multiplets3.2Ar XV221.15, 424.013.5Ar XVI353.92, 389.144.0	S IV	750 multiplet, 809.67, 815.95, 1062.66, 1072.99	0.11
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S V	786.48, 1204.30	0.16
S VIII198.55, 202.60 0.79 S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XI186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XII118 multiplet, 1392.121.6Ar XIII205 and 242 multiplets2.5Ar XIII205 and 242 multiplets3.2Ar XIV188 and 257 multiplets3.2Ar XV221.15, 424.013.5Ar XVI353.92, 389.144.0	S VI	933.38, 944.52	0.20
S IX225 multiplet1.0S X257.16, 259.52, 264.24, 1196.26, 1213.001.3S XI186, 291 and 242 multiplets1.8S XII215 multiplet, 227.48, 234.48, 288.45, 299.502.0S XIII256.66, 491.442.5S XIV417.61, 445.773.2S XV5.0410.0S XVI4.7320.0Ar VII585.75, 885.550.32Ar VII700.24, 713.810.40Ar XII215.49, 218.29, 224.25, 1018.79, 1054.592.0Ar XIII205 and 242 multiplets2.5Ar XIV188 and 257 multiplets3.2Ar XV221.15, 424.013.5Ar XVI353.92, 389.144.0	S VIII	198.55, 202.60	0.79
S X $257.16, 259.52, 264.24, 1196.26, 1213.00$ 1.3S XI $186, 291$ and 242 multiplets1.8S XII 215 multiplet, $227.48, 234.48, 288.45, 299.50$ 2.0S XIII $256.66, 491.44$ 2.5S XIV $417.61, 445.77$ 3.2S XV 5.04 10.0S XVI 4.73 20.0Ar VII $585.75, 885.55$ 0.32Ar VII $700.24, 713.81$ 0.40Ar XII215.49, 218.29, 224.25, 1018.79, 1054.592.0Ar XIII205 and 242 multiplets2.5Ar XIV188 and 257 multiplets3.2Ar XV221.15, 424.013.5Ar XVI353.92, 389.144.0	S IX	225 multiplet	1.0
S XI 186, 291 and 242 multiplets 1.8 S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 205 and 242 multiplets 2.5 Ar XII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	SX	257.16, 259.52, 264.24, 1196.26, 1213.00	1.3
S XII 215 multiplet, 227.48, 234.48, 288.45, 299.50 2.0 S XIII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	S XI	186, 291 and 242 multiplets	1.8
S XIII 256.66, 491.44 2.5 S XIV 417.61, 445.77 3.2 S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	S XII	215 multiplet, 227.48, 234.48, 288.45, 299.50	2.0
S XIV 417.61, 445.77 3.2 S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VIII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	S XIII	256.66, 491.44	2.5
S XV 5.04 10.0 S XVI 4.73 20.0 Ar VII 585.75, 885.55 0.32 Ar VIII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	SXIV	417.61, 445.77	3.2
S X V1 4.75 20.0 Ar VII 585.75, 885.55 0.32 Ar VIII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	SAV	5.04	10.0
AI VII 585.73, 885.55 0.52 Ar VIII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	S A VI	4.75 50575 00555	20.0
Ar VII 700.24, 713.81 0.40 Ar XI 188 multiplet, 1392.12 1.6 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0		303.73, 003.33 700.24, 712.81	0.32
Ar XI 100 multiplet, 1522.12 1.0 Ar XII 215.49, 218.29, 224.25, 1018.79, 1054.59 2.0 Ar XIII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	ΔrVII	188 multiplet 1392 12	1.6
Ar XII 205 and 242 multiplets 2.5 Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	Ar XII	215 49 218 29 224 25 1018 79 1054 59	2.0
Ar XIV 188 and 257 multiplets 3.2 Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	Ar XIII	205 and 242 multiplets	2.5
Ar XV 221.15, 424.01 3.5 Ar XVI 353.92, 389.14 4.0	Ar XIV	188 and 257 multiplets	3.2
Ar XVI 353.92, 389.14 4.0	Ar XV	221.15, 424.01	3.5
	Ar XVI	353.92, 389.14	4.0

Ion	Wavelengths (Å)	$10^{-6} \times \text{Temperature (K)}$
Ar XVII	3.95	13.0
Ar XVIII	3.73	28.0
Ca XIII	163 multiplet, 1133.76	2.5
Ca XIV	183.46, 186.61, 193.87, 1291.61	3.2
Ca XV	177 and 210 multiplets, 1375.96	4.0
Ca XVI	208.59, 224.55	4.2
Ca XVII	192.86, 371.04	5.0
Ca XVIII	302.21, 344.77	6.3
Ca XIX	3.177	18.0
Ca XX	3.02	45.0
Fe VIII	185.21, 186.60	0.63
Fe IX	171.08, 241.74, 244.91	1.0
Fe X	Many lines between 170 and 230, 1028.02, 1463.49	1.1
Fe XI	Many lines between 180 and 370, 1467.08	1.3
Fe XII	192.39, 193.51, 195.12, 364 multiplet, 1242.00, 1349.40	1.4
Fe XIII	Many lines between 200 and 370	1.6
Fe XIV	219.14, 264 multiplet, 274.20, 334.18, 353.84	1.8
Fe XV	284.15, 417.24	2.0
Fe XVI	251.06, 262.97, 335.41, 360.80	2.2
Fe XVII	10-20 and 254.87, 1153.16	3.2
Fe XVIII	10-20 and 93.93, 103.95	5.0
Fe XIX through Fe XXII	10-20 and 90-140	6.3–10.0
Fe XXIII	8–15 and 132.85, 263.76	13.0
Fe XXIV	8-15 and 192.02, 255.09	16.0
Fe XXV	1.85	50.0
Fe XXVI	1.78	112.0

Table 3. (Continued.)

Figure 8. Right: a single SUMER spectrum showing an explosive event. Left: a Doppler shift contour from the rastered image that shows the spatial extent of the explosive event.

Figure 9 shows part of an active region raster that contains plume-like outflow regions apparent in the Ne VIII doublet lines at 770 and 780 Å (upper transition region, 6.3×10^5 K). For this observation the 770 Å line was observed in second order, near the lower transition region C IV 1550 Å doublet $(1 \times 10^5$ K) and a second order S V line (786.48 Å). The lefthand panels show raster images of the Ne VIII and S V line intensities. The right-hand panels show raster images of the centroids of these lines, with the Ne VIII intensity contours overlaid onto the centroid images. In the centroid images, blue represents a Doppler motion towards the observer (upflow) and red represents a Doppler downflow. The pale blue areas are

Figure 9. Left panels: SUMER active region raster images in lines of Ne VIII and S V. Right panels: centroid images in Ne VIII and S V overlaid with Ne VIII intensity contours. The centroid maps only cover the active region fan-like loop structures seen in the lower left corner of the Ne VIII image (from Doschek 2006).

Figure 10. Left panel: average net radial flow in the quiet Sun as a function of electron temperature from SUMER data (positive = downflow (from Peter H and Judge P G 1999 *Astrophys. J.* **522** 1148). Right panel: average quiet Sun non-thermal motion as a function of electron temperature (from Chae J *et al* 1998b *Astrophys. J.* **505** 957).

regions where the intensities of one or both of the lines are too weak for a meaningful measurement. The S V and Ne VIII centroid images show a downflow at the bases of the plumelike structures. Many studies of this sort have been made (e.g. Winebarger *et al* 2002, Marsch *et al* 2004, Doschek 2006). The principal objective of this type of work is to investigate the dynamics of coronal loops as a tool for understanding and testing theories of coronal heating. Numerical simulations of loops assuming different heating mechanisms are coupled to atomic data bases to predict spectral line behaviour for comparison with observations.

