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 
Abstract—Radar offers unique advantages over other sensors 

for the detection of humans, such as remote operation during 
virtually all weather and lighting conditions.  Many current 
radar-based human detection systems employ some type of 
Fourier analysis, such as spectrograms.  However, in many 
environments, the signal-to-noise ratio (SNR) for human targets 
is quite low and the spectrogram is almost completely masked by 
clutter.  Furthermore, Fourier-based techniques assume a linear 
target phase, whereas human targets have a highly nonlinear 
phase history.  The resulting phase mismatch causes significant 
SNR loss in the detector itself.  In this paper, human modeling is 
used to derive a more accurate non-linear approximation to the 
true target phase history.  The likelihood ratio is optimized over 
unknown model parameters to enhance detection performance. 
Cramer-Rao bounds (CRB) on parameter estimates and receiver 
operating characteristic (ROC) curves are used to validate 
analytically the performance of the proposed method and to 
evaluate simulation results. 
 

Index Terms—Human detection, radar signal processing, 
synthetic aperture radar, detection and estimation. 
 

I. INTRODUCTION 

VER the last decade a variety of Fourier-based techniques 
have been applied to detect human targets in differing 

situations using radar.  For example, Yarovoy [1] used ultra-
wide band (UWB) radar to locate humans trapped in buildings 
by sensing respiratory motions.  The radar returns from 
breathing and non-breathing targets were separated by 
analyzing the spectral variations of the radar return.  Falconer 
[2] utilized differences in the shape of the power spectral 
density (PSD) of the return signal from a pulsed-Doppler 
microwave radar placed outside a building to differentiate 
between targets and infer the activity level of humans inside, 
discerning only large movements. Sabatini [3] applied wavelet 
analysis to the time varying-range profile measured with sonar 
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to find human targets.  All of these aforementioned techniques 
attempt to pick out probable human targets by identifying low-
frequency periodic motion, which can be confused with the 
motion of other non-human targets, such as a slowly spinning 
ceiling fan. 
 The first attempts at developing detection algorithms that 
focused on features unique to human targets began with work 
by Weir [4] in 1997, where he developed the concept of a 
“gait velocitygram” – the velocity profile of a human target as 
seen by a sonar, or ultrasonic ranging device.  The 
velocitygram contained distinct features that were used to 
calculate gait parameters, such as walking speed, cadence, step 
length, step time, and time to steady state walking.  Indeed, 
work on gait analysis using visual and seismic sensors has led 
researchers to suggest that the human gait may become a 
biometric parameter that could be used for identification, just 
like fingerprints or hand geometry [5]. 
 Frequency-based concepts were refined with the concept of 
the “radar gait signature” – a spectral analysis of the gait 
signature that has been shown to be characteristic of humans 
[5,6,7,8,10].  Although Geisheimer [6] initially used chirplet 
transforms to characterize the gait signature, spectrograms 
have been proposed as a simpler way of extracting 
biomechanical information from the radar return.  In 2002, 
Geisheimer [7] experimentally verified that the overall 
spectrogram from a human target matched the sum of 
spectrograms constructed from the returns of individual body 
parts.  The theoretical basis for this result was developed by 
Van Dorp [8], who divided the human body into 12 parts and 
computed the time-varying range for each part using a walking 
model developed by Thalmann [9].  Van Dorp showed that the 
human model-based simulated gait signatures matched the 
spectrograms derived from measured data – an important 
result that will serve as the basis for the human model utilized 
in this paper. 
 This foundation has led to much work that exploits the 
unique features of the human spectrogram.  For example, 
Otero [10] used the spectrogram to compute features such as 
the stride and appendage/torso ratio.  Plotting the velocity and 
appendage/torso ratio for pedestrians passing by, Otero 
observed that male and female targets were roughly grouped 
in different regions on the grid, suggesting that such features 
may be used for gender discrimination.  As another example, 
Greneker [11] exploited the changes in stride and velocity 
caused by the weight of a load around the waist to propose a 
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spectrogram-based suicide bomber detection system. 
 These techniques aim at applying spectrograms to 
characterize targets already detected through Doppler or 
Fourier-based processing and were used in close proximity to 
the target or in situations where interference was minimal.  In 
practice, spectrograms are often completely obscured in high 
clutter environments, rending impossible the accurate 
estimation of any feature or parameter that is to be used to 
discriminate humans from other targets [12].  Moreover, since 
human targets have relatively weak returns in comparison to 
vehicles or other objects, detecting even the existence of a 
human target is more difficult.  In the event that a detector 
fails to detect a probable human target, any of the above 
characterization techniques cannot be applied.        
 Note that the Fourier transform implements a linear-phase 
filter yielding a peak response only when the target phase is 
also linear.  In fact, the phase history for human targets is non-
linear [13], so that the resulting phase mismatch causes a 
significant loss in output signal-to-noise ratio (SNR) inherent 
to the detector as the dwell increases, thereby degrading 
detection performance.   
 The goal of this paper is to derive a new, nonlinear-phase 
detector such that the phase mismatch between detector and 
target phase is minimized, and thus output SNR and 
probability of detection are maximized.  In Section II, 
Thalmann’s kinematic model for human walking is used as a 
basis for deriving an analytic expression of the true human 
target phase and for generating the synthetic human radar data 
used in our computer simulations.  The deficiency of linear 
phase detectors is evaluated in Section III, which introduces 
spectrograms and analyzes the output signal-to-noise ratio 
(SNR) losses of Fourier-based methods.    In Section IV, the 
proposed human model-based optimized nonlinear phase 
(ONLP) detector is derived.  Maximum likelihood estimates 
(MLE) of unknown geometry and model parameters are 
obtained to maximize the likelihood ratio and resulting 
matched filter output.  Cramer-Rao bounds of parameter 
estimates are used to illustrate the impact of modeling error on 
performance.  Finally, in Section V, the detection performance 
of FFT-based matched filters is compared to that of the 
proposed ONLP detector, as well as to the ideal “clairvoyant” 
detector, representing the best performance attainable with 
complete knowledge of target parameters.  

