
Technical Report
CMU/SEI-88-TR-16
ESD-TR-88- 017
July 1988

Carnegie-Mellon University

Software Engineering Institute

Kernel Facilities Definition
Judy Bamberger
Currle Colket
Robert Firth
Daniel Klein
Roger Van Scoy

20100827268
/~\

Technical Report
CMU/SEI-88-TR-16

ESD-TR-88- OW

July 1988

Kernel Facilities Definition

Judy Bamberger
Currie Colket

Robert Firth
Daniel Klein

Roger Van Scoy
Distributed Ada Real-Time Kernel Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler ^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 Carnegie Mellon University

This document is available through the Defense Technical Information Center. OTIC provides access to and transfer of
scientific and technical information for DoD personnel, OoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly Defense Technical
Information Center, Ann: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any other trademarks in this report is not intended in any way to infringe on the rights of (he trademark holder

Table of Contents

Preface 1

I. Kerne! Background 3

1. Rationale 5
1.1. Ada Runtime Environment 5
1.2. Applications and Systems Code 5
1.3. Abstractions and their Breakdown 6
1.4. Distributed Applications 6
1.5. Real-Time Requirements 7
1.6. Purpose and Intended Audience 7

2. Definitions 9

3. Kernel Functional Areas 11

4. Assumptions, Models, and Restrictions 13
4.1. Ada Compiler Assumptions 13
4.2. Process Model 13
4.3. System Model 15
4.4. Error Model 17
4.5. Restrictions 19

II. Requirements 21

5. General Requirements 23
5.1. Behavior 23
5.2. Performance 24

6. Processor Requirements 25
6.1. Behavior 25
6.2. Performance 26

7. Process Requirements 27
7.1. Behavior 27
7.2. Performance 29

8. Semaphore Requirements 31
8.1. Behavior 31
8.2. Performance 32

9. Scheduling Requirements 33
9.1. Behavior 33
9.2. Performance 35

CMU/SEI-88-TR-16

10. Communication Requirements 37
10.1. Behavior 37
10.2. Performance 40

11. Interrupt Requirements 43
11.1. Behavior 43
11.2. Performance 44

12. Time Requirements 45
12.1. Behavior 45
12.2. Performance 47

13. Alarm Requirements 49
13.1. Behavior 49
13.2. Performance 50

14. Tool Interface 51
14.1. Behavior 51
14.2. Performance 53

III. Kernel Primitives 55

15. Processor Management 59
15.1. Primitives 60

15.1.1. Initialize Master processor 60
15.1.2. Initialize subordinate processor 63
15.1.3. Start subordinate processors 63
15.1.4. Create network configuration 63

15.2. Blocking Primitives 64
15.3. Status Codes 64

16. Process Management 65
16.1. Primitives 65

16.1.1. Declare process 65
16.1.2. Create process 65
16.1.3. Initialization complete 66
16.1.4. Allocate device 68
16.1.5. Die 68
16.1.6. Kill 68
16.1.7. Who am I 68
16.1.8. Name of 69

16.2. Blocking Primitives 69
16.3. Status Codes 69

17. Semaphore Management 71
17.1. Primitives 71

17.1.1. Declare Semaphore 71

CMU7SEI-88-TR-16

17.1.2. Claim Semaphore 71
17.1.3. Release Semaphore 72

17.2. Blocking primitives 72
17.3. Status Codes 72

18. Schedule Management 73
18.1. Primitives 74

18.1.1. Set process preemption 74
18.1.2. Get process preemption 75
18.1.3. Set process priority 75
18.1.4. Get process priority 75
18.1.5. Wait 76
18.1.6. Set timeslice 76
18.1.7. Enable timeslicing 76
18.1.8. Disable timeslicing 76

18.2. Blocking primitives 76
18.3. Status Codes 77

19. Communication Management 79
19.1. Primitives 79

19.1.1. Send message 79
19.1.2. Send message and wait 81
19.1.3. Receive message 81

19.2. Blocking Primitives 82
19.3. Status Codes 82

20. Interrupt Management 83
20.1. Primitives 83

20.1.1. Enable 83
20.1.2. Disable 84
20.1.3. Enabled 84
20.1.4. Simulate interrupt 84
20.1.5. Bind interrupt handler 84

20.2. Blocking Primitives 86
20.3. Status Codes 86

21. Time Management 87
21.1. Primitives 89

21.1.1. Package calendar 89
21.1.2. Time constants 89
21.1.3. Adjust elapsed time 89
21.1.4. Adjust epoch time 89
21.1.5. Read clock 90
21.1.6. Synchronize 90

21.2. Blocking Primitives 90
21.3. Status Codes 90

CMU/SEI-88-TR-16 III

22. Alarm Management 93
22.1. Primitives 93

22.1.1. Set alarm 93
22.1.2. Cancel alarm 93

22.2. Blocking Primitives 93
22.3. Errors 94

23. Tool Interface 95
23.1. Primitives 96

23.1.1. Process information 96
23.1.2. Interrupt information 97
23.1.3. Begin collection 97
23.1.4. Cease collection 97
23.1.5. Read process table 98
23.1.6. Read interrupt table 98

23.2. Blocking Primitives 98
23.3. Status Codes 98

Appendix A. Glossary 99

Appendix B. Mapping from Kernel Primitives to Requirements 103

Appendix C. Mapping from Requirements to Kernel Primitives 113

References 127

lv CMU/SEI-88-TR-16

List of Figures

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 14-1
Figure 15-1
Figure 15-2
Figure 16-1
Figure 18-1
Figure 19-1
Figure 20-1

Load Image Creation
Main Unit Outline
System View

ISO Model to Kernel Mapping
Sample Network Configuration Table (NCT)
Network Initialization Protocol (Part 1 of 2)
Process Execution Environment
Process States
Datagram Network Model
Interrupt Handler Execution Environment

14
16
18
56
59
61
67
75
80
85

CMU/SEI-88-TR-16

Kernel Facilities Definition

Abstract: Defines the conceptual design of the Kernel by specifying:

• The underlying models, assumptions, and restrictions that govern the
design and implementation of the Kernel; and

• The behavioral and performance requirements to which the Kernel is
built.

This document is the requirements and top level design document for the
Kernel.

Preface

Purpose of This Document
This document defines the proposed functionality of a Distributed Ada Real-Time Kernel
(hereafter called the Kernel). The Kernel is being developed as one artifact of the Distributed Ada
Real-Time Kernel Project (hereafter called the project). The goal of the Kernel is to support
effectively the execution of distributed Ada applications in an embedded computer environment.
As discussed in [Firth 87], the Kernel will provide users with support for language functionality
(i.e., the ability to execute Ada programs in a distributed, real-time environment); it will nor provide
support for language features (i.e., Ada tasking primitives). As a result, the Kernel specification
will place certain requirements (restrictions and conventions) on the Ada application programs
that use the Kernel. These will become apparent to the reader as the definition of the Kernel is
expounded.

Structure of This Document
This document is divided into three major parts:

1. Kernel Background: describes the models on which the Kernel is based and
outlines the scope of its activities.

2. Requirements: describes the functionality required of the Kernel and the
performance expected.

3. Kernel Interface: describes the mechanisms and primitive capabilities the Kernel
provides to implement the requirements.

In addition to the major parts, there are three appendices:

• Appendix A: defines the terms used throughout the document.

• Appendix B: maps requirements onto the appropriate Kernel primitives.

• Appendix C: the inverse of Appendix B; maps the primitives onto the appropriate
requirements.

CMU/SEI-88-TR-16

CMU/SEI-88-TR-16

I. Kernel Background

This part of the Kernel definition provides the needed background material to understand the
remainder of the document. In particular, it provides:

1. The rationale for the Kernel and the goals to be achieved by it (Chapter 1).

2. The definitions used in the document (Chapter 2).

3. An overview of the Kernel's functionality (Chapter 3).

4. A complete discussion of the assumptions, models, and restrictions on which the
Kernel requirements and primitives are based (Chapter 4).

CMU/SEI-88-TR-16

CMU/SEI-88-TR-16

1. Rationale

Ada is now being mandated for a large number of DoD development projects as the sole
programming language to be used for developing software. Many of these projects are trying to
build distributed real-time systems. Many project managers and contractors are anxious to
support this effort, to reap the advantages of Ada, and to use the newer techniques of software
engineering that Ada can support. This transition, however, has not always been smooth; some
serious problems have been encountered.

1.1. Ada Runtime Environment

One of the most persistent, and worrying, problems is the suitability of the Ada runtime system,
most notably the tasking features, and especially on distributed systems. There are issues
concerning functionality (amply documented by ARTEWG), customization, tool support
(especially target debuggers and performance monitors), issues of inter-process communication
and code distribution; and, perhaps most intractable, issues of execution-time efficiency.

One way of approaching this problem is to press for better, "more mature" Ada implementations:
more optimization; user-tailorable runtime systems; special-purpose hardware. This is a valid
route, but one that will take time, money, and experience, and many of the solutions will be
compiler-dependent, machine-dependent, or application-dependent. Many developers are still
unsure even how to use the new language features of Ada; and at least one cycle of application
use, performance measurement, and methodology review will be needed before we can be sure
what parts of the Ada language and runtime are indeed critical.

This project looks at another route to a possible solution. It should be a quicker and cheaper
route, and hence a feasible short-term alternative.

1.2. Applications and Systems Code

In conventional programming, application code (which is what has to be written to meet the user
requirements) is distinguished from system code (which is obtained with the target machine, and
which is intended to support applications generally). With Ada and embedded systems, these
distinctions are not so clear cut. First, it has been traditional, when developing real-time systems
in other programming languages, for the application programmer to write specific code down to a
far lower level, including special device drivers, special message or signaling systems, and even
a custom executive. There is far less general-purpose system code. Secondly, the Ada language
complicates the distinction between application and system code. In older languages, almost all
system functions were invoked through a simple and well-understood interface — the system call
— expressed as a normal subroutine call. In Ada, however, many traditionally system-level
functions are explicit in the language itself, or implied by language constructs; for example,
tasking, task communication, interrupt acquisition, and error handling. In fact, the work is really
done by the old familiar system code, now disguised as the Ada runtime.

CMU/SEI-88-TR-16

1.3. Abstractions and their Breakdown

If the user is satisfied with the Ada level of abstraction — with its view of what tasks are, what
time is, and so on — then the Ada view is a simplification: the application code in fact performs
system calls, but the compiler inserts them automatically as part of the implementation of
language constructs. One very successful example of how useful this can be is the Monitor
construct. The user declares a procedure, or group of procedures, to be a Monitor; on Monitor
invocations, the compiler automatically inserts the system calls that enforce mutual exclusion; the
abstraction captures exactly what the user wants, and the implementation is done without fuss.

Unfortunately, many users are dissatisfied with the Ada abstraction, and seek either finer control
or access to lower-level concepts, such as semaphores, send/wait or suspend/resume primitives,
and bounded time delays. Under the above circumstances, the extra language features, and the
hidden system calls they generate, are an active hindrance to the application programmer, and
an obstruction to the work of implementation.

For example, the programmer may need a strong delay primitive — one that guarantees
resumption as soon as possible after the expiration of the delay. But Ada already has a "delay"
statement, with different semantics. When implementing a different delay primitive, the user risks
damaging the Ada runtime behavior, which believes it has sole control of the Ada tasks, and does
not expect an extra routine that performs suspensions and resumptions. To implement the new
delay robustly, the user has to interface with the internals of the Ada runtime, which may be very
hard to do and will surely be hard to maintain. Moreover, the Ada delay statement composes
naturally into timed entry calls and timed select statements. If the user wishes to do these things
with the new delay statement, a substantial part of the Ada semantics must be rebuilt, and a
substantial part of the runtime must be modified.

All this, of course, is a distraction from the real work — the work of implementing the application.
One of the main motivators of this project is the observation that many contractors using Ada are
spending most of their time worrying about the Ada system level and far too little time solving the
application problems, some of which are not easy.

In sum, it can be harder to build applications using Ada language features than it would be to
implement the required functionality without them. But it is also undesirable for every application
to reinvent specific incarnations of real-time functional abstractions.

1.4. Distributed Applications

A further and equally difficult problem is the issue of executing applications on a distributed target
configuration. Good software development methods teach us to decompose large applications
into functional units communicating through well-defined interfaces. The physical allocation of
such units to individual processors in the target environment can be done in many ways, without
impairing their functionality. Good design therefore requires that the specification of these
functional units and interfaces be independent, as far as possible, of their physical distribution.

CMU/SEI-88-TR-16

In a real-time system, this implies that the mechanisms by which units interact — to synchronize,
communicate with, schedule one another, or alert one another — should be uniform, regardless
of whether the units are situated on the same processor or at some distance across a distributed
network. If the implementation language is Ada, this leads to a requirement for distributed Ada.

Unfortunately, nearly all current commercially-available Ada implementations do not meet this
requirement. They implement the real-time mechanisms of the language only on individual or
isolated processors, and provide no help with communication between processors, and hence
between units on different machines. This situation leads to systems where Ada tasks
communicate by different mechanisms, with different style, semantics and implementations,
merely because the Ada tasks are local in one case, and remote in the other. It also requires the
physical distribution of tasks to be unalterably fixed before any task is implemented, and, in some
cases, before interface design is complete.

Overall, there is a substantial loss of application clarity, maintainability, ^configurability, and
conceptual economy.

1.5. Real-Time Requirements

This brings us to the crux of this project's rationale. Users — people who have to write
application code — do not want language features: they want language functionality. In Ada,
much of the real-time functionality is captured in the form of special features. This may well be
(the) correct solution in the long term, since by making real-time operations explicit in the
language, the compiler is permitted to apply its intelligence to their optimization and verification.
But in the short term, it is palpably not working: the users either cannot use, or do not know how
to use, the given features to achieve the required functionality; the implementors of the language
do not know how to satisfy the variety of needs of real-time applications; the vendors are
unwilling, or unable, to extensively customize validated implementations; and commercial support
for distributed targets is rare, even as the need for such support is becoming endemic among
application developers.

Accordingly, it is opportune to revert to the former method of providing functionality: by specific
system software implemented as a set of library routines and invoked explicitly by the user. This
project will do precisely that.

1.6. Purpose and Intended Audience

The main purpose of the Kernel is to demonstrate that it is possible to develop application code
entirely in Ada that will have acceptable quality and real-time performance. This purpose will be
achieved by providing a prototype artifact that implements the necessary functionality required by
real-time applications, but in a manner that avoids or mitigates the efficiency and maturity
problems found in current Ada runtime implementations.

This prototype embodies a tool-kit approach to real-time systems, one that allows the user to

CMU/SEI-88-TR-16

build application-specific real-time abstractions. This prototype is not intended to solve all the
problems of embedded, real-time systems, nor is it the only solution to these problems. However,
it is intended to be a solution where efficiency and speed are the primary drivers and, where
warranted, functionality is limited to satisfy these drivers.

Given this, the purpose of such a prototype is:

1. To encourage people to use Ada for applications code by mitigating many of their
problems.

2. To allow developers to concentrate on the application-specific areas of their
problem by providing them with a set of working system primitives that are more
familiar, that can be invoked in a more customary way, and that can be built upon.

3. To offer a usable support base, of known functionality and quality, for real-time Ada
applications.

This document does not address those software engineers who find their system constraints met
within the Ada tasking paradigm. The general audience is anyone, within the defense community
or without, who is anxious to use Ada but is troubled by currently perceived problems. This
especially includes software engineers operating in a distributed, real-time environment.

CMU/SEI-88-TR-16

2. Definitions
This document begins with two key definitions (see Appendix A tor a complete set of definitions):

• Ada task: An Ada language construct that represents an object of concurrent
execution managed by the Ada run-time environment (RTE) supplied as part of a
compiler (under the rules specified in the Ada Language Reference Manual (LRM),
see [alrm 83]).

• Kernel process: An object of concurrent execution managed by the Kernel outside
the knowledge and control of the Ada RTE.

The preceding terminology is deliberately different from that of Ada. This is for two reasons:

1. To remind the reader not to think in Ada terms, but rather in the terms defined by
this document.

2. To avoid the implication that the Kernel will implement any specific function in a way
that resembles an existing Ada feature with that function.

This document will focus specifically on Kernel processes, not on Ada tasks. In fact, except for
"academic interest" or comparison/contrastive purposes, the term "Ada task" will not appear in
this document. To elaborate on this view, (keep in mind that) a Kernel process is a schedulable
unit of parallel execution. Thus, at any one instant, any one processor is executing the code of
exactly one process or, alternatively, is executing Kernel code. The code of a Kernel process is
written by the user and will be an Ada procedure. What distinguishes a procedure from a
process, or for that matter from an interrupt handler, is the execution environment. The Kernel
primitives will take an appropriate Ada procedure and construct around it the necessary execution
environment to create a Kernel process.1 This will be discussed in more detail later.

