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Kernel Facilities Definition 

Abstract: Defines the conceptual design of the Kernel by specifying: 

• The underlying models, assumptions, and restrictions that govern the 
design and implementation of the Kernel; and 

• The behavioral and performance requirements to which the Kernel is 
built. 

This document is the requirements and top level design document for the 
Kernel. 

Preface 

Purpose of This Document 
This document defines the proposed functionality of a Distributed Ada Real-Time Kernel 
(hereafter called the Kernel). The Kernel is being developed as one artifact of the Distributed Ada 
Real-Time Kernel Project (hereafter called the project). The goal of the Kernel is to support 
effectively the execution of distributed Ada applications in an embedded computer environment. 
As discussed in [Firth 87], the Kernel will provide users with support for language functionality 
(i.e., the ability to execute Ada programs in a distributed, real-time environment); it will nor provide 
support for language features (i.e., Ada tasking primitives). As a result, the Kernel specification 
will place certain requirements (restrictions and conventions) on the Ada application programs 
that use the Kernel. These will become apparent to the reader as the definition of the Kernel is 
expounded. 

Structure of This Document 
This document is divided into three major parts: 

1. Kernel Background:   describes the models on which the Kernel is based and 
outlines the scope of its activities. 

2. Requirements:  describes  the  functionality  required  of  the   Kernel   and  the 
performance expected. 

3. Kernel Interface: describes the mechanisms and primitive capabilities the Kernel 
provides to implement the requirements. 

In addition to the major parts, there are three appendices: 

• Appendix A: defines the terms used throughout the document. 

• Appendix B: maps requirements onto the appropriate Kernel primitives. 

• Appendix C: the inverse of Appendix B; maps the primitives onto the appropriate 
requirements. 
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I. Kernel Background 

This part of the Kernel definition provides the needed background material to understand the 
remainder of the document. In particular, it provides: 

1. The rationale for the Kernel and the goals to be achieved by it (Chapter 1). 

2. The definitions used in the document (Chapter 2). 

3. An overview of the Kernel's functionality (Chapter 3). 

4. A complete discussion of the assumptions, models, and restrictions on which the 
Kernel requirements and primitives are based (Chapter 4). 
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1. Rationale 

Ada is now being mandated for a large number of DoD development projects as the sole 
programming language to be used for developing software. Many of these projects are trying to 
build distributed real-time systems. Many project managers and contractors are anxious to 
support this effort, to reap the advantages of Ada, and to use the newer techniques of software 
engineering that Ada can support. This transition, however, has not always been smooth; some 
serious problems have been encountered. 

1.1. Ada Runtime Environment 

One of the most persistent, and worrying, problems is the suitability of the Ada runtime system, 
most notably the tasking features, and especially on distributed systems. There are issues 
concerning functionality (amply documented by ARTEWG), customization, tool support 
(especially target debuggers and performance monitors), issues of inter-process communication 
and code distribution; and, perhaps most intractable, issues of execution-time efficiency. 

One way of approaching this problem is to press for better, "more mature" Ada implementations: 
more optimization; user-tailorable runtime systems; special-purpose hardware. This is a valid 
route, but one that will take time, money, and experience, and many of the solutions will be 
compiler-dependent, machine-dependent, or application-dependent. Many developers are still 
unsure even how to use the new language features of Ada; and at least one cycle of application 
use, performance measurement, and methodology review will be needed before we can be sure 
what parts of the Ada language and runtime are indeed critical. 

This project looks at another route to a possible solution. It should be a quicker and cheaper 
route, and hence a feasible short-term alternative. 

1.2. Applications and Systems Code 

In conventional programming, application code (which is what has to be written to meet the user 
requirements) is distinguished from system code (which is obtained with the target machine, and 
which is intended to support applications generally). With Ada and embedded systems, these 
distinctions are not so clear cut. First, it has been traditional, when developing real-time systems 
in other programming languages, for the application programmer to write specific code down to a 
far lower level, including special device drivers, special message or signaling systems, and even 
a custom executive. There is far less general-purpose system code. Secondly, the Ada language 
complicates the distinction between application and system code. In older languages, almost all 
system functions were invoked through a simple and well-understood interface — the system call 
— expressed as a normal subroutine call. In Ada, however, many traditionally system-level 
functions are explicit in the language itself, or implied by language constructs; for example, 
tasking, task communication, interrupt acquisition, and error handling. In fact, the work is really 
done by the old familiar system code, now disguised as the Ada runtime. 
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1.3. Abstractions and their Breakdown 

If the user is satisfied with the Ada level of abstraction — with its view of what tasks are, what 
time is, and so on — then the Ada view is a simplification: the application code in fact performs 
system calls, but the compiler inserts them automatically as part of the implementation of 
language constructs. One very successful example of how useful this can be is the Monitor 
construct. The user declares a procedure, or group of procedures, to be a Monitor; on Monitor 
invocations, the compiler automatically inserts the system calls that enforce mutual exclusion; the 
abstraction captures exactly what the user wants, and the implementation is done without fuss. 

Unfortunately, many users are dissatisfied with the Ada abstraction, and seek either finer control 
or access to lower-level concepts, such as semaphores, send/wait or suspend/resume primitives, 
and bounded time delays. Under the above circumstances, the extra language features, and the 
hidden system calls they generate, are an active hindrance to the application programmer, and 
an obstruction to the work of implementation. 

For example, the programmer may need a strong delay primitive — one that guarantees 
resumption as soon as possible after the expiration of the delay. But Ada already has a "delay" 
statement, with different semantics. When implementing a different delay primitive, the user risks 
damaging the Ada runtime behavior, which believes it has sole control of the Ada tasks, and does 
not expect an extra routine that performs suspensions and resumptions. To implement the new 
delay robustly, the user has to interface with the internals of the Ada runtime, which may be very 
hard to do and will surely be hard to maintain. Moreover, the Ada delay statement composes 
naturally into timed entry calls and timed select statements. If the user wishes to do these things 
with the new delay statement, a substantial part of the Ada semantics must be rebuilt, and a 
substantial part of the runtime must be modified. 

All this, of course, is a distraction from the real work — the work of implementing the application. 
One of the main motivators of this project is the observation that many contractors using Ada are 
spending most of their time worrying about the Ada system level and far too little time solving the 
application problems, some of which are not easy. 

In sum, it can be harder to build applications using Ada language features than it would be to 
implement the required functionality without them. But it is also undesirable for every application 
to reinvent specific incarnations of real-time functional abstractions. 

1.4. Distributed Applications 

A further and equally difficult problem is the issue of executing applications on a distributed target 
configuration. Good software development methods teach us to decompose large applications 
into functional units communicating through well-defined interfaces. The physical allocation of 
such units to individual processors in the target environment can be done in many ways, without 
impairing their functionality. Good design therefore requires that the specification of these 
functional units and interfaces be independent, as far as possible, of their physical distribution. 
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In a real-time system, this implies that the mechanisms by which units interact — to synchronize, 
communicate with, schedule one another, or alert one another — should be uniform, regardless 
of whether the units are situated on the same processor or at some distance across a distributed 
network. If the implementation language is Ada, this leads to a requirement for distributed Ada. 

Unfortunately, nearly all current commercially-available Ada implementations do not meet this 
requirement. They implement the real-time mechanisms of the language only on individual or 
isolated processors, and provide no help with communication between processors, and hence 
between units on different machines. This situation leads to systems where Ada tasks 
communicate by different mechanisms, with different style, semantics and implementations, 
merely because the Ada tasks are local in one case, and remote in the other. It also requires the 
physical distribution of tasks to be unalterably fixed before any task is implemented, and, in some 
cases, before interface design is complete. 

Overall, there is a substantial loss of application clarity, maintainability, ^configurability, and 
conceptual economy. 

1.5. Real-Time Requirements 

This brings us to the crux of this project's rationale. Users — people who have to write 
application code — do not want language features: they want language functionality. In Ada, 
much of the real-time functionality is captured in the form of special features. This may well be 
(the) correct solution in the long term, since by making real-time operations explicit in the 
language, the compiler is permitted to apply its intelligence to their optimization and verification. 
But in the short term, it is palpably not working: the users either cannot use, or do not know how 
to use, the given features to achieve the required functionality; the implementors of the language 
do not know how to satisfy the variety of needs of real-time applications; the vendors are 
unwilling, or unable, to extensively customize validated implementations; and commercial support 
for distributed targets is rare, even as the need for such support is becoming endemic among 
application developers. 

Accordingly, it is opportune to revert to the former method of providing functionality: by specific 
system software implemented as a set of library routines and invoked explicitly by the user. This 
project will do precisely that. 

1.6. Purpose and Intended Audience 

The main purpose of the Kernel is to demonstrate that it is possible to develop application code 
entirely in Ada that will have acceptable quality and real-time performance. This purpose will be 
achieved by providing a prototype artifact that implements the necessary functionality required by 
real-time applications, but in a manner that avoids or mitigates the efficiency and maturity 
problems found in current Ada runtime implementations. 

This prototype embodies a tool-kit approach to real-time systems, one that allows the user to 
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build application-specific real-time abstractions. This prototype is not intended to solve all the 
problems of embedded, real-time systems, nor is it the only solution to these problems. However, 
it is intended to be a solution where efficiency and speed are the primary drivers and, where 
warranted, functionality is limited to satisfy these drivers. 

Given this, the purpose of such a prototype is: 

1. To encourage people to use Ada for applications code by mitigating many of their 
problems. 

2. To allow developers to concentrate on the application-specific areas of their 
problem by providing them with a set of working system primitives that are more 
familiar, that can be invoked in a more customary way, and that can be built upon. 

3. To offer a usable support base, of known functionality and quality, for real-time Ada 
applications. 

This document does not address those software engineers who find their system constraints met 
within the Ada tasking paradigm. The general audience is anyone, within the defense community 
or without, who is anxious to use Ada but is troubled by currently perceived problems. This 
especially includes software engineers operating in a distributed, real-time environment. 
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2. Definitions 
This document begins with two key definitions (see Appendix A tor a complete set of definitions): 

• Ada task: An Ada language construct that represents an object of concurrent 
execution managed by the Ada run-time environment (RTE) supplied as part of a 
compiler (under the rules specified in the Ada Language Reference Manual (LRM), 
see [alrm 83]). 