 

II. SIGNAL MODELING 

A. Received Signal 

In general, the received radar signal is a time-delayed, 
frequency-shifted version of the transmitted chirp signal.  
Then the return for a point target may be expressed as 
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where the time t is defined as   tnTt ˆ1   in terms of the 

pulse repetition interval (PRI), T, the pulse number, n, and the 

time relative to the start of each PRI, t̂ ;  at is the amplitude as 
given by the radar range equation;   is the pulse width;  c is 
the speed of light;   is the chirp slope;  fc is the transmitted 
center frequency;  and td is the round trip time delay between 
antenna and target, defined in terms of the target range, R, as  
td = 2R/c. 

Exploiting the work of Geisheimer and Van Dorp, who 
showed that a human target could be divided into parts and the 
total response obtained by simply summing the responses of 
each part – i.e., that the principle of superposition could be 
applied to human modeling – the radar return from a human 
target may be mathematically expressed as 
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where K are the number of point targets comprising the overall 
human target. 

The amplitude at,i, defined as 
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includes several factors which vary with target range, Ri, and 
geometry.  For instance, the antenna gain, G, varies according 
to angle of incidence, and the atmosphere losses, La, vary with 
range.  For simplicity, we assume that these parameters are 
constant, along with the transmitted signal power, Pt, the 
wavelength, , the system loss, Ls, the system temperature, 
Tsys, and the noise standard deviation, n.  The radar cross 
section (RCS), i, is modeled according to the shapes of the 
body parts.  Thus, the head is modeled as a sphere and the 
other body parts as cylinders. 
 

B. Human Model 

A human is a complicated target because of the intricate 
motion of body parts moving along different trajectories at 
different speeds.  In this work, the human body is divided into 
twelve basic body parts:  the head, upper arms, lower arms, 
torso, thighs, lower legs and feet.  As indicated in Fig. 1, each 
point target is taken to lie at the center of the corresponding 
body part. 

