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Abstract 
Insensitive munitions (IM) improve the survivability of both weapons and their 
associated platforms which can lead to a reduction in casualties, mission losses and 
whole life costs. All weapon systems contain an explosive train which needs to meet 
IM criteria but reliably initiate a main charge explosive. To ensure that these 
diametrically opposed requirements can be achieved, new higher power explosives 
with improved thermal stability and low response to both fragment and shock hazards 
are needed. 

Most generic small-scale IM tests have been designed for use with main charge 
explosives and could give misleading responses due to scaling effects. QinetiQ has 
recently investigated the IM compliance of several new energetic materials using a 
test which has been designed to simulate the shock produced by a range of different 
stimuli. Applying the Bruceton Staircase technique allowed the thickness and 
standard deviation of the attenuator discs required to give a 50% initiation probability 
of different acceptor explosives by a pellet of Debrix 18AS to be determined. The 
work showed that the test is capable of screening IM explosive train materials for 
their response to shock initiation. 

Introduction 
The exploitation of IM technology leads to improved survivability, from accident or 
enemy action, of both weapon systems and their associated platforms. In addition, 
their use results in reduced casualties, mission losses and whole life costs, while still 
supplying the equivalent performance. 

Both complex and general munitions contain a number of explosive sub-systems to 
provide reliable initiation and detonation transfer. As the main charge fillings for 
weapons have becoming increasingly insensitive to hazard threat stimuli, the size 
and power of the booster explosive used in the explosive train have increased. This 
has resulted in the explosive train becoming a significant factor in overall weapons 
vulnerability. 

Developments on booster explosives have therefore been aimed at the provision of 
new materials and techniques that will initiate main charge explosive in the design 
mode reliably yet will not do so when accidentally initiated by an external hazard 
threat. 

To ensure that explosive train materials can perform these diametrically opposed 
requirements, research is needed to develop new booster explosives with improved 
thermal stability, low explosiveness and low response to both fragment and shock 
hazards. It is important that new explosives can be tested at an early stage of the 
research to ensure that they have acceptable responses to IM tests before costly 
development and larger scale weapon testing is implemented. 
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It is important that new explosives can be tested at an early stage of the research to 
ensure that they have acceptable responses to IM tests before costly development 
and larger scale weapon testing is implemented. 

Current generic small-scale IM tests have been designed for use with main charge 
explosives and tend to use tens to hundreds of grams of explosive. These amounts 
of explosives are likely to be too costly and unavailable during the early stages of the 
energetic material synthesis and characterisation. Such quantities also require larger 
and more expensive test facilities. Additionally due to scaling effects, testing 
quantities of explosives significantly greater than that required for explosive train use 
can results in misleading responses. 

The NATO standard STANAG 4439 [1] describes a suite of tests to determine the IM 
compliance of weapon systems which include slow cook off, fast cook off and shock. 
Experiments that simulate the slow and fast cook off tests at the scale of an 
explosive train have been used previously to examine a range of new explosives [2] 
[3]. 

This paper describes a shock test which aims to simulate the shock experienced by 
an explosive train as a result of small arms attack, fragmenting munition attack, 
behind armour debris from attack on armour and detonation in 
magazine/store/aircraft or vehicle. Research that used this test to study mitigation 
materials has been reported elsewhere [4] and all three tests have been used to 
study a number of other explosives [5]. 

Design Criteria 
The test was designed to standardise as much of the equipment as possible with that 
of the slow and fast cook off tests, for this reason explosive pellets 15mm in diameter 
and 15mm long were used. The charge holder was made as simple as possible and 
based on the internal dimensions of the other charge holders (Figure 1). During the 
design phase, attenuator disc materials were chosen to allow the test to be 
conducted at both low and high temperatures. The optimum material for the 
attenuator discs was found to be aluminium. Initially the discs were punched out of 
aluminium sheet, however, the small raised lip around the edge of each disc was 
found to introduce an air gap that reduced the reproducibility and accuracy of the 
test. To overcome this, attenuators 15 mm in diameter and 0.4 mm thick were 
manufactured without the lipped edge using aluminium to BS 1470. A septum was 
placed between the attenuator discs and the acceptor explosive. This component 
represents the closure of an explosive housing and was made from steel to BS 970. 