'The Ada compiler, in contrast, constructs the proper environment around a procedure or task.

CMU/SEI-88-TR-16

10 CMU/SEI-88-TR-16

3. Kernel Functional Areas
This chapter briefly summarizes the areas that the Kernel will and will not address. First, the
Kernel will not address the following areas:

• Multi-level security: This is beyond the scope of this Project.

• Rollback/checkpoint recovery: The Kernel is not dealing with the issues of fault
tolerance; however, it will address some of the issues of fault detection and
reporting.

• Memory/storage management and garbage collection: In general, the Kernel
expects all processes on one processor to execute in the same uniform address
space, freely sharing global data. Also, the Kernel will not manage memory for
access collections, because the characteristics of many embedded systems preclude
an implementation assuming any kind of garbage collection.

• Pre-elaboration: Since the Kernel is not dealing with Ada tasking (and concomitant
semantics), this is not needed.

• Fast-interrupt pragma: The Kernel is excluding this pragma because it is specific to
Ada task entries and to some compilers. The Kernel will provide equivalent
functionality via Kernel primitives.

The Kernel will address the following areas:

• Processor management

• Process management

• Semaphore management

• Schedule management

• Communication management

• Interrupt management

• Time management

• Alarm management

• Tool interface

Each of these items will be discussed in more detail in subsequent chapters in this document.

CMU/SEI-88-TR-16 11

12 CMU/SEI-88-TR-16

4. Assumptions, Models, and Restrictions

Chapter 3 defined broad, general categories of functionality. To refine these, this chapter
presents a set of models, assumptions, and restrictions on which the Kernel is based.

4.1. Ada Compiler Assumptions
Regarding the Ada compiler and its relationship to the Kernel:

1. No additional pragmata will be implemented or existing pragmata modified.

2. If possible, the Kernel will be developed using an Ada compiler, which allows the
Ada tasking RTE to be excluded from the executable image; this implies that no
modifications will be made to the rest of the Ada RTE.

3. The compiler supplied Ada run-time must be re-entrant.

4. Only as a last resort will the Ada compiler and/or RTE be modified (to force the
exclusion of the tasking support library from the executable image), and no changes
will be made that would invalidate the compiler.

5. The Kernel will have total control over the system clock.

The selection of a compiler is driven by the above needs and by the needs of the model
application used to test the Kernel. It is not driven by any needs of the Kernel itself. Given that
no modifications will be made the RTE, it will continue to provide all services needed by the
application except those related to concurrency.

4.2. Process Model
The Kernel presents to the user the abstraction of a process, that is, a concurrent thread of
execution (as defined in Chapter 2). Elaborating on this general concept yields the Kernel's
general process model:

1. Each process executes a unit of code, developed as a functional unit.

2. For each processor, the software engineer performs the following steps (illustrated
in Figure 4-1):

a. Develop the process code.

b. Develop the Main Unit for the processor; the function of the Main Unit is
explained later.

c. Compile the code of the processes and the Main Unit.

d. Link the Kernel, Main Unit, and processes together to form the load image
for that processor.

3. The load image begins execution at the initialization point of the Kernel, which in
turn invokes the Main Unit.

When developing a process, the software engineer need not know where the other processes will
be located — on a single processor or across multiple processors. The Kernel-supplied
communication primitives can be used for all inter-process communication, local or remote, with

CMU/SEI-88-TR-16 13

(a) t Merlin "l < 1
P"

2
Vivian

(b) Main
Unit

Main
Unit

U I I
(c)

(d)

Compile

[Kernel] •
i

Link

1
Processor a
Load Image

Compile

I Kerne
I

Kernel • Link

1
Processor b
Load Image

Key

p. : Process #i running on processor q.

Main Unit: The Ada Main Unit running on the processor.

Merlin and Vivian are named for use in examples.

Figure 4-1: Load Image Creation

14 CMU/SEI-88-TR-16

the Kernel optimizing the local case. The load image begins execution in the Ada Main Unit (after
Kernel initialization). This Main Unit declares, creates, and schedules the processes in turn, and
then declares that process creation is completed. After that, the Main Unit is descheduled while
the processes continue to run independently. The state transition diagram for the Main Unit is
shown in Figure 4-2.2

The Main Unit is responsible for configuring the processor to meet the requirements of the
application. This must include:

1. Participating in the network initialization protocol.

2. Declaring all remote communication partners.

3. Declaring and creating all locally executing processes.

There are several optional activities that may be performed by the Main Unit; these are:

1. Allocating non-Kernel devices to processes.

2. Reading time-of-day clock (which is required for the Main Unit of the Master
Processor).

3. Reporting system initialization failures to the external world.

4. Binding interrupt handlers.

5. Performing any system-dependent initializations (devices, buses, etc.).

In general, the Main Unit is the application entity that is responsible for configuring the processor
in the manner needed by the application and can use any available Kernel primitive.

Given that there is one load image for each processor, which creates a set of processes as part
of its initialization, the issue of multiprogramming is moot. The user really considers the set of
processes to be the code that is running; the Main Unit exists only to ensure that all the
processes get linked together and started.

4.3. System Model
In light of the process model discussed previously, consideration must be given to the
environment in which these collections of processes are executed. This requires stepping back
from the "process-in-the-small" issues and considering some system-level or
"process-in-the-large" issues. The system model on which the Kernel is based is shown in Figure
4-3. This view shows all that the Kernel assumes about the system:

• Three types of hardware objects in the network:

1. Kernel processors

2. Non-Kernel processors or devices (attached to the system bus)

3. Devices that may interrupt a processor

2See [Ward 85] for a complete description for the state transition diagram notation used in this document.

CMU/SEI-88-TR-16 15

Network/Application-Specific
Initialization

Process Declared

Log Process Name

Network Initialization Complete

Process Declaration State

Process Creation Error

Process Declared
Process Error

•4 1
 1
Process Created
Process Error

Process Created

Broadcast "Creation" Message

i

Process Declared

Log Process Name

Process Creation State

Process Created

Broadcast "Creation" Message

Process Creation Complete

Broadcast "Creation Complete"

Wait State (For all Main Units
To Broadcast Completion)

Initialization Time
Expired

All "Process Complete"
Messages Received

Processor Initialization Error Processor Ready

Kev Initialization Points

.j All processors know that the physical topology of the network is
correct All clocks are synchronized.

o All processors know that logical topology of the
p Processor configuration is complete; ^ network is consistent The application is ready
* waiting for remaining processors to complete. to execute.

Figure 4-2: Main Unit Outline

16 CMU/SEI-88-TR-16

• No shared memory assumed (or excluded).

• No mass storage devices assumed (or excluded).

• Kernel alone interfaces directly to the system bus.

Given this model, the Kernel considers that:
The application comprises n Kernel processes formed into m Ada programs (load
images) running on m processors.

This requires:

1. The user has a process or tool that allows for the static distribution of the m images
over the m processors in the configuration.

2. The user has a process or tool to download the images into processor memory.

3. The user has a mechanism to commence execution of the loaded programs.

4. The user has tools to manipulate all needed disk/tape/bulk memory accesses (if
these are available in the embedded configuration).

4.4. Error Model

All Kernel requests are of the form P {S} Q; where P is the pre-condition to statement S, and Q is
the post-condition of statement S. Errors occur when one of the following conditions exists:

• Pre-condition (P) is false on call, i.e., there is an error on Kernel invocation ("Invalid
request").

• Pre-condition (P) is asynchronously invalidated before call terminates, i.e., an
asynchronous problem arises ("Sorry, while you were waiting, something awful
happened").

• The post-condition (Q) cannot be established, i.e., there is a failure of the virtual
machine ("Request valid, but we can't do it today").

All Kernel errors will be signaled by a status code in all Kernel operations that may fail.

All Kernel primitives are invoked synchronously, but their return (or resumption) may be
asynchronous (i.e., invoking a Kernel primitive may cause the scheduler to suspend the invoking
process and resume a different process). From the point of view of the process, the entire
operation appears to happen synchronously. That is, the primitives return to the caller after they
have completed their operation (returning a success code) or after they have abandoned it
(returning a failure code). However, their blocking behavior depends on the nature of the errors
that might occur.

An error of the first kind, where a precondition is false on call, always results in an immediate
return, without blocking. An error of the second kind, where a precondition is invalidated before
completion, causes a return after some interval of time, during which the caller is blocked. An
error of the third kind might be detectable on call or might be detected only after some time, and
so the caller might or might not have been blocked.

Wherever possible, errors are detected locally, by the Kernel on the processor running the

CMU/SEI-88-TR-16 17

VAVNYV
*0 Device o

Processor c

Processor m

Key

p. : Process #i running on processor q.

Main Unit: The Ada Main Unit running on the processor.

Merlin, Vivian, and Lancelot are named for use in
examples.

Figure 4-3: System View

18 CMU/SEI-88-TR-16

invoking process. To do this error detection, the Kernel relies on its local copy of information
representing global or remote state. A rule of this implementation is that a local copy might lag,
but cannot lead, the true remote state it represents. For example, if a local process table indicates
that a remote process is dead, that process has indeed died. Many of the status codes noted in
this document are diagnostic in nature and thus appropriate only for software test and integration.

Given that the Kernel is intended for use in operational real-time systems, there is a means
provided to disable runtime error reporting. The Kernel is configured so that each error code may
be separately enabled or disabled. If an error code is enabled, the Kernel will invariably check for
and report that error. If an error code is disabled, the Kernel will never report that error, even if it
occurs. In addition, the Kernel is free to omit any checking whose sole purpose is to avoid
damage to a process attempting an erroneous action.

However, the Kernel will never omit checks that guard against damage to internal data structures
or to processes other than the one performing an erroneous action, regardless of whether the
error code is enabled or disabled.

4.5. Restrictions

Finally, a number of restrictions are imposed on the form of the application code. The following
restrictions are offered, with justification in italics:

1. Initialization is not a time-critical function. This is considered to be a simplification
and one-time operation done at system start-up.

2. The Kernel will not implement the Ada tasking semantics. This is in keeping with the
Kernel's design goal of making explicit control that is now implicit.

3. No Ada tasking primitives may be used by the application. 777/s preserves the goal
to replace the implicit operations of Ada tasking with explicit operations of Kernel
processes. A second reason is to avoid having two competing runtime systems in
the processor competing for control of the hardware clock.

4. All Kernel processes will be created statically and scheduled dynamically. This is
simply a restriction imposed to make the development effort of the Kernel a
manageable activity.

5. The Kernel will not implement fault tolerance, but it will detect the presence of
certain (to be defined) classes of faults. The Kernel will detect certain system faults,
but it will leave the recovery from these faults in the hands of the application. The
Kernel will provide the capability to perform fault tolerance.

6. The Kernel will not use shared memory between processors. 777© Kernel's reliance
on special hardware, such as shared memory, would restrict the portability of the
Kernel and as such is disallowed.

7. Any Kernel process may communicate with any other Kernel process. Again, this
restriction simplifies the Kernel by placing the burden of restricting communications
on the system or software engineer. Management of system process names thus
becomes a configuration management issue within the application.

8. Inter-process communications will be provided by explicit use of Kernel primitives.
Again, this is a manifestation of the explicit operation versus the implicit operation.

CMU/SEI-88-TR-16 19

9. Each processor has its memory completely loaded at download time. This is
another simplifying assumption for the Kernel implementation. The Kernel will
operate under the restriction that all processes and all data are memory resident at
all times. This does not prohibit the application from building processes that can be
rolled in and out of memory.

10. The Kernel will not implement any paging or memory management facilities. The
Kernel assumes all processes on one processor execute in the same unchanging
address space.

20 CMU/SEI-88-TR-16

II. Requirements

This part of the Kernel Facilities Definition defines the requirements to be implemented by the
Kernel. The chapters in this part are parallel to those in the Kernel primitives part, which follows.
Each chapter in this part is divided into two sections:

• Behavior: Dictates the functional behavior of the Kernel.

• Performance: Dictates the performance requirements of the Kernel. All performance
requirements are based on a Motorola 68020 with a 20 Mhz clock (one wait state).
This is approximately 50 machine instructions for every 12.5 \is (assuming 5
cycles/machine instruction and 20 ns/cycle).

Section numbers associated with requirements in this part are the requirement numbers
referenced throughout the remainder of the document.

CMU/SEI-88-TR-16 21

22 CMU/SEI-88-TR-16

5. General Requirements
The requirements in this chapter apply to the specification, design, and implementation of the
entire Kernel.

5.1. Behavior

5.1.1. General failure reporting
The Kernel shall return status codes to the application program as a result of an invocation of a
Kernel primitive.

5.1.2. Kernel priority
Kernel primitives shall execute at the priority of the invoking process.

5.1.3. Low-level hardware details isolated from application
The Kernel shall encapsulate control and use of the system bus (i.e., the low-level communication
medium).

5.1.4. System dependencies isolated
System dependencies of the Kernel shall be isolated and encapsulated within the Kernel code.

5.1.5. Kernel provably correct
The Kernel code shall be provably correct (except for termination).

5.1.6. Kernel tailoring
The Kernel shall be tailorabie (via compilation) to meet the local system configuration and needs
at the following levels:

1. Priority range

2. Maximum message size

3. Maximum number of process table entries

4. Maximum size of the Network Configuration Table (NCT)

5. Default timeslice quantum

6. Default message queue size

5.1.7. Kernel modularity
The Kernel shall be developed such that an application program has to import only those Kernel
primitive capabilities that it needs.

CMU/SE1-88-TR-16 23

5.1.8. Run-time error checking
The Kernel shall provide the capability to disable all error checking and reporting.

5.2. Performance

5.2.1. Kernel size
The Kernel shall use no more than 5% of the total available system memory for Kernel code.

5.2.2. Kernel internal data size
The Kernel shall use no more than 5% of the total available system memory for Kernel data.

5.2.3. Kernel stack for Kernel invocation
The Kernel shall use no more than 100 bytes of process stack space for a Kernel primitive
invocation.

5.2.4. Linear performance
The time performance of all Kernel algorithms shall be better than linear in the number of
processes.

5.2.5. Kernel algorithm documentation
All Kernel algorithms shall be fully documented in the Kernel User's Manual [kum 88].

24 CMU7SEI-88-TR-16

6. Processor Requirements

6.1. Behavior

6.1.1. Master processor identification
The Kernel shall provide the capability for exactly one processor to identify itself as the network
Master processor for initialization purposes.

6.1.2. Subordinate processor identification
The Kernel shall provide the capability for all other processors to identify themselves as
subordinate to the network Master processor for initialization purposes.

6.1.3. Processor failure detection
The Kernel shall detect the failure of any processor in the network to initialize.

6.1.4. Processor failure reporting
The Kernel shall report to the Master processor the failure of any processor in the network to
initialize.

6.1.5. Network clock synchronization at initialization
The Kernel shall provide the capability to synchronize all network clocks at system initialization.

6.1.6. Clock synchronization not enforced after initialization
The Kernel shall nor enforce clock synchronization across processors after initial synchronization.

6.1.7. Network failure nor detected
The Kernel shall not be required to detect network failure.

6.1.8. Network integrity not provided
The Kernel shall not provide network integrity controls.

6.1.9. Network integrity primitives provided
The Kernel shall provide the capability for the user to implement network integrity consistent with
the needs of the application.

6.1.10. Network configuration primitives provided
The Kernel shall provide the capability for the application to specify the network configuration
including:

1. Device identifier

2. Physical address

3. Processor device

4. Other data required for network operation

CMU/SEI-88-TR-16 25

6.1.11. Low-level network details isolated from application
The Kernel shall isolate low-level network implementation knowledge from the user application.

6.2. Performance

6.2.1. System initialization not time-critical
System initialization shall be accomplished in less than 5 seconds.

6.2.2. Initial time delta across the network
Deleted -1 July 1988.3

3
Subsumed by Synchronize primitive (21.1.6).

26 CMU/SEI-88-TR-16

7. Process Requirements

7.1. Behavior

7.1.1. Main Unit identification
There shall be a single Main Unit on each processor that coordinates processor-level
initialization.

7.1.2. Main Unit profile
The Main Unit shall be an Ada procedure with no parameters.

7.1.3. Identification of communication partners
The Kernel shall provide the capability for the Main Unit to identify all Kernel processes and
non-CPU devices with which communication from this processor is to occur.

7.1.4. Create process
The Kernel shall provide the capability for the Main Unit to create independent, concurrent
threads of control (i.e., processes).