The time-varying position of each point target may be 
computed using the kinematic model of a walking human 
developed by Thalmann [9].  In the Thalmann model, all 
positions are referenced to the base of the spine, denoted by  
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Figure 1.  12-point human model [12]. 

 
OS.  Over the course of one cycle (two steps), the vertical, 
lateral, and translational position of OS varies sinusoidally.  
The time-varying angles of the joints are also provided by 
means of charts and equations in [9].  Together with the 
dimensions of the human body, these time-varying joint angles 
may be used to compute the time-varying positions of each 
point target relative to OS and each of the time delays (td,i) 

required in (2).   
 

C. Data Generation  

To test and evaluate the proposed algorithms, the radar 
signal and human model equations described above are used to 
generate simulated radar data in MATLAB.  The slow-time, 
fast-time data matrix is pulse compressed so that the peak 
occurs at the range bin in which the target is present.  Taking a 
slice across slow-time at the range bin of the peak output,  
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where Rd,i is the range from the antenna to the center of each 
body part.   

Spectrogram-based algorithms as well as the new method 
proposed in this paper use the slow-time slice in (4) as the 
starting point for data processing. 

 

III. HUMAN SPECTROGRAMS 

A. Computation 

The spectrogram of a human target may be computed by 
stacking the fast Fourier transforms (FFT) of short, 
overlapping time segments taken from the slow-time slice in 
(4).  An example of the simulated spectrogram for a human 
target is shown in Fig. 2. 

  The strongest return is received from the torso, with its 
low-frequency, small-amplitude sinusoidal oscillatory motion.  
The appendages that travel the farthest during the walking 
cycle – the feet – appear in the spectrogram with the largest 
amplitude oscillation.  Note that the special nature of the 

periodicities within the human spectrogram are what makes 
this response unique and differentiable from the spectrograms 
of even other animals, as can be seen from the measured 
spectrograms of a human and dog given by Otero in [10].  The 
human spectrogram measured by Otero also compares well 
with the spectrograms generated based on our human model.   

In many practical environments, however, the impact of 
clutter and noise is significant in masking human targets, 
which are weak in comparison to other objects with higher 
RCS, such as automobiles.  When the pulse-wise SNR drops 
to -15dB, even the torso return is difficult to discern (Fig. 3).  
Thus, for many practical radar problems, the spectrogram is of 
little help in discriminating human targets from other objects.      

 
 

Figure 2.  Simulated human spectrogram. 

 

 
Figure 3.  Human spectrogram in noise with SNR = -15dB. 

 

B. Inherent SNR loss in Fourier-based detectors 

More importantly, the Fourier transforms used in calculating 
the spectrogram or in Doppler processing are inherently linear 
phase matched filters.  However, the phase history of a human 
target can be highly nonlinear, resulting in an inherent SNR 
loss when matched filtered with a linear-phase filter, such as 
the FFT.  Consider the phase history of a typical human target 
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walking at a 45° incidence angle relative to the initial antenna-
target vector, as shown in Fig. 4.  At first glance, the phase 
does not appear to be highly non-linear and it would seem that 
the FFT should be a good match.  In fact, as is shown in 
Section IV, for human targets the phase history is comprised 
of a linear as well as oscillatory component.  Subtracting out 
the linear component of the phase in Fig. 4, the oscillatory 
components are revealed (Fig. 5).      

 
Figure 4.  Phase history of a typical human target walking along a vector 

maximally aligned with the initial antenna-target vector. 

 

 
 

Figure 5.  Phase history of Fig. 4 after linear component is removed. 

 
  
The SNR loss incurred may be quantitatively analyzed as 

follows.  Define the true target data as  
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where N is the total number of pulses transmitted, and i and 
i are generalized amplitude and phase factors, respectively.  
Note that in general both the amplitude and phase factors vary 
with slow-time (n). 