The test was also designed to investigate shock mitigation materials. In this test, a 
standard acceptor explosive would be used and the steel septum would be replaced 
with a sample of the mitigating material. The difference in the threshold for initiation 
when using a steel disc or the mitigating disc would indicate the effectiveness of the 
mitigation material. 

Preliminary testing of an insensitive explosive showed that only a small number of 
attenuator discs were required to reach the ‘go’/’no-go’ threshold. The steel septum 
was therefore removed so that a longer column of attenuator discs was required. 
This allowed more flexibility to cover a range of insensitive booster explosives. 

Charge holder 
The charge holders were manufactured from mild steel; they had a wall thickness of 
3mm and a 15 mm diameter cavity. For each test, an acceptor pellet was fitted into 
the bottom of the charge holder and the required number of attenuator discs was 



 

placed above. A donor pellet was inserted above the attenuators and a cardboard 
washer fitted into the top of the assembly to centralise the detonator. During the 
tests, the charge holder was positioned on a steel witness plate. 

Explosive pellets 
The donor pellets 15 mm in diameter and 15 mm long were manufactured from 
Debrix 18AS (RDX/wax/zinc stearate/aerosil® 95.3:2.7:1.5:0.5) [6] pressed at 22 kN 
to give a density of 1.66 g cm-3. Acceptor pellets with the same dimensions were 
manufactured using Debrix 18AS, 2,6-diamino-3,5-dinitropyrazine (ANPZ), 2,6-
diamino-3,5-dinitropyridine-1-oxide (DADNPO), picrylaminotriazole (PATO) and 2,6-
diamino-3,5-dinitropyrazine-1-oxide(PZO or LLM 105). 

Problems were experienced pressing the explosives PZO and PATO at a diameter of 
15 mm. PZO failed to press into pellets with any structural integrity until 2.5% of the 
binder Viton was added. In the case of PATO, the addition of a binder failed to 
produce pellets which did not break during ejection from the mould. 

Statistical Procedure 
The Bruceton Staircase method [7] was used to determine the thickness and 
standard deviation in the thickness of an attenuator material required to give a 50% 
probability of initiation for the acceptor explosive. The procedure requires a number 
of initial experiments to establish the approximate number of attenuator discs 
required to reach the threshold of initiation for the test explosive. The number of 
attenuator discs used in each firing is varied by a set number called the 'Interval'. A 
full or partial detonation is designated a ‘go’ and a non-detonative response is 
designated a ‘no-go’. 

For this study, the 'Interval' was set at four aluminium discs (1.64 mm) and the 
number of firings for a full Bruceton run was fixed at twenty. 

Modelling 
The QinetiQ Eulerian hydrocode GRIM2D was used to simulate the shock test; the 
simulations exploiting the symmetry of the test effectively observing a radial segment 
of the problem. Each simulation used a cell size within the computational grid of 
0.025 mm2. The aim of the work was to investigate the pressure profile that was 
created along the length of the attenuator and determine the shock pressure 
impacting the explosive for different attenuator lengths. 

The schematic of the test for the modelling is shown in Figure 2. For simplicity, the 
aluminium attenuator was modelled as a single block of metal as opposed to 
individual disks that are used in the experiment, an assumption that will impact the 
accuracy of the prediction but which allowed the pressure profile to be more easily 
determined. 

Results 
The mass of the explosive pellets and their density are shown in Table 1; they follow 
a similar trend with: 

DADNPO<PZO/Viton<ANPZ<<Debrix18AS 

The density of the pressed pellets ranged from 1.58 g cm-3 for DADNPO to 1.66 for 
Debrix18AS. 

A summary of the shock testing results is given in Table 2. The 50% initiation 
threshold for Debrix 18AS was 20.1 ± 1.7 mm of aluminium. For Debrix 18AS, tests 



 

conducted close to the threshold number of attenuator discs gave results which were 
difficult to classify as clearly a ‘go’ or a ‘no-go’. Since the explosive train scale shock 
test is designed to assess safety rather than the reliability of initiation when a partial 
‘go’ was obtained it was treated as ‘go’. Photographs and a schematic or each type 
of event are shown in Figure 3. 