7.1.5. Ada process profile
The code of a process shall be an Ada procedure with no parameters.

7.1.6. Process stack size
The Kernel shall provide the capability for the Main Unit to specify the process stack size for each
created process.

7.1.7. Process stack size fixed
The process stack size shall be fixed at process-creation time.

7.1.8. Default process stack size
The default process stack size shall be 64 bytes.

7.1.9. Message queue size
The Kernel shall provide the capability for the Main Unit to specify the input message queue size
for each created process.

7.1.10. Message queue size fixed
The process message queue size shall be fixed at process-creation time.

CMU/SEI-88-TR-16 27

7.1.11. Default message queue size
The default input message queue size shall be 256 bytes.

7.1.12. Non-propagation of exceptions
The Kernel shall ensure that exceptions are not propagated outside the scope of the process in
which they are raised.

7.1.13. Abortion on illegal exception propagation
The Kernel shall abort any process that attempts to propagate an exception outside the scope of
the process.

7.1.14. Allocate device
The Kernel shall provide the capability for a process to identify itself as the sole receiver of
messages for a non-Kernel device.

7.1.15. Successful initialization
The Kernel shall provide the capability for the Main Unit to inform the other processors of the
successful initialization of its processor.

7.1.16. Ensure network-wide initialization completed
The Kernel shall ensure that no process executes until all necessary network-wide initializations
are complete.

7.1.17. Main Unit termination
Upon successful completion of processor initialization, the Main Unit shall be terminated.

7.1.18. Process self-termination
The Kernel shall provide the capability for a process to terminate itself in an orderly manner.

7.1.19. Process self-abortion
The Kernel shall provide the capability for a process to abort itself.

7.1.20. Aborting another process
The Kernel shall provide the capability for one process to abort another process.

7.1.21. Pending messages for terminated process discarded
The Kernel shall ensure that messages pending for a terminated process are discarded.

7.1.22. Pending messages for aborted process discarded
The Kernel shall ensure that messages pending for an aborted process are discarded.

28 CMU/SEI-88-TR-16

7.1.23. Identify self
The Kernel shall provide the capability tor a process to obtain its own identity.

7.1.24. Identify another process
The Kernel shall provide the capability tor a process to obtain the identity of another process in
the network.

7.1.25. Process failure detection
The Kernel shall provide the capability to detect the failure of any process in the network.

7.1.26. Process failure reporting
The Kernel shall report the detected failure of any process in the network.

7.2. Performance

7.2.1. Time to create process
The creation of a process shall take no more than 60 \is.

7.2.2. Time to terminate process
The termination of a process shall take no more than 30 us.

7.2.3. Time to abort process
The abortion of a process shall take no more than 30 \is.4

7.2.4. Time to allocate device
The allocation of a device to a process shall take no more than 20 \is.

7.2.5. Kernel data for each active process
The Kernel shall use no more than 100 bytes of data for Kernel data structures for each active
process.

7.2.6. Kernel stack for each active process
The Kernel shall use no more than 64 bytes of process stack space for each process.

'Network communication overhead is not included.

CMU/SEI-88-TR-16 29

30 CMU/SEI-88-TR-16

8. Semaphore Requirements

8.1. Behavior

8.1.1. Create a semaphore
The Kernel shall provide the capability to create a semaphore object.

8.1.2. Creation semantics
The creation of a semaphore shall associate an empty waiting process queue with the
semaphore object.

8.1.3. Semaphore queue FIFO
The waiting process queue shall be first in, first out (FIFO) ordered.

8.1.4. Claiming a semaphore
The Kernel shall provide the capability for a process to obtain access to a previously created
semaphore.

8.1.5. Claim timeout after duration
The Kernel shall provide the capability for a claim operation to terminate after a specified duration
if the semaphore does not become available.

8.1.6. Claim timeout at specific time
The Kernel shall provide the capability for a claim operation to terminate at a specific absolute
time if the semaphore does not become available.

8.1.7. Resumption priority after claim
The Kernel shall provide the capability for the claiming process to specify a priority at which it is to
be unblocked.

8.1.8. Claiming an available semaphore
Claiming an available semaphore shall immediately give control of the semaphore to the invoking
process and shall mark the semaphore as unavailable.

8.1.9. Claiming an unavailable semaphore
Claiming an unavailable semaphore shall immediately block the invoking process until the
semaphore becomes available or the timeout expires.

8.1.10. Releasing a semaphore
The Kernel shall provide the capability for a process to relinquish control of a previously claimed
semaphore.

CMU/SEI-88-TR-16 31

8.1.11. Release semantics
Releasing a semaphore shall allow the Kernel to give control of the semaphore to the process at
the head of the waiting process queue.

8.2. Performance

8.2.1. Time to create a semaphore
Creating a semaphore object shall take no more than 25 us.

8.2.2. Time to claim a semaphore
Claiming a semaphore object shall take no more than 25 us.5

8.2.3. Time to release a semaphore
Releasing a semaphore object shall take no more than 25 us.6

5
No scheduling activity is involved.

6No scheduling activity is involved.

32 CMU/SEI-88-TR-16

9. Scheduling Requirements

9.1. Behavior

9.1.1. Initial scheduling parameters
The Kernel shall provide the capability for each Main Unit to specify the initial scheduling
parameters of each process to execute on that processor.

9.1.2. Default schedule parameters
The default schedule parameters of a process shall be preemptable, interruptible, and lowest
possible priority.

9.1.3. Representation of priority
Process priorities shall be represented as a subset of the positive integers.

9.1.4. Definition of priority range
The range of priorities shall be defined at compile time by the user(s) of the Kernel.

9.1.5. Definition of priority ordering
Smaller integer values for priority shall represent higher process priorities.

9.1.6. Dynamic process priority
The Kernel shall provide the capability to set process priorities dynamically.

9.1.7. Set initial priority
The Kernel shall provide the capability to set the initial process priority at process-creation time.

9.1.8. Change priority
The Kernel shall provide the capability for a process to change its own process priority.

9.1.9. Query priority
The Kernel shall provide the capability for a process to query its own process priority.

9.1.10. Definition of preemption
The Kernel shall provide two preemption states: preemptable by a process of the same priority,
and not preemptable by a process of the same priority.

9.1.11. Set initial preemption
The Kernel shall provide the capability to set the initial preemption state at process-creation time.

CMU/SEI-88-TR-16 33

9.1.12. Change preemption
The Kernel shall provide the capability for a process to set its own preemption state.

9.1.13. Query preemption
The Kernel shall provide the capability for a process to query its own preemption state.

9.1.14. Definition of wait
The Kernel shall provide the capability for a process to voluntarily relinquish control of the
processor and to be resumed at the next sequential statement.

9.1.15. Wait for duration
The Kernel shall provide the capability for a process to block its own execution for a specified
duration.

9.1.16. Wait until specified time
The Kernel shall provide the capability for a process to block its own execution until a specified
time.

9.1.17. Resumption priority after wait
The Kernel shall provide the capability for a waiting process to specify a priority at which it is to be
unblocked.

9.1.18. Set timeslice
The Kernel shall provide the capability to set the timeslice quantum for each processor.

9.1.19. Enable round-robin time slicing
The Kernel shall provide the capability to enable the time slicing of processes of equal priorities in
a round-robin manner.

9.1.20. Disable round-robin time slicing
The Kernel shall provide the capability to disable time slicing of processes of equal priorities in a
round-robin manner.

9.1.21. Default timeslice settings
The default timeslice settings shall be: time slicing disabled, and timeslice quantum is zero.

9.1.22. Setting another process's scheduling parameters prohibited
The Kernel shall prohibit one process from directly setting another's scheduling parameters (e.g.,
priority, preemption) with the exception of the initial scheduling parameters, which are defined by
the Main Unit at process-creation time.

34 CMU/SEI-88-TR-16

9.1.23. Process states
A process shall always be in one of four definite states:

1. Running

2. Dead

3. Blocked

4. Suspended

9.1.24. Scheduling algorithms
The Kernel scheduling algorithms shall be:

1. Deterministic, and

2. Of predictable performance.

9.1.25. Scheduling algorithms provided
The scheduling algorithms shall provide priority-based, preemptive scheduling.

9.1.26. Documentation of scheduling algorithms
The Kernel scheduling algorithms shall be fully documented in the Kernel User's Manual.

9.1.27. Meaning of a timeslice
A process that is preemptable while timeslicing is enabled shall execute for no more than one
timeslice quantum before a forced reschedule point occurs.

9.2. Performance

9.2.1. Time to set priority
Setting a process priority shall take no more than 57 \is.7

9.2.2. Time to set preemption
Setting a process preemption state shall take no more than 18 [is.8

9.2.3. Time to suspend process
Suspension of a process shall take no more than 43 \is.

7No scheduling activity is involved.

8No scheduling activity is involved.

CMU/SEI-88-TR-16 35

9.2.4. Time to resume process
Resumption of a process shall take no more than 33 \is.

9.2.5. Time to enable or disable time slicing
Enabling or disabling timeslice scheduling shall take no more than 18 u.s.9

9.2.6. Time of context switch
The time needed to suspend execution of the currently running process and resume execution of
a different process shall take no more than 76 us.10

9.2.7. Dispatch time
The Kernel shall take no more than 33 [is to dispatch the highest priority task after it becomes
unblocked.

sNo scheduling activity is involved.

^Requirement 9.2.3 time + requirement 9.2.4 time.

36 CMU/SEI-88-TR-16

10. Communication Requirements

10.1. Behavior

10.1.1. Reference communication partners
The Kernel shall provide the capability for a process to reference all other processes with which it
communicates.

10.1.2. Send
The Kernel shall provide the capability for a process to send data to another process.

10.1.3. Send with ACK
The Kernel shall provide the capability for the sending process to request acknowledgment (ACK)
of message receipt by the receiving process.

10.1.4. Resumption priority for send with ACK
The Kernel shall provide the capability for the sending process to specify the priority at which it is
to be unblocked.

10.1.5. Sender specifies recipient
The process originating a message sent to a single recipient shall specify the recipient.

10.1.6. Receiver physical address hidden
The sender shall not need to know the physical network address of the receiver.

10.1.7. Send timeout after specified duration
The Kernel shall provide the capability for a process to terminate a send with ACK operation if the
message is not received after a specified duration.

10.1.8. Send timeout by specified time
The Kernel shall provide the capability for a process to terminate a send with ACK operation if the
message is not received by a specified time.

10.1.9. Send timeout reporting
The Kernel shall terminate send operations whose timeout expires with a status code.

10.1.10. Send recipient failure detection
The Kernel shall detect the failure of the receiving process during a send with ack operation.

CMU/SEI-88-TR-16 37

10.1.11. Send recipient failure reporting
The Kernel shall report the failure of a message recipient during a send with ACK operation.

10.1.12. Receive
The Kernel shall provide the capability for a process to receive data from another process by
copying the data into the work space of the invoking process.

10.1.13. Resumption priority for receive
The Kernel shall provide the capability for the receiving process to specify the priority at which it
is to be unblocked.

10.1.14. Kernel identifies sender
The Kernel shall inform the message recipient of the sender's identity.

10.1.15. Sender physical address hidden
The receiver shall not need to know the physical network address of the sender.

10.1.16. Receive timeout after specified duration
The Kernel shall provide the capability for a process to terminate a receive operation if it is not
completed after a specified duration.

10.1.17. Receive timeout by specified time
The Kernel shall provide the capability for a process to terminate a receive operation if it is not
completed by a specified time.

10.1.18. Receive timeout reporting
The Kernel shall terminate with a status code a receive operation whose timeout expires.

10.1.19. Message format
The Kernel shall not impose any restrictions on the content, format, or length of a message other
than maximum message size limitations.

10.1.20. Message too big on receive
Any attempt to receive a message larger than the object into which it is to be put shall result in
the message contents being discarded, but the message attributes shall be delivered to the
receiver. These include:

1. Message sender's process identifier

2. Message tag

3. Message length

38 CMU/SEI-88-TR-16

10.1.21. FIFO message queue
The process message queue shall be FIFO ordered.

10.1.22. Message queue overflow
The Kernel shall provide two options for managing the message queue when the arrival of a new
message would cause queue overflow:

1. Accept the new message by overwriting old messages; or

2. Reject the new message.

10.1.23. Default overflow handling
The default option for managing message queue overflow shall be to reject the new message.

10.1.24. Status code on queue overflow
The Kernel shall return a status code on the first receive operation after queue overflow has
occurred.

10.1.25. Communication failure reporting
The Kernel shall terminate pending communication operations with a failed process with a status
code when that failure is detected.

10.1.26. Communication with non-Kernel devices
The Kernel shall provide the capability to communicate with any device (capable of sending or
receiving communication) in the network.

10.1.27. Communication deadlock detection
The Kernel shall prohibit a process from performing a send with ack operation to itself.

10.1.28. Common primitives for all communication
The Kernel shall provide a common set of communication primitives for both local and remote
message passing.

10.1.29. Local communication optimization
The Kernel shall optimize communications local within a processor.

10.1.30. Message integrity
The Kernel shall ensure message integrity, including:

1. The entire message reaches the receiver; and

2. Simple transmission errors are detected.

CMU/SEI-88-TR-16 39

10.1.31. Communication integrity
The Kernel shall ensure communication integrity, including:

1. The sender of a message is a valid process; and

2. The receiver of a message is a valid process.

10.2. Performance

10.2.1. Transmission time of 0-length message
The time11 needed to send a 0-length message without acknowledgment to a single process in
the case of two processes on two processors (excluding network transmission time) shall be no
more than 25 us.

10.2.2. Transmission time of large message
The time needed to send a large12 message without acknowledgment to a single process in the
case of two processes on two processors (excluding network transmission time) shall be no more
than 25 us.

10.2.3. Transmission time of 0-length message with ACK
The time needed to send a 0-length message with acknowledgment to a single process waiting
for that message in the case of two processes on two processors (excluding network
transmission time) shall be no more than 50 us.

10.2.4. Transmission time of large message with ACK
The time needed to send a large message with acknowledgment to a single process waiting for
that message in the case of two processes on two processors (excluding network transmission
time) shall be no more than 50 us.

10.2.5. Transmission time of 0-length message locally
The time needed to send a 0-length message without acknowledgment to a single process in the
case of two processes on the same processor shall be no more than 15 us.

10.2.6. Transmission time of large message locally
The time needed to send a large message without acknowledgment to a single process in the
case of two processes on the same processor shall be no more than 15 us.

11AJI times exdude copy time, which is to be determined (TBD) jis/byte. and net transmission time, which is TBD
(is/byte.

12The actual size of a "large" message is TBD. The intent is to select a message size that places a non-trivial load on
the system.

40 CMU/SEI-88-TR-16

10.2.7. Transmission time of 0-length message locally with ACK
The time needed to send a 0-length message with acknowledgment to a single process waiting
for that message in the case of two processes on the same processor shall be no more than 20
MS.

10.2.8. Transmission time of large message locally with ACK
The time needed to send a large message with acknowledgment to a single process waiting for
that message in the case of two processes on the same processor shall be no more than 20 \is.

10.2.9. Time to receive 0-length message
The Kernel overhead time needed to receive a 0-length available message shall be no more than
25 \is.

10.2.10. Time to receive large message
The Kernel overhead time needed to receive a large available message shall be no more than 25
\is.

10.2.11. Fixed message overhead
The Kernel shall use no more than 128 bits/message.

CMU/SEI-88-TFM6 41

42 CMU/SEI-88-TR-16

11. Interrupt Requirements

11.1. Behavior

11.1.1. Interrupt names
The Kernel shall accept a system.address as an interrupt identification (i.e., name).

11.1.2. No exception propagation from interrupt handlers
No exceptions shall be propagated out of the scope of an interrupt handler.

11.1.3. Exit on exception propagation from interrupt handlers
Any attempt to propagate an exception outside the scope of an interrupt handler shall result in the
immediate return from the interrupt handler.

11.1.4. Enable interrupt
The Kernel shall provide the capability for a process to enable an interrupt.

11.1.5. Disable interrupt
The Kernel shall provide the capability for a process to disable an interrupt.

11.1.6. Default status of interrupts
All interrupts visible to the user code shall have the default status defined by the user and the
system hardware.

11.1.7. Query Interrupt status
The Kernel shall provide the capability for a process to query the enabled/disabled status of an
interrupt.

11.1.8. Simulate interrupt
The Kernel shall provide the capability for a process to simulate any interrupt in software.

11.1.9. Define interrupt handler in Ada
The Kernel shall provide the capability for a process to define an interrupt handler in Ada.

11.1.10. Ada interrupt handler profile
The Ada interrupt handler shall be a procedure with no parameters.

11.1.11. Bind interrupt handler
The Kernel shall provide the capability to define an Ada code unit as an interrupt handler for a
specific interrupt.