When filtered with the weight vector, w[n], the output SNR 

is 
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where xn is the noise signal.  If we assume that the noise has a 

covariance matrix of I2
n , then (6) may be simplified to 
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The maximum output SNR is attained when the received 

signal s is matched filtered against itself: 
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However, since knowing the target return exactly in advance 

is impossible, current systems typically matched filter with a 
linear phase filter, which may be expressed as 
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where i and  are generalized amplitude and phase 
parameters, respectively.  Here, the amplitude factor is left in a 
general form that varies with slow-time, while only the phase 
has been restricted as linear.  The output SNR for such a linear 
phase filter is 
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Thus, the SNR loss incurred from signal mismatch is 
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There are three main factors which impact SNR loss:  phase 

mismatch, amplitude mismatch, and dwell time.  Fig. 6 
illustrates the affect of these factors by applying Fourier 
processing on the example phase history of Fig. 4, which has 
an amplitude variation of 2.64x10-7±2.5x10-7 over a 2 second 
dwell.  The FFT computes a constant, flat-line approximation 
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to the true amplitude, i.e. n= for all n.  But the amplitude 
mismatch – defined as the SNR loss incurred due to amplitude 
differences, assuming identical phase – is not nearly as 
significant as the phase mismatch.  Over a 2 second dwell, the 
phase moves through 100 radians, or 5732 degrees, of phase.  
However, just a 1% error in the slope causes the phase to shift 
by 2, an entire cycle.  Thus, unlike the amplitude, phase is 
extremely sensitive to mismatch; despite the gross linear 
appearance of the phase history, the underlying nonlinearities 
that are invisible to the naked eye in fact result in SNR losses 
of up to 30 dB for a 2 second dwell time.   
 

 
 

Figure 6.  SNR Loss variation over dwell time for the target phase history 
shown in Fig. 4. 

 
 
     Collecting data over a longer dwell, so that the 

integration gain increases, also does not help alleviate the 
inherent SNR loss in Fourier-based, linear phase detectors.  
Consider the plot in Fig. 7, which shows the trend of the 
output SNR normalized by input SNR as dwell time is 
increased for both the ideal, clairvoyant detector and the FFT.  
While the output SNR continually increases with dwell for the 
clairvoyant detector, the FFT exhibits on average a flat trend, 
so that the output SNR does not significantly increase with 
dwell time.  Indeed, the SNR loss, as shown by the difference 
between the two curves in Fig. 7, simply increases with dwell. 

Thus, matched filtering with a more accurate model of the 
signal phase history has the potential to yield a significant 
reduction in output SNR losses and, thereby, substantially 
improve detection performance.  For this same example, the 
model-based optimized nonlinear phase (ONLP) detector 
proposed in this paper exhibits an SNR loss of only 7 dB for a 
2 second dwell time. 

The remaining sections of this paper focus on the design and 
performance of the ONLP detector.   

 
 
Figure 7.  Output SNR variation over dwell time normalized by input SNR 

for the target phase history shown in Fig. 4 comparing clairvoyant and FFT-
based detectors. 

 

IV. DETECTOR DESIGN 

A. Detector Formulation 

For each range bin centered at rb, the detector must make a 
decision between two hypotheses: 
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where xn is complex Gaussian noise with covariance matrix 
RI, s is the true target signal, and we’ve assumed that there is 
no range migration, i.e., the entire target return is contained 
within one range bin.  Since the noise covariance matrix 
cannot be known apriori, an estimate must be used instead.  In 
this paper, we assume clairvoyance: 
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where 2
n  is the noise power. 

A likelihood ratio test [14, 15] is used to determine the 
detector decision rule.  Under H0, the noise is distributed as 

CN(0, IR̂ ) while under H1 the noise distribution is CN(s, IR̂
), where s=xp is the target signal vector.  Thus the decision 
rule may be expressed as 
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 Since the target return, s, is not known apriori, a realizable 
detector must use an approximation.  Our goal in this paper is 
to develop a better approximation to the target return than that 
of the linear-phase FFT so as to minimize SNR loss and 
achieve better detection performance.   
 The human-model based expression for the target return in 
(4) is a very good approximation to the true target signal, s; 
however, this model is much too complicated for use as an 
effective matched filter.  The model contains over 24 
unknown parameters and most of the kinematic expressions 
used to compute the time-varying range of each body part are 
not presented in closed form, but rather as graphs, which must 
be combined with other charts or equations to derive the time-
varying position [9].  Thus, we next derive a simpler, non-
linear approximation to (4) that will serve as the basis for our 
proposed optimized non-linear phase (ONLP) detector.    
 