• Kernel process: An object of concurrent execution managed by the Kernel outside 
the knowledge and control of the Ada RTE. 

The preceding terminology is deliberately different from that of Ada. This is for two reasons: 

1. To remind the reader not to think in Ada terms, but rather in the terms defined by 
this document. 

2. To avoid the implication that the Kernel will implement any specific function in a way 
that resembles an existing Ada feature with that function. 

This document will focus specifically on Kernel processes, not on Ada tasks. In fact, except for 
"academic interest" or comparison/contrastive purposes, the term "Ada task" will not appear in 
this document. To elaborate on this view, (keep in mind that) a Kernel process is a schedulable 
unit of parallel execution. Thus, at any one instant, any one processor is executing the code of 
exactly one process or, alternatively, is executing Kernel code. The code of a Kernel process is 
written by the user and will be an Ada procedure. What distinguishes a procedure from a 
process, or for that matter from an interrupt handler, is the execution environment. The Kernel 
primitives will take an appropriate Ada procedure and construct around it the necessary execution 
environment to create a Kernel process.1 This will be discussed in more detail later. 

'The Ada compiler, in contrast, constructs the proper environment around a procedure or task. 
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3. Kernel Functional Areas 
This chapter briefly summarizes the areas that the Kernel will and will not address.   First, the 
Kernel will not address the following areas: 

• Multi-level security: This is beyond the scope of this Project. 

• Rollback/checkpoint recovery: The Kernel is not dealing with the issues of fault 
tolerance; however, it will address some of the issues of fault detection and 
reporting. 

• Memory/storage management and garbage collection: In general, the Kernel 
expects all processes on one processor to execute in the same uniform address 
space, freely sharing global data. Also, the Kernel will not manage memory for 
access collections, because the characteristics of many embedded systems preclude 
an implementation assuming any kind of garbage collection. 

• Pre-elaboration: Since the Kernel is not dealing with Ada tasking (and concomitant 
semantics), this is not needed. 

• Fast-interrupt pragma: The Kernel is excluding this pragma because it is specific to 
Ada task entries and to some compilers. The Kernel will provide equivalent 
functionality via Kernel primitives. 

The Kernel will address the following areas: 

• Processor management 

• Process management 

• Semaphore management 

• Schedule management 

• Communication management 

• Interrupt management 

• Time management 

• Alarm management 

• Tool interface 

Each of these items will be discussed in more detail in subsequent chapters in this document. 
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4. Assumptions, Models, and Restrictions 

Chapter 3 defined broad, general categories of functionality. To refine these, this chapter 
presents a set of models, assumptions, and restrictions on which the Kernel is based. 

4.1. Ada Compiler Assumptions 
Regarding the Ada compiler and its relationship to the Kernel: 

1. No additional pragmata will be implemented or existing pragmata modified. 

2. If possible, the Kernel will be developed using an Ada compiler, which allows the 
Ada tasking RTE to be excluded from the executable image; this implies that no 
modifications will be made to the rest of the Ada RTE. 

3. The compiler supplied Ada run-time must be re-entrant. 

4. Only as a last resort will the Ada compiler and/or RTE be modified (to force the 
exclusion of the tasking support library from the executable image), and no changes 
will be made that would invalidate the compiler. 

5. The Kernel will have total control over the system clock. 

The selection of a compiler is driven by the above needs and by the needs of the model 
application used to test the Kernel. It is not driven by any needs of the Kernel itself. Given that 
no modifications will be made the RTE, it will continue to provide all services needed by the 
application except those related to concurrency. 

4.2. Process Model 
The Kernel presents to the user the abstraction of a process, that is, a concurrent thread of 
execution (as defined in Chapter 2). Elaborating on this general concept yields the Kernel's 
general process model: 

1. Each process executes a unit of code, developed as a functional unit. 

2. For each processor, the software engineer performs the following steps (illustrated 
in Figure 4-1): 

a. Develop the process code. 

b. Develop the Main Unit for the processor; the function of the Main Unit is 
explained later. 

c. Compile the code of the processes and the Main Unit. 

d. Link the Kernel, Main Unit, and processes together to form the load image 
for that processor. 

3. The load image begins execution at the initialization point of the Kernel, which in 
turn invokes the Main Unit. 

When developing a process, the software engineer need not know where the other processes will 
be located — on a single processor or across multiple processors. The Kernel-supplied 
communication primitives can be used for all inter-process communication, local or remote, with 
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the Kernel optimizing the local case. The load image begins execution in the Ada Main Unit (after 
Kernel initialization). This Main Unit declares, creates, and schedules the processes in turn, and 
then declares that process creation is completed. After that, the Main Unit is descheduled while 
the processes continue to run independently. The state transition diagram for the Main Unit is 
shown in Figure 4-2.2 

The Main Unit is responsible for configuring the processor to meet the requirements of the 
application. This must include: 

1. Participating in the network initialization protocol. 

2. Declaring all remote communication partners. 

3. Declaring and creating all locally executing processes. 

There are several optional activities that may be performed by the Main Unit; these are: 

1. Allocating non-Kernel devices to processes. 

2. Reading time-of-day clock (which is required for the Main Unit of the Master 
Processor). 

3. Reporting system initialization failures to the external world. 

4. Binding interrupt handlers. 

5. Performing any system-dependent initializations (devices, buses, etc.). 

In general, the Main Unit is the application entity that is responsible for configuring the processor 
in the manner needed by the application and can use any available Kernel primitive. 

Given that there is one load image for each processor, which creates a set of processes as part 
of its initialization, the issue of multiprogramming is moot. The user really considers the set of 
processes to be the code that is running; the Main Unit exists only to ensure that all the 
processes get linked together and started. 

4.3. System Model 
In light of the process model discussed previously, consideration must be given to the 
environment in which these collections of processes are executed. This requires stepping back 
from the "process-in-the-small" issues and considering some system-level or 
"process-in-the-large" issues. The system model on which the Kernel is based is shown in Figure 
4-3. This view shows all that the Kernel assumes about the system: 

• Three types of hardware objects in the network: 

1. Kernel processors 

2. Non-Kernel processors or devices (attached to the system bus) 

3. Devices that may interrupt a processor 

2See [Ward 85] for a complete description for the state transition diagram notation used in this document. 
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• No shared memory assumed (or excluded). 

• No mass storage devices assumed (or excluded). 

• Kernel alone interfaces directly to the system bus. 

Given this model, the Kernel considers that: 
The application comprises n Kernel processes formed into m Ada programs (load 
images) running on m processors. 

This requires: 

1. The user has a process or tool that allows for the static distribution of the m images 
over the m processors in the configuration. 

2. The user has a process or tool to download the images into processor memory. 

3. The user has a mechanism to commence execution of the loaded programs. 

4. The user has tools to manipulate all needed disk/tape/bulk memory accesses (if 
these are available in the embedded configuration). 

4.4. Error Model 

All Kernel requests are of the form P {S} Q; where P is the pre-condition to statement S, and Q is 
the post-condition of statement S. Errors occur when one of the following conditions exists: 

• Pre-condition (P) is false on call, i.e., there is an error on Kernel invocation ("Invalid 
request"). 

• Pre-condition (P) is asynchronously invalidated before call terminates, i.e., an 
asynchronous problem arises ("Sorry, while you were waiting, something awful 
happened"). 

• The post-condition (Q) cannot be established, i.e., there is a failure of the virtual 
machine ("Request valid, but we can't do it today"). 

All Kernel errors will be signaled by a status code in all Kernel operations that may fail. 

All Kernel primitives are invoked synchronously, but their return (or resumption) may be 
asynchronous (i.e., invoking a Kernel primitive may cause the scheduler to suspend the invoking 
process and resume a different process). From the point of view of the process, the entire 
operation appears to happen synchronously. That is, the primitives return to the caller after they 
have completed their operation (returning a success code) or after they have abandoned it 
(returning a failure code). However, their blocking behavior depends on the nature of the errors 
that might occur. 

An error of the first kind, where a precondition is false on call, always results in an immediate 
return, without blocking. An error of the second kind, where a precondition is invalidated before 
completion, causes a return after some interval of time, during which the caller is blocked. An 
error of the third kind might be detectable on call or might be detected only after some time, and 
so the caller might or might not have been blocked. 

Wherever possible, errors are detected locally, by the Kernel on the processor running the 
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invoking process. To do this error detection, the Kernel relies on its local copy of information 
representing global or remote state. A rule of this implementation is that a local copy might lag, 
but cannot lead, the true remote state it represents. For example, if a local process table indicates 
that a remote process is dead, that process has indeed died. Many of the status codes noted in 
this document are diagnostic in nature and thus appropriate only for software test and integration. 

Given that the Kernel is intended for use in operational real-time systems, there is a means 
provided to disable runtime error reporting. The Kernel is configured so that each error code may 
be separately enabled or disabled. If an error code is enabled, the Kernel will invariably check for 
and report that error. If an error code is disabled, the Kernel will never report that error, even if it 
occurs. In addition, the Kernel is free to omit any checking whose sole purpose is to avoid 
damage to a process attempting an erroneous action. 

However, the Kernel will never omit checks that guard against damage to internal data structures 
or to processes other than the one performing an erroneous action, regardless of whether the 
error code is enabled or disabled. 

4.5. Restrictions 

Finally, a number of restrictions are imposed on the form of the application code. The following 
restrictions are offered, with justification in italics: 

1. Initialization is not a time-critical function. This is considered to be a simplification 
and one-time operation done at system start-up. 

2. The Kernel will not implement the Ada tasking semantics. This is in keeping with the 
Kernel's design goal of making explicit control that is now implicit. 

3. No Ada tasking primitives may be used by the application. 777/s preserves the goal 
to replace the implicit operations of Ada tasking with explicit operations of Kernel 
processes. A second reason is to avoid having two competing runtime systems in 
the processor competing for control of the hardware clock. 

