RDECOM TR 10-D-109

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

TITLE: Design and Experimental Results for the S407 Airfoil

AUTHOR:	Dan M. Somers and Mark D. Maughmer
COMPANY NAME:	Airfoils, Incorporated
COMPANY ADDRESS:	122 Rose Drive Port Matilda PA 16870-7535
DATE:	August 2010
FINAL REPORT:	Contract Number W911W6-07-C-0047, SBIR Phase II, Topic Number A06-006, Proposal Number A2-2972

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited.

Prepared for:

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND, AVIATION APPLIED TECHNOLOGY DIRECTORATE, FORT EUSTIS, VA 23604-5577

AIRFOILS, INCORPORATED

122 ROSE DRIVE PORT MATILDA, PA 16870-7535 USA WEBSITE WWW.AIRFOILS.COM TELEPHONE (814) 357-0500 FACSIMILE (814) 357-0357

DESIGN AND EXPERIMENTAL RESULTS FOR THE S407 AIRFOIL

DAN M. SOMERS AIRFOILS, INCORPORATED

MARK D. MAUGHMER The Pennsylvania State University

AUGUST 2010

<u>ABSTRACT</u>

An 11.43-percent-thick airfoil, the S407, intended for rotorcraft applications has been designed and analyzed theoretically and verified experimentally in The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a sharp stall, which does not meet the design objective. Comparisons of the theoretical and experimental results generally show good agreement.

INTRODUCTION

Almost all airfoils in use on rotorcraft today were developed under the assumption that extensive laminar flow is not likely on a rotor. (See ref. 1, for example.) For the present application, however, given the low Reynolds numbers, the achievement of laminar flow warrants exploration.

The airfoil designed under the present effort is intended for the rotor of a high-altitude, tandem-rotor helicopter. To complement the design effort, an investigation was conducted in The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel (ref. 2) to obtain the basic, low-speed, two-dimensional aerodynamic characteristics of the airfoil. The results have been compared with predictions from the method of references 3 and 4 and from the method of reference 5.

SYMBOLS

Values are given in both SI and U.S. Customary Units. Measurements and calculations were made in U.S. Customary Units.

C _p	pressure coefficient, $\frac{p_l - p_{\infty}}{q_{\infty}}$
c	airfoil chord, mm (in.)
c _c	section chord-force coefficient, $\oint C_p d\left(\frac{z}{c}\right)$
c _d	section profile-drag coefficient, $\int_{Wake} c_d' d\left(\frac{h}{c}\right)$, except post stall, $c_n \sin \alpha + c_c \cos \alpha$ Wake
c _d '	point drag coefficient (ref. 6)
c _l	section lift coefficient, $c_n / \cos \alpha - c_d \tan \alpha$

c _m	section pitching-moment coefficient about quarter-chord point, $-\oint C_p \left(\frac{x}{c} - 0.25\right) d\left(\frac{x}{c}\right) + \oint C_p \left(\frac{z}{c}\right) d\left(\frac{z}{c}\right)$
c _n	section normal-force coefficient, $-\oint C_p d\left(\frac{x}{c}\right)$
h	horizontal width in wake profile, mm (in.)
Μ	free-stream Mach number
р	static pressure, Pa (lbf/ft ²)
q	dynamic pressure, Pa (lbf/ft ²)
R	Reynolds number based on free-stream conditions and airfoil chord
t	airfoil thickness, mm (in.)
Х	airfoil abscissa, mm (in.)
у	model span station, $y = 0$ at midspan, mm (in.)
Z	airfoil ordinate, mm (in.)
α	angle of attack relative to x-axis, deg
Subscripts:	
l	local point on airfoil
11	lower limit of low-drag range
max	maximum
min	minimum
S	separation
Т	transition
ul	upper limit of low-drag range
0	zero lift
∞	free-stream conditions

Abbreviations:

- L. lower surface
- S. boundary-layer separation location, x_S/c
- T. boundary-layer transition location, x_T/c
- U. upper surface

AIRFOIL DESIGN

OBJECTIVES AND CONSTRAINTS

The airfoil design specifications are contained in table I. Two primary objectives are evident. The first objective is to achieve a maximum lift coefficient of 1.20 at a Mach number of 0.20 and a Reynolds number of 147,000. A requirement related to this objective is that the maximum lift coefficient not decrease significantly with transition fixed near the leading edge on both surfaces. In addition, the airfoil should exhibit docile stall characteristics. The second objective is to obtain low profile-drag coefficients from a lift coefficient of 0.20 at a Mach number of 0.70 and a Reynolds number of 552,000 to a lift coefficient of 1.00 at a Mach number of 0.50 and a Reynolds number of 368,000.

Two major constraints were placed on the design of the airfoil. First, the zero-lift pitching-moment coefficient must be no more negative than -0.15 at a Mach number of 0.70 and a Reynolds number of 552,000. Second, the airfoil thickness must be greater than 6-percent chord.

PHILOSOPHY

Given the above objectives and constraints, certain characteristics of the design are apparent. The following sketch illustrates a drag polar that meets the goals for this design.

Sketch 1

The desired airfoil shape can be traced to the pressure distributions that occur at the various points in sketch 1. Point A is the lower limit of the low-drag range of lift coefficients; point B, the upper limit. The profile-drag coefficient at point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 7.) This characteristic is related to the elimination of significant (i.e., drag-producing) laminar separation bubbles on the upper surface for the design range of Reynolds numbers. (See ref. 8.) The drag coefficient increases rapidly outside the low-drag, lift-coefficient range because boundary-layer transition moves quickly toward the leading edge with increasing (or decreasing) lift coefficient. This feature results in a leading edge that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near the leading edge. Thus, the maximum lift coefficient, point C, occurs with turbulent flow along the entire upper surface and, therefore, should be relatively insensitive to roughness at the leading edge.

From the preceding discussion, the pressure distributions along the polar can be deduced. The pressure distribution at point A should look something like sketch 2.

Sketch 2

To achieve low drag, a favorable pressure gradient is desirable along the upper surface to about 30-percent chord. This region is followed by a very slightly convex pressure recovery. The specific pressure recovery employed represents a compromise between maximum lift, drag, pitching moment, stall characteristics, and drag divergence. The steep, adverse pressure gradient aft of about 90-percent chord is a "separation ramp," originally proposed by F. X. Wortmann,¹ which confines turbulent separation to a small region near the trailing edge. By constraining the movement of the separation point at high angles of attack, higher lift coefficients can be achieved with little drag penalty. This feature has the added benefit of promoting docile stall characteristics. (See ref. 9.)