B. Approximating Expected Target Return 

As shown in Fig. 2, the torso response is significantly 
stronger than the response from the remaining eleven body 
parts comprising the model, so we will simplify first by 
neglecting the motion of all body parts except the torso, i.e. 
we will design the detector to match as best as possible the 
response from the torso only. 

Furthermore, since the overall SNR loss is caused primarily 
by phase mismatch, we will approximate the received signal 
amplitude, at, as a being constant, A, even though there is 
some variation across slow-time due to slight variations in 
gain, RCS, and other loss factors.  We also approximate the 
range term in the amplitude factor (3) with rb, the center of the 
range bin at which the peak pulse compression output 
occurred. 

For the range term in the phase, however, we cannot make as 
crude an approximation, because the phase is much more 
sensitive to errors than the amplitude.  A more accurate 
approximation to range is obtained as follows. 

Define r1 as the vector from the antenna to the target’s initial 
position and rN as the vector from the antenna to the target’s 
final position.  For simplicity, assume that the human motion 
is linear along a constant angle, , relative to r1.  Then the 
vector h between the initial and final target locations 
represents the human motion (Fig. 8). 

 

 
 

Figure 8.  Antenna-target geometry. 

 

 Using the law of cosines, we may write 
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where r = |r1| and h = |h|. 
  
 The human motion vector h may be more explicitly 
expressed using the Thalmann kinematic equations as 
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Here, OSL, OSV, and OSFB represent the lateral, vertical and 
forward/backward motion of the center of the torso relative to 
coordinate origin of OS (see Fig. 1) located at the base of the 
spine.  The Thalmann equations depend on only two variables: 
1) RV, the ratio of velocity (v) to thigh height (HT); and, 2) 
t%, a time index taken relative to the beginning of a step.  
Mathematically, these variables may be expressed as 
 

                                       
HT

v
RV                                   (19) 

and 
 

                               0346.1
% tRV

nT
t  ,                   (20) 

 
where t0 is a constant indicating the point within the stepping 
cycle that the first transmitted pulse reflects from the target. 
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 The expression for h may be simplified by throwing out 
second order terms and approximating the square root as 
 

              
.

2
1

2)( 2

FB
FB

FB

OSvTn
vTn

OS
vTn

vTnOSvTnh




       (21) 

 
This equation is consistent with the phase histories plotted 
previously in Fig. 4 and Fig. 5.  For small radial velocities, v, 
the oscillatory term dominates, whereas for large v, the linear 
term dominates, masking the underlying nonlinearity. 

Although generally speaking the phase will contain multiple 
sinusoids as a result of the quadratic components we 
previously neglected in (18), too detailed a model will render 
the detector fragile under noise, so just one sinusoid is used as 
a nonlinear approximation to the true target phase. 
 Mathematically, then, the ONLP approximation to the true 
target phase is 

               
 )cos(

2
4321][ CnCCCMnj

b
onlp e

r

A
nx  ,     (22) 

 
with M, the slope proportional to Doppler frequency; C1, a 
factor dependent upon range; C2, the amplitude of torso 
motion; C3, torso frequency; C4, torso phase; and A, the 
amplitude as defined in the range equation.  These variables 
are unknown model parameters over which the matched filter 
response will be optimized. 
 