We now discuss some aspects of transition region lines that are also common to lines formed at coronal temperatures. If centroid images of the transition region are made, it is best to determine the wavelength of the transition region line by assuming that the chromosphere is on average stationary, and then finding from instrument characteristics the wavelength of the transition region line. This wavelength can be compared with a laboratory wavelength and in this manner upflows and downflows can be determined. When this is done for spectral lines formed over a range of temperatures, it is found that there are small net average downflows in the atmosphere, which vary systematically as a function of temperature (e.g. Doschek *et al* 1976, Chae *et al* 1998a, Peter and Judge 1999). The net redshifts/downflows are illustrated in figure 10. As can be seen, the peak downflow is near 10^5 K and is of the order of 12 km s⁻¹. This downflow speed in Doppler shift is actually smaller than the net line width, assuming a Gaussian profile which is approximately correct for lower transition region lines. It is therefore possible that there is no net downflow, i.e. the downflowing material may be denser than the upflowing material which would make the downflowing material brighter and cause a net redshift. However, the total mass flow may be zero in this circumstance. A convincing explanation for the redshifts has yet to be found although recent modelling may provide an explanation (V Hansteen, private communication).

In addition to downflows, spectral lines in all regions of the solar atmosphere are wider than expected from pure Doppler thermal broadening in ionization equilibrium, and the excess width is usually interpreted as a non-thermal broadening. It may be turbulence, but this is unclear. It could simply be random bulk motions of many elements of spatially unresolved structures. At the densities typically encountered in the solar atmosphere the plasma should be close to ionization equilibrium or achieve it very quickly. There are models that predict non-equilibrium effects, e.g., flows through a steep temperature gradient, but no one has yet conclusively demonstrated a non-ionization equilibrium effect to our knowledge.

The non-thermal speeds are deconvolved from the thermal Doppler and instrument broadenings by assuming that all broadening mechanisms produce Gaussian line profiles. In this case, the convolved line profile is also a Gaussian with a full width at half maximum (FWHM) intensity that is the sum of the squares of the FWHMs of the three broadening components. As with the downflows, the deconvolved non-thermal motions are also found on average to be a function of electron temperature, as shown in figure 10 (from Chae *et al* (1998b)). To give the reader an idea of the size of the non-thermal speeds compared to the thermal Doppler speeds, at 1×10^5 K the thermal Doppler speed for C IV is about 12 km s⁻¹. At 1.4×10^6 K the thermal Doppler speed for Fe XII is about 20 km s⁻¹.

The origin of the non-thermal motions is presently unknown. Interpretations have been made assuming that the motions are due to the propagation of waves through the atmosphere (e.g. Bruner and McWhirter 1979), and/or broadening due to relative motions of UFS. Whatever theory is invoked to explain the motions must account for their temperature dependence. The theory must also account for the fact that the motions vary in different structures, and in fact go to about zero in some regions of quiescent prominences (Feldman and Doschek 1977). They appear to be related to magnetic field strength and morphology of the structure.

Figure 10 shows that the peak of the non-thermal motions is also close to 10^5 K and is of the order of 30 km s⁻¹. A good conclusion seems to be that the downflows and non-thermal widths of spectral lines formed in the transition region and corona will be an important test of any theory developed to explain coronal heating and the propagation of energy from the chromosphere into the corona.

The transition region lines provide some excellent electron density diagnostics. Knowing the electron density is extremely important because the radiative losses of a plasma are proportional to the density squared. Theories of loop heating depend critically on knowing the density. Densities are found from the intensity ratios of lines, one of which involves a metastable level. Because of the metastable level, the mixing of electron impact collisions and spontaneous radiative decay produces density sensitive line ratios (see Phillips *et al* (2008)). By now many of the important density diagnostic line ratios have been thoroughly investigated. Solar physicists routinely use the CHIANTI atomic data base (e.g. Dere *et al* 2009) to determine densities (and other diagnostic properties as

An example of lower transition region density diagnostics using C III lines is shown in figure 11. The best C III density diagnostic is the 1175.987/1175.263 ratio because the lines are close in wavelength and therefore instrumental sensitivity as a function of wavelength is not an issue. Also, there is no temperature sensitivity in the line ratio. However, the ratio is not too sensitive; it is best for densities between about 10^8 and 10^9 cm⁻³. The 1175/977 ratio is good between about 10^9 and 10^{10} cm⁻³, but there is also some temperature sensitivity. SUMER can observe both lines but not simultaneously. The 1247/1909 and 1909/977 ratios are complicated because they are both temperature and density sensitive. The 1909 Å line is not available with SUMER but was observed using the NRL S082B slit spectrograph on *Skylab*.

well).

Another lower transition region multiplet with density sensitivity is the O IV intersystem multiplet near 1400 Å (see figure 12). The best diagnostic is the 1407/1404 ratio, but the 1404 line is blended with an intersystem line of S IV. The S IV blend can be approximately removed if the 1406 S IV line is also observed (see figure 13). The upper left panel shows three O IV spectra recorded on film by the NRL S082-B slit spectrograph on Skylab. The leftmost spectrum is a quiet Sun spectrum. Spectra (b) and (c) are from flaring regions. Note that the line designated as 1405 (the 1404 line) is stronger than the 1407 line in the quiet Sun spectrum, but has equal intensity to the 1407 line in the flare spectra (equal photographic densities imply equal intensities). In the flare spectra the 1404/1407 ratio of unity implies from the lower left panel a density of about 3×10^{10} cm⁻³. From figure 13 this density implies a 1404/1406 ratio of 0.2. Because the 1406 S IV line also has the same intensity as the 1404 and 1407 O IV lines in the flare spectra, this means that the true unblended 1404/1407 ratio is about 0.8 rather than unity. This reduces the density only a little, to about 2×10^{10} cm⁻³. These transition region diagnostics have yet to be applied to many flare spectra because the spectrometers available up to now have had severe limitations for flares regarding data rates, sensitivity and time resolution, i.e. the spectrometers were not optimized for rapidly evolving transient phenomena.

The right-hand panels in figure 12 show ratios proportional to density and temperature (top panel) and to primarily temperature (bottom panel). It is also important to have temperature sensitive line ratios, in order to check the validity of ionization equilibrium and to search for non-thermal particles (see section 4). Unfortunately, most temperaturesensitive line ratios are formed by using spectral lines with large wavelength differences, i.e. the electron impact excitation

Figure 11. Diagnostic line ratios for C III (from CHIANTI).

Figure 12. Diagnostic line ratios for O IV (from CHIANTI).

Figure 13. Diagnostic line ratios for S IV (from CHIANTI).

into one of the levels must require an energy comparable to the thermal energy in order to have a good temperature diagnostic. That is, one line samples the bulk of the electron population, while the other line samples primarily the high-energy part of the population. The 279/787 ratio shown in the lower right panel has been used to measure temperatures in quiet Sun regions (Muglach *et al* 2010). Unfortunately the results do not support ionization equilibrium! The derived temperatures are too high for reasons that are presently unknown. This result needs further investigation and confirmation.

In summary, excellent diagnostic spectral lines for the transition region can be found between about 300 and 2000 Å. Between about 1200 and 2000 Å, only the lower transition region ($T \le 2.5 \times 10^5$ K) produces useful diagnostics. The upper transition region ($T \le 1 \times 10^6$ K) is well represented in the 500–1200 Å range and strong lower transition region lines reappear at the short end of this range and a little below due to transitions involving a change in principal quantum number (e.g. 629 Å O V).