Along the lower surface, the pressure gradient is briefly favorable and then slightly adverse to about 10-percent chord. Aft of this point, a short region having a shallow, adverse pressure gradient (i.e., a "transition ramp") promotes the efficient transition from laminar to turbulent flow (ref. 10). The curved transition ramp (ref. 8) is followed a concave pressure recovery, which exhibits lower drag and has less tendency to separate than the corresponding linear or convex pressure recovery (ref. 10). The pressure recovery must begin much farther forward than optimum for low drag to alleviate separation at lower lift coefficients, especially with transition fixed near the leading edge.

The amounts of pressure recovery on the upper and lower surfaces are determined by the width of the low-drag range and the pitching-moment constraint.

¹Director, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Germany, 1974–1985.

At point B, the pressure distribution should look like sketch 3.

Sketch 3

No suction spike exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar flow, although not to the extent of point A. Because the pressure gradient along the lower surface is favorable farther aft, the extent of laminar flow is greater than at point A.

EXECUTION

Given the pressure distributions previously discussed, the design of the airfoil is reduced to the inverse problem of transforming the pressure distributions into an airfoil shape. The Eppler Airfoil Design and Analysis Code (refs. 3 and 4) was used because of its unique capability for multipoint design and because of confidence gained during the design, analysis, and experimental verification of many other airfoils. (See ref. 11, for example.)

The airfoil is designated the S407. The airfoil shape and coordinates are available from Airfoils, Incorporated. The airfoil thickness is 11.43-percent chord, which satisfies the design constraint.

THEORETICAL PROCEDURE

The theoretical results are predicted using the method of references 3 and 4 (PROFIL07), commonly known as the Eppler code, and the method of reference 5 (MSES 3.0). Critical amplification factors of 11 and 9 were specified for the computations using the method of references 3 and 4 and the method of reference 5, respectively. It should be noted that the compressibility correction (ref. 12) incorporated in the method of references 3 and 4 is invalid if the local flow is supersonic.

Because the free-stream Mach number for all wind-tunnel test conditions did not exceed 0.20, the flow can be considered essentially incompressible for the purpose of comparing the theoretical and experimental results. This allows the (incompressible) conformal-mapping (design) method of references 3 and 4 and the fast, subcritical flow solver of the method of reference 5 to be used.

EXPERIMENTAL PROCEDURE

WIND TUNNEL

The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel (ref. 2) is a closed-throat, single-return, atmospheric tunnel (fig. 1). The test section is 101.3 cm (39.9 in.) high by 147.6 cm (58.1 in.) wide (fig. 2). Electrically actuated turntables provide positioning and attachment for the two-dimensional model. The turntables are flush with the top and bottom tunnel walls and rotate with the model. The axis of rotation coincided approximately with the quarter chord of the model, which was mounted vertically between the turntables. The gaps between the model and the turntables were sealed. The turbulence intensity in the test section is approximately 0.05 percent at 46 m/s (150 ft/s).

MODEL

The aluminum, wind-tunnel model was fabricated by Skytop Aerospace, Bellefonte, Pennsylvania, using a numerically controlled milling machine. The model had a chord of 160.0 mm (6.30 in.) and a span of 107.95 cm (42.50 in.) and, thus, extended through both turntables. Upper- and lower-surface orifices were located to one side of midspan at the staggered positions listed in table II. All the orifices were 0.51 mm (0.020 in.) in diameter with their axes perpendicular to the surface. The surfaces of the model were sanded to ensure an aerodynamically smooth finish. The measured model contour was within 0.13 mm (0.005 in.) of the prescribed shape.

WAKE-SURVEY PROBE

A total- and static-pressure, wake-survey probe (fig. 3) was mounted from the top tunnel wall (fig. 2). The probe was positioned 61.0 cm (24.0 in.) from the ceiling and automatically aligned with the wake-centerline streamline. A traverse mechanism incrementally positioned the probe to survey the wake. The increment was 1.27 mm (0.050 in.) for traverses less than 254.0 mm (10.00 in.) and 2.54 mm (0.100 in.) for longer traverses, which were occasionally required near the maximum lift coefficient. The tip of the probe was located 3.0 chords downstream of the trailing edge of the model.

INSTRUMENTATION

Basic tunnel pressures and the wake pressures were measured with precision transducers. Measurements of the pressures on the model were made by an automatic pressurescanning system utilizing precision transducers. Data were obtained and recorded by an electronic data-acquisition system.

METHODS

The pressures measured on the model were reduced to standard pressure coefficients and numerically integrated to obtain section normal-force and chord-force coefficients and section pitching-moment coefficients about the quarter-chord point. Section profile-drag coefficients were computed from the wake total and static pressures by the method of reference 6. Wake surveys were not performed, however, at most post-stall angles of attack, in which case, the profile-drag coefficients were computed from the normal- and chord-force coefficients.

Standard, low-speed, wind-tunnel boundary corrections (ref. 13) have been applied to the data. The wake-survey-probe total-pressure-tube displacement correction (ref. 6) has been taken into account.

TESTS

The model was tested at Reynolds numbers based on airfoil chord of 70,000, 100,000, 150,000, 200,000, 300,000, and 600,000 with transition free (smooth) and with transition forced by serrated tape (ref. 14) near the leading edge, 5-percent chord on the upper surface and 10-percent chord on the lower surface, to simulate full-chord, turbulent flow. The thickness of the tape was determined empirically on each surface for each Reynolds number by increasing the thickness until transition moved forward to the vicinity of the tape at an angle of attack of 4°, as verified by stethoscope measurements (ref. 15). The resulting thicknesses, listed in table III, are generally at least three times those determined using the method of reference 16. The Mach number did not exceed 0.20 for any test condition.

It should be noted that the test Mach numbers are much lower than most of the operational values of the intended application. Starting from 4°, the angle of attack was increased to post-stall values. The angle of attack was then decreased from 4° to below that for zero lift.

DISCUSSION OF RESULTS

THEORETICAL RESULTS

Pressure Distributions

The inviscid pressure distributions at various angles of attack at Mach numbers of 0.20, 0.50, and 0.70 predicted using the method of references 3 and 4 are shown in figure 4.

Section Characteristics

The section characteristics at the three design conditions with transition free and transition fixed are shown in figures 5 through 7. Based on the predictions, all the design objectives and constraints have essentially been met.