C. Estimating Model Parameters 

The maximum likelihood estimate (MLE) for the any 
parameter i in a signal x with mean  in complex Gaussian 
noise may be expressed as [16] 
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For i= A,  
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Thus, we set 
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which in turn can be solved to find the MLE: 
 

                       

 
























N

m

jx
m

b

jHb

monlpex
N

r

e
N

r
A

1

2

2

,Re    

Reˆ onlpx
x

                 (26) 

 
Although (23) may also be used to estimate the phase 

parameters, the resulting estimate is not numerically robust.  
Thus, the MLE for the phase parameters are instead found by 
first explicitly extracting the phase data.  The phase of a 
complex signal may be found by taking the ratio of the 
imaginary and real parts.  However, this operation also 
transforms the noise distribution from complex Gaussian to 
Cauchy, so that the problem may be restated as follows: 
 

                           nonlp
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               (27)     

 

where nx~  is Cauchy distributed noise.  Thus, the distribution 

of x~  under H1 may be computed to be 
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where mmx ]~[~ x , the mth element of x~ .                          

 
The MLE for an unknown parameter i is given by solving the 
following equation for each i: 
 

                        0),tan(;~ln 

 
 onlpxxp

i

,            (29) 

 
which can be reduced to 
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Computing of the MLE estimates for all 5 phase parameters 

thus requires solving a system of 5 nonlinear equations, which 
is impossible to do in closed form, and very computationally 
and memory intensive even when solved numerically. 

Therefore, we break the problem into two stages by first 
estimating the linear component, and then estimating the non-
linear term. 

If in (17) we model the human motion as being simply that 
of a constant-velocity point target, then h = nvT and  
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where cosvvr  .  The two unknown linear phase 

parameters r and vr may then be found by solving the least 
squares problem A=b as 
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 ,                         (32)       
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An initial estimate of the slope M may then be found as 
 

                      2ˆ44



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c

f
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f
M c

r
c

i                    (33) 

This initial estimate is then numerically refined so as to ensure 
no residual linear component remains.   

Having computed an estimate for the slope M, the 
remaining parameters in the nonlinear component of the phase 
are estimated from (30), which is now reduced to a system of 
four nonlinear equations and four unknowns, solved using 
numerical iteration.  Note that of these four parameters, the 
frequency and phase shift coefficients C3 and C4 are the most 
crucial for ensuring the best match between model and data.  
Thus, to save computation time, larger step sizes are used for 
C1 and C2, while finer step sizes are utilized for C3 and C4. 
 The final form of our proposed ONLP detector is 
 

                                 xRx 1
I

H
onlp

ˆˆRe                           (34) 

 

where  FAPQ 1}ˆˆˆRe{   onlp
1

I
H
onlp xRx , which is 

still a linear detector as the elements of xonlp merely form the 
weights with which we filter our signal. 
 

D. Quality of Parameter Estimates 

Obtaining adequate estimates of the unknown model 
parameters is critical to the performance of the matched filter 
detector.  The estimation problem, however, is affected by 
several factors, including the direction of motion (i.e. target 
geometry), dwell time, and SNR. 

As indicated by (21), the phase history of a human target 
may be represented as the sum of linear and oscillatory 
components.  Depending on the target geometry and walking 
speed, the shape of the phase history may vary.  When the 
target moves roughly perpendicular to the antenna-target 
vector, the radial velocity will be nearly zero and the 

oscillatory component is clearly apparent.  As the target 
moves along the antenna-target vector, the radial velocity is 
almost identical to the true target velocity, so the linear 
component has more of an affect. 

  The dwell time is also an important factor, as the amount of 
data collected limits the number of cycles we can observe.  
For example, at extremely short dwells, the phase history may 
only have a mild nonlinearity, similar to a bowed curve or a 
quarter-cycle of a sinusoid.  Finally, SNR is also a critical 
factor, since as the noise level increases the true signal 
curvature is obscured, leading to degradation in our parameter 
estimates.  For low SNRs, longer dwell times will be required 
for good parameter estimates. 
 The quality of the parameter estimates may be assessed 
using the Cramer-Rao Bound (CRB).  It can be shown that for 
a general signal x[n,] in complex Gaussian noise with 
variance 2, the CRB is given by [16] 
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where I() is the Fisher information matrix.  Evaluating (34) 
for the expression of xonlp given in (22), the desired CRB may 
be analytically expressed as  
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where the pulse-wise SNR is defined as 222 2 brA  and 
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 In Fig. 9, the CRB on 1Ĉ  is plotted together with the 

simulated variance of 1Ĉ  under two cases:  1)  The 

underlying data is exactly the same as the model xONLP in (22) 
used to compute the CRB; and, 2) the underlying data is the 
synthetic human data representative of true human motion as 
given in (4).  The MLE estimator achieves the performance of 
the  