4. Spectroscopy: the corona

We define the corona as the temperature region above about $0.8-1 \times 10^6$ K. In this regime the principal structures that can be defined have loop or loop-segment structures. In active regions the footpoints of these loops have the appearance of spot-like structures at around 1×10^6 K. Groups of these structures are termed moss from the analysis of TRACE images (Berger *et al* 1999). It was first demonstrated by Fletcher and De Pontieu (1999) using CDS spectra that the moss represents the footpoints of hot loops. Analysis of EUV coronal lines has taught us much about the physical properties of the corona.

For example, analysis of spectra obtained by SUMER and EIS above the solar limb have revealed a remarkable result. In the quiet Sun the temperature is isothermal to within the accuracy of the atomic data at a temperature of about 1.4×10^6 K (e.g. Feldman *et al* 1999, Warren and Warshall 2002). This temperature represents the average temperature of unresolved loops and perhaps background emission along Topical Review

lines-of-sight above the limb. This result is obtained in the following way.

The intensity of a spectral line is proportional to the socalled emission measure, which is the square of the electron density times either the volume of the plasma emitting the line or the line-of-sight distance through the plasma, depending on how the intensity is defined. The proportionality function depends on the element abundance, the ionization fraction of the ion and the rate at which the atomic transition can be excited. The latter two quantities depend on temperature and electron density. For example, the equation for the intensity $dI_{j,i}^k$ of line k from a small volume element dV can be written as

$$dI_{j,i}^{k} = h\nu_{j,i}A_{Z}N_{j}^{k}(T_{e}, N_{e})A_{j,i} dV,$$
(2)

where $hv_{j,i}$ is the transition energy, A_Z is the element abundance (*Z* is the atomic number), $A_{j,i}$ is the spontaneous decay rate from level *j* to level *i* and N_j^k is the number density of the upper level *j*. The quantity N_j^k is calculated by detailed balancing of all the collisional and radiative processes in as many levels of the ion as is necessary to get a converged result. The detailed balancing depends on the excitation rate coefficients (cm³ s⁻¹) due to all the electron (and sometimes proton) impact excitations as well as on all the possible radiative decay routes. The value of N_j^k also depends on the ionization fraction. The result is that the intensity can be written as

$$I_{j,i}^{k} = \int f_{k}(T_{e}, N_{e}, A_{Z}) N_{e}^{2} \,\mathrm{d}V, \qquad (3)$$

where N_e is the electron density, f_k is a proportionality function that contains the product of the ion density calculated from the ionization balance times the excitation rate coefficient for the line and V is the volume in which the spectral line is emitted and the product $N_e^2 V$ is the volume emission measure.

The emission measure as a function of temperature can be found by inverting the integral equation above using many lines formed at different temperatures in ionization equilibrium (e.g. see Phillips *et al* (2008)). This assumes that ionization equilibrium is valid and if lines of different elements are used, then the relative abundances of the elements must be known. The actual inversion must be done carefully as the problem is not well conditioned.

However, in the special case where the plasma is isothermal at temperature T_e , the equation above reduces to

$$I_{j,i}^{k}(\text{isothermal}) = f_{k}(T_{e}, N_{e}, A_{Z})N_{e}^{2}V.$$
(4)

In this case, the emission measure is the intensity divided by the proportionality function f_k . The emission measure plotted as a function of temperature for a particular spectral line klooks roughly like a parabolic curve with a minimum that occurs where the product of the ion fraction and excitation rate is largest. Any point on the curve defines a temperature and emission measure that is consistent with the measured intensity of the line in ionization equilibrium. If one plots these curves on a single graph for many lines formed over a range of coronal temperatures and finds that there is a common

Figure 14. Determination (see the text) of the quiet Sun electron temperature above the limb from SUMER spectra and a range of spectral lines from Si ions (from Warren H P and Warshall A D 2002 *Astrophys. J.* **571** 999).

point at which all the curves intersect, then this means that a single temperature and emission measure, i.e. an isothermal plasma, can account for all the measured intensities. In practice an isothermal plasma will show intersections over a small area of the plot due to uncertainties in atomic data and/or measurement uncertainties. This technique for investigating emission measure distributions was first developed by Jordan *et al* (1987).

Such a plot for SUMER spectra obtained above the limb is shown in figure 14 (from Warren and Warshall 2002). The different curves are from the spectral lines of Si ions ranging from Si VII to Si XII, so solar abundances are not a factor in the plot. More recent observations with EIS spectra indicate that there may also be a weak higher temperature component in addition to the dominant million degree isothermal component (Warren and Brooks 2009). The data in figure 14 strongly support an isothermal corona.

On the disc coronal loops in active regions fall into two classes: hot loops near $2-3 \times 10^6$ K and warm loops with temperatures about 1.4×10^6 K. The warm loops surround a core of hot loops. The hot loops can be explained by loop heating models that provide steady heat input into the loops. The warm loops can only be explained by models that put heat into the loops impulsively. Spectroscopy is the key tool for understanding how the loops are heated. Currently there is much work being done to understand the physics of coronal loops (e.g. Cirtain *et al* 2007, Warren *et al* 2008, Tripathi *et al* 2009, Patsourakos and Klimchuk 2009).

To understand the role of spectroscopy, consider the basics of any loop-heating model. The models consist of plasma confined by a magnetic field into a loop whose cross-sectional area may be tapered towards the footpoints. Heat is put into the plasma according to various assumptions. The heat energy is lost through conduction along field lines into the chromospheric lower boundary of the loop, which is basically a heat sink because the energy input is small compared to the internal chromospheric energy. The heat is also lost via

Figure 15. Electron density sensitive line ratios for Fe XII, Fe XIII and Fe XIV coronal ions (from CHIANTI).

radiation in the corona, which is proportional to the square of the electron density. The heated chromosphere at the base of the loop may evaporate plasma into the loop thus raising its density in the corona. The plasma behaviour after heat injection is governed by the conservation equations of mass, momentum and energy. Since the heating mechanism of a loop is not yet understood, heat may be put into the loop model at any location, or at random locations, and may be either steady in time or in the form of impulses.

To test any given model, it is necessary to be able to measure the temperature distribution in the loop and in particular the electron density since it is the only way to calculate a radiative energy loss rate. Thus loops are observed in spectral lines emitted in both the transition region and corona whenever possible, and line ratios are used to obtain densities whenever possible. The strong coronal emission lines in the 170–300 Å bandpass observed by EIS are adequate for observing well the coronal emission. There are some transition region diagnostics, but they are limited below 300 Å.

Good coronal electron density diagnostics are available in the EIS range from Fe XII, Fe XIII and Fe XIV (see figure 15 for electron densities typically encountered in solar coronal regions). By far the most sensitive ratio is the Fe XIII ratio. The Fe XII and Fe XIII ratios do not yield the same densities for the highest densities observed in active regions and flares, i.e. above about 10^{10} cm⁻³ (e.g. Young *et al* 2009). The Fe XII densities are higher by about a factor of 3. At low densities there is fair agreement between the two diagnostics. The reason for this difficulty is not yet understood but seems due to the atomic data in one way or another. The atomic data for these iron ions are extensive because of the large number of configurations and levels involved in all the calculations. We strongly encourage atomic physicists to revisit the atomic data for Fe VIII-Fe XVI for spectral lines in the EUV above about 170 Å.