4. All Kernel processes will be created statically and scheduled dynamically. This is 
simply a restriction imposed to make the development effort of the Kernel a 
manageable activity. 

5. The Kernel will not implement fault tolerance, but it will detect the presence of 
certain (to be defined) classes of faults. The Kernel will detect certain system faults, 
but it will leave the recovery from these faults in the hands of the application. The 
Kernel will provide the capability to perform fault tolerance. 

6. The Kernel will not use shared memory between processors. 777© Kernel's reliance 
on special hardware, such as shared memory, would restrict the portability of the 
Kernel and as such is disallowed. 

7. Any Kernel process may communicate with any other Kernel process. Again, this 
restriction simplifies the Kernel by placing the burden of restricting communications 
on the system or software engineer. Management of system process names thus 
becomes a configuration management issue within the application. 

8. Inter-process communications will be provided by explicit use of Kernel primitives. 
Again, this is a manifestation of the explicit operation versus the implicit operation. 
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9. Each processor has its memory completely loaded at download time. This is 
another simplifying assumption for the Kernel implementation. The Kernel will 
operate under the restriction that all processes and all data are memory resident at 
all times. This does not prohibit the application from building processes that can be 
rolled in and out of memory. 

10. The Kernel will not implement any paging or memory management facilities. The 
Kernel assumes all processes on one processor execute in the same unchanging 
address space. 
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II. Requirements 

This part of the Kernel Facilities Definition defines the requirements to be implemented by the 
Kernel. The chapters in this part are parallel to those in the Kernel primitives part, which follows. 
Each chapter in this part is divided into two sections: 

• Behavior: Dictates the functional behavior of the Kernel. 

• Performance: Dictates the performance requirements of the Kernel. All performance 
requirements are based on a Motorola 68020 with a 20 Mhz clock (one wait state). 
This is approximately 50 machine instructions for every 12.5 \is (assuming 5 
cycles/machine instruction and 20 ns/cycle). 

Section numbers associated with requirements in this part are the requirement numbers 
referenced throughout the remainder of the document. 
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5. General Requirements 
The requirements in this chapter apply to the specification, design, and implementation of the 
entire Kernel. 

5.1. Behavior 

5.1.1. General failure reporting 
The Kernel shall return status codes to the application program as a result of an invocation of a 
Kernel primitive. 

5.1.2. Kernel priority 
Kernel primitives shall execute at the priority of the invoking process. 

5.1.3. Low-level hardware details isolated from application 
The Kernel shall encapsulate control and use of the system bus (i.e., the low-level communication 
medium). 

5.1.4. System dependencies isolated 
System dependencies of the Kernel shall be isolated and encapsulated within the Kernel code. 

5.1.5. Kernel provably correct 
The Kernel code shall be provably correct (except for termination). 

5.1.6. Kernel tailoring 
The Kernel shall be tailorabie (via compilation) to meet the local system configuration and needs 
at the following levels: 

1. Priority range 

2. Maximum message size 

3. Maximum number of process table entries 

4. Maximum size of the Network Configuration Table (NCT) 

5. Default timeslice quantum 

6. Default message queue size 

5.1.7. Kernel modularity 
The Kernel shall be developed such that an application program has to import only those Kernel 
primitive capabilities that it needs. 
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5.1.8. Run-time error checking 
The Kernel shall provide the capability to disable all error checking and reporting. 

5.2. Performance 

5.2.1. Kernel size 
The Kernel shall use no more than 5% of the total available system memory for Kernel code. 

5.2.2. Kernel internal data size 
The Kernel shall use no more than 5% of the total available system memory for Kernel data. 

5.2.3. Kernel stack for Kernel invocation 
The Kernel shall use no more than 100 bytes of process stack space for a Kernel primitive 
invocation. 

5.2.4. Linear performance 
The time performance of all Kernel algorithms shall be better than linear in the number of 
processes. 

5.2.5. Kernel algorithm documentation 
All Kernel algorithms shall be fully documented in the Kernel User's Manual [kum 88]. 
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6. Processor Requirements 

6.1. Behavior 

6.1.1. Master processor identification 
The Kernel shall provide the capability for exactly one processor to identify itself as the network 
Master processor for initialization purposes. 

6.1.2. Subordinate processor identification 
The Kernel shall provide the capability for all other processors to identify themselves as 
subordinate to the network Master processor for initialization purposes. 

6.1.3. Processor failure detection 
The Kernel shall detect the failure of any processor in the network to initialize. 

6.1.4. Processor failure reporting 
The Kernel shall report to the Master processor the failure of any processor in the network to 
initialize. 

6.1.5. Network clock synchronization at initialization 
The Kernel shall provide the capability to synchronize all network clocks at system initialization. 

6.1.6. Clock synchronization not enforced after initialization 
The Kernel shall nor enforce clock synchronization across processors after initial synchronization. 

6.1.7. Network failure nor detected 
The Kernel shall not be required to detect network failure. 

6.1.8. Network integrity not provided 
The Kernel shall not provide network integrity controls. 

6.1.9. Network integrity primitives provided 
The Kernel shall provide the capability for the user to implement network integrity consistent with 
the needs of the application. 

6.1.10. Network configuration primitives provided 
The Kernel shall provide the capability for the application to specify the network configuration 
including: 

1. Device identifier 

2. Physical address 

3. Processor device 

4. Other data required for network operation 
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6.1.11. Low-level network details isolated from application 
The Kernel shall isolate low-level network implementation knowledge from the user application. 

6.2. Performance 

6.2.1. System initialization not time-critical 
System initialization shall be accomplished in less than 5 seconds. 

6.2.2. Initial time delta across the network 
Deleted -1 July 1988.3 

3
Subsumed by Synchronize primitive (21.1.6). 
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7. Process Requirements 

7.1. Behavior 

7.1.1. Main Unit identification 
There shall be  a single  Main  Unit on each processor that coordinates  processor-level 
initialization. 

7.1.2. Main Unit profile 
The Main Unit shall be an Ada procedure with no parameters. 

7.1.3. Identification of communication partners 
The Kernel shall provide the capability for the Main Unit to identify all Kernel processes and 
non-CPU devices with which communication from this processor is to occur. 

7.1.4. Create process 
The Kernel shall provide the capability for the Main Unit to create independent, concurrent 
threads of control (i.e., processes). 

7.1.5. Ada process profile 
The code of a process shall be an Ada procedure with no parameters. 

7.1.6. Process stack size 
The Kernel shall provide the capability for the Main Unit to specify the process stack size for each 
created process. 

7.1.7. Process stack size fixed 
The process stack size shall be fixed at process-creation time. 

7.1.8. Default process stack size 
The default process stack size shall be 64 bytes. 

7.1.9. Message queue size 
The Kernel shall provide the capability for the Main Unit to specify the input message queue size 
for each created process. 

7.1.10. Message queue size fixed 
The process message queue size shall be fixed at process-creation time. 
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7.1.11. Default message queue size 
The default input message queue size shall be 256 bytes. 

7.1.12. Non-propagation of exceptions 
The Kernel shall ensure that exceptions are not propagated outside the scope of the process in 
which they are raised. 

7.1.13. Abortion on illegal exception propagation 
The Kernel shall abort any process that attempts to propagate an exception outside the scope of 
the process. 

7.1.14. Allocate device 
The Kernel shall provide the capability for a process to identify itself as the sole receiver of 
messages for a non-Kernel device. 

7.1.15. Successful initialization 
The Kernel shall provide the capability for the Main Unit to inform the other processors of the 
successful initialization of its processor. 

7.1.16. Ensure network-wide initialization completed 
The Kernel shall ensure that no process executes until all necessary network-wide initializations 
are complete. 

7.1.17. Main Unit termination 
Upon successful completion of processor initialization, the Main Unit shall be terminated. 

7.1.18. Process self-termination 
The Kernel shall provide the capability for a process to terminate itself in an orderly manner. 

7.1.19. Process self-abortion 
The Kernel shall provide the capability for a process to abort itself. 

7.1.20. Aborting another process 
The Kernel shall provide the capability for one process to abort another process. 

7.1.21. Pending messages for terminated process discarded 
The Kernel shall ensure that messages pending for a terminated process are discarded. 

7.1.22. Pending messages for aborted process discarded 
The Kernel shall ensure that messages pending for an aborted process are discarded. 
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7.1.23. Identify self 
The Kernel shall provide the capability tor a process to obtain its own identity. 

7.1.24. Identify another process 
The Kernel shall provide the capability tor a process to obtain the identity of another process in 
the network. 

7.1.25. Process failure detection 
The Kernel shall provide the capability to detect the failure of any process in the network. 

7.1.26. Process failure reporting 
The Kernel shall report the detected failure of any process in the network. 

7.2. Performance 

7.2.1. Time to create process 
The creation of a process shall take no more than 60 \is. 

7.2.2. Time to terminate process 
The termination of a process shall take no more than 30 us. 

7.2.3. Time to abort process 
The abortion of a process shall take no more than 30 \is.4 

7.2.4. Time to allocate device 
The allocation of a device to a process shall take no more than 20 \is. 

7.2.5. Kernel data for each active process 
The Kernel shall use no more than 100 bytes of data for Kernel data structures for each active 
process. 

7.2.6. Kernel stack for each active process 
The Kernel shall use no more than 64 bytes of process stack space for each process. 

'Network communication overhead is not included. 
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8. Semaphore Requirements 

8.1. Behavior 

8.1.1. Create a semaphore 
The Kernel shall provide the capability to create a semaphore object. 

8.1.2. Creation semantics 
The creation of a semaphore shall associate an empty waiting process queue with the 
semaphore object. 

8.1.3. Semaphore queue FIFO 
The waiting process queue shall be first in, first out (FIFO) ordered. 

8.1.4. Claiming a semaphore 
The Kernel shall provide the capability for a process to obtain access to a previously created 
semaphore. 

8.1.5. Claim timeout after duration 
The Kernel shall provide the capability for a claim operation to terminate after a specified duration 
if the semaphore does not become available. 