 
 

Figure 9.  CRB and variance of parameter (C1) MLE 
with ONLP approximation over 500 Monte Carlo trials. 

 
CRB for single-pulse SNRs above 5 dB.  Notice that for 
intermediate SNR values, there is a slight difference between 
the simulated variances when the model data and synthetic 
human data are used.  For example, when the underlying data 
exactly matches the model, the estimates follow the CRB for 
SNRs above 0 dB.  This 5 dB difference illustrates the impact 
of modeling error on the estimates.  However, the fact that the 
variances match for most SNRs also validates the quality of 
the ONLP model in terms of approximating the true data. 

The dwell time – i.e., the number of pulses transmitted 
during the entire data collect times the PRI – also has a 
significant impact on the quality of the parameter estimates.  
As illustrated in Fig. 10, the longer the dwell time, the better 
the estimate.  Thus, when the SNR is very low, as is typical of 
human targets, data must be collected for a much longer time 
to achieve comparable performance to targets with a higher 
SNR (or RCS).   

In this case, the estimate for the linear phase parameter, M, 
stabilizes after a 1.5 second dwell time when the SNR is 20 
dB; but when the SNR is -20 dB, the estimate stabilizes after 
2.4 seconds.  In other words, for this particular example, to 
achieve the same quality of estimate, an additional 0.9 seconds 
of data must be collected.   

 

 
 

 
Figure 10.  Variation of linear phase parameter, M, MLE versus number of 

pulses transmitted over 100 Monte Carlo trials. 

 
 

V. PERFORMANCE 

Detector performance is evaluated by applying the proposed 
ONLP detector to simulated radar data as generated in (4).  
The receiver operating characteristic (ROC) curves as well as 
the impact of SNR, incidence angle, and dwell time on the 
probability of detection (PD) is assessed.  By incidence angle, 
we mean the angle between the initial antenna-target vector 
and the target motion vector.  Additionally, the effect on 
detection performance of multiple human targets within a 
single range bin is analyzed.  The results presented in Fig. 11 
– Fig. 15 are generated for a radar with the characteristics 
shown in Table 1. 

 
TABLE 1 

Center Frequency 1 GHz 
Sampling Frequency 20 MHz 
Bandwidth 10 MHz 
Pulse Repetition Interval 0.2 ms 
Pulse Width 40 s 
Transmit Power 1.8 kW 
Nominal Range 8,760 m 

 
 

A. Receiver Operating Characteristics 

ROC curves for the clairvoyant, FFT, and ONLP detectors 
are shown for a human target walking parallel to the x-axis 
and with an incidence angle of 135° in Fig. 11.  The proposed 
ONLP detector exhibits similar performance to the ideal 
clairvoyant detector at a PFA of 0.5, whereas the FFT never 
approaches ideal performance until the PFA is about 1.  The 
ONLP performance exceeds that of the FFT for all PFAs.    
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Figure 11.  PD vs. PFA for a human target with an incidence 
angle of 135°, a dwell time of 0.5 s. and single-pulse SNR = -30dB. 

 

B. Probability of Detection Versus SNR 

The performance improvement of the proposed technique 
may also be seen in Fig. 12, which shows the affect of SNR on 
the probability of detection.  The ONLP detector yields about 
an 11dB improvement in output SNR relative to the FFT. 

 

 
 

Figure 12.  PD vs. SNR for a human target with an  
incidence angle of 135°, a dwell time of 0.5 s. and PFA=10-6. 