The 50% initiation thresholds for ANPZ, the PZO formulation containing Viton and 
DADNPO were 7.4 ± 0.6 mm, 10.8 ± 0.8 mm and 11.8 ± 1.2 mm of aluminium, 
respectively. 

All three materials are therefore considerably less sensitive to shock initiation than 
Debrix 18AS with ANPZ showing the least shock sensitiveness. The boundary 
between a ‘go’ and a ‘no-go’ on the witness record was much easier to interpret for 
these explosives than with Debrix 18AS. A ‘go’ was indicated by a large dent to the 
witness plate, whereas a ‘no-go’ resulted in considerable contamination of the 
witness plate with unreacted material and no denting. 

The peak pressure profile across the aluminium along the axis of symmetry 
determined from the modelling is shown in Figure 4. There was a change in the slope 
of the profile at approximately 7.5 mm into the attenuator. This may have been 
caused by an interaction of the rarefaction waves which originate at the periphery of 
the aluminium. Table 3 summarises the 50% threshold values and the peak pressure 
determined using the model for each of the explosives. 

The model suggests that the threshold shock pressure required to initiate PZO and 
DADNPO was approximately twice that for Debrix 18AS. Although ANPZ only 
required a few millimetres less attenuator than PZO and DADNPO, the threshold 
shock pressure for ANPZ was calculated to be almost three times that of Debrix 
18AS. 

Conclusions 
Improving the tolerance on the attenuator discs and eliminating the steel septum 
allowed the shock sensitiveness for a range of very insensitive explosives to be 
established. 

Each of three materials examined, ANPZ, PZO and DADNPO are considerably less 
sensitive to shock initiation than the conventional booster explosives Debrix 18AS. 

When ranked by increasing sensitiveness, the order was: 

ANPZ < PZO/Viton < DADNPO <<< Debrix 18AS 

The low shock sensitiveness of ANPZ, PZO and DADNPO, and their performance in 
the fast and slow cook-off tests, indicate these materials would be suited for future IM 
explosive train applications. 

The GRIM2D code allowed the shock test to be modelled but the effect of using 
individual attenuators needs to be examined and additional validation performed. 
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Tables 
 

Material 
Mass                       

(g) 
Density                 
(g cm-3) 

Debrix 18AS 4.34 1.66 

ANPZ 4.22 1.60 

DADNPO 4.14 1.58 

PZO/Viton (97.5:2.5) 4.17 1.59 

Table 1: Pellet mass and density for each of the explosives. 
 

Material Median 
thickness of 
aluminium        

(mm) 

Standard 
deviation                  

(mm) 

Debrix 18AS 20.1 1.7 

ANPZ 7.4 0.6 

DADNPO 10.8 0.8 

PZO/Viton (97.5/2.5) 11.8 1.2 

Table 2: Median attenuator thickness and standard deviation. 

 

Material 50% Threshold 
level by 

experiment 
(mm) 

Calculated 
pressure at 50% 

threshold    
(GPa) 

Debrix 18AS 20.1 9 

ANPZ 7.4 25 

DADNPO 11.8 17 

PZO/Viton (97.5/2.5) 10.8 19 

Table 3: Summary of 50% threshold values 



 

Figures 

 
Figure 1: Shock test schematic and photograph. 
 
 

 
Figure 2: Schematic of the test for the modelling. 
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Figure 3: Photograph and schematic of the witness plates. 
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Figure 4: Results of the GRIM2D modelling study. 
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2 Introduction

Insensitive munitions (IM) offer 

− Improved survivability of weapon systems and platforms

− Reduced casualties, mission losses and whole life costs

Both complex and general munitions contain explosive sub-systems to provide 
reliable initiation, detonation transfer and amplification

As the main charge fillings for weapons have becoming increasingly insensitive 
to hazard threat stimuli, the size and power of the booster explosive used in the 
explosive train have has increased

This has resulted in the explosive train becoming a significant factor in a 
weapons overall vulnerability
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2 Introduction

NATO STANAG 4439 details a suite of tests for munitions to determine IM 
compliance

Potential threats to munitions include:

• Magazine, Store, Aircraft or Vehicle fuel fire

• Fire in Adjacent Magazine, Store or Vehicle

• Small Arms Attack

• Fragmenting Munition Attack

• Shaped Charge Weapon Attack

• Behind Armour Debris from Armour Attack

• Detonation in Magazine/Store/Aircraft or Vehicle



© Copyright QinetiQ Limited 2010

6

2 Introduction

To meet these requirements a suite of explosive train scale tests has been 
designed

• Fast Cook-Off Test

• Slow Cook-Off Test

• Shock Test

Tests have been designed to

− Standardise the charge holders and test equipment

− Use low cost components
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2 Introduction

Fast Cook-Off Test
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2 Introduction

Slow Cook-Off Test
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3 Experimental

Shock test

• Charge holder

− Mild steel 3 mm thick

• Attenuator discs

− 0.4 mm thick aluminium

− Machined to avoid edge lip

• Septum

− Steel

− Shock mitigation material

− Not used

• Explosive donor and acceptor pellets 

− 15 mm in diameter and 15 mm long 

− Approximately 5 g
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3 Experimental

Donor Explosive

− Debrix 18AS (RDX/Wax/Zinc Stearate/Aerosil)

Standard Acceptor

− Debrix 18AS

IM Explosives

− ANPZ (2,6-diamino-3,5-dinitropyrazine) 

− DADNPO (2,6-diamino-3,5-dinitropyridine-1-oxide) 

− PATO (Picrylaminotriazole) (LLM 105)

− PZO (2,6-diamino-3,5-dinitropyrazine-1-oxide)
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3 Experimental
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3 Experimental

Used the Bruceton Staircase technique to determine

− Median thickness

− 50% probability of initiation for the acceptor explosive

− Standard deviation in the thickness

− Perform experiments to establish the approximate number of attenuator 
discs

− The 'Interval' was set at four aluminium discs (1.64 mm)

− A full or partial detonation was designated a ‘go’ 

− Non-detonative response a ‘no-go’

− Twenty tests for full Bruceton
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4 Results

Explosive
.

Debrix 18AS 4.34 1.66

ANPZ 4.22 1.60

DADNPO 4.14 1.58

PZO/Viton 4.17 1.59

PATO – Unable to manufacture robust pellets

Mass 
(g)

Density                         
(g cm-3)
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4 Results

Explosive
Median Thickness of 

Aluminium                        
(mm)

Standard Deviation                  
(mm)

Debrix 18AS 20.1 1.7

ANPZ 7.4 0.6

DADNPO 10.8 0.8

PZO/Viton 11.8 1.2

Approximately 50 discs

sd – 9%

Witness plates
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4 Results

Explosive
Median Thickness of 

Aluminium                        
(mm)

Standard Deviation                  
(mm)

Debrix 18AS 20.1 1.7

ANPZ 7.4 0.6

DADNPO 11.8 0.8

PZO/Viton 10.8 1.2
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5 Modelling Study

QinetiQ Eulerian hydrocode GRIM2D

− Simulation computational grid of 0.025 mm2

− Determine the shock pressure impacting 
the explosive for different attenuator lengths

− The aluminium attenuator was modelled as 
a single block of metal as opposed to 
individual disks



© Copyright QinetiQ Limited 2010

17

5 Modelling Study

Pink = Ambient pressure.
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5 Modelling Study

Shockwave moving 
through the attenuator

Release waves returning 
from the edges

Pink = Ambient pressure.
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interaction of rarefaction waves? 

interface between the explosive and the attenuator 

interface between the attenuator and air
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5 Modelling Study

Explosive
Median Thickness of 

Aluminium                        
(mm)

Calculated Pressure at 
50% Threshold           

(GPa)

Debrix 18AS 20.1 9

ANPZ 7.4 25

DADNPO 11.8 17

PZO/Viton 10.8 19
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6 Conclusions

The new test allows the shock sensitivity for a range of very insensitive 
explosives to be established

ANPZ, PZO and DADNPO are considerably less sensitive to shock initiation 
than Debrix 18AS.

When ranked by increasing sensitiveness

ANPZ < PZO/Viton < DADNPO <<< Debrix 18AS

All three tests explosive train tests shows that ANPZ, PZO and DADNPO are 
suitable for future IM explosive train applications.

The GRIM2D code allowed the shock test to be modelled but the effect of using 
individual attenuators needs to be examined
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