8.1.6. Claim timeout at specific time 
The Kernel shall provide the capability for a claim operation to terminate at a specific absolute 
time if the semaphore does not become available. 

8.1.7. Resumption priority after claim 
The Kernel shall provide the capability for the claiming process to specify a priority at which it is to 
be unblocked. 

8.1.8. Claiming an available semaphore 
Claiming an available semaphore shall immediately give control of the semaphore to the invoking 
process and shall mark the semaphore as unavailable. 

8.1.9. Claiming an unavailable semaphore 
Claiming an unavailable semaphore shall immediately block the invoking process until the 
semaphore becomes available or the timeout expires. 

8.1.10. Releasing a semaphore 
The Kernel shall provide the capability for a process to relinquish control of a previously claimed 
semaphore. 
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8.1.11. Release semantics 
Releasing a semaphore shall allow the Kernel to give control of the semaphore to the process at 
the head of the waiting process queue. 

8.2. Performance 

8.2.1. Time to create a semaphore 
Creating a semaphore object shall take no more than 25 us. 

8.2.2. Time to claim a semaphore 
Claiming a semaphore object shall take no more than 25 us.5 

8.2.3. Time to release a semaphore 
Releasing a semaphore object shall take no more than 25 us.6 

5
No scheduling activity is involved. 

6No scheduling activity is involved. 
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9. Scheduling Requirements 

9.1. Behavior 

9.1.1. Initial scheduling parameters 
The Kernel shall provide the capability for each Main Unit to specify the initial scheduling 
parameters of each process to execute on that processor. 

9.1.2. Default schedule parameters 
The default schedule parameters of a process shall be preemptable, interruptible, and lowest 
possible priority. 

9.1.3. Representation of priority 
Process priorities shall be represented as a subset of the positive integers. 

9.1.4. Definition of priority range 
The range of priorities shall be defined at compile time by the user(s) of the Kernel. 

9.1.5. Definition of priority ordering 
Smaller integer values for priority shall represent higher process priorities. 

9.1.6. Dynamic process priority 
The Kernel shall provide the capability to set process priorities dynamically. 

9.1.7. Set initial priority 
The Kernel shall provide the capability to set the initial process priority at process-creation time. 

9.1.8. Change priority 
The Kernel shall provide the capability for a process to change its own process priority. 

9.1.9. Query priority 
The Kernel shall provide the capability for a process to query its own process priority. 

9.1.10. Definition of preemption 
The Kernel shall provide two preemption states: preemptable by a process of the same priority, 
and not preemptable by a process of the same priority. 

9.1.11. Set initial preemption 
The Kernel shall provide the capability to set the initial preemption state at process-creation time. 
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9.1.12. Change preemption 
The Kernel shall provide the capability for a process to set its own preemption state. 

9.1.13. Query preemption 
The Kernel shall provide the capability for a process to query its own preemption state. 

9.1.14. Definition of wait 
The Kernel shall provide the capability for a process to voluntarily relinquish control of the 
processor and to be resumed at the next sequential statement. 

9.1.15. Wait for duration 
The Kernel shall provide the capability for a process to block its own execution for a specified 
duration. 

9.1.16. Wait until specified time 
The Kernel shall provide the capability for a process to block its own execution until a specified 
time. 

9.1.17. Resumption priority after wait 
The Kernel shall provide the capability for a waiting process to specify a priority at which it is to be 
unblocked. 

9.1.18. Set timeslice 
The Kernel shall provide the capability to set the timeslice quantum for each processor. 

9.1.19. Enable round-robin time slicing 
The Kernel shall provide the capability to enable the time slicing of processes of equal priorities in 
a round-robin manner. 

9.1.20. Disable round-robin time slicing 
The Kernel shall provide the capability to disable time slicing of processes of equal priorities in a 
round-robin manner. 

9.1.21. Default timeslice settings 
The default timeslice settings shall be: time slicing disabled, and timeslice quantum is zero. 

9.1.22. Setting another process's scheduling parameters prohibited 
The Kernel shall prohibit one process from directly setting another's scheduling parameters (e.g., 
priority, preemption) with the exception of the initial scheduling parameters, which are defined by 
the Main Unit at process-creation time. 
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9.1.23. Process states 
A process shall always be in one of four definite states: 

1. Running 

2. Dead 

3. Blocked 

4. Suspended 

9.1.24. Scheduling algorithms 
The Kernel scheduling algorithms shall be: 

1. Deterministic, and 

2. Of predictable performance. 

9.1.25. Scheduling algorithms provided 
The scheduling algorithms shall provide priority-based, preemptive scheduling. 

9.1.26. Documentation of scheduling algorithms 
The Kernel scheduling algorithms shall be fully documented in the Kernel User's Manual. 

9.1.27. Meaning of a timeslice 
A process that is preemptable while timeslicing is enabled shall execute for no more than one 
timeslice quantum before a forced reschedule point occurs. 

9.2. Performance 

9.2.1. Time to set priority 
Setting a process priority shall take no more than 57 \is.7 

9.2.2. Time to set preemption 
Setting a process preemption state shall take no more than 18 [is.8 

9.2.3. Time to suspend process 
Suspension of a process shall take no more than 43 \is. 

7No scheduling activity is involved. 

8No scheduling activity is involved. 
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9.2.4. Time to resume process 
Resumption of a process shall take no more than 33 \is. 

9.2.5. Time to enable or disable time slicing 
Enabling or disabling timeslice scheduling shall take no more than 18 u.s.9 

9.2.6. Time of context switch 
The time needed to suspend execution of the currently running process and resume execution of 
a different process shall take no more than 76 us.10 

9.2.7. Dispatch time 
The Kernel shall take no more than 33 [is to dispatch the highest priority task after it becomes 
unblocked. 

sNo scheduling activity is involved. 

^Requirement 9.2.3 time + requirement 9.2.4 time. 
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10. Communication Requirements 

10.1. Behavior 

10.1.1. Reference communication partners 
The Kernel shall provide the capability for a process to reference all other processes with which it 
communicates. 

10.1.2. Send 
The Kernel shall provide the capability for a process to send data to another process. 

10.1.3. Send with ACK 
The Kernel shall provide the capability for the sending process to request acknowledgment (ACK) 
of message receipt by the receiving process. 

10.1.4. Resumption priority for send with ACK 
The Kernel shall provide the capability for the sending process to specify the priority at which it is 
to be unblocked. 

10.1.5. Sender specifies recipient 
The process originating a message sent to a single recipient shall specify the recipient. 

10.1.6. Receiver physical address hidden 
The sender shall not need to know the physical network address of the receiver. 

10.1.7. Send timeout after specified duration 
The Kernel shall provide the capability for a process to terminate a send with ACK operation if the 
message is not received after a specified duration. 

10.1.8. Send timeout by specified time 
The Kernel shall provide the capability for a process to terminate a send with ACK operation if the 
message is not received by a specified time. 

10.1.9. Send timeout reporting 
The Kernel shall terminate send operations whose timeout expires with a status code. 

10.1.10. Send recipient failure detection 
The Kernel shall detect the failure of the receiving process during a send with ack operation. 
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10.1.11. Send recipient failure reporting 
The Kernel shall report the failure of a message recipient during a send with ACK operation. 

10.1.12. Receive 
The Kernel shall provide the capability for a process to receive data from another process by 
copying the data into the work space of the invoking process. 

10.1.13. Resumption priority for receive 
The Kernel shall provide the capability for the receiving process to specify the priority at which it 
is to be unblocked. 

10.1.14. Kernel identifies sender 
The Kernel shall inform the message recipient of the sender's identity. 

10.1.15. Sender physical address hidden 
The receiver shall not need to know the physical network address of the sender. 

10.1.16. Receive timeout after specified duration 
The Kernel shall provide the capability for a process to terminate a receive operation if it is not 
completed after a specified duration. 

10.1.17. Receive timeout by specified time 
The Kernel shall provide the capability for a process to terminate a receive operation if it is not 
completed by a specified time. 

10.1.18. Receive timeout reporting 
The Kernel shall terminate with a status code a receive operation whose timeout expires. 

10.1.19. Message format 
The Kernel shall not impose any restrictions on the content, format, or length of a message other 
than maximum message size limitations. 

10.1.20. Message too big on receive 
Any attempt to receive a message larger than the object into which it is to be put shall result in 
the message contents being discarded, but the message attributes shall be delivered to the 
receiver. These include: 

1. Message sender's process identifier 

2. Message tag 

3. Message length 
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10.1.21. FIFO message queue 
The process message queue shall be FIFO ordered. 

10.1.22. Message queue overflow 
The Kernel shall provide two options for managing the message queue when the arrival of a new 
message would cause queue overflow: 

1. Accept the new message by overwriting old messages; or 

2. Reject the new message. 

10.1.23. Default overflow handling 
The default option for managing message queue overflow shall be to reject the new message. 

10.1.24. Status code on queue overflow 
The Kernel shall return a status code on the first receive operation after queue overflow has 
occurred. 

10.1.25. Communication failure reporting 
The Kernel shall terminate pending communication operations with a failed process with a status 
code when that failure is detected. 

10.1.26. Communication with non-Kernel devices 
The Kernel shall provide the capability to communicate with any device (capable of sending or 
receiving communication) in the network. 

10.1.27. Communication deadlock detection 
The Kernel shall prohibit a process from performing a send with ack operation to itself. 

10.1.28. Common primitives for all communication 
The Kernel shall provide a common set of communication primitives for both local and remote 
message passing. 

10.1.29. Local communication optimization 
The Kernel shall optimize communications local within a processor. 

10.1.30. Message integrity 
The Kernel shall ensure message integrity, including: 

1. The entire message reaches the receiver; and 

2. Simple transmission errors are detected. 
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10.1.31. Communication integrity 
The Kernel shall ensure communication integrity, including: 

1. The sender of a message is a valid process; and 

2. The receiver of a message is a valid process. 

10.2. Performance 

10.2.1. Transmission time of 0-length message 
The time11 needed to send a 0-length message without acknowledgment to a single process in 
the case of two processes on two processors (excluding network transmission time) shall be no 
more than 25 us. 

