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Abstract 

This report summarizes the entire research period. In this program, we performed 

experiments using a femtosecond mid-infrared pump-probe system implemented for QCL 

samples operating at 4.6 and 5.3 µm. We employed femtosecond time-resolved pump-

probe measurements to probe the nature of the transport through the laser structure via 

the dynamics of the gain. The gain recovery was determined by the time-dependent 

transport of electrons through the cascade heterostructure; as the laser approaches and 

exceeds threshold, the gain recovery shows a dramatic reduction due to the onset of 

quantum stimulated emission. Since the electron transport through each state in the 

cascade is determined by the state lifetime, the transport in a cascade laser is driven by 

the photon density in the cavity. The gain recovery is qualitatively different from that in 

conventional atomic, molecular and interband semiconductor lasers due to the 

superlattice transport in the cascade. We also studied the effects of pulse propagation in 

the laser, including group velocity dispersion and coherent pulse reshaping due to 

ultrafast Rabi flopping of the gain medium. 
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IEEE. J. Quant. Electron. 45, 307 (2009). 
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(4) Scientific Progress and Accomplishments 

This research program accomplished several pioneering breakthroughs in the 

study and understanding of electronic dynamics in quantum cascade lasers (QCL’s). Our 

initial work pioneered femtosecond time-resolved mid-infrared pump-probe experiments 

on quantum cascade lasers (QCL’s). For the first reporting period, we carried out 

comprehensive time-resolved experiments on gain recovery dynamics in an operating 

QCL (samples based on ‘diagonal transition’ in real space provided by Prof. Capasso’s 

group). Those data revealed that the speed of electron transport in cascade heterostructure 

is dramatically reduced due to the onset of quantum stimulated emission, as the 

oscillating intra-cavity laser field starts to derive the entire cascade structure, while 

applied static electric field plays a minor role.  

We subsequently showed that the gain recovery in QCL is qualitatively different 

from that in conventional atomic, molecular and interband semiconductor lasers: there is 

a strong coupling between each active region due to the superlattice transport component, 

enabling the transport physics to show a strong dependence of intra-cavity photon density. 

We developed a complete 3-level rate equation for the superdiagonal QCL level 
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population which is directly following from the computed bandstructure. This work was 

published in Phys. Rev. Lett. and Appl. Phys. Lett. 

Following the pump-probe work, we then modified the setup to perform ultrafast 

upconversion of the QCl output following injection of a femtosecond pulse into a lasing 

QCl cavity. Our initial work focused on dispersive effects (published in Optics Express); 

our final work involved investigation of coherent effects in pulse propagation, and the 

direct observation for the first time in the time domain of Rabi oscillations on the gain 

transition of a semiconductor laser. Preliminary versions of that work were presented at 

various conferences; we have recently completed a theoretical model of the results which 

has put all the pieces together for a manuscript submitted to Nature Physics. 

 

Background 

Electronic transport is central to the understanding of the physics of solid state 

devices such as transistors, detectors, modulators, light emitting diodes and laser diodes 

[1]. The discovery of quantum phenomena in nanometer-thick layers, including size 

quantization [2, 3], the quantum confined Stark effect [4] and resonant tunneling [5] has 

greatly enriched semiconductor physics by enabling novel functionalities and devices. 

Here we investigate the transport of electrons through a quantum cascade laser (QCL) 

[6]; QCL’s are particularly interesting as tools for investigating electronic transport, as 

they operate under conditions of fully developed quantum transport that cannot be 

described in the framework of drift-diffusion equations. 

In a QCL, electrons cascade through the heterostructure, ideally emitting one 

photon via stimulated emission in each active region. Thus QCL operation results from a 

coupling of perpendicular drift transport with the intra-cavity optical field. In this Letter, 

we demonstrate remarkable changes in electronic transport across the device as the 

current is increased above threshold: from drift in the presence of phonon scattering to 

photon-driven transport via stimulated emission leading to a greatly reduced transit time 

across the entire length of the device. Our approach to studying the coupling of transport 

and laser dynamics is to time-resolve the dynamics of the gain recovery following an 

impulsive perturbation of the intra-cavity field. Pump-probe methods have previously 

been used to explore the possibility of coherent transport in resonant-tunnelling QC 



 7 

structures [7] under non-lasing conditions [8]. Here, we explore the gain dynamics of 

operating QCL’s below and above threshold, and the measured dynamics is used to 

develop a model for the QCL level populations coupled to the cavity photon density rate 

equation. We show that the transport is driven by the photon density, which is 

qualitatively different from previous photon-assisted tunneling studies [9, 10] in which an 

external classical field opens a new channel for transport. 

