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Key Long-Term Objectives

 Develop a versatile model for simulation of bench-scale flammability tests.

 Parameterize this model for various types of polymeric materials.

 Relate parameters (properties) used in the model to molecular structure.



Flammability Measurement Techniques
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ThermaKin Model Overview

radiation

convection

heat flux = f (component flux)

A  B + C

component flux (key predicted quantity)

Gas phase is represented by 

empirical relations between 

heat flux and component 

fluxes. The relations are 

derived from experiments.

radiative
loss

conduction

Condensed phase is 

represented by a mixture of 

components (A, B, C), which 

interact chemically and 

physically.



Radiative Energy Transfer
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external radiation is absorbed by a 

single element chosen at random.
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Mass Transfer
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Swelling factor g defines volumetric 

reaction of the condensed phase to the 

presence of gases.

Components are categorized as solids, 

liquids, or gases.



Chemical Reactions
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Bubble Dynamics (example)

melt   small bubble

small bubble  +  small bubble   medium bubble

small bubble  +  medium bubble   large bubble

nucleation

growth

transportThe reaction can be switched on or off 

at a specified temperature.



Parameterization  

ThermaKin Models of

Poly(methylmethacrylate) (PMMA)

High-impact polystyrene (HIPS)

High-density polyethylene (HDPE)

Bisphenol A polycarbonate (PC)
Temperature dependences 

of heat capacities and heat 

of melting (from DSC 

measurements)

Temperature dependences 

of densities (from 

literature)

Temperature dependences 

of thermal conductivities 

(from Thermoflixer 

measurements)

Emissivities and 

absorption coefficients 

(from literature)

Kinetics and heat of 

decomposition (from TGA 

and DSC measurements)



Kinetics of Decomposition

Assumptions:

PMMA   Gas  +  heat

MLR = kD mPMMA (first order)

Gas leaves PMMA instantaneously.



Modeling of Fire Calorimetry Experiments

Polymer Sample

Insulator (Kaowool)

3-25 mm

15 mm

Before-ignition Convective Loss, 10 W m-2 K-1

External Radiative Heat, 23-92 kW m-2

(up to 15% correction for sample expansion)

Flame Heat, 11-24 kW m-2

(turned on when the mass flux reaches 20 kW m-2 equivalent of heat release)

Zero Mass Flow Boundary

Zero Heat Flow Boundary



Gasification

Conditions:

external heat flux = 52 kW m-2

initial sample thickness  9 mm

Experiment

Model

PMMA HIPS HDPE



PMMA

heat of combustion of gases = 24 kJ g-1

Cone Calorimetry

Conditions:

external heat flux = 49 kW m-2

initial sample thickness  9 mm

PMMA

flame heat flux = 12 kW m-2

Model



Cone Calorimetry of PMMA
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Cone Calorimetry of HIPS
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Cone Calorimetry of HDPE
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Cone Calorimetry of PC

Flame heat flux = 15 kW m-2.

The main mode of heat transfer inside char is radiation. The rate of transfer 

is defined by a single adjustable parameter.

5 mm PC sample after 160 s at 75 kW m-2.



Sensitivity of Peak and Average Mass Loss Rates



Conclusions

A one-dimensional numerical pyrolysis model can be used to predict the outcome of 

fire calorimetry experiments performed on polymeric materials.

 The predictions require the knowledge of chemical, thermal, and optical properties 

of the material.  Measurement of these properties represents a challenging task.

 The rate of decomposition (defined by A and E), heat of decomposition, char yield 

and heat of combustion are the key parameters required for prediction of the peak and 

average heat release rates.
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