10.2.2. Transmission time of large message 
The time needed to send a large12 message without acknowledgment to a single process in the 
case of two processes on two processors (excluding network transmission time) shall be no more 
than 25 us. 

10.2.3. Transmission time of 0-length message with ACK 
The time needed to send a 0-length message with acknowledgment to a single process waiting 
for that message in the case of two processes on two processors (excluding network 
transmission time) shall be no more than 50 us. 

10.2.4. Transmission time of large message with ACK 
The time needed to send a large message with acknowledgment to a single process waiting for 
that message in the case of two processes on two processors (excluding network transmission 
time) shall be no more than 50 us. 

10.2.5. Transmission time of 0-length message locally 
The time needed to send a 0-length message without acknowledgment to a single process in the 
case of two processes on the same processor shall be no more than 15 us. 

10.2.6. Transmission time of large message locally 
The time needed to send a large message without acknowledgment to a single process in the 
case of two processes on the same processor shall be no more than 15 us. 

11AJI times exdude copy time, which is to be determined (TBD) jis/byte. and net transmission time, which is TBD 
(is/byte. 

12The actual size of a "large" message is TBD. The intent is to select a message size that places a non-trivial load on 
the system. 
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10.2.7. Transmission time of 0-length message locally with ACK 
The time needed to send a 0-length message with acknowledgment to a single process waiting 
for that message in the case of two processes on the same processor shall be no more than 20 
MS. 

10.2.8. Transmission time of large message locally with ACK 
The time needed to send a large message with acknowledgment to a single process waiting for 
that message in the case of two processes on the same processor shall be no more than 20 \is. 

10.2.9. Time to receive 0-length message 
The Kernel overhead time needed to receive a 0-length available message shall be no more than 
25 \is. 

10.2.10. Time to receive large message 
The Kernel overhead time needed to receive a large available message shall be no more than 25 
\is. 

10.2.11. Fixed message overhead 
The Kernel shall use no more than 128 bits/message. 
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11. Interrupt Requirements 

11.1. Behavior 

11.1.1. Interrupt names 
The Kernel shall accept a system.address as an interrupt identification (i.e., name). 

11.1.2. No exception propagation from interrupt handlers 
No exceptions shall be propagated out of the scope of an interrupt handler. 

11.1.3. Exit on exception propagation from interrupt handlers 
Any attempt to propagate an exception outside the scope of an interrupt handler shall result in the 
immediate return from the interrupt handler. 

11.1.4. Enable interrupt 
The Kernel shall provide the capability for a process to enable an interrupt. 

11.1.5. Disable interrupt 
The Kernel shall provide the capability for a process to disable an interrupt. 

11.1.6. Default status of interrupts 
All interrupts visible to the user code shall have the default status defined by the user and the 
system hardware. 

11.1.7. Query Interrupt status 
The Kernel shall provide the capability for a process to query the enabled/disabled status of an 
interrupt. 

11.1.8. Simulate interrupt 
The Kernel shall provide the capability for a process to simulate any interrupt in software. 

11.1.9. Define interrupt handler in Ada 
The Kernel shall provide the capability for a process to define an interrupt handler in Ada. 

11.1.10. Ada interrupt handler profile 
The Ada interrupt handler shall be a procedure with no parameters. 

11.1.11. Bind interrupt handler 
The Kernel shall provide the capability to define an Ada code unit as an interrupt handler for a 
specific interrupt. 
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11.1.12. Blocking prohibited in interrupt handler 
Within an interrupt handler, any attempt to invoke a blocking Kernel primitive in a situation where 

it would block shall be terminated immediately with a status code. 

11.1.13. Interrupts not queued 
The Kernel shall not queue pending interrupts. 

11.1.14. Interrupt implementation visibility 
The Kernel shall allow the user unhindered access to the underlying hardware implementation of 

interrupts. 

11.1.15. Interrupt priority 
All interrupt handlers shall execute at a higher priority than any Kernel process. 

11.2. Performance 

11.2.1. Time to enter interrupt handler 
The time needed to enter an interrupt handler (from moment of preemption until the first 

statement of the handler is executed) shall be less than 15 us.13 

11.2.2. Time to exit interrupt handler 
The time needed to exit an interrupt handler (from the return from interrupt until the resumption of 

the preempted process) shall be less than 10 \is. 

11.2.3. Time to bind interrupt handler 
The time needed to bind an interrupt handler shall be less than 20 \is. 

11.2.4. Interrupt stack use 
The Kernel shall use no more than 16 bytes14 of process stack space per interrupt handler 
invocation. 

13No context save is included in this time. 

14No context data are included in this allocation. 
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12. Time Requirements 

12.1. Behavior 

12.1.1. Package Calendar 
The Kernel shall support the standard Ada package Calendar (see [alrm 83], Section 9.6). 

12.1.2. Exclusion of Package Calendar 
The Kernel shall not require that package Calendar be a part of the load image. 

12.1.3. Use of real-time clock 
The Kernel shall be capable of using a real-time clock. 

12.1.4. Definition of TICK 
The Kernel shall define a constant, TICK, that is the smallest resolvable interval of time. 

12.1.5. Definition of SLICE 
The Kernel shall provide a constant, SLICE, that is the smallest schedulable interval of time. 

12.1.6. Relationship between TICK and SLICE 
SLICE shall be an integral multiple of TICK. 

12.1.7. TICK used internally 
The Kernel shall internally maintain time events accurate to the TICK. 

12.1.8. SLICE basis for scheduling 
The Kernel shall truncate all scheduling times (e.g., durations) to the nearest SLICE. 

12.1.9. Two kinds of delays 
The Kernel shall support two kinds of delays: 

1. Delay for a specified duration (i.e., the Ada type duration); and 

2. Delay until a specified time (i.e., the Ada type time). 

12.1.10. Adjust local processor time 
The Kernel shall provide the capability to adjust (increment and decrement) local elapsed 
processor time. 

12.1.11. Effect of adjusting local processor time 
Adjusting local processor time shall affect all waiting events (i.e., those waiting for and those 
waiting until). 
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12.1.12. Reset epoch time 
The Kernel shall provide the capability to reset the processor epoch15 time. 

12.1.13. Effect of resetting epoch time 
Resetting epoch time shall affect only those events waiting until a specified time. 

12.1.14. Time base reference 
The time base reference shall be Julian day 1 (i.e., 1200 on 1 January 4713BCE; see Joseph 
Justus Scaliger, De emendatione temporum, 1582). 

12.1.15. Read clock 
The Kernel shall provide the capability to read current elapsed time (in TICKs). 

12.1.16. Clock synchronization 
The Kernel shall provide the capability to synchronize all the local clocks on Kernel processors in 
the network to the time of the invoking processor. 

12.1.17. Definition of synchronization 
Synchronization of all network clocks shall force: 

1. All epoch times to be set to the epoch time on the invoking processor. 

2. All elapsed times to be identical to the elapsed time on the invoking processor, 
within the delta defined in 12.2.5. 

12.1.18. Synchronize timeout after duration 
The Kernel shall provide the capability for a synchronize operation to terminate after a specified 
duration if the synchronization protocol has not successfully completed. 

12.1.19. Synchronize timeout at specific time 
The Kernel shall provide the capability for a synchronize operation to terminate at a specific 
absolute time if the synchronization protocol has not successfully completed. 

12.1.20. Resumption priority after synchronize 
The Kernel shall provide the capability for the synchronizing process to specify a priority at which 
it is to be unblocked. 

12.1.21. Duplicate synchronization rejected 
The Kernel shall reject an invocation of the sychronize primitive while a previous invocation is in 
progress. 

15See Chapter 21 for the definition of epoch time. 
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12.2. Performance 

12.2.1. Time to adjust local processor time 
The time needed to adjust the local processor time shall be no more than 18 u.s.16 

12.2.2. Time to reset epoch time 
The time needed to reset the epoch time shall be no more than 18 u.s.17 

12.2.3. Time to read clock 
The time needed to read the clock shall be no more than 18 u.s. 

12.2.4. Time to synchronize 
The time needed to synchronize all local processor clocks shall be no more than 200 us.18 

12.2.5. Accuracy of time synchronization 
After synchronization all processor clocks shall be within TBD \is. 

16No scheduling activity is involved. 

17No scheduling activity is involved. 

18This is 4 * (time needed to send a 0-length message); see requirement 10.2.3 in Chapter 10. 
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13. Alarm Requirements 

13.1. Behavior 

13.1.1. Maximum number of alarms 
The user shall be able to define one alarm per process. 

13.1.2. Relative alarm time 
The Kernel shall provide the capability to set an alarm to expire after a specified duration. 

13.1.3. Absolute alarm time 
The Kernel shall provide the capability to set an alarm to expire at a specified time. 

13.1.4. Kernel defined alarm exception 
The Kernel shall define an alarmexpired exception. 

13.1.5. Expiration of alarm 
The expiration of an alarm shall raise the alarm_explred exception. 

13.1.6. Resumption priority after transfer 
When a process sets an alarm, it shall have the capability to specify a priority at which it is to be 
unblocked. 

13.1.7. Set alarm for zero seconds 
Setting an alarm to expire in zero time units shall immediately raise the alarm expired exception. 

13.1.8. Set alarm for non-future duration 
Setting an alarm to expire after some  non-future duration shall  immediately raise the 
alarmexpired exception. 

13.1.9. Set alarm for time in past 
Setting an alarm to expire at some time in the past shall immediately raise the alarmexpired 
exception. 

13.1.10. Cancel alarm 
The Kernel shall provide the capability to cancel an unexpired alarm. 
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13.2. Performance 

13.2.1. Time to set alarm 
Setting an alarm shall take no more than 10 (is. 

13.2.2. Time to cancel alarm 
Canceling an alarm shall take no more than 10 \xs. 

13.2.3. Time to transfer to exception handler 
The time needed to raise the alarm expired exception and transfer control to the inner-most 
enclosing exception handler shall take no more than TBD19 us. 