EXPERIMENTAL RESULTS

Traditionally, aerodynamic results are presented in order of increasing Reynolds number. For low Reynolds numbers, however, the results are more easily understood in reverse order. Accordingly, the results are presented in order of decreasing Reynolds number.

Pressure Distributions

The pressure distributions at various angles of attack for a Reynolds number of 300,000 and a Mach number of 0.09 with transition free are shown in figure 8. At an angle of attack of -4.01° (fig. 8(a)), laminar separation, without turbulent reattachment, occurs just forward of the trailing edge on the upper surface and a short laminar separation bubble is barely evident on the lower surface around 35-percent chord. At an angle of attack of -1.00° (fig. 8(a)), a short laminar separation bubble is evident on the upper surface just forward of the trailing edge (i.e., turbulent reattachment has occurred). As the angle of attack is increased, the bubble on the upper surface moves forward, whereas the bubble on the lower surface moves aft, eventually disappearing by an angle of attack of 6.01° (figs. 8(b)–8(c)). At an angle of attack of 10.02° (fig. 8(d)), turbulent, trailing-edge separation is evident on the upper surface. The amount of separation increases with increasing angle of attack (figs. 8(d) and 8(e)). The maximum lift coefficient occurs between the angles of attack of 12° and 13° (fig. 8(e)). As the angle of attack is increased further, the separation point continues to move forward until the leading-edge peak collapses and essentially the entire upper surface is separated at an angle of attack of 17.00° (fig. 8(f)).

The pressure distributions at various angles of attack for a Reynolds number of 150,000 and a Mach number of 0.04 with transition free are shown in figure 9. At an angle of attack of -3.01° (fig. 9(a)), laminar separation, without turbulent reattachment, occurs forward of the trailing edge on the upper surface and a short laminar separation bubble is evident on the lower surface around 45-percent chord. As the angle of attack is increased, the bubble moves aft (figs. 9(a) and 9(b)). At an angle of attack of 1.00° (fig. 9(b)), a short laminar separation bubble is evident on the upper surface just forward of the trailing edge. As the angle of attack is increased, the bubble on the upper surface moves forward, whereas the bubble on the lower surface continues to move aft, eventually disappearing by an angle of attack of 4.01° (figs. 9(b) and 9(c)). At an angle of attack of 11.02° (fig. 9(d)), turbulent, trailing-edge separation is evident on the upper surface. The amount of separation increases with increasing angle of attack (figs. 9(d) and 9(e)). The maximum lift coefficient occurs between the angles of attack of 11° and 12° (figs. 9(d) and 9(e)). As the angle of attack is increased further, the separation point continues to move forward until the leading-edge peak collapses and essentially the entire upper surface is separated at an angle of attack of 14.00° (fig. 9(e)).

The pressure distributions at various angles of attack for a Reynolds number of 70,000 and a Mach number of 0.02 with transition free are shown in figure 10. At an angle of attack of -2.00° (fig. 10(a)), laminar separation, without turbulent reattachment, occurs forward of the trailing edge on the upper surface and a short laminar separation bubble is evident on the lower surface around 70-percent chord. As the angle of attack is increased, the bubble moves aft, eventually disappearing by an angle of attack of 2.00° (figs. 10(a) and 10(b)). At an angle of attack of 3.00° (fig. 10(b)), a short laminar separation bubble is evident on the upper surface just forward of the trailing edge. As the angle of attack is increased, the bubble moves forward (figs. 10(b)–10(d)). Turbulent, trailing-edge separation is barely evident on the upper surface at an angle of attack of 10.52° (not shown), which corresponds to the maximum lift coefficient. At an angle of attack of 11.01° (fig. 10(d)), the leading-edge peak has collapsed and essentially the entire upper surface is separated, suggesting that stall, for this Reynolds number, may be caused by bursting of the bubble.

Section Characteristics

The section characteristics with transition free and transition fixed are shown in figure 11 and tabulated in the appendix. For a Reynolds number of 150,000 and a Mach number of 0.04 with transition free (fig. 11(d)), the maximum lift coefficient is 1.25, which exceeds the design objective. The stall characteristics are sharp, which does not meet the design objective. For a Reynolds number of 598,000 and a Mach number of 0.19 with transition free (fig. 11(a)), the lower limit of the low-drag range of lift coefficients is approximately 0.29 and the zero-lift pitching-moment coefficient is -0.124. For a Reynolds number of 300,000 and a Mach number of 0.09 with transition free (fig. 11(b)), the maximum lift-to-drag ratio occurs at a lift coefficient of about 0.90. (Because the upper limit of the low-drag, lift-coefficient range is not sharply defined, a precise value for the upper limit cannot be given.)

The effects of Reynolds number on the section characteristics are summarized in figures 12 and 13. In general, with transition free, the lift-curve slope, the maximum lift coefficient, the upper limit of the low-drag range, and the magnitudes of the zero-lift angle of attack and the pitching-moment coefficients, including the zero-lift value, decrease with decreasing Reynolds number. The profile-drag coefficients and the lower limit of the low-drag range generally increase with decreasing Reynolds number. The stall characteristics become sharper with decreasing Reynolds number.

The effect of fixing transition on the section characteristics is shown in figure 11. In general, the zero-lift angle of attack and pitching-moment coefficient and the maximum lift coefficient are relatively unaffected by fixing transition, whereas the lift-curve slope and the magnitude of the pitching-moment coefficients decrease with transition fixed. The latter results are primarily a consequence of the boundary-layer displacement effect, which decambers the airfoil because the displacement thickness is greater with transition fixed than with transition free. For some Reynolds numbers, the maximum lift coefficient actually increases with transition fixed, which is an atypical result for high Reynolds numbers, but not uncommon for low Reynolds numbers. This result is probably caused by the alleviation of the upper-surface laminar separation bubble by the trip or by vortices generated by the serrated tape. The drag coefficients are, of course, generally affected adversely by the trips. The stall characteristics are generally sharper with transition fixed.

It should be noted that, for almost all test conditions, the Reynolds number based on local velocity and boundary-layer displacement thickness at the trip locations is too low to support turbulent flow. (See ref. 17.) Accordingly, to force transition, the serrated tape must be so thick that it increases the displacement thickness, which abnormally decreases the lift coefficient and the magnitude of the pitching-moment coefficient and increases the drag coefficient. Conversely, at low lift coefficients and Reynolds numbers, the serrated tape eliminates the laminar separation bubble on the lower surface, resulting in higher lift coefficients and, for a Reynolds number of 70,000 particularly, lower drag coefficients.