Tests of loop-heating models for so-called warm active region loops show that steady heating cannot account for the high electron densities in the loops (e.g. Warren *et al* 2008). On the other hand, impulsive models cannot account for

Figure 16. Emission measures as a function of temperature for a set of spectral lines emitted by a small loop segment. The dashed curve is the emission measure distribution that accounts for all the observed intensities (from Warren H P *et al* 2008 *Astrophys. J.* **686** L131).

the observed lifetimes (much longer than radiative lifetimes) unless the overall loop envelope is regarded as composed of unresolved thin magnetic threads, which are heated sequentially. In this scenario the overall loop intensity curves can be reproduced as a function of time and the high densities can be accounted for. Measurements of filling factors, e.g. the fraction of observed path length or volume actually emitting plasma, are around 20% for high-density loops (Warren *et al* 2008), a direct observational confirmation of unresolved structures in the corona.

The evolution of loops, i.e. their heating and cooling, provides another test of loop-heating models. Active regions have two loop populations: a hot loop population in the active region cores $(2-3 \times 10^6 \text{ K})$ and a periphery population of so-called warm loops that have temperatures of about $0.4-1.3 \times 10^6 \text{ K}$ (e.g. Ugarte-Urra *et al* 2009). On-going studies of the cooling of these loops (above reference) promises to shed much light on loop-heating models.

Another result from testing loop-heating models is that unlike the off-limb coronal results for the warm temperature corona discussed above, the loops observed as they cool on the disc are not isothermal. However, they have an emission measure distribution that has a narrow spread in temperature, i.e. a few hundred thousand degrees (see figure 16 from Warren et al (2008)). Thus the unresolved threads must cool together, but not quite at the same temperature. Figure 16 shows a set of spectral line emission measures as a function of temperature for a small active region loop segment at a given instant of time observed by EIS. The curves do not all intersect at a single point and therefore the plasma is not isothermal. However, the curves intersect not too far from each other which implies only a small spread of temperatures for the emitting plasma. The dashed curve is an emission measure distribution, assumed Gaussian, that accounts for all the observed line intensities.

Another interesting recent result from EIS coronal EUV spectroscopy is the observation of outflows over large areas of active regions where the emission is actually faint (e.g. Doschek et al 2007, Harra et al 2008, Baker et al 2009). Similar outflows have been previously reported from SUMER observations (e.g. Marsch et al 2004). The situation is illustrated in figure 17. The left image is the intensity of the active region in the spectral line of Fe XII at 195.12 Å. The right panel is an image of the centroid of this spectral line. White indicates no net Doppler speed, blue is the outflow towards the observer and red is the inflow towards the chromosphere. Typical outflow speeds are $15-20 \text{ km s}^{-1}$ but sometimes there is an additional component indicating outflow speeds up to 200 km s^{-1} (Bryans *et al* 2010). The outflows are sometimes visible even at high temperatures (e.g. Fe XV) and the spectral lines are wide, indicating either considerable random mass motions or unresolved flows from multiple sources. The flows persist for days.

Previously, very bright coronal rays at distances up to 2.5 solar radii, possibly associated with outflows from active regions, were observed in 2002 with the *CORONAS-F* SPIRIT telescope coronagraph in the EUV 175 Å band (Fe IX-X-XI lines) (Slemzin *et al* 2008). Some of the rays had counterparts in the white-light LASCO-C2 image. SPIRIT was the first telescope to investigate the inner corona in an enhanced coronagraphic mode with the solar disc obscured by an occulter.

The origin of these outflows, and their relevance to coronal physics, is still unclear. The magnetic field configuration below the outflows is mainly monopolar, indicating either open magnetic flux tubes or long loops that connect distant regions on the Sun. If the field lines are open, the outflows might make a considerable contribution to the solar wind. Work is on-going to connect the outflows seen near the Sun with *in situ* solar wind data obtained near the Earth.

Spectroscopy of the inner corona can be used in a limited way to detect the presence of non-thermal particles, i.e. a departure from a Maxwellian velocity distribution. We have already noted some results for the transition region in section 3. Although the excitation rate coefficients C used to calculate the upper level populations of spectral transitions are integrals over the excitation cross section and velocity distribution, i.e.

$$C_{i,j} = \int_{V_T}^{\infty} v \sigma_{i,j}(v) f(v) \, \mathrm{d}v \, \, (\mathrm{cm}^3 \, \mathrm{s}^{-1}), \tag{5}$$

where v is the electron velocity, V_T is the velocity for threshold of excitation between the lower level *i* and the upper level *j* and f(v) is the velocity distribution, usually assumed to be Maxwellian, the presence of a high-temperature tail on a Maxwellian is detectable by using lines very sensitive to high-energy excitation. The intensity ratio of a high-energy excitation line to the intensity of a line produced by electrons with energies near the peak of the velocity distribution is temperature sensitive through the function $\exp(-\Delta E/kT_e)$, where ΔE is the energy difference, k is Boltzmann's constant and T_e is the electron temperature. If the emission measure distribution can be found using only lower excitation lines,

Figure 17. Left panel: EIS raster intensity image of an active region in Fe XII 195 Å. Right panel: the Fe XII centroid image. Blue is Doppler outflow; red is Doppler inflow towards the Sun.

then the emission measure calculated from higher excitation lines gives an indication of the existence of a non-thermal component, i.e. if the high excitation emission measure is much greater than the emission measure computed from the low excitation lines, then a high-energy non-thermal velocity component is indicated.

Unfortunately it is difficult to find many suitable line ratios in the UV and EUV. Although it is easy to find high-energy lines, they usually differ greatly in wavelength from the most desirable comparison lines (e.g. O VI, 150 Å 3p-2s (high energy) and 1032, 1038 Å 2p–2s (low energy) lines). In these cases two different instruments are frequently required to make a measurement. However, there are a few cases where lines can be closer together, within the range of a single instrument. For example, the Na isoelectronic sequence supplies some useful temperature diagnostics for the transition region (Mg, Al, Si). (The Mg lines fall at wavelengths greater than 2000 Å.) The high-excitation line is a 3d-3p transition where the 3d upper level is excited from the ground state 3s level. The 3d–3p line is generally not too far in wavelength from the low energy 3p-3s transition. The He-like ion has a singlet and triplet system. For example, for O VII excitation to the 1s2p ³P levels at wavelengths near 22 Å can result in a 1s2p ³P transition to 1s2s ³S, which produces spectral lines near 1638 Å. These lines can be used to get emission measures for comparison to emission measures obtained from lower energy excited lines. A further example is Fe XVII, which produces excitations equivalent to about 15-17 Å but can result in EUV lines at wavelengths such as 254 Å due to the excitation and decay processes: 2p to 3p to 3s and 2p to 3d to 3p. Several of these lines have been observed by EIS.

So far, the work done in searching for non-thermal coronal particles has lead to contradictory and somewhat ambiguous results. Some current work is Muglach *et al* (2010), Ralchenko *et al* (2007) and Feldman *et al* (2007).

5. Spectroscopy: solar flares

Solar flares produce multi-million degree plasma that can reach thermal temperatures as high as 40×10^6 K. Flares emit x-rays

and the solar x-ray spectrum provides excellent diagnostics for measurements of temperature, ion abundances and dynamics.

Below about 10 Å the dominant line emission is due to transitions in He-like and H-like ions and associated collisionally and dielectronically excited satellite transitions (e.g. Doschek 1990, Gabriel 1972). The satellite transitions become stronger for the heavier elements because of a branching factor involving radiative and autoionization rates and they are important as temperature diagnostics when combined with the intensity of a line produced by electron impact collisional excitation. The satellite lines are most important for elements with atomic number greater than about 14. In the solar case, they are most useful for Ca and Fe spectra (see figure 18). In figure 18 the lettering of transitions was introduced by Gabriel (1972) in order to facilitate discussions of the spectra.