CMU/SEI-88-TR-16 43

11.1.12. Blocking prohibited in interrupt handler
Within an interrupt handler, any attempt to invoke a blocking Kernel primitive in a situation where

it would block shall be terminated immediately with a status code.

11.1.13. Interrupts not queued
The Kernel shall not queue pending interrupts.

11.1.14. Interrupt implementation visibility
The Kernel shall allow the user unhindered access to the underlying hardware implementation of

interrupts.

11.1.15. Interrupt priority
All interrupt handlers shall execute at a higher priority than any Kernel process.

11.2. Performance

11.2.1. Time to enter interrupt handler
The time needed to enter an interrupt handler (from moment of preemption until the first

statement of the handler is executed) shall be less than 15 us.13

11.2.2. Time to exit interrupt handler
The time needed to exit an interrupt handler (from the return from interrupt until the resumption of

the preempted process) shall be less than 10 \is.

11.2.3. Time to bind interrupt handler
The time needed to bind an interrupt handler shall be less than 20 \is.

11.2.4. Interrupt stack use
The Kernel shall use no more than 16 bytes14 of process stack space per interrupt handler
invocation.

13No context save is included in this time.

14No context data are included in this allocation.

44 CMU/SEI-88-TR-16

12. Time Requirements

12.1. Behavior

12.1.1. Package Calendar
The Kernel shall support the standard Ada package Calendar (see [alrm 83], Section 9.6).

12.1.2. Exclusion of Package Calendar
The Kernel shall not require that package Calendar be a part of the load image.

12.1.3. Use of real-time clock
The Kernel shall be capable of using a real-time clock.

12.1.4. Definition of TICK
The Kernel shall define a constant, TICK, that is the smallest resolvable interval of time.

12.1.5. Definition of SLICE
The Kernel shall provide a constant, SLICE, that is the smallest schedulable interval of time.

12.1.6. Relationship between TICK and SLICE
SLICE shall be an integral multiple of TICK.

12.1.7. TICK used internally
The Kernel shall internally maintain time events accurate to the TICK.

12.1.8. SLICE basis for scheduling
The Kernel shall truncate all scheduling times (e.g., durations) to the nearest SLICE.

12.1.9. Two kinds of delays
The Kernel shall support two kinds of delays:

1. Delay for a specified duration (i.e., the Ada type duration); and

2. Delay until a specified time (i.e., the Ada type time).

12.1.10. Adjust local processor time
The Kernel shall provide the capability to adjust (increment and decrement) local elapsed
processor time.

12.1.11. Effect of adjusting local processor time
Adjusting local processor time shall affect all waiting events (i.e., those waiting for and those
waiting until).

CMU/SEI-88-TR-16 45

12.1.12. Reset epoch time
The Kernel shall provide the capability to reset the processor epoch15 time.

12.1.13. Effect of resetting epoch time
Resetting epoch time shall affect only those events waiting until a specified time.

12.1.14. Time base reference
The time base reference shall be Julian day 1 (i.e., 1200 on 1 January 4713BCE; see Joseph
Justus Scaliger, De emendatione temporum, 1582).

12.1.15. Read clock
The Kernel shall provide the capability to read current elapsed time (in TICKs).

12.1.16. Clock synchronization
The Kernel shall provide the capability to synchronize all the local clocks on Kernel processors in
the network to the time of the invoking processor.

12.1.17. Definition of synchronization
Synchronization of all network clocks shall force:

1. All epoch times to be set to the epoch time on the invoking processor.

2. All elapsed times to be identical to the elapsed time on the invoking processor,
within the delta defined in 12.2.5.

12.1.18. Synchronize timeout after duration
The Kernel shall provide the capability for a synchronize operation to terminate after a specified
duration if the synchronization protocol has not successfully completed.

12.1.19. Synchronize timeout at specific time
The Kernel shall provide the capability for a synchronize operation to terminate at a specific
absolute time if the synchronization protocol has not successfully completed.

12.1.20. Resumption priority after synchronize
The Kernel shall provide the capability for the synchronizing process to specify a priority at which
it is to be unblocked.

12.1.21. Duplicate synchronization rejected
The Kernel shall reject an invocation of the sychronize primitive while a previous invocation is in
progress.

15See Chapter 21 for the definition of epoch time.

46 CMU/SEI-88-TR-16

12.2. Performance

12.2.1. Time to adjust local processor time
The time needed to adjust the local processor time shall be no more than 18 u.s.16

12.2.2. Time to reset epoch time
The time needed to reset the epoch time shall be no more than 18 u.s.17

12.2.3. Time to read clock
The time needed to read the clock shall be no more than 18 u.s.

12.2.4. Time to synchronize
The time needed to synchronize all local processor clocks shall be no more than 200 us.18

12.2.5. Accuracy of time synchronization
After synchronization all processor clocks shall be within TBD \is.

16No scheduling activity is involved.

17No scheduling activity is involved.

18This is 4 * (time needed to send a 0-length message); see requirement 10.2.3 in Chapter 10.

CMU/SEI-88-TR-16 47

48 CMU/SEI-88-TR-16

13. Alarm Requirements

13.1. Behavior

13.1.1. Maximum number of alarms
The user shall be able to define one alarm per process.

13.1.2. Relative alarm time
The Kernel shall provide the capability to set an alarm to expire after a specified duration.

13.1.3. Absolute alarm time
The Kernel shall provide the capability to set an alarm to expire at a specified time.

13.1.4. Kernel defined alarm exception
The Kernel shall define an alarmexpired exception.

13.1.5. Expiration of alarm
The expiration of an alarm shall raise the alarm_explred exception.

13.1.6. Resumption priority after transfer
When a process sets an alarm, it shall have the capability to specify a priority at which it is to be
unblocked.

13.1.7. Set alarm for zero seconds
Setting an alarm to expire in zero time units shall immediately raise the alarm expired exception.

13.1.8. Set alarm for non-future duration
Setting an alarm to expire after some non-future duration shall immediately raise the
alarmexpired exception.

13.1.9. Set alarm for time in past
Setting an alarm to expire at some time in the past shall immediately raise the alarmexpired
exception.

13.1.10. Cancel alarm
The Kernel shall provide the capability to cancel an unexpired alarm.

CMU/SEI-88-TR-16 49

13.2. Performance

13.2.1. Time to set alarm
Setting an alarm shall take no more than 10 (is.

13.2.2. Time to cancel alarm
Canceling an alarm shall take no more than 10 \xs.

13.2.3. Time to transfer to exception handler
The time needed to raise the alarm expired exception and transfer control to the inner-most
enclosing exception handler shall take no more than TBD19 us.

1*This is compiler-dependent and not under the control of the Kernel.

50 CMU/SEI-88-TR-16

14. Tool Interface
The requirements in this chapter are not mapped on the Kernel primitives in Chapters 15-22, nor
are the tool interface primitives mapped onto the other requirements. The tool interface is a
non-essential part of the Kernel, and its existence is not needed for the proper use and
functioning of the Kernel.

14.1. Behavior

14.1.1. Monitoring
The Kernel shall provide the capability to monitor certain internal data and primitive operations.

14.1.2. Monitor process
The monitor shall be a process.

14.1.3. Number of monitors
The application may have any number of monitor processes within the application-defined
constraints.

14.1.4. Monitor process is local
The monitor process shall be local to the processor it is monitoring.

14.1.5. Asynchronous logging
The Kernel shall log the monitored data by sending a message to the local monitor process.

14.1.6. Monitor process attributes
The Kernel shall provide the capability to monitor process attributes of any declared process.

14.1.7. Specify processes to monitor
The Kernel shall provide the capability to specify the processes on which monitoring is to occur.

14.1.8. Disable monitoring of process attributes
The Kernel shall provide the capability to disable monitoring process attributes.

14.1.9. Process attributes available
The process attributes that shall be available for monitoring are:

1. Process identifier

2. Process state

3. Time process entered state

4. Process priority

5. Process preemption state

6. Process alarm state

CMU/SEI-88-TR-16 51

7. Return status code (if the state changes as a result of an invocation of a Kernel
primitive)

8. Name of the Kernel primitive associated with the status code

14.1.10. Monitor message attributes
The Kernel shall provide the capability to monitor message attributes.

14.1.11. Disable monitoring of message attributes
The Kernel shall provide the capability to disable monitoring message attributes.

14.1.12. Message attributes available
The message attributes that shall be available for monitoring are:

1. Sender's process identifier

2. Receiver's process identifier

3. Time message was sent or received

4. Message tag

5. Message length

14.1.13. Monitor message contents
The Kernel shall provide the capability to monitor message contents.

14.1.14. Disable monitoring of message contents
The Kernel shall provide the capability to disable monitoring message contents.

14.1.15. Monitor interrupt attributes
The Kernel shall provide the capability to monitor interrupt attributes of any declared interrupt.

14.1.16. Specify interrupts to monitor
The Kernel shall provide the capability to specify the interrupts on which monitoring is to occur.

14.1.17. Disable monitoring of interrupt attributes
The Kernel shall provide the capability to disable monitoring interrupt attributes.

14.1.18. Interrupt attributes available
The interrupt attributes that shall be available for monitoring are:

1. Kernel primitives executed from within interrupt handlers.

2. Return status code of Kernel primitives executed from within interrupt handlers.

52 CMU/SEI-88-TR-16

14.1.19. Process table available
The Kernel shall provide the capability to read the Kernel's process table, which includes:

1. Process name

2. Process identifier

3. Process state

4. Processor address

14.1.20. Interrupt table available
The Kernel shall provide the capability to read the Kernel's interrupt table, which includes:

1. Interrupt

2. State

3. Interrupt condition

14.1.21. No communication overhead incurred
The Kernel shall not perform any background Kemel-to-Kernel communication to collect process,
message, or interrupt attributes.

14.1.22. Monitor requests ignored
The Kernel shall ignore all requests to monitor processes that are unknown, aborted, or
terminated when monitoring is enabled.

14.2. Performance

14.2.1. Time to define a monitoring activity
The definition of a monitoring activity shall take no more than 10 \is.

14.2.2. Time to terminate a monitoring activity
The termination of a monitoring activity shall take no more than 5 [is.

14.2.3. Time to process a monitoring activity
The processing of a monitoring activity shall take no more than 5 \is.

14.2.4. Tool predictability
The tool interface primitives shall be predictable in their use of time and memory resources.

14.2.5. Time measured consistently
The Kernel shall perform all time measurements at a consistent point in the Kernel code.

CMU/SEI-88-TR-16 53

14.2.6. Data logged consistently
The Kernel shall send all logging messages at a consistent point in the Kernel code.

54 CMU/SEI-88-TR-16

III. Kernel Primitives

The logical result of the models, assumptions, and restrictions in Chapter 4 is a Kernel familiar to
most embedded systems software engineers. What this part will define is not new in the
distributed real-time processing world. However, it will combine the known forms from traditional
(i.e., non-Ada) systems and some of the desired "extensions" to Ada (based, in part, on the
thinking embodied in the [artewg-interface 86] report) to form a Kernel that can be ported and
used by Ada applications. These extensions will appear to the application program as a
collection of Ada packages — reusable components — that, together with certain application
programming conventions, can be combined with the Ada application to execute in a hard
real-time, distributed, embedded environment.

The general format for each chapter is:

• General discussion of implications of our system and process models on the
primitives.

• The Kernel primitives, discussing their functionality and status codes.

• Where appropriate, blocking primitives and their impacts.

• Status codes and their explanations (when needed).

The Kernel communication model presents a set of primitives to the user, and implements those
primitives on an underlying set of distributed processors connected by data paths. The model,
the implementation, and the intended mode of use, can all be related to the ISO Reference Model
(See [Zimmermann 80] and [Tanenbaum 81]), which provides a conceptual framework for
organizing the Kernel primitives, as shown in Figure 14-1. The ISO Reference Model identifies
seven layers, named, from lowest to highest:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

The target hardware provides Layer 1. The Kernel implements Layers 2 to 4, and therefore
presents to the user the Transport layer. The Kernel thus encapsulates within itself the Data Link
and Network layers, rendering them invisible to the user. The application code can implement
Layers 5 to 7, in part by using other Kernel primitives. The way to do this is described in the
Kernel User's Manual.

CMU/SEI-88-TR-16 55

Layer Kernel Equivalent

7 Application Created by user

6 Presentation Created by user

5 Session Kernel primitives: declare process, create process,
allocate device receiver, and initialization complete

4 Transport
Kernel primitives: send message,
send message and wait, and receive message

3 Network Nu"(can **built by user)

2 Data Link Datagram model

1 Physical Built by using Kernel primitives: network configuration
table, initialize master processor, and initialize
subordinate processor

Figure 14-1: ISO Model to Kernel Mapping

56 CMU/SEI-88-TR-16

ISO to Kernel Mapping

Physical Layer
The Physical layer is represented by the hardware data paths, which support the transmission of
a serial bitstream between processors. These hardware data paths are used by the Kernel in a
packet switching mode; that is, a sequence of bits—a frame—is sent at the discretion of the
originator, with no implied reservation of resources or preservation of state between frames.

Data Link Layer
This is the layer at which basic error detection and recovery and flow control may be provided.
The Kernel uses a simple datagram model, in which a frame is transmitted with no
acknowledgment, no error correction, and no flow control. Minimal error detection is achieved by
using a datagram checksum, but any recovery is performed by application code, i.e., above the
Transport layer. Similarly, datagram storage overflow is recognized and reported by the
Transport layer.

Network Layer
In this prototype, the Kernel has a null Network layer. The Kernel assumes that point-to-point
communication is available between any pair of nodes (processors). Routing is accomplished
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no
alternative routing is provided.

However, since the abstraction presented to the user is above this layer, a real Network Layer
could subsequently be added without requiring any application code to be changed.

Transport Layer
The Kernel builds the Transport layer by performing physical network connections and
subsequent logical-to-physical mappings, actions that together implement the abstraction of direct
process-to-process communication by means of messages.

The physical network is described by a network connection table, a copy of which is maintained in
each processor. This table is created by the user and communicated to the Kernel during
application initialization. Once that information is provided, the Kernel verifies the network
connectivity and opens the physical connections between processors.

Subsequently, the logical processes and their physical sites are communicated to the Kernel.
The model on which the Kernel is based assumes that all processes are created at initialization
time, that a process never moves, and that a process once dead is never restarted. The Kernel
therefore computes the logical-to-physical mapping once only and never subsequently changes it.
Attempts to communicate with dead processes are treated as transport errors.

The Transport layer also performs the conversions between messages and the underlying
datagrams. In this prototype, this is done trivially by using one datagram per message or per
acknowledgment and, if necessary, by restricting the maximum message size accordingly.

CMU/SEI-88-TR-16 57

The Transport layer is the layer visible to the user. It supports unacknowledged send operation
and end-to-end acknowledged send operations. All errors detected in this or any lower layer are
reported at this layer, in the form of status codes returned by the Kernel primitives.

Session Layer
This layer is implemented by application code. Since it establishes logical connections between
processes, its presence is required, and the user must write specific code to create it, as
explained in the Kernel User's Manual. This code is part of the application initialization code; it
must be present on every processor and, in Ada terms, must be part of the Main Unit on that
processor.

The model is one of a set of logical processes, each with a user-defined name and each with a
single message port for the reception of messages from other processes.

The Kernel declare process primitive indicates an intent to create or communicate with a given
named process. It establishes the mapping between application-level process names and Kernel
internal names.

The Kernel create process primitive creates the process, establishes its message port, and
makes that port available to the network. Thereafter, one process may communicate with
another.

Presentation Layer
In the Kernel model, the Presentation layer performs no transformation of data. Rather, it
performs the translation between Ada values — values of user defined data types — and
message values. This is done by application code, written as prescribed by the Kernel User's
Manual. The purpose of the Presentation layer is to establish above the Transport layer the
strong typing of the Ada language, by ensuring that communicating processes pass only strongly
typed data and do so by referencing a common set of data conversion routines bound to a
common Ada data type.

Application Layer
This layer uses the Presentation layer for whatever purpose the code requires. The model here
is of parallel independent threads of control executing Ada code, identifying each other by
application-level symbolic names, and communicating by passing values of Ada data types.

58 CMU/SEI-88-TR-16

15. Processor Management
There are two steps to using the system model shown in Figure 4-3. First, the physical topology
of the system must be defined; second, the system must be initialized. The approach taken to
achieve the first step requires that the application engineer first define the network configuration
in a manner that the Kernel understands. This is done using the Network Configuration Table
(NCT) shown in Figure 15-1.