The variations of maximum lift coefficient and profile-drag coefficient with Reynolds number are shown in figures 14 and 15, respectively. The maximum lift coefficient decreases with decreasing Reynolds number, whereas the profile-drag coefficient increases, which are typical trends for most airfoils.

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Pressure Distributions

The comparison of the theoretical and experimental pressure distributions at various angles of attack is shown in figure 16. It should be noted that the pressure distributions predicted using the method of references 3 and 4 (PROFIL07) are inviscid and incompressible, whereas the pressure distributions predicted using the method of reference 5 (MSES 3.0) as well as the experimental pressure distributions were obtained for a Reynolds number of 150,000 and a Mach number of 0.04 with transition free. It should also be noted that the theoretical lift coefficient from the method of references 3 and 4 is calculated from the lift-curve slope and the angle of attack relative to the zero-lift line, whereas the lift coefficient from the

method of reference 5 and from the experiment is derived from the integrated pressure distribution. (See refs. 3–6.) Thus, at a given lift coefficient, the pressure distribution predicted using the method of references 3 and 4 does not necessarily have the same area as the measured pressure distribution. It should be noticed that the angle of attack shown in figure 16 is the value from the method of references 3 and 4, not the experimental value.

With respect to the method of references 3 and 4, at a lift coefficient of 0.25 (fig. 16(a)), neither the pressure coefficients nor the pressure gradients agree well, especially in the vicinity of the laminar separation bubble on the lower surface and toward the trailing edge on both surfaces. The latter disparity probably occurs because the method does not model the effect of the upper-surface laminar separation on the pressure distribution. At a lift coefficient of 0.79 (fig. 16(b)), the pressure coefficients and the pressure gradients agree reasonably well, again except toward the trailing edge. This disparity is probably due to the decambering viscous effects, which are not modeled in the inviscid pressure distribution. At a lift coefficient of 1.22 (fig. 16(c)), which is near the experimental maximum lift coefficient, the agreement is poor, again because of the displacement effect.

With respect to the method of reference 5, at a lift coefficient of 0.25 (fig. 16(a)), the pressure coefficients and the pressure gradients agree well. The predicted location of the lower-surface laminar separation bubble is aft of the measured location and transition is predicted forward of the trailing edge on the upper surface, causing some pressure recovery not evident in the experiment. At a lift coefficient of 0.79 (fig. 16(b)), the pressure distributions again agree well, although the predicted location of the upper-surface bubble is aft of the measured location. At a lift coefficient of 1.22 (fig. 16(c)), the agreement is less exact probably because the predicted location of the upper-surface bubble is again too far aft.

Section Characteristics

The comparison of the theoretical and experimental section characteristics with transition free is shown in figure 17. The agreement between the lift curves worsens with decreasing Reynolds number, particularly for the method of references 3 and 4 (PROFIL07). The method of references 3 and 4 underpredicts the maximum lift coefficient by an average of 1 percent for Reynolds numbers greater than 100,000 and by an average of 6 percent for Reynolds numbers of 100,000 and 70,000. The method of reference 5 (MSES 3.0) overpredicts the maximum lift coefficient by an average of 5 percent for the intermediate Reynolds numbers and by an average of 10 percent for Reynolds numbers of 600,000 and 70,000. Both methods predict the profile-drag coefficients relatively well, considering the low Reynolds numbers. The method of references 3 and 4 underpredicts the drag coefficients at low lift coefficients probably because it does not account for the effect of the upper-surface laminar separation. The method of references 3 and 4 overpredicts the magnitude of the pitchingmoment coefficients.

The comparison of the theoretical and experimental section characteristics with transition fixed is shown in figure 18. In general, the predicted characteristics show similar tendencies as with transition free, although the general agreement is poorer, probably because of the abnormalities introduced by the serrated tape, as discussed previously.

CONCLUDING REMARKS

An 11.43-percent-thick airfoil, the S407, intended for rotorcraft applications has been designed and analyzed theoretically and verified experimentally in The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel. The two primary objectives of a high maximum lift coefficient and low profile-drag coefficients have been achieved. The constraints on the zero-lift pitching-moment coefficient and the airfoil thickness have been satisfied. The airfoil exhibits sharp stall characteristics that become sharper with decreasing Reynolds number, which does not meet the design objective. Comparisons of the theoretical and experimental results generally show good agreement.

ACKNOWLEDGMENTS

This effort was sponsored by the U.S. Army. Preston B. Martin served as the technical monitor.

REFERENCES

- 1. Noonan, Kevin W.: Aerodynamic Characteristics of Two Rotorcraft Airfoils Designed for Application to the Inboard Region of a Main Rotor Blade. NASA TP-3009, 1990.
- Brophy, Christopher M.: Turbulence Management and Flow Qualification of The Pennsylvania State University Low Turbulence, Low Speed, Closed Circuit Wind Tunnel. M. S. Thesis, Pennsylvania State Univ., 1993.
- 3. Eppler, Richard: Airfoil Design and Data. Springer-Verlag (Berlin), 1990.
- 4. Eppler, Richard: Airfoil Program System "PROFIL07." User's Guide. Richard Eppler, c.2007.
- 5. Drela, M.: Design and Optimization Method for Multi-Element Airfoils. AIAA Paper 93-0969, Feb. 1993.
- 6. Pankhurst, R. C.; and Holder, D. W.: Wind-Tunnel Technique. Sir Isaac Pitman & Sons, Ltd. (London), 1965.
- 7. Abbott, Ira H.; Von Doenhoff, Albert E.; and Stivers, Louis S., Jr.: Summary of Airfoil Data. NACA Rep. 824, 1945. (Supersedes NACA WR L-560.)
- 8. Eppler, Richard; and Somers, Dan M.: Airfoil Design for Reynolds Numbers Between 50,000 and 500,000. Proceedings of the Conference on Low Reynolds Number Airfoil Aerodynamics, UNDAS-CP-77B123, Univ. of Notre Dame, June 1985, pp. 1–14.
- 9. Maughmer, Mark D.; and Somers, Dan M.: Design and Experimental Results for a High-Altitude, Long-Endurance Airfoil. J. Aircr., vol. 26, no. 2, Feb. 1989, pp. 148–153.
- Wortmann, F. X.: Experimental Investigations on New Laminar Profiles for Gliders and Helicopters. TIL/T.4906, British Minist. Aviat., Mar. 1960. (Translated from Z. Flugwissenschaften, Bd. 5, Heft 8, Aug. 1957, S. 228–243.)
- Somers, Dan M.: Subsonic Natural-Laminar-Flow Airfoils. Natural Laminar Flow and Laminar Flow Control, R. W. Barnwell and M. Y. Hussaini, eds., Springer-Verlag New York, Inc., 1992, pp. 143–176.
- Labrujere, Th. E.; Loeve, W.; and Sloof, J. W.: An Approximate Method for the Determination of the Pressure Distribution on Wings in the Lower Critical Speed Range. Transonic Aerodynamics. AGARD CP No. 35, Sept. 1968, pp. 17-1–17-10.
- Allen, H. Julian; and Vincenti, Walter G.: Wall Interference in a Two-Dimensional-Flow Wind Tunnel, With Consideration of the Effect of Compressibility. NACA Rep. 782, 1944. (Supersedes NACA WR A-63.)