As an example, consider the excitation of the resonance line of a He-like ion, called line w (see figure 18), due to electron impact excitation, i.e.

$$X(1s^{2} {}^{1}S_{0}) + e_{0} \to X(1s2p {}^{1}P_{1}) + e_{1},$$
(6)

$$X(1s2p^{1}P_{1}) \to X(1s^{2} {}^{1}S_{0}) + (h\nu)_{w},$$
(7)

where e_0 and e_1 represent the electron at different energies before and after the collision, respectively. A useful dielectronic line, called line *j*, is formed as follows:

$$X(1s^{2} {}^{1}S_{0}) + e \rightleftharpoons X(1s2p^{2} {}^{2}D_{5/2}),$$
(8)

$$X(1s2p^{2}{}^{2}D_{5/2}) \to X(1s^{2}2p^{2}P_{3/2}) + (h\nu)_{j}.$$
 (9)

In equation (8), the left–right arrows indicate that the doubly excited Li-like ion $1s2p^{2/2}D_{5/2}$ state could autoionize as well as radiatively stabilize. The point is that the formation of both lines *w* and *j* begins with the same state of the He-like ion, and therefore the intensity ratio does not depend on any ion abundance. The intensity ratio I_j/I_w is temperature sensitive with the dependence

$$I_j/I_w = A \exp(-(E_s - E_0)/kT_e)/T_e,$$
 (10)

where E_s is the energy difference between the ground state He-like ion and the doubly excited state, E_0 is the resonance

Figure 18. Left panel: Fe solar flare spectrum from the NRL BCS on the US Department of Defense P78-1 spacecraft (e.g. Doschek 1983). Lines w, x, y and z belong to the singlet and triplet systems of the He-like ion. Line q is an inner-shell electron impact excited satellite line; most of the others are produced by dielectronic capture followed by radiative stabilization. Right panel: the same for a Ca flare spectrum.

Figure 19. Fe spectra from the BCS spectrometer package on *Yohkoh*. The three spectra have been normalized to the intensity of the Fe XXV resonance line called line w.

line excitation energy and *A* is a proportionality constant. The above function is quite sensitive to temperature for Fe and Ca spectra, allowing us to estimate flare temperatures (e.g. Feldman *et al* 1995).

As a flare evolves, the x-ray spectra change dramatically in response to temperature. Figure 19 shows spectra from a cooling flare plasma recorded by the BCS package on the *Yohkoh* spacecraft. The spectra are normalized to the resonance line w of Fe XXV. The hottest spectrum is the one with the weakest emission from ions such as Fe XXI. A summary of flare temperatures as a function of flare classification derived from BCS observations from *Yohkoh* by Feldman *et al* (1995) is shown in figure 20. Normally flare

Figure 20. Histogram of flare temperature distributions for flares of different classifications. X-flares are the most intense, followed by M-flares, C-flares, B-flares and then A-flares. Each class is separated from adjacent classes by one order of magnitude of intensity in the *GOES* environmental broadband x-ray detectors that operate at wavelengths less than about 4 Å (from Feldman *et al* 1995).

temperatures do not exceed around 23×10^6 K for the bulk of the thermal flare plasma. However, Fe XXVI observations reveal a superhot component near 40×10^6 K (e.g. Tanaka 1986). There is no explanation for the limiting temperature of the soft x-ray emitting flare. Flares on other stars can be much hotter.

In addition to temperature information, Bragg crystal x-ray spectra have revealed much about chromospheric evaporation in flare loops and random non-thermal mass motions (e.g. Doschek 1990, Harra *et al* 2001, Warren and

Figure 21. Energy level diagram for Fe XXIV and two flare images from TRACE. There are many K shell and L shell transitions from different levels. The K shell transitions are mainly dielectronic lines, but there are also some inner-shell lines.

Doschek 2005). At the onset of flares spectral lines are quite wide, indicating turbulent speeds of about 150 km s⁻¹ that decrease monotonically as the flare brightens in soft x-rays. Also, there is frequently a blueshifted component in the profiles of the x-ray lines during the rise phase of flares that is a signature of chromospheric evaporation. This component also decreases as the flare brightens. Upflow speeds can be quite high, ranging from a few kilometers per second to speeds on the order of 900 km s⁻¹. The plasma moving at speeds greater than about 300 km s⁻¹ is closely correlated with the onset of hard x-ray bursts due to thick target bremsstrahlung produced by non-thermal particles produced in the corona impinging on the chromosphere (e.g. Bentley *et al* 1994).

Because the x-ray spectra have no spatial resolution, the sources of evaporation cannot be related to images of flaring loops. However, Czaykowska *et al* (1999) related blueshifts in CDS spectra with both upflows and downflows in loops in both transition region and coronal lines that occurred during the late gradual phase of a flare.

Finally, it must be mentioned that spectral lines from highly ionized elements occur throughout the UV and EUV spectra. The long wavelength transitions are a combination of allowed, forbidden and intersystem lines. Figure 21 illustrates the case for Fe XXIV. The Fe XXIV lines have been useful even in broadband data from spacecraft such as TRACE, and are now being used to analyse EIS flare spectra. Note that significant bright areas of emission in the 195 Å filter image are missing from the 171 Å filter image. This is due to the presence of the 192 Å Fe XXIV line in the 195 Å filter bandpass. There is no equivalent hot line in the 171 Å bandpass. The longest wavelength lines arise from forbidden transitions. A list of some prominent forbidden lines from high iron ionization stages is given in table 4.

 Table 4. Some EUV flare forbidden lines.

Ion	Wavelength (Å)	Transition
Fe XVII Fe XVIII Fe XIX Fe XXI Fe XXII Fe XXIII	1153.20 974.86 1118.06 1354.08 845.55 1079.3	$\begin{array}{r} 2p^53s\ {}^3P_1-2p^53s\ {}^3P_0\\ 2s^22p^5\ {}^2P_{3/2}-2s^22p^5\ {}^2P_{1/2}\\ 2s^22p^4\ {}^3P_2-2s^22p^4\ {}^3P_1\\ 2s^22p^2\ {}^3P_0-2s^22p^2\ {}^3P_1\\ 2s^22p\ {}^2P_{1/2}-2s^22p\ {}^2P_{3/2}\\ 2s2p\ {}^3P_1-2s2p\ {}^3P_2\end{array}$

6. The first ionization effect

We conclude the spectroscopy discussion by discussing a subject that involves all regions of the solar upper atmosphere. Table 1 reveals that photospheric and coronal abundances are different for certain elements. The elements that have first ionization potentials below about 10 eV, such as Mg, Si and Fe, are more abundant in the quiet corona by about a factor of 4 than elements with relatively high first ionization potentials such as Ar and Ne. This seems quite strange because the corona is hot and all elements are ionized. Thus it is clear that the coronal composition is somehow governed by physical effects that occur low in the atmosphere, perhaps in the chromosphere, where the atmosphere is still relatively cool and neutral elements can still exist. The seminal papers by Meyer (1985a, 1985b) did much to bring this effect to the attention of solar spectroscopists.