 

C. Impact of Target Motion on Detection 

The ONLP method maintains this performance gain 
regardless of the target direction of motion.  Fig. 13 shows the 
probability of detection variation over incidence angle for both 
the FFT and ONLP methods.  Note that performance of the 
FFT plummets as that target’s motion increasingly aligns with 
the radar-target vector.  This is because as the radial velocity 
observed by the radar increases, the overall phase history 
becomes increasingly linear.  Even a small error in estimating 
the phase history slope results in errors that accrue with dwell 
time and severely degrade performance. When the radial 

velocity is small, the phase history is predominantly sinusoidal 
and the phase mismatch errors are limited by the oscillation 
amplitude.  Because the ONLP method optimizes the matched 
filter parameters, it maintains superior performance over all 
incidence angles. 

    

 
 

Figure 13.  PD vs. incidence angle for a human target with  
a dwell time of 0.5 s., SNR of -10dB and PFA=0.2. 

 

D. Probability of Detection Versus Dwell Time 

     The impact of dwell time on detection performance is 
shown in Fig. 14.  After a dwell of about 1.2 seconds, the 
proposed ONLP detector achieves the same performance as 
the ideal, clairvoyant detector.  However, the FFT-based 
detector is unable to detect any targets even after twice the 
dwell time.  This result is consistent with expectations, as the 
output SNR versus dwell time plot of Fig. 7 also showed that 
for human detection FFT-based detectors do not exhibit 
improved performance with dwell time.  By making a 
significantly better matched filter, however, not only are we 
able to achieve better detection performance at a given dwell 
time, but we are now able to eventually achieve ideal 
performance given a sufficiently long dwell. 
 

E. Multi-Target Situation 

Up until now, results have been provided for the case when a 
single target resides in a single range bin.  However, 
considering human social patterns, more than one human 
target occupying the same range-bin is very likely, causing the 
phase history to, in fact, contain the sum of the phase 
information of multiple human targets.  In this situation, we 
define a detection as the simple indication of a target present, 
not the determination of the number of targets present, a topic 
of future work. 

Consider the case of three people starting at the same point, 
but walking in different directions: 45°, 0°, and -45° relative to 
x-axis.  Then, the phase history obtained for a total number of 
2,500 transmitted pulses consists of irregularly shaped 
oscillations, as shown in Fig. 15. 
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Figure 14.  PD v dwell time for a human target with  
an SNR of -10dB and PFA=10-6. 

 
 

 
 

Figure 16. ROC curve comparing detector performance for  
the multi-target phase history of Fig. 15.  

 
 
These irregularities do not significantly affect the detector 

design, as any nonlinearity is matched filtered with the best-
fitting sinusoid, and thereby achieves improved detection 
performance, as shown in Fig. 16.  Generally, the higher the 
number of targets in a range bin, the more complex and 
nonlinear the phase function.  Although in an absolute sense, 
the degree to which the model matches the phase in the multi- 
target case may vary, the ONLP model will almost always 
better match the phase of – and thus outperform – the linear 
phase FFT. 
 

VI. CONCLUSION 

A novel method for improving the performance of matched-
filters in detecting human targets has been presented.  A 
sinusoidal (ONLP) approximation to the true target phase was 
derived based on the Thalmann human walking model, 

thereby capturing the characteristic nature of human motion.  
Results show a drastic improvement in output SNR and 
detection performance for the proposed method relative to 
existing FFT-based techniques. 

 

 
 

Figure 16. ROC curve comparing detector performance for  
the multi-target phase history of Fig. 15.  

 
 
Possibilities for future work include extending this 

technique to multi-channel systems so that clutter cancellation 
techniques may be used to mitigate the effect of clutter; 
applying spectral analysis techniques to estimate the number 
of human targets detected within a range bin; and using the 
Thalmann model to extract additional information about the 
target.  For example, an estimate of the velocity/height ratio, 
RV, may be obtained and used, in conjunction with the 
velocity estimate, to extract an estimate of the person’s height.  
Statistical properties of the variation of human height in men 
and women may then be used to classify targets according to 
gender. 
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