- 14. Hama, Francis R.: An Efficient Tripping Device. J. Aeronaut. Sci., vol. 24, no. 3, Mar. 1957, pp. 236–237.
- 15. Pfenninger, Werner: Investigations on Reductions of Friction on Wings, in Particular by Means of Boundary Layer Suction. NACA TM 1181, 1947. (Translated from Mitteilungen aus dem Institut für Aerodynamik an der Eidgenössischen Technischen Hochschule Zürich, Nr. 13, 1946.)
- Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NACA TN 4363, 1958.
- 17. Schubauer, G. B.; and Klebanoff, P. S.: Contributions on the Mechanics of Boundary-Layer Transition. NACA Rep. 1289, 1956.

TABLE I.- AIRFOIL DESIGN SPECIFICATIONS

Parameter	Objective/ Constraint	Mach Number M	Reynolds Number R	Priority
Minimum lift coefficient c _{l,min}	0.15	0.70	552,000	Low
Maximum lift coefficient c _{l,max}	1.20	0.20	147,000	High
Lower limit of low-drag, lift-coefficient range c _{l,ll}	0.20	0.70	552,000	High
Upper limit of low-drag, lift-coefficient range c _{l,ul}	1.00	0.50	368,000	Medium
Zero-lift pitching-moment coefficient $c_{m,0}$	≥-0.15	0.70	552,000	Low
Thickness t/c	> 0.06			Low
Other requirements: Maximum lift coefficient $c_{l,max}$ independent of leading-edge roughness Docile stall characteristics				

TABLE II.- MODEL ORIFICE LOCATIONS

[c = 160.0 mm (6.30 in.)]

Upper Surface

1.0000

-71.4 (-2.81)

Lower Surface

x/c	y, mm (in.)	x/c	y, mm (in.)
0.0000	-117.9 (-4.64)	0.0010	-140.0 (-5.51)
.0006	-115.8 (-4.56)	.0080	-137.9 (-5.43)
.0050	-113.8 (-4.48)	.0204	-135.9 (-5.35)
.0137	-111.8 (-4.40)	.0379	-133.9 (-5.27)
.0267	-110.7 (-4.36)	.0601	-132.8 (-5.23)
.0440	-109.7 (-4.32)	.0866	-131.8 (-5.19)
.0655	-108.7 (-4.28)	.1172	-103.8 (-5.15)
.0911	-107.7 (-4.24)	.1515	-129.8 (-5.11)
.1207	-106.7 (-4.20)	.1892	-128.5 (-5.06)
.1539	-105.7 (-4.16)	.2301	-127.3 (-5.01)
.1906	-104.4 (-4.11)	.2738	-126.0 (-4.96)
.2303	-103.1 (-4.06)	.3202	-124.5 (-4.90)
.2729	-101.9 (-4.01)	.3689	-122.9 (-4.84)
.3179	-100.3 (-3.95)	.4197	-121.4 (-4.78)
.3650	-98.8 (-3.89)	.4721	-119.9 (-4.72)
.4136	-97.3 (-3.83)	.5256	-118.4 (-4.66)
.4632	-95.8 (-3.77)	.5796	-116.8 (-4.60)
.5133	-94.2 (-3.71)	.6335	-115.3 (-4.54)
.5635	-92.7 (-3.65)	.6866	-113.8 (-4.48)
.6131	-91.2 (-3.59)	.7381	-112.3 (-4.42)
.6617	-89.7 (-3.53)	.7874	-110.7 (-4.36)
.7087	-88.1 (-3.47)	.8335	-109.2 (-4.30)
.7536	-86.9 (-3.42)	.8757	-108.0 (-4.25)
.7958	-85.6 (-3.37)	.9129	-106.7 (-4.20)
.8349	-84.3 (-3.32)	.9442	-105.7 (-4.16)
.8705	-83.3 (-3.28)	.9687	-103.6 (-4.08)
.9021	-82.3 (-3.24)	.9861	-101.6 (-4.00)
.9294	-81.3 (-3.20)	.9966	-99.6 (-3.92)
.9527	-80.3 (-3.16)		
.9720	-78.2 (-3.08)		
.9870	-76.2 (-3.00)		
.9966	-74.2 (-2.92)		

TABLE III.- TRIP LOCATIONS AND SIZES

	Upper surface		Lower surface	
R	x/c	Serrated-tape thickness, mm (in.)	x/c	Serrated-tape thickness, mm (in.)
70,000	0.05	0.396 (0.0156)	0.10	0.853 (0.0336)
100,000		0.351 (0.0138)		0 648 (0 0255)
150,000		0.282 (0.0111)		
200,000		0.218 (0.0086)	0.10	0.048 (0.0233)
300,000		0.135 (0.0053)		
600,000		0.043 (0.0017)		0.432 (0.0170)

Figure 1.- The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel.

Figure 2.- S407 airfoil model and wake-survey probe mounted in test section.

Figure 3.- Wake-survey probe.

(a) M = 0.20.

Figure 4.- Theoretical (inviscid) pressure distributions.

(b) M = 0.50.

Figure 4.- Continued.

(c) M = 0.70.

Figure 4.- Concluded.

(a) Transition free.

Figure 5.- Theoretical section characteristics at M = 0.20 and R = 147,000.

(b) Transition fixed.

Figure 5.- Concluded.

(a) Transition free.

Figure 6.- Theoretical section characteristics at M = 0.50 and R = 368,000.

Figure 6.- Concluded.

(a) Transition free.

Figure 7.- Theoretical section characteristics at M = 0.70 and R = 552,000.

(b) Transition fixed.

Figure 7.- Concluded.