Subsequently the FIP effect has been used to investigate all regions of the atmosphere. For example, it has been found that in open flux regions, such as coronal holes that produce the fast solar wind, the coronal abundances are near-photospheric, but in closed magnetic regions, such as coronal loops, the coronal abundances are enhanced in low FIP elements. Even more interestingly, emerging magnetic flux in the photosphere,

Mg VI & Ne VI: 399.3-403.3 Å Ne VII 465.2 Å

Figure 22. Spectral images showing coronal structures in multiplets of Ne VI and Mg VI from the slitless spectrograph on the *Skylab* manned space station. The spectra are related to ground-based magnetograms (right) which show the magnetic field where black and white differentiate different line-of-sight polarities (from Sheeley 1995).

which produces coronal loops, shows a temporal FIP effect depending on how old the emerging regions are (e.g. Sheeley 1995). Initially, young coronal loops show photospheric abundances, which gradually evolve towards coronal low FIP enhanced abundances.

The temporal FIP effect is illustrated dramatically in figure 22, which shows spectral images of multiplets of Ne VI (high FIP) and Mg VI (low FIP) and their relationship to magnetic flux regions on two successive days. The bottommost boxed multiplet shows that the Mg VI lines are stronger than the Ne VI lines. The magnetograms in the right-hand part of the image show that this region is relatively old because the magnetic region looks almost the same on both days. However, the top-most boxed multiplet shows that the Ne VI lines are much stronger than the Mg VI lines, and the magnetic region that is obvious on 31 August is barely visible on 30 August. This upper region is a newly emerging region. The differences in intensities between the two regions are most likely due to abundance changes, because the contribution functions of Mg VI and Ne VI are quite similar, i.e. a change in the temperature distribution will have only a small effect on the intensity ratios of the Ne and Mg lines, for emission measure distributions that are typical of quiet Sun features on the solar disc. The FIP effect is a valuable tool for investigating different types of coronal structures, even without understanding the physics behind its origin.

The FIP effect in flares has given contradictory results (e.g. compare Feldman and Widing 1990, Schmelz 1993, Fludra and Schmelz 1995). Currently, perhaps a good summary is to say that the FIP effect appears to give abundances somewhere between photospheric and coronal but possibly variable (e.g. Sterling *et al* 1993). Measurements of the Ar/Ca abundance always give values smaller (e.g. Doschek *et al* 1985, Antonucci *et al* 1987) than in the photosphere (1.15, Asplund *et al* 2009). This supports at least a partial coronal abundance interpretation.

The reason for the FIP effect is under continual investigation. The theory by Laming (2004) explains not only solar FIP phenomena, but also stellar FIP phenomena where an inverse FIP effect is sometimes observed (e.g. Brinkman et al 2001, Laming and Hwang 2009). The Laming (2004) model explains the FIP effect as the result of a pondermotive force due to Alfven waves in the chromosphere. The Laming model as well as other models is still currently being tested. If the Laming (2004) theory is correct, then the FIP effect can be used to investigate wave phenomena in the atmosphere, another potentially very useful application of the effect. Recently, Wood and Linsky (2010) have found a correlation between the FIP effect and spectral type in stellar spectra from the CHANDRA x-ray astronomy spacecraft. Perhaps the stellar spectra will be key in reaching a final understanding of the FIP effect.

7. The future of solar x-ray-EUV spectroscopy

Solar x-ray-EUV spectroscopy is just beginning to fulfil its high potential for understanding the solar atmosphere. It is only recently that spectra can be obtained with both high spatial and spectral resolution from which images can be constructed in a reasonably short-time period. However, the time resolution of spectral imaging still needs to be improved. And in spite of the current high spatial resolution obtained by, for example, EIS (2''), the chromosphere and transition region still remain unresolved. Although EVE will address some of the time resolution issues and provide new flare diagnostics, spatial resolution of the order of 0.2'' is needed to track energetic phenomena from the photosphere into the corona and out into the heliosphere. As mentioned in section 2, the upcoming NASA Small Explorer Mission called IRIS will do much to address the poor resolution in the chromosphere and lower transition region, but will still not provide this resolution for the upper transition region and corona. It is now believed

by many that the corona is still spatially unresolved at 1.0'' (TRACE) due to unresolved threads in loops, and therefore it is highly desirable to have 0.2'' resolution all the way from the photosphere into the corona. None of the instruments listed in table 2 have the spatial resolution that appears necessary to resolve adequately the structures in the solar transition region and corona. The best available spatial resolution for the instruments in table 2 is about 1400 km, or 2''.

There are a number of spectroscopic issues that need to be resolved in order to understand the much higher quality and quantity of data now being obtained from solar space spectroscopic instrumentation. Below we highlight a few of them.

(1) The spectra of the solar atmosphere obtained in two limited EUV wavelength bands from EIS reveal that about half of the lines seen are not yet identified (Brown et al 2008). So a new surge in pure laboratory atomic spectroscopy is needed in order to fully identify the spectra. Also, comparisons of plasma diagnostic calculations involving some prominent solar lines of Fe have revealed apparent inconsistencies in atomic data. Iron ions such as Fe XII are difficult theoretical subjects because of the myriad levels and configuration interactions involved and therefore we need highly detailed atomic models to make accurate intensity predictions. Thus, concurrent with the pure spectroscopy, deeper investigations of the atomic physics of the ions useful for solar density diagnostics are needed.

However, no matter how detailed the atomic models become, it is highly desirable to obtain experimental laboratory verification of ionization balance calculations and atomic parameters such as rate coefficients and spontaneous decay rates. The measurements are often difficult and time consuming, but experimental verification is the only way to be sure of the atomic physics. So far, works with devices such as the electron beam ion trap (EBIT) have made enormous contributions to the atomic physics for different ions and elements (e.g. Beiersdorfer 2009), and works on dielectronic recombination rates, the most uncertain quantity in the ionization balance calculations, have provided key guidance in helping to interpret the solar atomic data (e.g. Savin and Laming 2002, Savin et al 2006). Work on improving the ionization balance calculations is a continuing effort.

(2) From observations it is known that the temperature from the base of the upper transition region to the top of the non-flaring corona spans the $2 \times 10^5 - 3 \times 10^6$ K domain. Typical depictions in the literature of the emission measure distributions in that region indicate that the emission measure varies slowly with temperature. But recent studies of the emission measure distribution from line intensities acquired by well-calibrated spectrometers show four peaks that appear as if they are the result of nearly isothermal plasmas with temperatures of about 4×10^5 , 8×10^5 , 1.2×10^6 and 3×10^6 K (Feldman and Landi 2008). It is not easy to understand this unique emission measure distribution solely from the nature of the energy deposition. Perhaps the behaviour is connected with the radiative loss properties of the plasma which are a direct result of the atomic physics properties of the coronal abundant elements.

(3) As discussed in section 4, the intensity ratio of a line originating from a high excitation level (E_h) to a line originating in a low excitation level (E_l) within the same ion is proportional to

$$R \sim T_e^{-1/2} \exp(-(E_h - E_l)/kT_e),$$
 (11)

where k is the Boltzmann constant, and T_e is the electron temperature. For the system to be useful as a diagnostic tool it is best that the term within the exponential be ≥ 1 and that the two lines appear in close wavelength proximity. The Na-like lines mentioned in section 4 are a good example. For solar diagnostics the relevant transitions in Mg II and Si IV are useful. However, at the higher ionization stages the value of $(E_h - E_l)$ becomes smaller than kT_e , and the diagnostic becomes insensitive. For example, for Ar VIII $(E_h - E_l)/kT_e \sim 0.7$ and in Fe XVI it is reduced to ~ 0.2 .