Device
ID

Physical
Address

Kernel
Device

Needed
To Run

Allocated
Process ID

Initialization
Order

Initialization
Complete

Figure 15-1: Sample Network Configuration Table (NCT)

This table provides the minimum information needed by the Kernel to perform system initialization
and its inter-process communication functions. It is supplied by the application to the Kernel; it is
implementation- and hardware-dependent and is available to the application for implementation of
higher levels of network integrity (as discussed in the Kernel User's Manual). For each device
accessible over the network, this table defines the following information:

• Device ID: Logical name for the device.

• Physical address: Hardware-specific information needed to access the device over
the system bus.

• Kernel device: Identifies those devices that are able to respond to messages. It is
possible to communicate with non-Kernel devices, but they are not expected to
participate in the network initialization protocol or to understand the Kernel's
datagram. Non-Kernel devices place the burden of initialization and message
formatting upon the user. That is, the Kernel routes messages to and receives
messages from non-Kernel devices, but it is the responsibility of the application to
format and unformat these messages.

• Needed to run: Identifies those devices that must be available at initialization-time in
order for the application to begin execution. This could be used to mark failed or
spare devices at startup.

• Allocated process ID: Identifies the recipient of all messages that originate from a
non-Kernel device. This approach requires that the non-Kernel device be able to
route the message to the appropriate node.

• Initialization order: Identifies the order in which the Kernel nodes of the network are

CMU/SEI-88-TR-16 59

to be initialized. The default, unless specifically overridden, is for the nodes to
initialize in the order their entries occur in the NCT.

• Initialization complete: Identifies those Kernel nodes whose initialization sequence
has successfully terminated.

To achieve the second step, the Kernel has defined a simple initialization protocol (shown in
Figure 15-2). This protocol requires that one processor, called the Master, be in charge of the
initialization process. All other processors in the network are subordinate to this processor during
the Kernel's initialization process. The Master is responsible for:

• Ensuring the consistency of the NCT among all the subordinate processors.

• Issuing the "Go" message to all the subordinate processors.

Some key points to note about this protocol are:

• The Master processor is a single point-of-failure in the system.

• The Master assumes it has the correct and complete version of the Network
Configuration Table.

• If any of the following problems occurs at initialization, then the network may fail to
become operational:

1. No Master processor declares itself.

2. The Master processor fails to initialize successfully.

3. More than one Master processor declares its presence.

4. The Network Configuration Tables are found to be inconsistent.

These points can be addressed by application-specific fault tolerant techniques (redundant
hardware, voting schemes, etc.), which are in the domain of the application, not the Kernel. This
is discussed further in the Kernel User's Manual.

15.1. Primitives

15.1.1. Initialize Master processor
This primitive identifies the invoker as the processor that is going to control network initialization.
It causes the Kernel to initiate the Master initialization protocol shown in part one of Figure 15-2. It
requires a timeout that is used to control how long the Master processor will wait for any one
subordinate to reply to any initialization protocol message. The expiration of this timeout informs
the Master processor that network-wide initialization has failed; it is the responsibility of the Main
Unit to relay this information to the appropriate parties.

The initialization protocol shown in Figure 15-2 consists of two phases:

1. Network phase: Where the Master processor interrogates each subordinate to
determine its view of the network (embodied in the NCT).

2. Commence processing phase: Where the Master processor tells each subordinante
to start normal processing.

60 CMU/SEI-88-TR-16

Master Initialization
Protocol

Kernel
initializing

Kernel ready

Declare self as Master
Send "Master Ready'

Initialization timeout expired

Broadcast "Network Failure"

Waiting for
NCT message

No NCT errors found

Send "Master Ready"

NCT Message Received

Network
initialization

failure NCT errors found

Compare NCTs

Acknowledge timeout expired

Broadcast "Network Failure"

All NCTs consistent

Send "Go" message

Waiting for
"Go ACK"
message

Key lnitiali7ation Points

0 The Master is alive and ready.

"Go ACK" received

Send "Go" message

All "Go ACK"
Messages received

0
1 The Master knows that the physical topology of the

network is consistent across processors.

All processors know that the physical topology of the network is
consistent.

Figure 15-2: Network Initialization Protocol (Part 1 of 2)

CMU/SEI-88-TR-16 61

Subordinate Initialization
Protocol

Kernel
initializing

Kernel ready

Wait for
Master

Network
initialization

failure Master failure timeout

Waiting for
"Go" message

Broadcast "Network Failure"

0-

Network failure timeout

Broadcast "Network Failure"

Key Initialization Points

q Processor configuration is complete;
waiting for remaining processors to complete.

Configure
processor

Waiting for
network

initialization

4

"Master Ready" received

Send NCT to Master

"Go" message received

Send "Go ACK" Message

Process creation complete

Broadcast 'Initialization Complete"

All "Initialization Complete" messages received

Start Scheduler
Disable Ada Main Unit

Processor
executing

4 All processors know that the logical topology of the
network is consistent The application is ready
to execute.

Figure 15-2: Network Initialization Protocol (Part 2 of 2)

62 CMU/SEI-88-TR-16

Note that no time information is exchanged during this protocol. If the application requires time
synchronization, the processor maintaining the system time must explicitly invoke the synchronize
primitive (discussed in Chapter 21).

If this primitive fails for any reason, no processor in the network will initialize. This primitive can
give rise to the following status codes:

• OK

• Initialization timeout expired

• Processor failed to transmit NCT

• Configuration tables inconsistent

• Calling unit not Main Unit

• Multiple Master processors declared

15.1.2. Initialize subordinate processor
This primitive identifies the invoker as a subordinate (i.e., non-Master) processor and begins
execution of the subordinate initialization protocol shown in part two of Figure 15-2. This primitive
has an optional timeout parameter, which may be used to identify an alternate Master processor
in the event the primary Master fails to initialize.

This primitive can give rise to the following status codes:

1.0K

2. Calling unit not Main Unit

3. Initialization timeout expired

15.1.3. Start subordinate processors
Deleted-1 July^S.20

15.1.4. Create network configuration
This primitive creates the Network Configuration Table shown in Figure 15-1. This creation is a
static, compile-time operation performed by the Kernel user. A complete copy of the NCT must
exist on every Kernel processor in the network.

This primitive always succeeds.

^Subsumed by Initialize Master Processor (15.1.1).

CMU/SEI-88-TR-16 63

15.2. Blocking Primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

Unitialize Master processor: Always blocks until one of the following conditions
occurs:

a. All required processors in the network have transmitted their NCTs to the
Master, or

b. The initialization timeout expires.

2. Initialize subordinate processor: Always blocks until one of the following conditions
occurs:

a. The Master has requested the processor's NCT and the subordinate has
acknowledged the "Go" message, or

b. The initialization timeout expires.

15.3. Status Codes
1. OK: Normal, successful completion.

2. Configuration tables inconsistent: A discrepancy was found between the Network
Configuration Table of a subordinate processor and the Network Configuration
Table of the Master Processor.

3. Multiple Master processors declared: Multiple processors have declared
themselves network Master, an unresolvable error condition.

4. Processor failed to transmit NCT: Indicates that a processor has failed at system
startup time.

5. Processor failed to acknowledge "Go" message: Indicates that a processor has
failed at system startup time.

6. Initialization timeout expired: Informs the invoker of a serious network failure.

7. Calling unit not Main Unit: Inform the invoker that this primitive may be invoked only
by the Main Unit on a processor (and hence only during initialization).

64 CMU/SE1-88-TR-16

16. Process Management
This chapter outlines the primitives provided to the Ada application for creation and termination of
Kernel processes. The model used for Kernel process names is this: to communicate with a
process, one must know the name of the process either at compile time or as constructed at
runtime. The name of a process comes in two forms:

1. The logical name given to the process by the developer, encoded in Ada as a
character string, and

2. The internal name given to the process at runtime by the Kernel.

Hereafter, the internal name of a process is called the process ID (PID) or process identifier, the
term process name refers to the logical name of the process. However, knowing the name of a
process does not guarantee the availability of the process at runtime. This is one class of faults
that the Kernel will be able to detect and report.

16.1. Primitives

16.1.1. Declare process
This primitive declares all Kernel processes that will execute locally, all remote Kernel processes
with which communication may occur, and any remote, non-Kernel devices with which
communication will occur. This primitive may be invoked only by the Main Unit.

This primitive can give rise to the following status codes:

• OK

• Process already exists

• Calling unit not Main Unit

• Too many processes

• Unknown non-Kernel device

16.1.2. Create process
This primitive creates an independent thread of control. It may be invoked only by the Main Unit
of a processor to create the Kernel processes that will share that processor. For each process,
the application provides the following information to the Kernel:

• Process attributes: stack size, and code address

• Scheduling attributes: priority and preemption21

• Communication attributes: maximum message size, message queue size, and
message queue overflow handling

Once the Kernel has all the process-related information, it constructs the execution environment,
shown in Figure 16-1, around the process. This environment consists of:

21A process will always be able to modify its own scheduling information at a later time.

CMU/SEI-88-TFM6 65

• Process stack, containing:

• Stack plug

• Dummy call frame

• Local process variables

• Process control block, containing:

• Message queue

• Schedule attributes

• Process code

• Context save area

This primitive can give rise to the following status codes:

• OK

• Illegal process address

• Illegal process identifier

• Process already exists

• Too many processes

• Calling unit not Main Unit

• Illegal communication attribute

• Illegal scheduling attribute

• Insufficient process space available

16.1.3. Initialization complete
This primitive asserts that the declaration and creation of all processes on this processor is now
complete. It is invoked by the Main Unit of that processor after all processes have been declared
and/or created. This primitive effectively tells the Kernel "I'm alive and ready to roll!" — the
application code is ready to run — and the Kernel relays this information to all the other Kernels
in the network. This primitive takes an optional timeout parameter to detect processor failure
after network initialization.

This primitive can give rise to the following status codes:

• OK

• Initialization timeout expired

• Remote process undefined

• Process already exists

66 CMU/SEI-88-TR-16

Process Table

Stack Pointer

Code Pointer

Buffer Pointer

Schedule Attributes

Context Save Area

Process
Control
Block

Message
Buffer

Process

Code

Process
stack

Process
Termination

Code

Figure 16-1: Process Execution Environment

CMU/SEI-88-TR-16 67

16.1.4. Allocate device
This primitive assigns a specific process to be the recipient of all messages originating from a
specific non-Kernel device although any process can send a message to a non-Kernel device.22

This primitive can give rise to the following status codes:

• OK

• Replacing previous allocation

• Unknown non-Kernel device

16.1.5. Die
This primitive terminates the calling process (self-termination only, used for normal successful
completion) and may be invoked by any process at any time. Since processes have no
dependents, each one terminates individually. Messages pending when a process terminates are
discarded, as are messages that arrive after a process has terminated. Note that only Kernel
processes may be terminated by this primitive. Terminating a non-Kernel process is the user's
responsibility.

This primitive can give rise to the following status code:

• Illegal process identifier

16.1.6. Kill
This primitive aborts the specified process and may be invoked by any process at any time. This
can be applied to any named process, including the calling process. This is an "abnormal"
termination, and causes an immediate action by the Kernel. If the aborted process is remote, the
actual abortion may occur after return from this primitive. Messages pending when a process is
aborted are discarded, as are messages that arrive after a process has aborted.

This primitive can give rise to the following status codes:

• OK

• Illegal process identifier

16.1.7. Who am I
This primitive allows a process to obtain its own process identifier and may be invoked by any
process at any time.

This primitive always succeeds.

22Of course, it must be properly formatted for the device by the application.

68 CMU/SEI-88-TR-16

16.1.8. Name of
This primitive allows a process to obtain the logical name of a process for which it has a process
ID. It may be invoked by any process at any time.

This primitive can give rise to the following status codes:

• OK

• Illegal process identifier

• No such process

16.2. Blocking Primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

1. Initialization complete: Always blocks until one of the following conditions occurs:

a. All needed process creation acknowledgments are received, or

b. The initialization timeout expires.

16.3. Status Codes
1.0K.

2. Replacing previous allocation: The current process allocated to the device is
replaced by the invoking process.

3. No such device exists: The requested non-Kernel device is not known at the
requesting site.

4. Illegal process address: The code address of the process is not a valid Ada
address.

5. Illegal process identifier: A nonexistent process identifier was used.

6. Illegal communication attribute: At least one of the communication attributes
specified at process creation-time is invalid.

7. Illegal scheduling attribute: At least one of the scheduling attributes specified at
process creation-time is invalid.

8. Remote process undefined: A process was declared, but no processor in the
network created the process.

9. Calling unit not Main Unit.

10. Too many processes: Declaration exceeded maximum number of processes
allowed.

11. Unknown non-Kernel device: No such device identified in the NCT.

12. Process already exists.

13. Too many processes.

14. Insufficient process space available: Insufficient memory exists for the creation of
another process.

CMU/SEI-88-TR-16 69

15. Initialization timeout expired.

70 CMU/SEI-88-TR-16

17. Semaphore Management
The Kernel provides the traditional Boolean ("Dykstra") semaphore facility, slightly revised to be
consistent with the overall philosophy of the Kernel primitives.

A semaphore is an abstract data type. Objects of this type may be declared anywhere, but since
semaphores are used to build process synchronization systems, they are clearly best declared in
the Main Unit of a processor. A semaphore is visible only on the processor on which it is
declared, and therefore can be used only by processes local to that processor, for example for
application-level control of shared memory.

At any time, a semaphore is in one of two states:

• FREE: The semaphore is free, or

• CLAIMED(N): The semaphore is claimed, and N processes are awaiting its release.
These processes are blocked on a FIFO queue associated with the semaphore.

17.1. Primitives

17.1.1. Declare Semaphore
A semaphore is declared by a normal Ada declaration. Its initial state is FREE.

This primitive always succeeds.

17.1.2. Claim Semaphore
This primitive attempts to claim the semaphore. If the semaphore was free, the primitive
succeeds, the semaphore state changes to CLAIMED(O), and the invoking process continues.

If the semaphore was CLAIMED(N), then the invoking process blocks. The state changes to
CLAIMED(N+1), and the process is appended to the semaphore queue. The call can optionally
specify a timeout time or duration, and a resumption priority.

This primitive can give rise to the following status codes:

• OK

• Illegal semaphore

• Illegal time

• Illegal duration

• Illegal resumption priority

• Blocking prohibited in this context

• Claim timed out

CMU/SEI-88-TR-16 71

17.1.3. Release Semaphore
This primitive attempts to release a semaphore previously claimed. The state necessarily must
be CLAIMED(N). If N=0, no other process is waiting, and the semaphore becomes FREE.
Otherwise, the state becomes CLAIMED(N-I), and the process at the head of the semaphore
queue is given the semaphore and becomes suspended.

Note that a RELEASE cannot block, but may cause the invoking process to be preempted if the
process at the head of the queue has a higher priority.

This primitive can give rise to the following status codes:

• OK

• Illegal semaphore

• Semaphore not claimed by invoker

17.2. Blocking primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

1. Claim: Blocks only when the state of the requested semaphore is CLAIMED(N). It
will unblock when one of the following conditions occurs:

a. The semaphore is released and the invoking process is at the head of the
wait queue, or

b. The claim timeout expires.

17.3. Status Codes
1.0K.

2. Illegal semaphore: Attempting to use an undeclared semaphore.

3. Illegal time: Illegal timeout specified.

4. Illegal duration: Illegal timeout specified.

5. Illegal resumption priority.

6. Blocking prohibited in this context.

7. Claim timed out: Operation unblocked due to timeout expiration.

8. Semaphore not claimed by invoker: Attempt to release a semaphore that has not
previously been claimed by the invoker.

72 CMU/SEI-88-TR-16

18. Schedule Management
This chapter outlines the basic scheduling mechanisms to be provided by the Kernel. The
scheduling paradigm used by the Kernel is a simple, prioritized, event-driven model that permits
the construction of preemptive, cyclic, and non-cyclic processes. To achieve this, there are four
types of events in this model:

1. Receipt of a message (synchronous event).

2. Receipt of a message acknowledgment (asynchronous event).

3. Expiration of a primitive timeout (asynchronous event).

4. Expiration of an alarm (asynchronous event).

The scheduling primitives are discussed below, and the alarm primitives are discussed in Chapter
22. This paradigm allows the user to create:

• A non-cyclic process that executes until preempted by a higher-priority process.

• A set of non-cyclic processes that execute in a round-robin, timesliced manner.

• An event-driven process that blocks when trying to receive a message. It is resumed
from the point of suspension, when it is able to proceed and when the priority admits.

• An event-driven process that blocks itself for a specified period of time (or
equivalent^, until a specific time) and is resumed at a specific priority (this allows a
"hard" delay to be implemented).

• A cyclic process that continuously executes a body of code (and that can detect
frame overrun).