(a) $\alpha = -4.01^{\circ}, -3.01^{\circ}, -2.01^{\circ}, \text{ and } -1.00^{\circ}.$

Figure 8.- Experimental pressure distributions for R = 300,000 and M = 0.09 with transition free.

(b) $\alpha = 0.00^{\circ}$, 1.00°, 2.00°, and 3.01°.

Figure 8.- Continued.

(c) $\alpha = 4.01^{\circ}$, 5.01°, 6.01°, and 7.01°.

Figure 8.- Continued.

(d) $\alpha = 8.02^{\circ}, 9.02^{\circ}, 10.02^{\circ}, \text{ and } 11.02^{\circ}.$

Figure 8.- Continued.

(e) $\alpha = 12.02^{\circ}, 13.02^{\circ}, 14.02^{\circ}, and 15.02^{\circ}.$

Figure 8.- Continued.

(f) $\alpha = 16.02^{\circ}$ and 17.00°.

Figure 8.- Concluded.

(a) $\alpha = -3.01^{\circ}, -2.01^{\circ}, \text{ and } -1.00^{\circ}.$

Figure 9.- Experimental pressure distributions for R = 150,000 and M = 0.04 with transition free.

(b) $\alpha = 0.00^{\circ}$, 1.00°, 2.00°, and 3.01°.

Figure 9.- Continued.

(c) $\alpha = 4.01^{\circ}$, 5.01°, 6.01°, and 7.01°.

Figure 9.- Continued.

(d) $\alpha = 8.02^{\circ}, 9.02^{\circ}, 10.02^{\circ}, \text{ and } 11.02^{\circ}.$

Figure 9.- Continued.

(e) $\alpha = 12.02^{\circ}, 13.02^{\circ}, 14.00^{\circ}, \text{ and } 15.00^{\circ}.$

Figure 9.- Concluded.

(a) $\alpha = -2.00^{\circ}, -1.00^{\circ}, 0.00^{\circ}, \text{ and } 1.00^{\circ}.$

Figure 10.- Experimental pressure distributions for R = 70,000 and M = 0.02 with transition free.

(b) $\alpha = 2.00^{\circ}, 3.00^{\circ}, 4.01^{\circ}, \text{ and } 5.01^{\circ}.$

Figure 10.- Continued.

(c) $\alpha = 6.01^{\circ}, 7.01^{\circ}, 8.02^{\circ}, \text{ and } 9.02^{\circ}.$

Figure 10.- Continued.

(d) $\alpha = 10.02^{\circ}$, 11.01°, 12.00°, and 13.00°.

Figure 10.- Concluded.

(a) R = 598,000 and M = 0.19.

Figure 11.- Experimental section characteristics with transition free and transition fixed.

(b) R = 300,000 and M = 0.09.

Figure 11.- Continued.

(c) R = 200,000 and M = 0.06.

Figure 11.- Continued.

(d) R = 150,000 and M = 0.04.

Figure 11.- Continued.

(e) R = 100,000 and M = 0.03.

Figure 11.- Continued.

(f) R = 70,000 and M = 0.02.

Figure 11.- Concluded.

(a) R = 600,000, 300,000, and 200,000.

Figure 12.- Effects of Reynolds number on experimental section characteristics with transition free.

(b) R = 150,000, 100,000, and 70,000.

Figure 12.- Concluded.

(a) R = 600,000, 300,000, and 200,000.

Figure 13.- Effects of Reynolds number on experimental section characteristics with transition fixed.

(b) R = 150,000, 100,000, and 70,000.

Figure 13.- Concluded.

Figure 14.- Variation of experimental maximum lift coefficient with Reynolds number.

Figure 15.- Variation of experimental profile-drag coefficient with Reynolds number. Data with transition free correspond to $c_{d,min}$; with transition fixed, to c_d at $\alpha = 4^{\circ}$.

Figure 16.- Comparison of theoretical and experimental pressure distributions for R = 150,000 and M = 0.04.

(b) $c_l = 0.79$.

Figure 16.- Continued.

(c) $c_l = 1.22$.

Figure 16.- Concluded.

(a) R = 598,000.

Figure 17.- Comparison of theoretical and experimental section characteristics with transition free.

(b) R = 300,000.

Figure 17.- Continued.

(c) R = 200,000.

Figure 17.- Continued.

(d) R = 150,000.

Figure 17.- Continued.

(e) R = 100,000.

Figure 17.- Continued.

(f) R = 70,000.

Figure 17.- Concluded.

(a) R = 596,000.

Figure 18.- Comparison of theoretical and experimental section characteristics with transition fixed.

(b) R = 300,000.

Figure 18.- Continued.

(c) R = 200,000.

Figure 18.- Continued.

(d) R = 150,000.

Figure 18.- Continued.

(e) R = 100,000.

Figure 18.- Continued.

(f) R = 70,000.

Figure 18.- Concluded.

<u>APPENDIX</u>

EXPERIMENTAL SECTION CHARACTERISTICS

R = 598,000, M = 0.19, transition free

α, deg	c_l	c _d	c _m
-5.012	-0.1147	0.012647	-0.11775
-4.010	.0135	.010021	12521
-3.008	.1277	.009202	12642
-2.006	.2358	.008625	12601
-1.504	.2922	.007996	12616
-1.003	.3457	.007752	12550
001	.4514	.007630	12374
1.001	.5548	.008101	12163
2.004	.6644	.008849	11980
2.505	.7132	.009240	11853
3.006	.7620	.009703	11726
4.008	.8560	.010643	11470
5.011	.9522	.011520	11143
6.013	1.0421	.013052	10748
7.015	1.1231	.014099	10124
8.017	1.2052	.016613	09600
9.019	1.2845	.018743	09040
10.021	1.3493	.022316	08441
11.023	1.4067	.026003	07594
12.024	1.4307	.031973	06973
12.525	1.4419	.033682	06556
13.025	1.4391	.061864	06406
14.018	1.2631	.118186	10256
15.015	1.2009	.160504	11957

R = 596,000, M = 0.20, transition fixed

α, deg	c _l	c _d	c _m
-5.013	-0.1197	0.013661	-0.11832
-4.010	.0082	.010809	12588
-3.008	.1166	.012489	11928
-2.005	.2267	.011403	11999
-1.003	.3372	.010422	12028
001	.4429	.010268	11911
1.002	.5447	.011447	11689
2.004	.6450	.012552	11460
3.006	.7405	.013302	11327
4.008	.8284	.013402	10873
5.011	.9264	.014736	10688
6.013	1.0242	.015908	10415
7.015	1.1201	.017492	10098
8.017	1.2114	.018771	09681
9.020	1.2924	.021249	09152
10.021	1.3597	.023386	08628
11.023	1.4041	.027633	07594
11.524	1.4184	.030342	07259
12.024	1.4224	.035191	07038
12.525	1.4304	.039325	06700
13.024	1.4241	.069726	07115
14.015	1.1491	.112291	11024
15.014	1.1490	.141475	12384