1*This is compiler-dependent and not under the control of the Kernel. 
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14. Tool Interface 
The requirements in this chapter are not mapped on the Kernel primitives in Chapters 15-22, nor 
are the tool interface primitives mapped onto the other requirements. The tool interface is a 
non-essential part of the Kernel, and its existence is not needed for the proper use and 
functioning of the Kernel. 

14.1. Behavior 

14.1.1. Monitoring 
The Kernel shall provide the capability to monitor certain internal data and primitive operations. 

14.1.2. Monitor process 
The monitor shall be a process. 

14.1.3. Number of monitors 
The application may have any number of monitor processes within the application-defined 
constraints. 

14.1.4. Monitor process is local 
The monitor process shall be local to the processor it is monitoring. 

14.1.5. Asynchronous logging 
The Kernel shall log the monitored data by sending a message to the local monitor process. 

14.1.6. Monitor process attributes 
The Kernel shall provide the capability to monitor process attributes of any declared process. 

14.1.7. Specify processes to monitor 
The Kernel shall provide the capability to specify the processes on which monitoring is to occur. 

14.1.8. Disable monitoring of process attributes 
The Kernel shall provide the capability to disable monitoring process attributes. 

14.1.9. Process attributes available 
The process attributes that shall be available for monitoring are: 

1. Process identifier 

2. Process state 

3. Time process entered state 

4. Process priority 

5. Process preemption state 

6. Process alarm state 

CMU/SEI-88-TR-16 51 



7. Return status code (if the state changes as a result of an invocation of a Kernel 
primitive) 

8. Name of the Kernel primitive associated with the status code 

14.1.10. Monitor message attributes 
The Kernel shall provide the capability to monitor message attributes. 

14.1.11. Disable monitoring of message attributes 
The Kernel shall provide the capability to disable monitoring message attributes. 

14.1.12. Message attributes available 
The message attributes that shall be available for monitoring are: 

1. Sender's process identifier 

2. Receiver's process identifier 

3. Time message was sent or received 

4. Message tag 

5. Message length 

14.1.13. Monitor message contents 
The Kernel shall provide the capability to monitor message contents. 

14.1.14. Disable monitoring of message contents 
The Kernel shall provide the capability to disable monitoring message contents. 

14.1.15. Monitor interrupt attributes 
The Kernel shall provide the capability to monitor interrupt attributes of any declared interrupt. 

14.1.16. Specify interrupts to monitor 
The Kernel shall provide the capability to specify the interrupts on which monitoring is to occur. 

14.1.17. Disable monitoring of interrupt attributes 
The Kernel shall provide the capability to disable monitoring interrupt attributes. 

14.1.18. Interrupt attributes available 
The interrupt attributes that shall be available for monitoring are: 

1. Kernel primitives executed from within interrupt handlers. 

2. Return status code of Kernel primitives executed from within interrupt handlers. 
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14.1.19. Process table available 
The Kernel shall provide the capability to read the Kernel's process table, which includes: 

1. Process name 

2. Process identifier 

3. Process state 

4. Processor address 

14.1.20. Interrupt table available 
The Kernel shall provide the capability to read the Kernel's interrupt table, which includes: 

1. Interrupt 

2. State 

3. Interrupt condition 

14.1.21. No communication overhead incurred 
The Kernel shall not perform any background Kemel-to-Kernel communication to collect process, 
message, or interrupt attributes. 

14.1.22. Monitor requests ignored 
The Kernel shall ignore all requests to monitor processes that are unknown, aborted, or 
terminated when monitoring is enabled. 

14.2. Performance 

14.2.1. Time to define a monitoring activity 
The definition of a monitoring activity shall take no more than 10 \is. 

14.2.2. Time to terminate a monitoring activity 
The termination of a monitoring activity shall take no more than 5 [is. 

14.2.3. Time to process a monitoring activity 
The processing of a monitoring activity shall take no more than 5 \is. 

14.2.4. Tool predictability 
The tool interface primitives shall be predictable in their use of time and memory resources. 

14.2.5. Time measured consistently 
The Kernel shall perform all time measurements at a consistent point in the Kernel code. 
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14.2.6. Data logged consistently 
The Kernel shall send all logging messages at a consistent point in the Kernel code. 
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III. Kernel Primitives 

The logical result of the models, assumptions, and restrictions in Chapter 4 is a Kernel familiar to 
most embedded systems software engineers. What this part will define is not new in the 
distributed real-time processing world. However, it will combine the known forms from traditional 
(i.e., non-Ada) systems and some of the desired "extensions" to Ada (based, in part, on the 
thinking embodied in the [artewg-interface 86] report) to form a Kernel that can be ported and 
used by Ada applications. These extensions will appear to the application program as a 
collection of Ada packages — reusable components — that, together with certain application 
programming conventions, can be combined with the Ada application to execute in a hard 
real-time, distributed, embedded environment. 

The general format for each chapter is: 

• General discussion of implications of our system and process models on the 
primitives. 

• The Kernel primitives, discussing their functionality and status codes. 

• Where appropriate, blocking primitives and their impacts. 

• Status codes and their explanations (when needed). 

The Kernel communication model presents a set of primitives to the user, and implements those 
primitives on an underlying set of distributed processors connected by data paths. The model, 
the implementation, and the intended mode of use, can all be related to the ISO Reference Model 
(See [Zimmermann 80] and [Tanenbaum 81]), which provides a conceptual framework for 
organizing the Kernel primitives, as shown in Figure 14-1. The ISO Reference Model identifies 
seven layers, named, from lowest to highest: 

1. Physical 

2. Data Link 

3. Network 

4. Transport 

5. Session 

6. Presentation 

7. Application 

The target hardware provides Layer 1. The Kernel implements Layers 2 to 4, and therefore 
presents to the user the Transport layer. The Kernel thus encapsulates within itself the Data Link 
and Network layers, rendering them invisible to the user. The application code can implement 
Layers 5 to 7, in part by using other Kernel primitives. The way to do this is described in the 
Kernel User's Manual. 
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Layer Kernel Equivalent 

7     Application       Created by user 

6       Presentation       Created by user 

5     Session Kernel primitives: declare process, create process, 
allocate device receiver, and initialization complete 

4    Transport 
Kernel primitives: send message, 
send message and wait, and receive message 

3    Network Nu"(can **built by user) 

2       Data Link Datagram model 

1     Physical Built by using Kernel primitives: network configuration 
table, initialize master processor, and initialize 
subordinate processor 

Figure 14-1:   ISO Model to Kernel Mapping 
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ISO to Kernel Mapping 

Physical Layer 
The Physical layer is represented by the hardware data paths, which support the transmission of 
a serial bitstream between processors. These hardware data paths are used by the Kernel in a 
packet switching mode; that is, a sequence of bits—a frame—is sent at the discretion of the 
originator, with no implied reservation of resources or preservation of state between frames. 

Data Link Layer 
This is the layer at which basic error detection and recovery and flow control may be provided. 
The Kernel uses a simple datagram model, in which a frame is transmitted with no 
acknowledgment, no error correction, and no flow control. Minimal error detection is achieved by 
using a datagram checksum, but any recovery is performed by application code, i.e., above the 
Transport layer. Similarly, datagram storage overflow is recognized and reported by the 
Transport layer. 

Network Layer 
In this prototype, the Kernel has a null Network layer. The Kernel assumes that point-to-point 
communication is available between any pair of nodes (processors). Routing is accomplished 
trivially in the sender by dispatching a point-to-point datagram directly to the receiver; no 
alternative routing is provided. 

However, since the abstraction presented to the user is above this layer, a real Network Layer 
could subsequently be added without requiring any application code to be changed. 

Transport Layer 
The Kernel builds the Transport layer by performing physical network connections and 
subsequent logical-to-physical mappings, actions that together implement the abstraction of direct 
process-to-process communication by means of messages. 

The physical network is described by a network connection table, a copy of which is maintained in 
each processor. This table is created by the user and communicated to the Kernel during 
application initialization. Once that information is provided, the Kernel verifies the network 
connectivity and opens the physical connections between processors. 

Subsequently, the logical processes and their physical sites are communicated to the Kernel. 
The model on which the Kernel is based assumes that all processes are created at initialization 
time, that a process never moves, and that a process once dead is never restarted. The Kernel 
therefore computes the logical-to-physical mapping once only and never subsequently changes it. 
Attempts to communicate with dead processes are treated as transport errors. 

The Transport layer also performs the conversions between messages and the underlying 
datagrams. In this prototype, this is done trivially by using one datagram per message or per 
acknowledgment and, if necessary, by restricting the maximum message size accordingly. 
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The Transport layer is the layer visible to the user. It supports unacknowledged send operation 
and end-to-end acknowledged send operations. All errors detected in this or any lower layer are 
reported at this layer, in the form of status codes returned by the Kernel primitives. 

Session Layer 
This layer is implemented by application code. Since it establishes logical connections between 
processes, its presence is required, and the user must write specific code to create it, as 
explained in the Kernel User's Manual. This code is part of the application initialization code; it 
must be present on every processor and, in Ada terms, must be part of the Main Unit on that 
processor. 

The model is one of a set of logical processes, each with a user-defined name and each with a 
single message port for the reception of messages from other processes. 

The Kernel declare process primitive indicates an intent to create or communicate with a given 
named process. It establishes the mapping between application-level process names and Kernel 
internal names. 

The Kernel create process primitive creates the process, establishes its message port, and 
makes that port available to the network. Thereafter, one process may communicate with 
another. 

Presentation Layer 
In the Kernel model, the Presentation layer performs no transformation of data. Rather, it 
performs the translation between Ada values — values of user defined data types — and 
message values. This is done by application code, written as prescribed by the Kernel User's 
Manual. The purpose of the Presentation layer is to establish above the Transport layer the 
strong typing of the Ada language, by ensuring that communicating processes pass only strongly 
typed data and do so by referencing a common set of data conversion routines bound to a 
common Ada data type. 