To support these paradigms, the following set of scheduling attributes is defined:

• Priority:

• Every process has a priority.

• Priorities are relative within one processor.

• Priorities are incommeasurable across processors.

• A process may change its priority dynamically.

• Priorities are strict and pre-emptive; higher-priority processes always shut out
lower-priority processes.

• Blocking primitives allow the caller to specify a resumption priority, which may
be different from the priority at the point of invocation. The resumption priority
is the priority of the process when it unblocks.

• Timeslice:

• The maximum length of time a process may run before another process of the
same priority is allowed to run.

• A property of a set of processes on the same processor and all of the same
priority.

• Timeslicing cannot override priority; it applies only among processes of equal
priority.

CMU/SEI-88-TR-16 73

• Any process may enable or disable timeslicing for the entire processor.

• Any process may set the timeslice quantum.

• A process may allow (or disallow) itself to be sliced by setting its preemption
status (if preemptable, the process may be timesliced; if not preemptable, the
process may not be timesliced by another process of the same priority).

Given this scheduling regime, a process is always in one of four states:

• Running: A running process is executing on its processor, and it continues to run
until something happens. If interrupts are enabled, they occur transparently unless
they cause a change of process state. A running process ceases to run when it:
dies, invokes a blocking Kernel primitive, is timesliced, is killed by another process,
or is preempted by a higher-priority process. The first three are voluntary actions on
the part of the process, while the last two are actions performed by the Kernel.

• Dead. A dead process is unable to run again. A process dies in one of five ways: by
completing execution, an unhandled exception, an unrecoverable error, by killing
itself, or by being killed by another process. Processes are not expected to die, and
any subsequent attempts to interact with a dead process result in errors.

• Blocked: A blocked process is unable to run. A process may only become blocked
as a result of its own actions. These blocking actions are waiting for: the arrival of a
message, the arrival of a message acknowledgment, a specific duration, a specific
time, or the availability of a semaphore. A process becomes unblocked when the
blocking event occurs (at which time the process transitions to the suspended state).
An unblocked process does not immediately resume execution; it resumes execution
only when the scheduler so decides. But, the process can affect this decision by
specifying a resumption priority in the primitive invocation.

• Suspended. A suspended process is able to run, but cannot run because a process
of higher or equal priority is running. A process may be resumed when the running
process blocks, lowers its own priority, or is timesliced.

These states and the transitions between them are shown in Figure 18-1.

For instance, a running process becomes blocked by trying to receive when no message is
pending. It becomes unblocked (but suspended) when the message arrives. It becomes running
when its priority permits. A running process can also call wait, to wait itself at any time. A
blocked process becomes suspended and thus ready to run when its delay expires. Further, a
running process may be preempted, that is, forcibly suspended against its will, to allow a
higher-priority process to resume or to be timesliced.

18.1. Primitives

18.1.1. Set process preemption
This primitive changes the preemption state of the calling process. A process may set only its
own preemption state. This primitive may be invoked by any process at any time.

This primitive always succeeds.

74 CMU/SEI-88-TR-16

Resume

Key
Label: User - initiated action

Label: Kernel-initiated action

Figure 18-1: Process States

18.1.2. Get process preemption
This primitive queries the current value of the preemption state of the calling process. A process
may query only its own preemption state. This primitive may be invoked by any process at any
time.

This primitive always succeeds.

18.1.3. Set process priority
This primitive changes the priority of the calling process. A Kernel process may set only its own
priority. This primitive may be invoked by any process at any time.

This primitive always succeeds.

18.1.4. Get process priority
This primitive queries the current value of the priority of the calling process. A process may query
only its own priority. This primitive may be invoked by any process at any time.

This primitive always succeeds.

CMU/SEI-88-TR-16 75

18.1.5. Wait
This primitive allows the invoker to suspend its own execution:

• Until a specified time, or

• For a specified duration.

An optional resumption priority may also be specified. This primitive may be invoked by any
process at any time.

This primitive can give rise to the following status codes:

• OK

• Illegal priority

• Illegal duration

• Illegal time

18.1.6. Set timeslice
This primitive sets the timeslice quantum for the processor.

This primitive can give rise to the following status codes:

• OK

• Illegal timeslice

18.1.7. Enable timeslicing
This primitive enables the Kernel to perform round-robin, timeslice scheduling among processes
of equal priority.

This primitive always succeeds.

18.1.8. Disable timeslicing
This primitive disables round-robin, timeslice scheduling. After execution of this primitive,
scheduling is priority-based preemption.

This primitive always succeeds.

18.2. Blocking primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

1. Wait: Always blocks until the delay (i.e., the specified absolute or elapsed time)
expires.

76 CMU/SEI-88-TR-16

18.3. Status Codes

1.0K

2. Illegal duration

3. Illegal time

4. Illegal time slice

CMU/SEI-88-TR-16 77

78 CMU/SEI-88-TR-16

19. Communication Management
This chapter outlines the primitives provided for communication between Kernel processes (see
Chapter 15 for details about how the communication model ties into the network model). The
communication model is based on the following premises:

• All communication is point-to-point.

• A sender must specify the recipient.

• A recipient gets all messages and is told the sender of each.

• A recipient cannot ask to receive only from specific senders.

• Messages do not have priorities.

The purpose of a message is to convey information between processes. To the Kernel, a
message is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives; the
users may build above them whatever application-specific functionality is needed. Note that any
two (or more) communicating processes are free to define a common package containing their
interface message types. Communication between processes on a single processor will be
optimized.

Figure 19-1 illustrates this communication model. In this figure, process Merlin on Processor a
sends a message to process Vivian on Processor b. This is accomplished by Merlin's informing
the Kernel of the message content and the logical destination of the message (i.e., Vivian). The
Kernel on Processor a takes this message, formats the datagram to hold the message, and
transmits the datagram over the network to Processor b, where it knows Vivian resides. When
the message arrives at Processor b, the Kernel there rebuilds the message from the datagram
and queues it for Vivian until Vivian requests the next message. If Merlin had wanted
acknowledgment of message receipt by Vivian, the Kernel on Processor b would have formatted
an acknowledgment datagram and sent it back to Processor a after Vivian had asked for (and
received) the message.

19.1. Primitives

19.1.1. Send message
This primitive is used to send a message from one process to another, without waiting for
acknowledgment of message receipt. This primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

• OK

• Receiver never existed

• Network failure

CMU/SEI-88-TR-16 79

Processor a Processor b

Main
Unit

Merlin

Send Message
to Vivian

Send
Primitive

Vivian

Receive
Message

Receive
Primitive

-• Checksum

Message Text

• Message Tag

• Message Length

Receiver's Process Identifier

• Sender's Process Identifier

Receiver's Processor Identifier

• Sender's Processor Identifier

Remote Timeout

^ Message Identifier

Kernel Operation

Figure 19-1: Datagram Network Model

80 CMU/SEI-88-TR-16

19.1.2. Send message and wait
This primitive is used to send a message from one process to another; the sender blocks while
waiting for acknowledgment of message receipt by the receiving process. This primitive may be
invoked by any process at any time. However, it may not be invoked by an interrupt handler. An
optional timeout may be specified. If a timeout is specified, the Kernel performs a remote
timeout; that is, the timeout is bundled with the message and executed by the Kernel of the
receiving process. If the timeout expires, the message is purged from the receiver's message
queue and the invoking process is notified. The Kernel rejects all calls where the recipient is the
sender.

This primitive can give rise to the following status codes:

• OK

• Message timed out

• Receiver never existed

• Receiver's queue full

• Message not received

• Receiver dead

• Blocking prohibited in this context

• Receiver is sender

• Network failure

19.1.3. Receive message
This primitive is used to receive a message from another process. This primitive may be invoked
by any process at any time. If this primitive is invoked by an interrupt handler or with a
zero-duration timeout, it will not block, but will return immediately with a status code should no
message be available. The Kernel will automatically perform any required acknowledgments. An
optional timeout may be specified. If a timeout is specified, the Kernel performs a local timeout. If
the timeout expires, the invoking process is notified.

This primitive can give rise to the following status codes:

• OK

• Message timed out

• No message available

• Messages lost

CMU/SEI-88-TR-16 81

19.2. Blocking Primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

1. Send message and wait: Always blocks until one of the following conditions occurs:

a. The receiving process has requested and received the message, or

b. The message timeout expires.

2. Receive message: Blocks only if there is no message currently available for the
process. If no message is available, then it blocks until one of the following
conditions occurs:

a. A message has arrived for the process, or

b. The timeout expires.

19.3. Status Codes
1.0K

2. Message timed out: Timeout expired without operation completing.

3. Message not received: The message was discarded from the receiver's message
queue.

4. Receiver dead: Destination process has terminated or been aborted.

5. Blocking prohibited in this context: Occurs when the invoker has used a primitive
that is about to block further process execution, but the process is in a state where
blocking is prohibited (i.e., an interrupt handler).

6. No message available: Occurs in situations where blocking the invoking process is
prohibited or a zero timeout is specified.

7. Receiver never existed.

8. Receiver queue full: A negative acknowledgment when there is insufficient space in
the receiver's message queue for the message.

9. Receiver is sender: A process can not perform an acknowledged send with itself.

10. Messages lost: Occurs when the Kernel's message buffer overflows and messages
are discarded.

11. Network failure: A network problem prevented transmission of the message.

82 CMU/SEI-88-TR-16

20. Interrupt Management
This section outlines the interrupt control primitives provided by the Kernel. There are two parts
to the Kernel's view of interrupts: interrupts themselves and interrupt handlers. The interrupt
model used by the Kernel is based on the following premises:

• There are devices that can interrupt the processor.

• There are three classes of interrupts:

1. Those reserved by the Ada runtime environment (divide-by-zero,
floating-point overflow, etc.).

2. Those reserved by the Kernel (such as the clock interrupt).

3. Those available to the user (everything not in 1 and 2 above).

All the primitives described below apply only to the third class of interrupts.

• The device interrupt may be either enabled or disabled. If the interrupt is disabled,
the device cannot interrupt, regardless of how badly it might want to.

• The Kernel does not queue interrupts nor will it hide hardware-level interrupt
properties, such as queueing of interrupts, interrupt priorities, or non-maskable
interrupts.

• Interrupts are events local to a processor and cannot be directly handled or bound by
processes running on a different processor.

The model used for interrupt handlers is:

• An interrupt handler is an Ada procedure with no parameters or some other code
following the same procedure-call conventions.

• Interrupt handler code can access procedure local or processor global memory.

• Interrupt handler code has access to all the Kernel primitives; the only restriction is
that a handler will not be allowed to block its own execution.

• If an interrupt is enabled and a handler is bound, then the occurrence of the interrupt
transfers control to the bound handler, which is code the user has supplied.

The primitives that implement these two models are discussed below.

20.1. Primitives

20.1.1. Enable
This primitive allows the specified interrupt to occur. No interrupt can be enabled via the Kernel
unless the Kernel has bound a handler for that interrupt. This implies that there may be handlers
bound outside the knowledge of the Kernel. This is legitimate, since the Kernel is only
responsible for those handlers that it binds. This primitive may be invoked by any process at any
time (including the Main Unit).

This primitive can give rise to the following status codes:

• OK

CMU/SEI-88-TR-16 83

• Illegal interrupt name

• No interrupt handler bound

20.1.2. Disable
This primitive prohibits the specified interrupt from occurring. This primitive may be invoked by
any process at any time.

This primitive can give rise to the following status codes:

• OK

• Illegal interrupt name

20.1.3. Enabled
This primitive queries the status of the specified interrupt, i.e., whether it is enabled or disabled.
This primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

• OK

• Illegal interrupt name

20.1.4. Simulate interrupt
This primitive simulates the occurrence of a specified interrupt in software. An interrupt handler
must be bound to the specified interrupt for this primitive to have an effect. This primitive may be
invoked by any process at any time. This primitive returns only after the interrupt handler has
completed its processing.

This primitive can give rise to the following status codes:

• OK

• Illegal interrupt name

• No interrupt handler bound

20.1.5. Bind interrupt handler

This primitive associates the specified interrupt with the Ada procedure23 identified as the
interrupt handler. This primitive may be invoked by any process at any time (including the Main
Unit). Any attempt to bind a different interrupt handler to a bound interrupt results in the old
handler being replaced. Invocation of this primitive causes the Kernel to construct an execution
environment for the handler, as shown in Figure 20-1. The environment consists of:

• Local stack, containing:

• Stack plug

• Dummy call frame

^Or an equivalent procedure in another language.

84 CMU/SEI-88-TR-16

• Local procedure variables

• Interrupt table entry, containing:

• Handler stack

• Handler code

• Interrupt Vector address

Interrupt vector
address

i\

stack plug
dummy call frame

Kernel
encapsulatior

Interrupt!
handler |
stack

1

Interrupt
table

bound

enabled

S^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Interrupt
handler
code

|NNXXXNV| B,ndjng buj,ds

^NNNNNNNN^ these structures

Figure 20-1: Interrupt Handler Execution Environment

This primitive can give rise to the following status codes:

• OK

• Replacing previous interrupt handler

• Illegal interrupt name

• Reserved interrupt

• Illegal interrupt handler address

CMU/SEI-88-TR-16 85

20.2. Blocking Primitives

None.

20.3. Status Codes

1.0K.

2. Replacing previous interrupt handler.

3. No interrupt handler bound: An interrupt cannot be enabled for which no handler
has been defined (i.e., bound).

4. Illegal interrupt name.

5. Reserved interrupt.

6. Illegal interrupt handler address: The address specified for the interrupt handler
code is not a legal Ada address.

86 CMU/SEI-88-TR-16

21. Time Management
The concept of time permeates the entire Kernel. Many ot the Kernel concepts and primitives
rely on time, specifically:

• Network management uses time for initial clock synchronization and for timeout
parameters in the primitives: initialize master, initialize subordinate, and start
subordinates.

• Process management requires time for setting up the initial process scheduling
information, in the create process primitive, and for a timeout parameter, in
initialization complete primitive.

• Schedule management uses time for round-robin, timeslice scheduling and for
delays via the wait primitive.

• Communication management requires time for timeout operations in receive
message and send message and wait primitives.

• Alarm management uses time for setting alarms via the set alarm primitive.

To support these primitives, the Kernel contains facilities for time management, both for its own
use and to make available to the application code. In all cases, two forms of delay are available
to the application:

• Delay For: This computes the delay as elapsed time from the moment the primitive is
called. The delay is therefore a value of the Ada type DURATION.

• Delay Until: This delays until a specified time of resumption. The delay is therefore a
value of the Ada type TIME.

The rationale for the two types of delay is that they express fundamentally different concepts. For
example, if a certain action should be performed daily at midnight, it is not correct to perform the
action "every 24 hours," since successive midnights are not always 24 hours apart. Similarly, if
an action should be performed every 5 minutes, it is not correct to schedule three such actions for
0155, 0200, and 0205, since 65 minutes might elapse between the second and third (i.e., the
clock might have been reset).

The application programmer must be able to choose the type of delay needed. Note also that
resetting the system time affects the two types of delay differently.

In the current design, the assumption is made that it is feasible for all the target processors to use
a common time base and to record the passage of time at the same uniform rate. It must be
recognized that there are some real-time applications for which this assumption is unrealistic,
since the processors will be distributed across several different inertial frames of reference, but it
will serve for this prototype.

It is necessary therefore to describe the local representation of time and the clock synchronization
mechanisms.

CMU/SEI-88-TR-16 87

Representation of Time

At any moment, on any processor, the current time is given by a combination of three values

1. Elapsed. The elapsed time is the number of ticks since the end of the application
initialization process.

2. Epoch. The epoch is a value representing the moment at which the processors
began to compute elapsed time.

3. Base. The base is the calendar date corresponding to an epoch of zero, i.e., the
base of the representation of time. Julian Day 1 (started at 1200 on 1 January
4713BCE) has been chosen.24

The representation chosen for both epoch and elapsed will be fine enough to allow accurate
measurement and large enough to allow code to run for a very long time. Thus the current time
of day = Base + Epoch + Elapsed.

Time is set initially on some processor in the network by the application. This is done either by
hand, during operator dialogue, or by reading a continuously running hardware device. The
processors may then synchronize system time by having this processor use the synchronize
primitive discussed below. This gives the application complete control over when to synchronize
system time. Once the clocks are synchronized, the Kernel does not attempt to maintain the
synchronization. The processors resynchronize only as a result of deliberate action by application
code.

Three forms of resynchronization are supported:

1. The elapsed time for any processor can be changed by an explicit command. This
is to be used when one processor's time computation has gone awry. It will have
the effect of changing pending delays of either kind, since increasing the number of
elapsed ticks will make the machine think both that it has been running longer and
that it is later in the day.