R = 300,000, M = 0.09, transition free

α, deg	c_l	c _d	c _m
-4.010	-0.0739	0.011960	-0.10288
-3.008	.0763	.012192	11423
-2.006	.2157	.011108	12232
-1.003	.3435	.011016	12418
001	.4451	.010218	12262
1.001	.5464	.009116	11992
1.252	.5711	.009019	11933
2.004	.6436	.009259	11677
3.006	.7378	.009968	11323
4.008	.8255	.010762	10854
5.010	.9048	.011579	10250
6.012	.9991	.013321	09997
7.014	1.0836	.015462	09657
8.016	1.1596	.017973	09186
9.018	1.2287	.021190	08504
10.020	1.2850	.025003	07781
11.022	1.3231	.030115	07057
12.022	1.3380	.036312	06658
12.523	1.3489	.035309	06215
13.022	1.3318	.032565	06676
14.020	1.2218	.087000	07357
15.018	1.1980	.117142	08728
16.017	1.0971	.127706	07446
17.004	.8212	.267439	16543

R = 300,000, M = 0.09, transition fixed

α, deg	c _l	c _d	c _m
-4.010	-0.0729	0.017223	-0.09697
-3.008	.0689	.010798	10761
-2.005	.2125	.012800	11583
-1.003	.3265	.013345	11708
001	.4260	.014291	11503
1.002	.5199	.014781	11174
2.004	.6134	.015354	10841
3.006	.7083	.016064	10613
4.008	.7982	.016939	10314
5.010	.8831	.018068	10014
6.012	.9727	.019589	09791
7.014	1.0648	.021063	09475
8.016	1.1472	.023357	09101
9.018	1.2227	.026015	08617
10.020	1.2874	.029385	08013
11.022	1.3444	.033447	07479
11.522	1.3612	.037333	07290
12.023	1.3590	.041615	06676
12.523	1.3386	.047640	06330
13.022	1.3143	.067648	06539
14.021	1.3166	.107975	07659
15.004	.7801	.221866	15367

R = 200,000, M = 0.06, transition free

α, deg	c _l	c _d	c _m
-4.010	-0.1073	0.014002	-0.09318
-3.008	0036	.013960	09543
-2.507	.0658	.013179	10024
-2.006	.1351	.017453	10419
-1.505	.2171	.015507	11143
-1.004	.2960	.014314	11736
502	.3710	.013951	12252
001	.4312	.013383	12138
.500	.4833	.013057	11943
1.001	.5340	.011508	11900
1.502	.5833	.010967	11709
1.753	.6062	.010791	11583
2.254	.6507	.010604	11331
3.006	.7121	.010654	10722
4.008	.7904	.010851	10005
5.010	.8888	.012701	09892
6.012	.9788	.014652	09656
7.014	1.0608	.016763	09327
8.016	1.1292	.019650	08813
9.018	1.1969	.023388	08144
10.020	1.2411	.028336	07497
10.520	1.2562	.030988	07151
11.021	1.2774	.033839	06631
11.521	1.2714	.037991	06416
12.021	1.2662	.058938	06062
13.021	1.2444	.070173	05591
14.020	1.2141	.096610	06787
15.004	.7738	.220786	15201

R = 200,000, M = 0.06, transition fixed

α, deg	c_l	c _d	c _m
-3.008	-0.0143	0.018165	-0.08746
-2.507	.0669	.018579	09600
-2.005	.1507	.018101	10257
-1.003	.3103	.015957	11375
001	.4108	.014490	11053
1.002	.4912	.015907	10476
2.003	.5739	.017739	10150
3.006	.6653	.017982	09910
4.008	.7554	.018789	09706
5.010	.8463	.019584	09484
6.012	.9396	.021117	09343
7.014	1.0240	.022391	09011
8.016	1.1048	.024331	08634
9.018	1.1771	.026795	08096
10.019	1.2320	.029973	07568
11.021	1.2860	.033332	06862
11.522	1.3047	.033517	06575
12.022	1.3289	.036575	06384
12.522	1.2964	.039401	06283
13.021	1.2733	.078635	06484
14.019	1.2077	.105984	07927
15.017	1.1594	.129461	09189
16.015	1.1275	.152862	10184

R = 150,000, M = 0.04, transition free

α, deg	c_l	c _d	c _m
-3.008	-0.0228	0.015294	-0.09049
-2.006	.0863	.016160	09085
-1.505	.1570	.017806	09782
-1.004	.2496	.020146	10693
502	.3323	.017580	11326
001	.3970	.016913	11567
1.001	.5225	.014653	11663
2.004	.6183	.013092	11196
2.755	.6759	.012566	10657
3.006	.6974	.012187	10523
3.257	.7095	.011807	09840
4.008	.7859	.012335	09965
5.010	.8834	.013982	09815
6.012	.9722	.016308	09529
7.014	1.0579	.018509	09110
8.016	1.1256	.021716	08613
9.018	1.1760	.026383	08060
10.019	1.2175	.032419	07348
11.020	1.2440	.039717	06530
11.521	1.2458	.044862	06189
12.021	1.2420	.050794	05784
13.020	1.2025	.077509	05547
14.004	.7521	.199857	14622
15.004	.7863	.224624	15566

R = 150,000, M = 0.04, transition fixed

α , deg	c_l	c _d	c _m
-3.008	-0.0469	0.020727	-0.08117
-2.006	.1107	.023464	09461
-1.003	.2775	.021410	10853
001	.4056	.018004	11103
1.002	.4820	.016702	10218
1.503	.5263	.015685	10070
2.004	.5643	.015922	09857
3.006	.6507	.018278	09634
3.506	.6972	.019449	09631
4.007	.7393	.020317	09482
5.009	.8264	.021456	09242
6.011	.9124	.023020	08965
7.013	.9943	.024576	08623
8.015	1.0687	.027249	08173
9.017	1.1341	.030279	07597
10.019	1.1876	.033641	06976
11.020	1.2340	.038185	06398
11.521	1.2493	.040855	06136
12.021	1.2551	.043853	05785
12.522	1.2677	.048869	05760
13.021	1.2357	.044041	05374
14.017	1.1262	.094259	07241
15.004	.8299	.199064	16000