 

QCL Sample Characteristics 

Two QCL’s were fabricated and processed with different cavity length and width: 

laser N-432 was 3.53 mm long and 12.5 µm wide, operating at 5.3 µm, and laser N-433 

was 2.41 mm long and 17.1 µm wide, operating at 5.25 µm. The lasers used in this study 

(Fig. 1) are based on a ‘diagonal transition’ in real space [11]. A population inversion is 

present at all bias fields in these experiments; the cavity gain is controlled by voltage 

tuning of the oscillator strength through the linear Stark effect. The lowest state of the 

injector region serves as both the electron reservoir and also the upper lasing state. Laser 

action takes place between the upper state (level 2) and the lower state in the active 

region (level 1), which is emptied via tunneling into the superlattice. Before an electron 

can contribute to stimulated emission in the next active region (i.e. the portion of the 

cascade heterostructure in which the optical transition takes place), it must drift across the 

superlattice injector region. 

 

Time-Resolved Experiments and Data Analysis 

Gain recovery dynamics were investigated using ultrafast degenerate pump-probe 

techniques, with the QCL operating in continuous wave at a constant voltage. The pump 

and probe beams were coupled into the QCL waveguide (with polarizations ± 45° with 

respect to the lasing polarization, respectively), and the differential transmission (DT) of 

the weak probe pulse was measured following the saturation of the gain by a perturbing 

pump pulse; the pump and probe were tuned to be resonant with the gain transition at 

each bias. In Fig. 2(a), selected bias-dependent DT results at 30 K are displayed. For 

positive pump-probe delay, negative DT signals were observed at all bias currents. The 
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recovery of the DT can be understood as the gain recovery due to electron transport in the 

cascade heterostructure following the pump-induced gain depletion. 

In a simple picture, one can see how the current is driven by the laser photon 

density in such a structure. In a cascade heterostructure, the current through a given level 

is given by J=qN/τ, where q is the electron charge, N is the areal density, and τ is the 

state lifetime. Below threshold, the upper state lifetime is determined by (off-resonant) 

phonon-assisted tunneling (20-50 ps here). Above threshold, the relevant lifetime should 

become the stimulated emission lifetime τst. 

The gain recovery was fit by solving the following three-level rate-equation 

model including coupling to a single mode cavity photon flux: an example of the fit at 

0.635 A is shown in Fig. 2(b). 
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, where n2, n1, nSL are the level-2, level-1, superlattice electron density, and S is 

the photon density. Np is the number of stages in the QCL, Γp is the confinement factor 

for one period, vg is the group velocity, gc is the gain cross-section, τp is the photon 

lifetime, β is the spontaneous emission factor (fraction of spontaneous emission emitted 

into the lasing mode), τsp is the spontaneous emission lifetime, τSL is the superlattice 

transport time, τ2 is the non-radiative lifetime of level 2, and τ1 is the tunneling time from 

level 1 to the superlattice. We found that fits using fewer than three temporal components 

were unable to systematically fit the DT curves. 

As can be seen in the rate equation, there are four processes that enter the 

dynamics: (i) phonon-assisted relaxation out of the upper lasing state, (ii) stimulated 

emission out of the upper lasing state, (iii) depletion of the lower lasing state via 

tunneling, and (iv) transport across the superlattice. 
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The central result is contained in Fig. 3, (a) and (b), which shows the upper state 

lifetime τ2, obtained from the rate-equation fits of the DT data, as a function of bias 

current. Three processes contribute to the decay of the upper state: phonon-assisted 

intersubband relaxation [12] with time constant τph, radiative decay by spontaneous 

emission τrad, and stimulated emission τst. The total upper state lifetime is given by τ2
-

1=τph
-1+τrad

-1+τst
-1. Since τrad is several microseconds, radiative decay is negligible. Well 

below threshold, the upper state lifetime is essentiallyτph, which is in the range of 20-50 

ps. As the QCL bias voltage approaches threshold from below, stimulated transitions start 

to occur, reducing the upper state lifetime and increasing the current through the device. 