2. The epoch time of any processor may be changed. This is to be used if it is
discovered that the original time setting was wrong. It will have the effect of
changing any pending delay-until actions, since increasing the epoch will make the
machine think it is later in the day, but will not change how long it thinks it has been
running.

3. The Kernel provides a primitive that explicitly synchronizes all the clocks in the
network, as defined in Section 21.1.6.

24Thus, 1 January 88 is JD 2447162.

88 CMU/SEI-88-TR-16

21.1. Primitives

21.1.1. Package calendar
The Ada package calendar will be supported. As far as possible, the existing vendor-supplied,
package will be used. However, some modification will be necessary because the Kernel will be
in control of the hardware clock. Also, the Kernel does not use the package Calendar internally,
so applications are not required to include it in the load modules.

21.1.2. Time constants
The Kernel will define the constants:

• TICK: Smallest resolvable interval of time.

• SLICE: Smallest schedulable interval of time.

SLICE is defined as an integer multiple of TICK. The Kernel will maintain durations internally
accurate to the TICK, but all time values that imply scheduling action, such as delay times, are
truncated to the nearest SLICE. The definition of TICK and SLICE are local to a processor, and
no relationship between these definitions is assumed or required across the processors in the
network.

21.1.3. Adjust elapsed time
This primitive allows the application to increment or decrement the current local elapsed time by a
specified number of clock ticks. This primitive may be invoked by any process at any time.

This primitive can give rise to one of the following status codes:

1.0K.

2. Change would reset elapsed time to a negative value.

3. Change would cause elapsed time to overflow.

21.1.4. Adjust epoch time
This primitive allows the application to reset the epoch time of the local processor clock. This
primitive may be invoked by any process at any time.

This primitive can give rise to one of the following status codes:

1.0K.

2. OK, but requested time has already passed.

3. Change would reset epoch time to a negative value.

4. Change would cause epoch time to overflow.

CMU/SEI-88-TR-16 89

21.1.5. Read clock
This primitive reads the local processor clock and returns the elapsed time in ticks.

This primitive always succeeds.

21.1.6. Synchronize
This primitive forces all local processor clocks on Kernel devices to synchronize time with the
local clock on the invoking processor. This primitive takes an optional timeout parameter. This
primitive may be invoked by any process at any time.

The post-conditions of this primitive are:

1. If it completes successfully, all clocks are synchronized.

2. If it terminates with an error, the exact state of network time is not known.

This primitive can give rise to one of the following status codes:

1. Network failure.

2. Multiple synchronization failure.

3. Synchronization timeout.

21.2. Blocking Primitives
This section lists which of the primitives described above may block the invoking process and the
conditions under which they will block:

1. Synchronize: This primitive always blocks the invoker until:

a. All Kernel clocks are synchronized,

b. An error condition is detected, or

c. The timeout expires.

21.3. Status Codes
1.0K.

2. OK, but requested time has already passed.

3. Change would reset elapsed time to a negative value.

4. Change would reset epoch time to a negative value.

5. Change would cause elapsed time to overflow.

6. Change would cause epoch time to overflow.

7. Network failure: A processor in the network fails to respond appropriately to the
synchronization protocol.

8. Multiple synchronization failure: A processor attempts to synchronize time while a
previous invocation of the synchronization protocol is in progress.

90 CMU/SEI-88-TR-16

9. Synchronization timeout: The synchronization protocol does not complete betore
the timeout expires.

CMU/SEI-88-TR-16 91

92 CMU/SEI-88-TR-16

22. Alarm Management

This chapter outlines the primitives for alarm management. Alarms are:

• Enforced changes in process state.

• Caused by the expiration of a timeout.

• Asynchronous events that are allocated on a per-process basis (each process may
have no more than one alarm).

Processes view alarms as a possible change in priority with an enforced transfer of control to an
exception handler. Alarms are requested to expire at some specified time in the future. When an
alarm expires, the Kernel raises the alarm_expired exception, which the process is expected to
handle as appropriate. Note that if a zero or negative duration or an absolute time in the past is
specified, the alarm expires immediately. Alarms are intended for use in the construction of
cyclical processes (as shown in the Kernel User's Manual}.

22.1. Primitives

22.1.1. Set alarm
This primitive defines an alarm that will interrupt the process if it expires. An optional resumption
priority may be specified. If the alarm expires, the Kernel raises the alarm_explred exception
(when the process is running), and control passes to the exception handler of the process. This
primitive may be invoked by any process at any time.

This primitive can give rise to the following status codes:

• OK

• Resetting existing alarm

22.1.2. Cancel alarm
This primitive turns off an alarm that was set but has not yet expired. This primitive may be
invoked by any process at any time.

This primitive can give rise to the following status codes:

• OK

• No alarm set

22.2. Blocking Primitives
None.

CMU/SEI-88-TR-16 93

22.3. Errors

1.0K

2. Resetting existing alarm

3. No alarm set

94 CMU/SEI-88-TR-16

23. Tool Interface
The Kernel is a utility intended to support the building of distributed Ada applications. As such, it
is important the the Kernel be able to work in harmony with user-developed support tools. To
provide that support, the Kernel must provide a window into its internal workings. It is envisioned
that a tool is simply another Kernel process executing on one or more of the processors in the
network. As such, the tool has access to all the Kernel primitives. Using these primitives along
with the tool interface described below, a number of potential tools could be built, such as:

• Process Performance Monitor: compiles statistics about the runtime performance of
a process(es).

• Processor performance monitor: Compiles processor-level statistics.

• Network performance monitor: Compiles network-level statistics.

• Interrupt activity monitor: Compiles statistics on the frequency of interrupts and the
amount of time spent in various interrupt handlers.

• Message performance monitor: Compiles statistics about the frequency of
messages, average message length, peak bus usage, etc.

Given the above motivation for the tool interface, the actual form of the interface is driven by the
following concepts:

• The tool needs easy access to all the information of the Kernel. Whether or not the
tool can make use of the information is not the Kernel's concern. The key is that the
Kernel must provide visibility into everything it knows intrinsically, without expending
resources to combine that intrinsic knowledge in any way.

• The extraction of information based on what the Kernel knows is left to the tool (and
indeed, it is deemed to be the function of a tool). It is in the domain of the tool where
the intrinsic Kernel information is combined and presented in some context-specific
manner.

• The internal Kernel information must be provided in a manner that does not
compromise the integrity of the Kernel; this implies a read-only access to the
Kernel's internal data structures.

• The performance impact of using the tool interface must be predictable. Obviously,
the performance impact will not be entirely predictable given the non-determinism
inherent in the activities being monitored. But the tool interface bounds the impact in
a way that gives insight into the potential performance impact of a tool (of course, the
tool is a process that can be monitored like any other process in the system, so its
performance may be determined empirically). The tool should consume predictable
resources generally (not just clock cycles), e.g., storage, message bandwidth.

• An application should never have to be modified simply to use a tool (while this may
not always be possible, it is nevertheless a desirable goal). Therefore, while some of
the information made available via this interface could be acquired by having the tool
communicate directly with an application process, this approach is rejected as bad
tool design and a distinct detriment to the application software of an embedded
system. (Note that the Main Unit is used to establish the process topology and is not
considered application code.)

In general there are two classes of Kernel information that may be of interest to a tool: process

CMU/SEI-88-TR-16 95

information and interrupt information. The primitives defined below describe the information
available and the mechanisms provided to access this information.

23.1. Primitives

23.1.1. Process information
The Kernel knows about all processes in the system; therefore, the tool interface provides the
following information about processes to the user:

• Process attributes, including:

• Process identifier

•State (see Figure 18-1)

• Time (the time when the above state was entered)

• Priority

• Preemption status

• Alarm status

• Primitive identity

• Primitive return status code

• Message attributes, including:

• Sender's process identifier

• Receiver's process identifier

• Time the message was sent or received

• Message length

• Message tag

• Message contents

• Process table, which includes the following information for every declared process:

• Local process identifier

• Remote process identifier

• Process name

• Device name

• Local address

• State (see Figure 18-1)

• Priority

• Preemption status

96 CMU/SEI-88-TR-16

23.1.2. Interrupt information
In a manner analogous to process information, the Kernel knows all there is to know about the
interrupts in the system. Therefore, the tool interface provides the following interrupt information
to the user:

• Interrupt activity, including:

• Primitive identity

• Primitive return status code

• Interrupt table, which includes the following information for every interrupt:

• Interrupt name

• Interrupt state (enabled or disabled)

• Handler state (bound, unbound, unknown)

• Handler code address

• Handler stack address

23.1.3. Begin collection
This primitive informs the Kernel of:

• What process or message attribute to collect and for which process to collect it, or

• Which interrupt on which to collect interrupt attributes.

The Kernel logs the data asynchronously as the state of the process or interrupt changes:

• Received message bodies are logged as new messages arrive for the process.

• Sent message bodies are logged as the process sends messages.

• Process statistics are logged when the process changes one of its own attributes or
when the scheduler changes its process state.

• Message attributes (no bodies) are logged as new messages arrive and leave.

• Interrupt attributes are logged as the interrupt handler uses Kernel primitives.

The Kernel logs data by sending a message to the process that requested the collection
operation; this process is presumably a part of the tool.

Nonexistent, aborted, or terminated processes for which information is requested are ignored.
Nonexistent interrupts for which information is requested are ignored.

This primitive always succeeds.

23.1.4. Cease collection
This primitive disables the collection of the indicated attribute on the indicated process or
interrupt.

This primitive always succeeds.

CMU/SEI-88-TR-16 97

23.1.5. Read process table
This primitive reads the Kernel's process table.

This primitive always succeeds.

23.1.6. Read interrupt table
This primitive reads the Kernel's interrupt table.

This primitive always succeeds.

23.2. Blocking Primitives
None.

23.3. Status Codes
None.

98 CMU/SEI-88-TR-16

Appendix A: Glossary
Absolute (time):

A synonym for epoch time.

Ada: ANSI/MIL-STD-1815A. Related information can be found in Section 4.1.

Alarm:
A single timer associated with a process that may expire during process execution. If it
does expire, a change of process state occurs, and the exception alarm_expired is raised.
Related information can be found in Chapter 13 and Chapter 22.

Asynchronous (event):
An event that occurs while the affected process is performing other work or is waiting for
the event.

Blocked (process state):
A process that is (temporarily) unable to run. All process states are described in Chapter
18.

Blocking (primitive):
A Kernel primitive that causes the process state to become blocked. The "blocked"
process state is described in Chapter 18. Each chapter in Part 3 has a paragraph
discussing blocking primitives.

Cyclic (process):
A Kernel process with all the following characteristics: it executes repeatedly; it executes
within a user-defined time limit; if it overruns its execution time limit (i.e., its "frame"), then
the exception alarm_expired is raised.

DARK:
Acronym for the SEI Distributed Ada Real-Time Kernel Project.

Dead (process state):
A process that is unable to run again. All process states are described in Chapter 18.

Device:
A hardware entity that can interrupt a processor or that can communicate over the system
bus.

Distributed:
Executing on more than one processor in support of a single application.

Duration:
The Ada type duration; used to measure elapsed time. Related information can be found in
Chapter 21 and the Ada Lanuage Reference Manual.

Elaboration:
The process by which declarations achieve their effect (such as creating an object}; this
process occurs during program execution. This definition is from the Ada Language
Reference Manual.

Elapsed (time):
The number of TICKs since the end of the application initialization process. Related
information can be found in Chapter 21.

Epoch (time):
The value representing the moment at which the processors began to compute elapsed
time. Related information can be found in Chapter 21.

Event:
Something that happens to a process (e.g., the arrival of a message, the arrival of an
acknowledgment, being killed by another process).

CMU/SEI-88-TR-16 99

Exception:
An error situation which may arise during program execution. This definition is from the
Ada Language Reference Manual.

FIFO:
First in, first out.

Interrupt:
Suspension of a process caused by an event external to that process, and performed in
such a way that the process can be resumed. (This external event is also called an
interrupt.)

Interrupt handler:
Code automatically invoked in response to the occurrence of an interrupt.

Kernel:
Basic system software to provide facilities for a specific class of applications.

NCT:
Network Configuration Table.

Network:
Series of points (nodes, devices, processors) interconnected by communication channels.

Package:
A group of logically related entities, such as types, objects of those types, and
subprograms with parameters of those types. It is written as a package declaration and a
package body. A package declaration is just a package specification followed by a
semi-colon. A package is one kind of program unit. This definition is from the Ada
Language Reference Manual.

Package body:
Contains implementations of subprograms (and possibly tasks as other packages that have
been specified in the package declaration). This definition is from the Ada Language
Reference Manual.

Package Calendar:
The Ada package Calendar. Related information can be found in the Ada Language
Reference Manual.

Package specification:
Has a visible part, containing the declarations of all entities that can be explicitly used
outside the package. It may also have a private part containing structural details that
complete the specification of the visible entities, but that are irrelevant to the user of the
package. This definition is from the Ada Language Reference Manual.

Postcondition:
An assertion that must be true after the execution of a statement or program component.

Pragma:
Conveys information to the Ada compiler. This definition is from the Ada Language
Reference Manual.

Precondition:
An assertion that must be true before the execution of a statement or program component.

Primitive:
Basic Kernel action or datum.

Process (Kernel):
An object of concurrent execution managed by the Kernel outside the knowledge and
control of the Ada runtime environment; a schedulable unit of parallel execution. Related
information can be found in Chapter 2.

100 CMU/SEI-88-TR-16

Process stack:
Built by the Kernel when creating a Kernel process. The process stack contains a stack
plug (to prevent the propagation of unhandled exceptions), a dummy call frame (pointing to
process termination code), and a place for process-local variables.

Processor:
Central processing unit (CPU).

Real-time:
"When it is done is as important as what is done."

Runtime:
The period of time during which a program is executing.

Running (process state):
A process that is executing on its processor. All process states are described in Chapter
18.

Semaphore:
A mechanism for controlling process synchronization, often used to implement a solution to
the mutual exclusion problem. Related information can be found in Chapters 8 and 17.

SLICE:
The smallest schedulable interval of time. The user references time in units of SLICE.
Related information can be found in Chapter 21.

Status code:
Generic term used to indicate the status of the execution of a Kernel primitive. A status
code may correspond to an output parameter of some discrete type or to an exception.
Related information can be found in Chapter 4.4. In addition, each chapter in Part 3 has a
paragraph discussing status codes for each primitive.

Suspended (process state):
A process that is able to run but cannot because a process of higher or equal priority is
running. All process states are described in Chapter 18.

Synchronous (event):
An event that happens while a process is looking for that event.

System bus:
Communication medium connecting processors and devices into a network.

Task:
An Ada language construct that represents an object of concurrent execution managed by
the Ada runtime environment supplied as part of a compiler. Related information can be
found in Chapter 2 and the Ada Language Reference Manual.

TICK:
The smallest resolvable interval of time. The Kernel references time in units of TICK.
Related information can be found in Chapter 21.

Time:
The Ada type time; used to measure epoch time. Related information can be found in
Chapter 21 and the Ada Language Reference Manual.

CMU/SEI-88-TR-16 101

102 CMU/SEI-88-TFM6

Appendix B: Mapping from Kernel Primitives to
Requirements
This appendix maps each requirement onto the specific primitive (represented by normal
facecode) or functional area (represented by italic facecode) to which it applies. It provides a
definition of the functionality and performance required for each primitive and functional area.
This mapping is the inverse of the mapping shown in Appendix C.