R = 100,000, M = 0.03, transition free

α, deg	c_l	c _d	c _m
-3.008	-0.0605	0.018922	-0.07879
-2.006	.0243	.020326	07581
-1.004	.1190	.019659	07453
503	.1719	.019043	07555
002	.2328	.019609	08038
.499	.3241	.029319	09047
1.000	.3924	.024662	09442
2.003	.5340	.017933	09913
3.005	.6725	.015166	10383
3.506	.7127	.015344	10105
4.008	.7712	.015683	10197
5.010	.8643	.016727	09709
6.012	.9555	.018812	09247
7.014	1.0276	.022331	08803
8.016	1.0950	.026066	08135
9.017	1.1508	.032077	07789
10.019	1.1998	.039164	07157
10.520	1.2119	.044354	06674
11.020	1.2215	.049599	06368
11.521	1.2354	.056061	05956
12.020	1.2060	.064741	05855
13.004	.7233	.177136	13856
14.004	.7510	.200184	14545
15.004	.8164	.229107	16079

R = 100,000, M = 0.03, transition fixed

α , deg	c_l	c _d	c _m
-3.008	-0.0625	0.020131	-0.07735
-2.006	.0484	.019747	08134
-1.004	.1885	.023114	09168
001	.3721	.014818	10840
1.001	.4947	.017061	11059
1.502	.5293	.017450	10385
2.003	.5714	.017776	10226
3.006	.6502	.020430	09543
4.007	.7330	.021571	09287
5.009	.8044	.022868	08941
6.011	.8853	.024626	08597
7.013	.9587	.026286	08028
8.015	1.0381	.028751	07625
9.017	1.1084	.032877	07058
10.019	1.1710	.038005	06659
11.020	1.2175	.046434	06337
11.521	1.2389	.048330	06068
12.004	.8321	.176726	16586
13.004	.7446	.175366	14333
14.003	.7507	.201158	14850

R = 70,000, M = 0.02, transition free

α, deg	c _l	c _d	c _m
-2.005	-0.0088	0.023370	-0.06219
-1.003	.0635	.022756	05400
002	.1154	.026496	05203
1.000	.2590	.023017	06570
1.501	.3361	.022345	07692
2.001	.4486	.025787	09436
2.503	.5934	.024142	11167
3.005	.6653	.022058	11137
3.506	.7265	.019750	10938
3.756	.7319	.019075	10582
4.007	.7605	.019055	10562
5.010	.8604	.020393	09803
6.012	.9292	.023285	09175
7.014	1.0117	.026955	08508
8.016	1.0772	.029496	07848
9.018	1.1516	.039935	07528
10.019	1.1904	.050501	06899
10.519	1.1942	.057295	06600
11.005	.7414	.149474	13102
12.004	.6881	.160762	12951
13.003	.6996	.177315	13603

R = 70,000, M = 0.02, transition fixed

α , deg	c_l	c _d	c _m
-3.008	-0.0690	0.024960	-0.07557
-2.006	.0051	.024745	07553
-1.004	.1145	.027274	07874
002	.2905	.019781	09529
1.001	.4409	.022469	10336
2.003	.5473	.023235	09724
3.005	.6291	.024359	09557
4.007	.6922	.024675	08887
5.009	.7903	.025638	08505
6.011	.8757	.027205	08275
7.013	.9380	.029959	07706
8.015	1.0155	.036174	07116
9.017	1.1026	.038768	06949
10.019	1.1702	.049050	06713
10.510	.8608	.054841	09995
11.004	.8145	.165448	16073
12.005	.7927	.166889	14187

REPORT D	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of information data needed, and completing and reviewing this collect this burden to Department of Defense, Washington Hea 4302. Respondents should be aware that notwithstand	is estimated to average 1 hour per response, including the time for reviewing inst on of information. Send comments regarding this burden estimate or any other a adquarters Services, Directorate for Information Operations and Reports (0704-01 ing any other provision of law. no person shall be subject to any penalty for failing	tructions, searching existing data sources, gathering and maintaining the spect of this collection of information, including suggestions for reducing 188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 1 to comply with a collection of information if it does not display a currently	
valid OMB control number. PLEASE DO NOT RETUR 1. REPORT DATE (<i>DD-MM-</i> YYYY) xx-08-2010	YOUR FORM TO THE ABOVE ADDRESS. 2. REPORT TYPE FINAL REPORT	3. DATES COVERED (From - To) Sep 2007 - Jun 2010	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER W911W6-07-C-0047	
Design and Experimenta	5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)	5d. PROJECT NUMBER		
Somers, Dan M. and Mau	5e. TASK NUMBER		
		5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Airfoils, Incorporated Attn: Dan M. Somers 122 Rose Drive Port Matilda PA 16870 [.]	SBIR Topic Number A06-006 Proposal Number A2-2972		
9. SPONSORING / MONITORING AGEN	10. SPONSOR/MONITOR'S ACRONYM(S)		
US Army Aviation Reseat Command (RDECOM) Aviation Applied Techno Fort Eustis VA 23604-1 12. DISTRIBUTION / AVAILABILITY STA Approved for public res	11. SPONSOR/MONITOR'S REPORT NUMBER(S) RDECOM TR 10-D-109		
13. SUPPLEMENTARY NOTES	cy / limited information may be inclu	uded in the abstract	
14. ABSTRACT	y / Himited Information may be then		
An 11.43-percent-thick as designed and analyzed the University Low-Speed, Low lift and low profile drac airfoil thickness have be meet the design objective show good agreement.	irfoil, the S407, intended for rotor eoretically and verified experimental w-Turbulence Wind Tunnel. The two pro- g have been achieved. The constraint een satisfied. The airfoil exhibits e. Comparisons of the theoretical an	craft applications has been lly in The Pennsylvania State rimary objectives of high maximum ts on the pitching moment and the a sharp stall, which does not nd experimental results generally	
15. SUBJECT TERMS			

Airfoils, rotorcraft, laminar flow, wind tunnel

16. SECURITY CLASSIFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
		OF ABSTRACT	OF PAGES	Dan M. Somers	
a. REPORT unclassified	b. ABSTRACT unclassified	c.THIS PAGE unclassified	UU	85	19b. TELEPHONE NUMBER (include area code) (814) 357-0500