In Fig. 3, (a) and (b), a dramatic reduction in the upper state lifetime as the QCL 

approaches threshold is very clear for both devices. Above threshold, τst becomes of an 

order of a few ps, and does not appear in the DT gain recovery dynamics (i.e. above 

threshold the DT dynamics are determined entirely by the lower state emptying and the 

superlattice transport components). 

This behavior is in strong contrast to that of conventional atomic or molecular 

lasers, or of semiconductor lasers based on interband transitions; for those lasers the gain 

recovery time constant is the spontaneous emission time τsp below threshold, and (in the 

short cavity-lifetime limit) τph /r above threshold, where r is the ratio of the pump rate to 

the threshold pump rate [13]. The QCL gain recovery curves in Fig. 2 and 3 show, 

however, an order-of-magnitude speed-up in the gain recovery at threshold. The 

differences in gain recovery between QCL’s and atomic, molecular, and interband 

semiconductor lasers can be traced to a combination of several unique features of QCL’s. 

The most important difference is that the gain recovery in QCL’s has a 

component that has no analogue in conventional laser systems, namely the transport 

delay between active regions in the cascade structure. If this mechanism is removed from 

the rate equations, then those equations become the same as in conventional lasers, and 

the order-of-magnitude speed-up of the gain recovery just below threshold due to 

stimulated emission is not seen. Each active region in a QCL is essentially an open 

system, coupled by transport through the superlattice to adjacent active regions; once an 

electron has made a downward transition via stimulated emission, it is not re-pumped into 

the excited state within the same active region. Instead it must be transported to the next 
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active region, with a corresponding delay. By contrast, stimulated emission in 

conventional lasers occurs in a closed system; following a downward transition, an 

electron is re-pumped into the excited state within the same atom or molecule. 

The second contributing factor to the dramatic speed-up in gain recovery near 

threshold is the interplay of the non-radiative nature of the upper state decay far below 

threshold, and the turn-on of stimulated emission just below threshold. Well below 

threshold, the phonon-assisted lifetime is weakly bias-dependent. Just below threshold, 

the photon density in the cavity becomes of the order of a few hundred, which is 

sufficient to drive the stimulated emission lifetime down to a value comparable to the 

non-radiative lifetime. (It is also an important feature of QCL’s that the β factor is rather 

high, approximately 10-3, as obtained from the L-I curves). Above threshold, the 

stimulated lifetime continues to decrease as the current increases, but it no longer appears 

in the gain recovery dynamics (as the gain recovery is limited in that case only by the 

lower state tunnelling and superlattice transport delays). 

The self-consistency of the model used to understand the gain recovery dynamics 

was verified by the following procedure. First, we calculated τst via the three-level rate-

equation model (blue solid line in Fig. 3, (a) and (b)), and found good agreement with the 

DT data. Secondly, we also calculate τst via an estimate of the intra-cavity photon density 

obtained from the measured steady-state L-I characteristic; this appears as the black and 

green solid line in the Fig. 3, a and b, respectively. Finally, to check self-consistency, the 

rate equations used to fit the dynamics were solved in steady-state to obtain the threshold 

current and steady-state L-I curves; these are seen in Fig. 3(c) to agree quite well with the 

experiment. 

In addition to the upper state lifetime, two other components are obtained in fits to 

the gain recovery dynamics (Fig. 4) [14]. The fastest component τ1, approximately 0.7 ps, 

corresponds to the decay of the lower lasing state via tunneling. The second component, 

on the time scale of 2 ps, shows a characteristic inverse dependence on the bias current. 

We have observed this component in a variety of different QCL structures, and attribute 

it to the superlattice transport. We note that contributions from carrier heating and 

waveguide anisotropy were experimentally shown to be small (≤0.1 %) [14]. 

 



 11 

Ultrafast Coherent Pulse Propagation 

In the coherent light-matter interaction regime, a pulse propagating through an absorber 

with area on the order of pi leads to coherent oscillations of the population (Rabi 

oscillation), leading to the McCall-Hahn area theorem [15]. Rabi flopping in a 

semiconductor is usually hindered due to a rapid dephasing process that may occur on a 

time scale as fast as several tens of femtoseconds at elevated carrier density and 

temperature, compared to an order of 2 or 3 lower rates in an atomic system [16]. On the 

other hand, semiconductor intersubband transitions afford the possibility of obtaining 

very large dipole transition matrix elements, leading to the possibility of Rabi flopping at 

the small pulse energies present in quantum cascade lasers. Indeed, coherent effects in 

semiconductor lasers were first seen as sidebands in the spectra of a QCL arising from a 

modulation of the gain at the Rabi frequency ΩR [17]. In this work we investigate pulse 

propagation in the time domain, and directly observe the Rabi oscillation in the QCL gain. 