Processor Management Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

Processor Management 6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11

Initialize Master 6.1.1
6.1.3
6.1.4

6.2.1

Initialize subordinate 6.1.2
6.1.3
6.1.4

6.2.1

Create network configuration 6.1.10
10.1.6
10.1.26

6.2.1

CMU/SEI-88-TR-16 103

Process Management Primitives

Behavior Performance
Kernel Primitive Requirement Requirement

Process Management 6.1.9
7.1.1
7.1.2
7.1.13

Declare process 7.1.3
10.1.1
10.1.6

6.2.1

Create process 7.1.4 6.2.1
7.1.5 7.2.1
7.1.6 7.2.5
7.1.7 7.2.6
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.25
7.1.26
9.1.1
9.1.2
9.1.7
9.1.11

Initialization complete 7.1.15
7.1.16
7.1.17
7.1.25
7.1.26

6.2.1

Die 7.1.18
7.1.25
7.1.26

7.2.2

Kill 7.1.19
7.1.20
7.1.25
7.1.26

7.2.3

Who am 1 7.1.23

Name of 7.1.24
7.1.25
7.1.26
10.1.1

Allocate device 7.1.14 7.2.4

104 CMU/SEI-88-TR-16

Semaphore Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

Semaphore Management

Create 8.1.1
8.1.2

8.2.1

Claim 8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
9.1.6
9.1.8

8.2.2

Release 8.1.10
8.1.11

8.2.3

CMU/SEI-88-TR-16 105

Schedule Management Primitives

Behavior Performance
Kernel Primitive Requirement Requirement

Schedule Management 9.1.3 9.2.4
9.1.4 9.2.6
9.1.5 9.2.7
9.1.10
9.1.21
9.1.24
9.1.26
9.1.27

Set process preemption 9.1.12
9.1.22

9.2.2

Get process preemption 9.1.13

Set process priority 9.1.6
9.1.8
9.1.22

9.2.1

Get process priority 9.1.9

Wait 9.1.6
9.1.8
9.1.14
9.1.15
9.1.16
9.1.17
9.1.22
11.1.12

9.2.3

Set timeslice 9.1.18

Enable time slicing 9.1.19 9.2.5

Disable time slicing 9.1.20 9.2.5

106 CMU/SEI-88-TR-16

Communication Management Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

Communication Management 6.1.9
6.1.11
7.1.14
10.1.19
10.1.22
10.1.23
10.1.28
10.1.29
10.1.30
10.1.31

Send message 7.1.21
7.1.22
10.1.2
10.1.5
10.1.6
10.1.25
10.1.26

10.2.1
10.2.2
10.2.5
10.2.6
10.2.11

Send message and wait 7.1.21
7.1.22
7.1.25
7.1.26
9.1.6
9.1.8
9.1.22
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9
10.1.10
10.1.11
10.1.25
10.1.27
11.1.12

10.2.3
10.2.4
10.2.7
10.2.8
10.2.11

CMU/SEI-88-TR-16 107

Behavior Performance
Kernel Primitive Requirement Requirement

Receive message 9.1.6 10.2.9
9.1.8 10.2.10
9.1.22
10.1.12
10.1.13
10.1.14
10.1.15
10.1.16
10.1.17
10.1.18
10.1.20
10.1.21
10.1.24
10.1.26
11.1.12

108 CMU/SEI-88-TR-16

Interrupt Management Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

Interrupt Management 11.1.1
11.1.3
11.1.6
11.1.12
11.1.13

11.2.1
11.2.2
11.2.4

Enable 11.1.4

Disable 11.1.5

Enabled 11.1.7

Simulate interrupt 11.1.8

Bind interrupt handler 11.1.2
11.1.9
11.1.10
11.1.11

11.2.3

CMU/SEI-88-TR-16 109

Time Management Primitives

Behavior Performance
Kernel Primitive Requirement Requirement

Time Management 6.1.6
12.1.2
12.1.7
12.1.8
12.1.9
12.1.11
12.1.13
12.1.14
12.1.3

Package Calendar 12.1.1

Time constants 12.1.4
12.1.5
12.1.6

Adjust elapsed time 12.1.10 12.2.1

Adjust epoch time 12.1.12 12.2.2

Read clock 12.1.15 12.2.3

Synchronize 12.1.16 12.2.4
12.1.17 12.2.5
12.1.18
12.1.19
12.1.20
12.1.21

110 CMU/SEI-88-TR-16

Alarm Management Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

Alarm Management 13.1.4
13.1.5

13.2.3

Set alarm 9.1.6
9.1.8
9.1.22
13.1.1
13.1.2
13.1.3
13.1.5
13.1.6
13.1.7
13.1.8
13.1.9

13.2.1

Cancel alarm 9.1.22
13.1.10

13.2.2

CMU/SEI-88-TR-16 111

Tool Interface Primitives

Kernel Primitive
Behavior

Requirement
Performance
Requirement

7oo/ Interface 14.1.2
14.1.3
14.1.4
14.1.5
14.1.21

14.2.3
14.2.4
14.2.5
14.2.6

Process information 14.1.6
14.1.9
14.1.10
14.1.12
14.1.13
14.1.19

Interrupt information 14.1.15
14.1.18
14.1.20

Begin collection 14.1.1
14.1.6
14.1.9
14.1.7
14.1.10
14.1.12
14.1.13
14.1.15
14.1.16
14.1.22

14.2.1

Cease collection 14.1.8
14.1.11
14.1.14
14.1.17

14.2.2

Read process table 14.1.19

Read interrupt table 14.1.20

112 CMU/SEI-88-TR-16

Appendix C: Mapping from Requirements to Kernel
Primitives
This appendix maps each of the specific primitives (represented by normal facecode) or
functional area (represented by italic facecode) onto the requirements that it implements. It
provides a definition of where specific functionality and performance requirements are met. This
mapping is the inverse of the mapping shown in Appendix B.

General Requirements

Requirement Kernel Primitive

5.1.1 all primitives

5.1.2 all primitives

5.1.3 all primitives

5.1.4 all primitives

5.1.5 all primitives

5.1.6 all primitives

5.1.7 all primitives

5.1.8 all primitives

5.2.1 all primitives

5.2.2 all primitives

5.2.3 all primitives

5.2.4 all primitives

5.2.5 all primitives

CMU/SEI-88-TR-16 113

Processor Requirements

Requirement Kernel Primitive

6.1.1 Initialize Master

6.1.2 Initialize subordinate

6.1.3 Initialize Master
Initialize subordinate

6.1.4 Initialize Master

6.1.5 Initialize Master

6.1.6 Processor Management
Time Management

6.1.7 Processor Management

6.1.8 Processor Management

6.1.9 Initialize Master
Initialize subordinate
Create process
Initialization complete
Die
Kill
Send message
Send message and wait
Receive message

6.1.10 Initialize Master
Initialize subordinate
Create network configuration

6.1.11 Processor Management
Process Management
Interrupt Management
Communication Management

6.2.1 Initialize Master
Initialize subordinate
Declare process
Create process
Create network configuration
Initialization complete

114 CMU/SEI-88-TR-16

Process Requirements

Requirement Kernel Primitive

7.1.1 Process Management

7.1.2 Process Management

7.1.3 Declare process

7.1.4 Create process

7.1.5 Create process

7.1.6 Create process

7.1.7 Create process

7.1.8 Create process

7.1.9 Create process

7.1.10 Create process

7.1.11 Create process

7.1.12 Create process

7.1.13 Process Management

7.1.14 Communication Management
Allocate device

7.1.15 Initialization complete

7.1.16 Initialization complete

7.1.17 Initialization complete

7.1.18 Die

7.1.19 Kill

7.1.20 Kill

7.1.21 Send message
Send message and wait

7.1.22 Send message
Send message and wait

7.1.23 Who am I

7.1.24 Name of

7.1.25 Create process
Initialization complete
Die
Kill
Name of
Send message and wait

CMU/SEI-88-TR-16 115

Requirement Kernel Primitive

7.1.26 Create process
Initialization complete
Die
Kill
Name of
Send message and wait

7.2.1 Create process

7.2.2 Die

7.2.3 Kill

7.2.4 Allocate device

7.2.5 Create process

7.2.6 Create process

116 CMU/SEI-88-TR-16

Semaphore Requirements

Requirement Kernel Primitive

8.1.1 Create semaphore

8.1.2 Create semaphore

8.1.3 Claim semaphore

8.1.4 Claim semaphore

8.1.5 Claim semaphore

8.1.6 Claim semaphore

8.1.7 Claim semaphore

8.1.8 Claim semaphore

8.1.9 Claim semaphore

8.1.10 Release semaphore

8.1.11 Release semaphore

8.2.1 Create semaphore

8.2.2 Claim semaphore

8.2.3 Release semaphore

CMU/SEI-88-TR-16 117

Scheduling Requirments

Requirement Kernel Primitive

9.1.1 Create process

9.1.2 Create process

9.1.3 Schedule Management

9.1.4 Schedule Management

9.1.5 Schedule Management

9.1.6 Set process priority
Wait
Claim semaphore
Send message and wait
Receive
Set alarm

9.1.7 Create process

9.1.8 Set process priority
Wait
Claim semaphore
Send message and wait
Receive
Set alarm

9.1.9 Get process priority

9.1.10 Schedule Management

9.1.11 Create process

9.1.12 Set process preemption

9.1.13 Get process preemption

9.1.14 Wait

9.1.15 Wait

9.1.16 Wait

9.1.17 Wait

9.1.18 Set time slice

9.1.19 Enable time slicing

9.1.20 Disable time slicing

9.1.21 Schedule Management

9.1.22 Set process preemption
Set process priority
Wait
Claim semaphore
Send message and wait
Receive
Set alarm
Cancel alarm

118 CMU/SEI-88-TR-16

Requirement Kernel Primitive

9.1.23 Schedule Management

9.1.24 Schedule Management

9.1.25 Schedule Management

9.1.26 Schedule Management

9.1.27 Schedule Management

9.2.1 Set process priority

9.2.2 Set process preemption

9.2.3 Wait

9.2.4 Schedule Management

9.2.5 Enable time slicing
Disable time slicing

9.2.6 Schedule Management

9.2.7 Schedule Management

CMU/SEI-88-TR-16 119

Communication Requirements

Requirement Kernel Primitive

10.1.1 Declare process

10.1.2 Create process
Send message
Send message and wait

10.1.3 Send message and wait

10.1.4 Send message and wait

10.1.5 Send message
Send message and wait

10.1.6 Create network configuration
Declare process

10.1.7 Send message and wait

10.1.8 Send message and wait

10.1.9 Send message and wait

10.1.10 Send message and wait

10.1.11 Send message and wait

10.1.12 Create process
Receive message

10.1.13 Receive

10.1.14 Receive message

10.1.15 Receive message
Create network configuration

10.1.16 Receive message

10.1.17 Receive message

10.1.18 Receive message

10.1.19 Communication Management

10.1.20 Receive message

10.1.21 Send message
Send message and wait
Receive message

10.1.22 Communication Management

10.1.23 Send message
Send message and wait

10.1.24 Receive message

10.1.25 Send message and wait

10.1.26 Create network configuration
Send message
Receive message

120 CMU/SEI-88-TR-16

Requirement Kernel Primitive

10.1.27 Send message and wait

10.1.28 Communication Management

10.1.29 Communication Management

10.1.30 Communication Management

10.1.31 Communication Management

10.2.1 Send message

10.2.2 Send message

10.2.3 Send message and wait

10.2.4 Send message and wait

10.2.5 Send message

10.2.6 Send message

10.2.7 Send message and wait

10.2.8 Send message and wait

10.2.9 Receive message

10.2.10 Receive message

10.2.11 Communication Management

CMU/SEI-88-TR-16 121

Interrupt Requirements

Requirement Kernel Primitive

11.1.1 Interrupt Management

11.1.2 Interrupt Management

11.1.3 Interrupt Management

11.1.4 Enable

11.1.5 Disable

11.1.6 Interrupt Management

11.1.7 Enabled

11.1.8 Simulate interrupt

11.1.9 Bind interrupt handler

11.1.10 Bind interrupt handler

11.1.11 Bind interrupt handler

11.1.12 Interrupt Management
Wait
Claim semaphore
Send message and wait
Receive message

11.1.13 Interrupt Management

11.1.14 Interrupt Management

11.1.15 Interrupt Management

11.2.1 Interrupt Management

11.2.2 Interrupt Management

11.2.3 Bind interrupt handler

11.2.4 Interrupt Management

122 CMU/SEI-88-TR-16

Time Requirements

Requirement Kernel Primitive

12.1.1 Package calendar

12.1.2 77me Management

12.1.3 Time Management

12.1.4 Time constants

12.1.5 Time constants

12.1.6 Time constants

12.1.7 Time Management

12.1.8 Time Management

12.1.9 Time Management

12.1.10 Adjust elapsed time

12.1.11 Time Management

12.1.12 Adjust epoch time

12.1.13 Time Management

12.1.14 Time Management

12.1.15 Read clock

12.1.16 Synchronize

12.1.17 Synchronize

12.1.18 Synchronize

12.1.19 Synchronize

12.1.20 Synchronize

12.1.21 Synchronize

12.2.1 Adjust elapsed time

12.2.2 Adjust epoch time

12.2.3 Read clock

12.2.4 Synchronize

12.2.5 Synchronize

CMU/SEI-88-TR-16 123

Alarm Requirements

Requirement Kernel Primitive

13.1.1 Set alarm

13.1.2 Set alarm

13.1.3 Set alarm

13.1.4 Alarm Management

13.1.5 Alarm Management

13.1.6 Set alarm

13.1.7 Set alarm

13.1.8 Set alarm

13.1.9 Set alarm

13.1.10 Cancel alarm

13.2.1 Set alarm

13.2.2 Cancel alarm

13.2.3 Alarm Management

124 CMU/SEI-88-TR-16

Tool Interface Requirements

Requirement Kernel Primitive

14.1.1 Begin collection

14.1.2 Tool Interface

14.1.3 Tool Interface

14.1.4 Tool Interface

14.1.5 Tool Interface

14.1.6 Process information
Begin collection

14.1.7 Begin collection

14.1.8 Cease collection

14.1.9 Process information

14.1.10 Process information
Begin collection

14.1.11 Cease collection

14.1.12 Process information

14.1.13 Process information
Begin collection

14.1.14 Cease collection

14.1.15 Begin collection

14.1.16 Interrupt information
Begin collection

14.1.17 Cease collection

14.1.18 Interrupt information

14.1.19 Process information
Read process table

14.1.20 Interrupt information
Read interrupt table

14.1.21 Tool Interface

14.1.22 Begin collection

14.2.1 Begin collection

14.2.2 Cease collection

14.2.3 Tool Interface

14.2.4 Tool Interface

14.2.5 Tool Interface

14.2.6 Tool Interface

CMU/SEI-88-TR-16 125

126 CMU/SEI-88-TR-16

References
[alrm 83] American National Standards Institute, Inc.

Reference Manual for the Ada Programming Language.
Technical Report ANSI/MIL-STD 1815A-1983, ANSI, New York, NY, 1983.

[artewg-interface 86]
Ada Runtime Environment Working Group.
A Catalog of Interface Features and Options for the Ada Runtime

Environment.
Technical Report Release 1.1, SIGAda, November, 1986.
Version 2.1 (dated December 1987) is also available, but not addressed by

this document.

[Firth 87] Firth, Robert.
A Pragmatic Approach to Ada Insertion.
In Proceedings of the International Workshop on Real-Time Ada Issues, pages

24-26. May, 1987.

[kum 88] Judy Bamberger, Currie Colket, Robert Firth, Daniel Klein, Roger Van Scoy.
Kernel User's Manual.
Technical Report, Software Engineering Institute, Forthcoming, 1988.

[Tanenbaum81] A.S. Tanenbaum.
Network Protocols.
Computing Surveys 13:453-489,1981.

[Ward 85] Paul T. Ward and Stephen J. Mellor.
Structured Development for Real-Time Systems.
Yourdon Press, Englewood Cliffs, NJ, 1985.

[Zimmermann 80] H. Zimmermann.
OSI Reference Model - The ISO Model of Architecture for Open Systems

Interconnection.
IEEE Transactions on Communications COM-28:425-432, 1980.

CMU/SEI-88-TR-16 127

128 CMU/SEI-88-TR-16

UNLIMITED, UMCLASSIEIED
SECURITY CLASSIF ICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1.. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

NONE
2». SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/DOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-16

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88- °17

6*. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTE

Sb. OFFICE SYMBOL
(If applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. ADORESS (City. Stalt and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City, State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c. ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FurtOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)

KERNEL FACILITIES DEFINITION

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHORISI

BAMBERGER, COLKET, FIRTH, D. KLEIN, VAN SCOY
13*. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. OATE OF REPORT (Yr.. Mo.. Day)

 JULY fifi

15. PAGE COUNT

134
16. SUPPLEMENTARY NOTATION

17 COSATI COOES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number/

ADA, REAL-TIME DISTRIBUTED, OPERATING SYSTEM KERNEL

19. ABSTRACT (Continue on reverse tf necessary and identify by block number/

KERNEL FACILITIES DEFINITION

DEFINES THE CONCEPTUAL DESIGN OF THE KERNEL BY SPECIFYING: 1) THE UNDERLYING MODELS
ASSUMPTIONS, AND RESTRICTIONS THAT GOVERN THE DESIGN AND IMPLEMENTATION OF THE KERNEL-
AND 2) THE BEHAVIORAL AND PERFORMANCE REQUIREMENTS TO WHICH THE KERNEL IS BUILT
THIS DOCUMENT IS THE REQUIREMENTS AND TOP LEVEL DESIGN DOCUMENT FOR THE KERNEL

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIEO/UNLIMITED X2 SAME AS RPT. D OTIC USERS X3

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22b TELEPHONE NUMBER
llnclude Area Codti

(412) 268-7630

DO FORM 1473, 83 APR

22c OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