There are also other line ratios that can be used for determining the temperature of solar plasmas where the lines are relatively close in wavelength. These lines are produced by forbidden transitions in the ground configuration of Li-like to F-like ions (i.e. $2s^22p^kU-2s^22p^kL$) and the excited transition of the type $(2s^22p^{k-1}3p-2s^22p^{k-1}3s)$ or $(2s^22p^{k-1}3d-2s^22p^{k-1}3p)$. For ions that are 6 to 10 times ionized the two sets of transitions provide diagnostic lines in the 1000 Å range that are observed by SUMER. For some of these ions, the exponential factor is ≥ 1 , rendering these lines a potential diagnostic system. However, unfortunately the atomic calculations for these systems are not satisfactory. Improvement here is highly desirable.

- (4)Long ago it was recognized that the intensities of the He II lines are much enhanced relative to their expected intensities when plasma in a steady state and a Maxwellian electron distribution are assumed. Over the years many attempts were made to understand the enhancements, with varying degree of success (e.g. Jordan 1975, 1980, Macpherson and Jordan 1999, Pietarila and Judge 2004). A recent attempt (Feldman et al 2010), which assumes an electron distribution consisting of two Maxwellian distributions, one at the temperature of maximum He⁺ population and a second with a minute ($\sim 10^{-4}$) fraction at a temperature of $kT_e \pm 100$ eV, produced interesting results. Clearly much more work needs to be put into investigating cases involving intensities of lines originating in very high energy levels.
- (5) A comparison between the appearances of structures in the Fe VII, Fe VIII and possibly Fe IX lines and those from lighter elements indicates that the temperatures of maximum ion fractions in these ions are lower than predicted assuming ionization equilibrium. More work needs to be done on the ionization equilibrium calculations for these Fe ions. For some of the ions where a significant fraction of the ion population is in excited

levels, the electron density is an important factor in the equilibrium calculations.

- (6) Using line intensities recorded by SUMER, the temperature of quiet coronal structures as seen above the limb during solar minimum periods was found to be $1.3-1.4 \times 10^6$ K. However, temperatures of similar regions derived using the CDS on SOHO and EIS are about 10-15% lower. The reason for this discrepancy is as yet unclear but again implicates the atomic physics. For example, SUMER operates in a relatively long wavelength range where many of the lines used in the analysis originate within the ground configuration and from spin forbidden transitions between the first excited configuration and the ground configuration. The elements contributing to the lines used in the analysis belong mostly to the third row of the periodic table, i.e. Na to Ar. CDS and EIS operate at significantly lower wavelengths where nearly all the lines result from allowed transitions. Moreover, while the lines in the SUMER spectra originate in the relative low Z elements the lines in CDS and EIS are emitted by Fe ions.
- (7) Emission measures derived from lines emitted by Li-like ions result in values that are about one-half of the values that are derived from lines emitted by other ions. The reason for this discrepancy, known for about 40 years, is still unclear.
- (8) As mentioned, it is highly desirable to experimentally check in the laboratory theoretical atomic calculations. EBITs and tokamaks could be used to test some of the calculations. Any laboratory device that generates plasmas at approximate solar temperatures and densities might be useful for this purpose if the physical layout allows a high resolution spectrometer to observe the plasma. There is currently much interest in the synergies provided by laboratory plasmas and solar plasmas involving a wide range of plasma physics and observational diagnostics (e.g. Dahlburg *et al* 2010).

In summary, the recent solar spectral observations at x-ray and EUV wavelengths are providing new impetus to revitalize laboratory and theoretical atomic spectroscopy as well as attempts to check theoretical calculations using laboratory plasma devices.

Finally, readers are directed to more detailed works on solar physics and solar spectroscopy if they desire to delve into the subject more thoroughly. As examples of sources, we recommend Phillips *et al* (2008), Aschwanden (2005) and Mariska (1992).

Acknowledgments

The authors acknowledge support from the NASA *Hinode* program and from ONR/NRL 6.1 basic research funds. *Hinode* is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as domestic partner, and NASA (USA) and STFC (UK) as international partners. Scientific operation of the *Hinode* mission is conducted by the *Hinode* science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner

countries. Support for the post-launch operation is provided by JAXA and NAOJ, STFC, NASA, ESA (European Space Agency) and NSC (Norway). We are grateful to the *Hinode* team for all their efforts in the design, build and operation of the mission.

References

- Acton L W et al 1980 Sol. Phys. 65 53
- Antonucci E, Marocchi D, Gabriel A H and Doschek G A 1987 Astron. Astrophys. **188** 159
- Aschwanden M 2005 Physics of the Solar Corona (Berlin: Springer)
- Asplund M, Grevesse N, Jacques Sauval A and Scott P 2009 Ann. Rev. Astron. Astrophys. 47 481
- Baker D, van Driel-Gesztelyi L, Mandrini C H, Demoulin P and Murray M J 2009 Astrophys. J. 705 926
- Bartoe J-D F, Brueckner G E, Purcell J D and Tousey R 1977 Appl. Opt. 16 879
- Beiersdorfer P 2009 Phys. Scr. T 134 1
- Bentley R D et al 1994 Astrophys. J. 421 L55
- Berger T E, De Pontieu B, Schrijver C J and Title A M 1999 Astrophys. J. **519** L97
- Bonnet R M et al 1978 Astrophys. J. 221 1032
- Brekke P, Hassler D M and Wilhelm K 1997 Astrophys. J. 175 349
- Brinkman A C et al 2001 Astron. Astrophys. 365 324
- Brown C M, Feldman U, Seely J F, Korendyke C M and Hara H 2008 Astrophys. J. Suppl. Ser. **176** 511
- Brueckner G E and Bartoe J-D F 1983 Astrophys. J. 272 329
- Bruner E C Jr 1977 Space Sci. Instrum. 3 369
- Bruner E C Jr and McWhirter R W P 1979 Astrophys. J. 231 557
- Bryans P, Landi E and Savin D W 2009 Astrophys. J. 691 1540
- Bryans P, Young P R and Doschek G A 2010 Astrophys. J. 715 1012
- Chae J, Schuhle U and Lemaire P 1998b Astrophys. J. 505 957
- Chae J, Yun H S and Poland A I 1998a Astrophys. J. Suppl. 114 151
- Cirtain J W, Del Zanna G, DeLuca E E, Mason H E, Martens P C H and Schmelz J T 2007 *Astrophys. J.* **655** 598
- Culhane J L *et al* 1991 *Sol. Phys.* **136** 89 Culhane J L *et al* 2007 *Sol. Phys.* **243** 19
- Czaykowska A, De Pontieu B, Alexander D and Rank G 1999
- Astrophys. J. 521 L75
- Dahlburg J et al 2010 Energies 3 1014
- Dahlburg R B, Liu J-H, Klimchuk J A and Nigro G 2009 Astrophys. J. 704 1059
- De Pontieu B, McIntosh S W, Hansteen V H and Schrijver C J 2009 Astrophys. J. 701 L1
- Dere K P, Landi E, Young P R, Del Zanna G, Landini M and Mason H E 2009 Astron. Astrophys. **498** 915
- Doschek G A 1983 Sol. Phys. 86 9
- Doschek G A 1984 Astrophys. J. 279 446
- Doschek G A 1990 Astrophys. J. Suppl. 73 117
- Doschek G A 2006 Astrophys. J. 649 515
- Doschek G A, Feldman U and Bohlin J D 1976 Astrophys. J. 205 L177
- Doschek G A, Feldman U and Seely J F 1985 Mon. Not. R. Astron. Soc. 217 317
- Doschek G A, Mariska J T, Warren H P, Brown C M, Culhane J L, Hara H, Watanabe T, Young P R and Mason H E 2007 *Astrophys. J.* **667** L109
- Dowdy J F Jr, Rabin D and Moore R L 1986 Sol. Phys. 105 35
- Feldman U 1983 Astrophys. J. 275 367
- Feldman U and Doschek G A 1977 Astrophys. J. 216 L119
- Feldman U and Doschek G A 2007 At. Data Nucl. Data Tables 93 779
- Feldman U, Doschek G A, Mariska J T and Brown C M 1995 Astrophys. J. 450 441
- Feldman U, Doschek G A and Seely J F 1988 J. Opt. Soc. Am. B 5 2237