Our approach is to investigate the time-evolution of transient laser output followed by 

ultrashort resonant pulse injection into an operating QCL [18]. The low temperature (30 

K) L-I characteristics of our QCL [19] are shown in Fig. a. The QCL spectra show 

significant spectral broadening above threshold, stemming from spatial-hole burning and 

multi-mode instabilities, the latter due to the enhanced dipole matrix element [17]. As 

discussed later, the dynamic interaction between the QCL and the ultrashort pulse is 

modelled by three-level Maxwell-Bloch equations (Fig. b). The three-level model 

describes the essential physics of the QCL that includes the populated lasing state (level 

3), the depopulated lasing state (level 2) and the extracted ground state (level 1). A 

schematic of our experiment is displayed in Fig. c, where we employ an ultrafast time-

resolved cross-correlation technique to measure the intensity dynamics of the QCL output. 

Figure d shows a typical cross-correlation measurement signal after resonant mid-infrared 

(IR) pulse injection (FWHM, 150 fs) gated by 800 nm pulse (FWHM, 120 fs). The center 

wavelength of the mid-IR pulse (~ 5 µm) is tuned to be resonant with the QCL emission 

wavelength. The bandwidth of the mid-IR spectrum almost covers the 

electroluminescence spectrum of the QC structure as well as the entire QCL spectrum 

operating above threshold (not shown). All measurements are performed with a QCL bias 

of 1.5 times above threshold and at a cold finger temperature of 30 K. 
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Our key experimental observations are shown in Fig. 5 (e-h). We monitor both the 

propagated mid-IR pulse through the QCL and the transient changes of the lasing 

dynamics for three different pulse areas Θ. For the envelopes of the propagated pulses 

(Fig. e), noticeable features are the dramatic advance of the peak envelope to earlier times 

and significant reshaping as Θ increases. For example, there is a negligible time shift and 

envelope distortion when Θ is π . When Θ increases to 2π, the time advance of the 

envelope peak is about 38 fs, and this time shift reaches to as much as 81 fs for Θ 

approaching 3π with substantial envelope reshaping (blue arrow in Fig. e). For the lasing 

dynamics (Fig. g), the magnitude of the laser output transient decreases after the pulse by 

as much as 59 % (compared to the lasing intensity before the pulse) when Θ is π (black 

curve), and it further decreases to about 64 % when Θ reaches 2π (red curve). However, 

when Θ approaches 3π, the transient dynamics is weakly visible, showing no significant 

saturation of the lasing intensity (blue curve).  

The central observation is the contribution of the coherent dynamics between the 

propagating resonant optical pulse and the density-dipole oscillation in the QCL. The 

numerical simulations of the three-level Maxwell-Bloch equations are shown in Fig. 5 (f 

and h), and directly compared to the experiments. The envelope reshaping of the 

propagated pulse (Fig. 5f) and the lasing dynamics (Fig. 5h) agree well with the 

experiments (Fig. 5e and5 g). Simulated density and dipole polarization (not shown) 

reveal that the Rabi oscillation frequency ΩR becomes larger than the dephasing rate as 

increasing Θ. In this regime, the dipole polarization is coherently cycled due to Rabi 

flopping, and resulting in the time advance and reshaping of the pulse envelope and the 

reduction in the circulating laser intensity due to coherent reduction in the gain following 

the injected pulse. These results are potentially important for possible new pulse-

generation methods in QCL’s [20].    

 

Conclusion 

In conclusion, time-resolved measurements of the gain recovery dynamics in 

cascade heterostructure lasers show that the transport through the device and the cavity 

photon density are intimately coupled, and that from just below to above threshold, the 

current through the device is determined by the stimulated emission rate into the lasing 
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mode. We note that analogous tunnelling of electrons via a photon-assisted transition has 

been previously observed in resonant tunnelling devices under the application of an 

external oscillating electric field [9, 10]. In those experiments, the presence of a strong 

external classical field opened up a new channel, increasing the transport across the 

device. In QCL’s the current near and above threshold is driven by the intra-cavity 

photon density, and the effect of quantum stimulated emission on transport at the few-

photon level can be seen to turn on as the laser approaches threshold from below.  