Application Layer 
This layer uses the Presentation layer for whatever purpose the code requires. The model here 
is of parallel independent threads of control executing Ada code, identifying each other by 
application-level symbolic names, and communicating by passing values of Ada data types. 
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15. Processor Management 
There are two steps to using the system model shown in Figure 4-3. First, the physical topology 
of the system must be defined; second, the system must be initialized. The approach taken to 
achieve the first step requires that the application engineer first define the network configuration 
in a manner that the Kernel understands. This is done using the Network Configuration Table 
(NCT) shown in Figure 15-1. 

Device 
ID 

Physical 
Address 

Kernel 
Device 

Needed 
To Run 

Allocated 
Process ID 

Initialization 
Order 

Initialization 
Complete 

Figure 15-1:  Sample Network Configuration Table (NCT) 

This table provides the minimum information needed by the Kernel to perform system initialization 
and its inter-process communication functions. It is supplied by the application to the Kernel; it is 
implementation- and hardware-dependent and is available to the application for implementation of 
higher levels of network integrity (as discussed in the Kernel User's Manual). For each device 
accessible over the network, this table defines the following information: 

• Device ID: Logical name for the device. 

• Physical address: Hardware-specific information needed to access the device over 
the system bus. 

• Kernel device: Identifies those devices that are able to respond to messages. It is 
possible to communicate with non-Kernel devices, but they are not expected to 
participate in the network initialization protocol or to understand the Kernel's 
datagram. Non-Kernel devices place the burden of initialization and message 
formatting upon the user. That is, the Kernel routes messages to and receives 
messages from non-Kernel devices, but it is the responsibility of the application to 
format and unformat these messages. 

• Needed to run: Identifies those devices that must be available at initialization-time in 
order for the application to begin execution. This could be used to mark failed or 
spare devices at startup. 

• Allocated process ID: Identifies the recipient of all messages that originate from a 
non-Kernel device. This approach requires that the non-Kernel device be able to 
route the message to the appropriate node. 

• Initialization order: Identifies the order in which the Kernel nodes of the network are 
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to be initialized. The default, unless specifically overridden, is for the nodes to 
initialize in the order their entries occur in the NCT. 

• Initialization complete:   Identifies those Kernel nodes whose initialization sequence 
has successfully terminated. 

To achieve the second step, the Kernel has defined a simple initialization protocol (shown in 
Figure 15-2). This protocol requires that one processor, called the Master, be in charge of the 
initialization process. All other processors in the network are subordinate to this processor during 
the Kernel's initialization process. The Master is responsible for: 

• Ensuring the consistency of the NCT among all the subordinate processors. 

• Issuing the "Go" message to all the subordinate processors. 

Some key points to note about this protocol are: 

• The Master processor is a single point-of-failure in the system. 

• The Master assumes it has the correct and complete version of the Network 
Configuration Table. 

• If any of the following problems occurs at initialization, then the network may fail to 
become operational: 

1. No Master processor declares itself. 

2. The Master processor fails to initialize successfully. 

3. More than one Master processor declares its presence. 

4. The Network Configuration Tables are found to be inconsistent. 

These points can be addressed by application-specific fault tolerant techniques (redundant 
hardware, voting schemes, etc.), which are in the domain of the application, not the Kernel. This 
is discussed further in the Kernel User's Manual. 

15.1. Primitives 

15.1.1. Initialize Master processor 
This primitive identifies the invoker as the processor that is going to control network initialization. 
It causes the Kernel to initiate the Master initialization protocol shown in part one of Figure 15-2. It 
requires a timeout that is used to control how long the Master processor will wait for any one 
subordinate to reply to any initialization protocol message. The expiration of this timeout informs 
the Master processor that network-wide initialization has failed; it is the responsibility of the Main 
Unit to relay this information to the appropriate parties. 

The initialization protocol shown in Figure 15-2 consists of two phases: 

1. Network phase: Where the Master processor interrogates each subordinate to 
determine its view of the network (embodied in the NCT). 

2. Commence processing phase: Where the Master processor tells each subordinante 
to start normal processing. 
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Master Initialization 
Protocol 

Kernel 
initializing 

Kernel ready 

Declare self as Master 
Send "Master Ready' 

Initialization timeout expired 

Broadcast "Network Failure" 

Waiting for 
NCT message 

No NCT errors found 

Send "Master Ready" 

NCT Message Received 

Network 
initialization 

failure NCT errors found 

Compare NCTs 

Acknowledge timeout expired 

Broadcast "Network Failure" 

All NCTs consistent 

Send "Go" message 

Waiting for 
"Go ACK" 
message 

Key lnitiali7ation Points 

0   The Master is alive and ready. 

"Go ACK" received 

Send "Go" message 

All "Go ACK" 
Messages received 

0 
1 The Master knows that the physical topology of the 

network is consistent across processors. 

All processors know that the physical topology of the network is 
consistent. 

Figure 15-2:   Network Initialization Protocol (Part 1 of 2) 
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Subordinate Initialization 
Protocol 

Kernel 
initializing 

Kernel ready 

Wait for 
Master 

Network 
initialization 

failure Master failure timeout 

Waiting for 
"Go" message 

Broadcast "Network Failure" 

0- 

Network failure timeout 

Broadcast "Network Failure" 

Key Initialization Points 

q      Processor configuration is complete; 
waiting for remaining processors to complete. 

Configure 
processor 

Waiting for 
network 

initialization 

4 

"Master Ready" received 

Send NCT to Master 

"Go" message received 

Send "Go ACK" Message 

Process creation complete 

Broadcast 'Initialization Complete" 

All "Initialization Complete" messages received 

Start Scheduler 
Disable Ada Main Unit 

Processor 
executing 

4 All processors know that the logical topology of the 
network is consistent The application is ready 
to execute. 

Figure 15-2: Network Initialization Protocol (Part 2 of 2) 
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Note that no time information is exchanged during this protocol. If the application requires time 
synchronization, the processor maintaining the system time must explicitly invoke the synchronize 
primitive (discussed in Chapter 21). 

If this primitive fails for any reason, no processor in the network will initialize. This primitive can 
give rise to the following status codes: 

• OK 

• Initialization timeout expired 

• Processor failed to transmit NCT 

• Configuration tables inconsistent 

• Calling unit not Main Unit 

• Multiple Master processors declared 

15.1.2. Initialize subordinate processor 
This primitive identifies the invoker as a subordinate (i.e., non-Master) processor and begins 
execution of the subordinate initialization protocol shown in part two of Figure 15-2. This primitive 
has an optional timeout parameter, which may be used to identify an alternate Master processor 
in the event the primary Master fails to initialize. 

This primitive can give rise to the following status codes: 

1.0K 

2. Calling unit not Main Unit 

3. Initialization timeout expired 

15.1.3. Start subordinate processors 
Deleted-1 July^S.20 

15.1.4. Create network configuration 
This primitive creates the Network Configuration Table shown in Figure 15-1. This creation is a 
static, compile-time operation performed by the Kernel user. A complete copy of the NCT must 
exist on every Kernel processor in the network. 

This primitive always succeeds. 

^Subsumed by Initialize Master Processor (15.1.1). 

CMU/SEI-88-TR-16 63 



15.2. Blocking Primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

Unitialize Master processor: Always blocks until one of the following conditions 
occurs: 

a. All required processors in the network have transmitted their NCTs to the 
Master, or 

b. The initialization timeout expires. 

2. Initialize subordinate processor: Always blocks until one of the following conditions 
occurs: 

a. The Master has requested the processor's NCT and the subordinate has 
acknowledged the "Go" message, or 

b. The initialization timeout expires. 

15.3. Status Codes 
1. OK: Normal, successful completion. 

2. Configuration tables inconsistent: A discrepancy was found between the Network 
Configuration Table of a subordinate processor and the Network Configuration 
Table of the Master Processor. 

3. Multiple Master processors declared: Multiple processors have declared 
themselves network Master, an unresolvable error condition. 

4. Processor failed to transmit NCT: Indicates that a processor has failed at system 
startup time. 

5. Processor failed to acknowledge "Go" message: Indicates that a processor has 
failed at system startup time. 

6. Initialization timeout expired: Informs the invoker of a serious network failure. 

7. Calling unit not Main Unit: Inform the invoker that this primitive may be invoked only 
by the Main Unit on a processor (and hence only during initialization). 
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16. Process Management 
This chapter outlines the primitives provided to the Ada application for creation and termination of 
Kernel processes. The model used for Kernel process names is this: to communicate with a 
process, one must know the name of the process either at compile time or as constructed at 
runtime. The name of a process comes in two forms: 

1. The logical name given to the process by the developer, encoded in Ada as a 
character string, and 

2. The internal name given to the process at runtime by the Kernel. 

Hereafter, the internal name of a process is called the process ID (PID) or process identifier, the 
term process name refers to the logical name of the process. However, knowing the name of a 
process does not guarantee the availability of the process at runtime. This is one class of faults 
that the Kernel will be able to detect and report. 

16.1. Primitives 

16.1.1. Declare process 
This primitive declares all Kernel processes that will execute locally, all remote Kernel processes 
with which communication may occur, and any remote, non-Kernel devices with which 
communication will occur. This primitive may be invoked only by the Main Unit. 

This primitive can give rise to the following status codes: 

• OK 

• Process already exists 

• Calling unit not Main Unit 

• Too many processes 

• Unknown non-Kernel device 

16.1.2. Create process 
This primitive creates an independent thread of control. It may be invoked only by the Main Unit 
of a processor to create the Kernel processes that will share that processor. For each process, 
the application provides the following information to the Kernel: 

• Process attributes: stack size, and code address 

• Scheduling attributes: priority and preemption21 

• Communication attributes: maximum message size, message queue size, and 
message queue overflow handling 

Once the Kernel has all the process-related information, it constructs the execution environment, 
shown in Figure 16-1, around the process. This environment consists of: 

21A process will always be able to modify its own scheduling information at a later time. 
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• Process stack, containing: 

• Stack plug 

• Dummy call frame 

• Local process variables 

• Process control block, containing: 

• Message queue 

• Schedule attributes 

• Process code 

• Context save area 

This primitive can give rise to the following status codes: 

• OK 

• Illegal process address 

• Illegal process identifier 

• Process already exists 

• Too many processes 

• Calling unit not Main Unit 

• Illegal communication attribute 

• Illegal scheduling attribute 

• Insufficient process space available 

16.1.3. Initialization complete 
This primitive asserts that the declaration and creation of all processes on this processor is now 
complete. It is invoked by the Main Unit of that processor after all processes have been declared 
and/or created. This primitive effectively tells the Kernel "I'm alive and ready to roll!" — the 
application code is ready to run — and the Kernel relays this information to all the other Kernels 
in the network. This primitive takes an optional timeout parameter to detect processor failure 
after network initialization. 