Feldman U, Doschek G A, Schuhle U and Wilhelm K 1999 Astrophys. J. **518** 500

- Feldman U, Landi E and Doschek G A 2007 Astrophys. J. 660 1674
- Feldman U and Landi E 2008 Phys. Plasmas 15 056051
- Feldman U, Ralchenko Yu and Doschek G A 2010 Astrophys. J. 708 244
- Feldman U and Widing K G 1990 Astrophys. J. 363 292
- Fletcher L and De Pontieu B 1999 Astrophys. J. 520 L135
- Fludra A and Schmelz J T 1995 Astrophys. J. 447 936
- Gabriel A H 1972 Mon. Not. R. Astron. Soc. 160 99
- Gabriel A H 1976 Phil. Trans. A 281 339
- Hansteen V H, De Pontieu B, Rouppe van der Voort L, van Noort M and Carlsson M 2006 *Astrophys. J.* **647** L73
- Hansteen V private communication
- Harra L K, Matthews S A and Culhane J L 2001 Astrophys. J. 549 245
- Harra L K, Sakao T, Mandrini C H, Hara H, Imada S, Young P R, van Driel-Gesztelyi L and Baker D 2008 *Astrophys. J.* **676** L147
- Harrison R A 1997 Sol. Phys. 175 467
- Harrison R A et al 1995 Sol. Phys. 162 233
- Harrison R A, Harra L K, Brkovic A and Parnell C E 2003 Astron. Astrophys. 409 755
- Innes D E, Inhester B, Axford W I and Wilhelm K 1997 *Nature* 386 811
- Jordan C 1975 Mon. Not. R. Astron. Soc. 170 429
- Jordan C 1980 Phil. Trans. R. Soc. A 297 541
- Jordan C, Ayres T R, Brown A, Linsky J L and Simon T 1987 Mon. Not. R. Astron. Soc. 225 903
- Judge P G and Centeno R 2008 Astrophys. J. 687 1388
- Judge P G 2008 Astrophys. J. 683 L87
- Ko Y-K, Doschek G A, Warren H P and Young P R 2009 Astrophys. J. 697 1956
- Kohl J L et al 1995 Sol. Phys. 162 313
- Laming J M 2004 Astrophys. J. 614 1063
- Laming J M and Feldman U 2000 Phys. Scr. 61 222
- Laming J M and Hwang U 2009 Astrophys. J. 707 L60
- Macpherson K P and Jordan C 1999 *Mon. Not. R. Astron. Soc.* **308** 510
- Mariska J T 1992 *The Solar Transition Region* (Cambridge: Cambridge University Press)
- Marsch E, Wiegelmann T and Xia L D 2004 Astron. Astrophys. 428 629
- Mazzotta P, Mazzitelli G, Colafrancesco S and Vittorio N 1998 Astron. Astrophys. Suppl. 133 403
- McKenzie D L et al 1980 Astrophys. J. 241 409
- Meyer J-P 1985a Astrophys. J. Suppl. Ser. 57 151
- Meyer J-P 1985b Astrophys. J. Suppl. Ser. 57 173
- Muglach K, Landi E and Doschek G A 2010 Astrophys. J. 708 550
- Parker E N 1988 Astrophys. J. 330 474
- Patsourakos S and Klimchuk J A 2006 Astrophys. J. 647 1452
- Patsourakos S and Klimchuk J A 2009 Astrophys. J. 696 760

- Peter H 2001a Astron. Astrophys. 374 1108
- Peter H 2001b Space Sci. Rev. 95 107
- Peter H, Gudiksen B V and Nordlund A 2006 Astrophys. J. 638 1086
- Peter H and Judge P G 1999 Astrophys. J. 522 1148
- Phillips K J H, Feldman U and Landi E 2008 *Ultraviolet and X-ray* Spectroscopy of the Solar Atmosphere (Cambridge: Cambridge University Press)
- Pietarila A and Judge P G 2004 Astrophys. J. 606 1239
- Ralchenko Yu, Feldman U and Doschek G A 2007 Astrophys. J. 659 1682
- Reeves E M, Huber M C E and Timothy J G 1977 Appl. Opt. 16 837
- Reeves K K, Warren H P and Forbes T G 2007 Astrophys. J. 668 1210
- Robbecht E, Patsourakos S and Vourlidas A 2009 Astrophys. J. 701 283
- Sandlin G, Brueckner G E and Tousey R 1977 Astrophys. J. 214 898
- Savin D W et al 2006 Astrophys. J. 642 1275
- Savin D W and Laming J M 2002 Astrophys. J. 566 1166
- Schmelz J T 1993 Astrophys. J. 408 373
- Sheeley N R Jr 1995 Astrophys. J. 440 884
- Shestov S V, Kuzin S V, Urnov A M, Ul'yanov A S and Bogachev S A 2010 Astron. Lett. **36** 44
- Slemzin V, Bougaenko O, Ignatiev A, Kuzin S, Mitrofanov A, Pertsov A and Zhitnik I 2008 Ann. Geophys. 26 3007
- Sterling A C, Doschek G A and Feldman U 1993 Astrophys. J. 404 394
- Tanaka K 1982 Astrophys. J. 254 L59
- Tanaka K 1986 Publ. Astron. Soc. Japan 38 225
- Tousey R, Bartoe J-D F, Brueckner G E and Purcell J D 1977 *Appl. Opt.* **16** 870
- Tripathi D, Mason H E, Dwivedi B N, Del Zanna G and Young P R 2009 Astrophys. J. **694** 1256
- Ugarte-Urra I, Warren H P and Brooks D H 2009 Astrophys. J. 695 642
- Urnov A M, Shestov S V, Bogachev S A, Goryaev F F, Zhitnik I A and Kuzin S V 2007 Astron. Lett. 33 396
- Vourlidas A et al 2010 Sol. Phys. 261 53
- Warren H P, Urra-Ugarte I, Doschek G A, Brooks D H and Williams D R 2008 Astrophys. J. 686 L131
- Warren H P and Brooks D H 2009 Astrophys. J. 700 762
- Warren H P and Doschek G A 2005 Astrophys. J. 618 L157
- Warren H P and Warshall A D 2002 Astrophys. J. 571 999
- Wilhelm K et al 1995 Sol. Phys. 162 189
- Winebarger A R, Warren H P, van Ballegooijen A, DeLuca E E and Golub L 2002 Astrophys. J. 567 L89
- Wood B E and Linsky J L 2010 Astrophys. J. 717 1279
- Woods T N et al 2010 Sol. Phys. DOI 10.1007/s1 1207-009-9487-6
- Young P R, Watanabe T, Hara H and Mariska J T 2009 Astron.
- Astrophys. **495** 587
- Zhitnik I A, Kuzin S V, Oraevskii V N, Pertsov A A, Sobel'man I I and Urnov A M 1998 Astron. Lett. 24 819
- Zhitnik I A, Kuzin S V, Urnov A M, Beigman I L, Bozhenkov S A and Tolstikhina I Yu 2005 Astron. Lett. **31** 37