When short pulses are injected into the lasing cavity, and the pulse area is 

sufficiently large (pi-pulse), then coherent effects may be observed on the lasing 

transition, and specifically Rabi oscillation of the population inversion may be observed. 
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Figures 

 

 

Figure 1 Schematic conduction band diagram and measured L-I-V curve for QCL 

from N-432. Self-consistent band structure calculation of the 

In0.6Ga0.4As/In0.44Al0.56As strained layer sequence for two periods of the cascade 

heterostructure, at a bias corresponding to an internal electric field of 90 kV/cm, 

is displayed. Layer thicknesses are given in nm. The wavefunctions for the upper 

(level-2) and lower lasing state (level-1) are shown, illustrating the diagonal 

nature of the transition in real space. The wavy arrow indicates the lasing 

transition. The miniband is indicated by the shaded gray region. The horizontal 

segments show the doped region for each period; N is the donor density.  
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Figure 2 Bias-dependent DT measurements of the gain recovery at 30 K for QCL 

from N-432. (b) 3-level rate-equation simulation on the population dynamics of 

upper state, lower state and superlattice state (upper panel) and a fit to the the 

normalized DT signal at 0.635 A (lower panel) are displayed. 
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Figure 3 Bias-dependent level-2 lifetime τ2 is shown for N-432 in (a) and N-433 

in (b) (threshold is indicated by the red tick mark). The filled squares are the 

level-2 lifetime obtained from rate-equation fits to the gain recovery DT data. The 

red solid lines in (a) and (b) are the level-2 lifetime due to optical-phonon 

scattering calculated using the bias-dependent wavefunctions; the errors 

obtained by assuming monolayer fluctuations of the barrier width are around 10 

ps, which is within our measurement. The filled circles are an estimate of the 

level-2 lifetime using J=qN/τ2 and assuming the level-2 population N is simply the 

doping density. The dramatic reduction in lifetime just below threshold 

corresponds to the onset of stimulated emission. The stimulated emission lifetime 
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τst was obtained in two ways, using the L-I curves shown in (c). First, τst was 

calculated directly by obtaining the cavity photon density S from the measured 

output power (solid line in (c)) and using τst =N/vgNpgcS, where N is the 

population inversion (again assumed to be the doping density), vg is the group 

velocity, Np is the number of cascading stages (=25 in our QCL), and gc is the 

gain cross-section; the result is shown as the black and green solid vertical line in 

(a) and (b), respectively. Secondly, the rate-equation model was used to fit the L-

I curves (dashed line in (c)), and the resulting values of S were used to calculate 

vst. The result is the blue solid vertical line in (a) and (b). The only free parameter 

required to fit the L-I curves with the rate-equation model is the β factor. 
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Figure 4 (a), Extracted time constants for N-432 from the rate-equation fit. τ1 is 

the level-1 lifetime (red), and τSL is the time constant of gain recovery due to the 

superlattice transport (blue), as explained in the text. (b), Extracted time 

constants for N-433 from the 3-level rate-equation fit. τ1 and τSL have same 

meaning as in (a). The error bars are determined from the chi-square values 

obtained in the rate-equation fit. 
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Fig. 5.  (a) Low-temperature light vs. current (L-I) characteristics (30 K) of a QCL used 

in this study. The QCL emission spectra are shown in the inset, starting with below 

threshold and above threshold spectrum. Thick blue curve is the spectrum taken for this 

measurement (1.51 times above threshold, marked as a blue dot in the L-I curve). (b) 

QCL is modelled using three-level Maxwell-Bloch equations for theoretical analysis. (c) 

A schematic setup of the ultrafast time-resolved cross-correlation measurement using 

250-kHz regenerative amplifier laser system (Coherent RegA). (d) A typical cross-

correlation signal is displayed when the QCL biased near threshold. The uncoupled mid-

IR pulse is used as a reference time-zero delay. Once the pulse is coupled, the 

propagating pulse experiences a transit time delay and several round-trip delays. (e) 

Experimentally measured propagated pulse envelopes and (f) Maxwell-Bloch simulations 

are displayed. For direct comparison, all curves are plotted on a single time axis; the 

transit time [τ0] is subtracted from the gating delay time [t], using a reference time line as 

the π pulse interaction case. The measured (g) and calculated (h) transient lasing 

dynamics are shown at different pulse area (black, red and blue curves are for a π, 2π, and 

3π pulse, respectively).  

 

 