This primitive can give rise to the following status codes: 

• OK 

• Initialization timeout expired 

• Remote process undefined 

• Process already exists 
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16.1.4. Allocate device 
This primitive assigns a specific process to be the recipient of all messages originating from a 
specific non-Kernel device although any process can send a message to a non-Kernel device.22 

This primitive can give rise to the following status codes: 

• OK 

• Replacing previous allocation 

• Unknown non-Kernel device 

16.1.5. Die 
This primitive terminates the calling process (self-termination only, used for normal successful 
completion) and may be invoked by any process at any time. Since processes have no 
dependents, each one terminates individually. Messages pending when a process terminates are 
discarded, as are messages that arrive after a process has terminated. Note that only Kernel 
processes may be terminated by this primitive. Terminating a non-Kernel process is the user's 
responsibility. 

This primitive can give rise to the following status code: 

• Illegal process identifier 

16.1.6. Kill 
This primitive aborts the specified process and may be invoked by any process at any time. This 
can be applied to any named process, including the calling process. This is an "abnormal" 
termination, and causes an immediate action by the Kernel. If the aborted process is remote, the 
actual abortion may occur after return from this primitive. Messages pending when a process is 
aborted are discarded, as are messages that arrive after a process has aborted. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal process identifier 

16.1.7. Who am I 
This primitive allows a process to obtain its own process identifier and may be invoked by any 
process at any time. 

This primitive always succeeds. 

22Of course, it must be properly formatted for the device by the application. 
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16.1.8. Name of 
This primitive allows a process to obtain the logical name of a process for which it has a process 
ID. It may be invoked by any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal process identifier 

• No such process 

16.2. Blocking Primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

1. Initialization complete: Always blocks until one of the following conditions occurs: 

a. All needed process creation acknowledgments are received, or 

b. The initialization timeout expires. 

16.3. Status Codes 
1.0K. 

2. Replacing previous allocation: The current process allocated to the device is 
replaced by the invoking process. 

3. No such device exists: The requested non-Kernel device is not known at the 
requesting site. 

4. Illegal process address: The code address of the process is not a valid Ada 
address. 

5. Illegal process identifier: A nonexistent process identifier was used. 

6. Illegal communication attribute:    At least one of the communication attributes 
specified at process creation-time is invalid. 

7. Illegal scheduling attribute:   At least one of the scheduling attributes specified at 
process creation-time is invalid. 

8. Remote process undefined: A process was declared, but no processor in the 
network created the process. 

9. Calling unit not Main Unit. 

10. Too many processes: Declaration exceeded maximum number of processes 
allowed. 

11. Unknown non-Kernel device: No such device identified in the NCT. 

12. Process already exists. 

13. Too many processes. 

14. Insufficient process space available: Insufficient memory exists for the creation of 
another process. 
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15. Initialization timeout expired. 
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17. Semaphore Management 
The Kernel provides the traditional Boolean ("Dykstra") semaphore facility, slightly revised to be 
consistent with the overall philosophy of the Kernel primitives. 

A semaphore is an abstract data type. Objects of this type may be declared anywhere, but since 
semaphores are used to build process synchronization systems, they are clearly best declared in 
the Main Unit of a processor. A semaphore is visible only on the processor on which it is 
declared, and therefore can be used only by processes local to that processor, for example for 
application-level control of shared memory. 

At any time, a semaphore is in one of two states: 

• FREE: The semaphore is free, or 

• CLAIMED(N): The semaphore is claimed, and N processes are awaiting its release. 
These processes are blocked on a FIFO queue associated with the semaphore. 

17.1. Primitives 

17.1.1. Declare Semaphore 
A semaphore is declared by a normal Ada declaration. Its initial state is FREE. 

This primitive always succeeds. 

17.1.2. Claim Semaphore 
This primitive attempts to claim the semaphore. If the semaphore was free, the primitive 
succeeds, the semaphore state changes to CLAIMED(O), and the invoking process continues. 

If the semaphore was CLAIMED(N), then the invoking process blocks. The state changes to 
CLAIMED(N+1), and the process is appended to the semaphore queue. The call can optionally 
specify a timeout time or duration, and a resumption priority. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal semaphore 

• Illegal time 

• Illegal duration 

• Illegal resumption priority 

• Blocking prohibited in this context 

• Claim timed out 
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17.1.3. Release Semaphore 
This primitive attempts to release a semaphore previously claimed. The state necessarily must 
be CLAIMED(N). If N=0, no other process is waiting, and the semaphore becomes FREE. 
Otherwise, the state becomes CLAIMED(N-I), and the process at the head of the semaphore 
queue is given the semaphore and becomes suspended. 

Note that a RELEASE cannot block, but may cause the invoking process to be preempted if the 
process at the head of the queue has a higher priority. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal semaphore 

• Semaphore not claimed by invoker 

17.2. Blocking primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

1. Claim: Blocks only when the state of the requested semaphore is CLAIMED(N). It 
will unblock when one of the following conditions occurs: 

a. The semaphore is released and the invoking process is at the head of the 
wait queue, or 

b. The claim timeout expires. 

17.3. Status Codes 
1.0K. 

2. Illegal semaphore: Attempting to use an undeclared semaphore. 

3. Illegal time: Illegal timeout specified. 

4. Illegal duration: Illegal timeout specified. 

5. Illegal resumption priority. 

6. Blocking prohibited in this context. 

7. Claim timed out: Operation unblocked due to timeout expiration. 

8. Semaphore not claimed by invoker: Attempt to release a semaphore that has not 
previously been claimed by the invoker. 
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18. Schedule Management 
This chapter outlines the basic scheduling mechanisms to be provided by the Kernel. The 
scheduling paradigm used by the Kernel is a simple, prioritized, event-driven model that permits 
the construction of preemptive, cyclic, and non-cyclic processes. To achieve this, there are four 
types of events in this model: 

1. Receipt of a message (synchronous event). 

2. Receipt of a message acknowledgment (asynchronous event). 

3. Expiration of a primitive timeout (asynchronous event). 

4. Expiration of an alarm (asynchronous event). 

The scheduling primitives are discussed below, and the alarm primitives are discussed in Chapter 
22. This paradigm allows the user to create: 

• A non-cyclic process that executes until preempted by a higher-priority process. 

• A set of non-cyclic processes that execute in a round-robin, timesliced manner. 

• An event-driven process that blocks when trying to receive a message. It is resumed 
from the point of suspension, when it is able to proceed and when the priority admits. 

• An event-driven process that blocks itself for a specified period of time (or 
equivalent^, until a specific time) and is resumed at a specific priority (this allows a 
"hard" delay to be implemented). 

• A cyclic process that continuously executes a body of code (and that can detect 
frame overrun). 

To support these paradigms, the following set of scheduling attributes is defined: 

• Priority: 

• Every process has a priority. 

• Priorities are relative within one processor. 

• Priorities are incommeasurable across processors. 

• A process may change its priority dynamically. 

• Priorities are strict and pre-emptive; higher-priority processes always shut out 
lower-priority processes. 

• Blocking primitives allow the caller to specify a resumption priority, which may 
be different from the priority at the point of invocation. The resumption priority 
is the priority of the process when it unblocks. 

• Timeslice: 

• The maximum length of time a process may run before another process of the 
same priority is allowed to run. 

• A property of a set of processes on the same processor and all of the same 
priority. 

• Timeslicing cannot override priority; it applies only among processes of equal 
priority. 
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• Any process may enable or disable timeslicing for the entire processor. 

• Any process may set the timeslice quantum. 

• A process may allow (or disallow) itself to be sliced by setting its preemption 
status (if preemptable, the process may be timesliced; if not preemptable, the 
process may not be timesliced by another process of the same priority). 

Given this scheduling regime, a process is always in one of four states: 

• Running: A running process is executing on its processor, and it continues to run 
until something happens. If interrupts are enabled, they occur transparently unless 
they cause a change of process state. A running process ceases to run when it: 
dies, invokes a blocking Kernel primitive, is timesliced, is killed by another process, 
or is preempted by a higher-priority process. The first three are voluntary actions on 
the part of the process, while the last two are actions performed by the Kernel. 

• Dead. A dead process is unable to run again. A process dies in one of five ways: by 
completing execution, an unhandled exception, an unrecoverable error, by killing 
itself, or by being killed by another process. Processes are not expected to die, and 
any subsequent attempts to interact with a dead process result in errors. 

• Blocked: A blocked process is unable to run. A process may only become blocked 
as a result of its own actions. These blocking actions are waiting for: the arrival of a 
message, the arrival of a message acknowledgment, a specific duration, a specific 
time, or the availability of a semaphore. A process becomes unblocked when the 
blocking event occurs (at which time the process transitions to the suspended state). 
An unblocked process does not immediately resume execution; it resumes execution 
only when the scheduler so decides. But, the process can affect this decision by 
specifying a resumption priority in the primitive invocation. 

• Suspended. A suspended process is able to run, but cannot run because a process 
of higher or equal priority is running. A process may be resumed when the running 
process blocks, lowers its own priority, or is timesliced. 

These states and the transitions between them are shown in Figure 18-1. 

For instance, a running process becomes blocked by trying to receive when no message is 
pending. It becomes unblocked (but suspended) when the message arrives. It becomes running 
when its priority permits. A running process can also call wait, to wait itself at any time. A 
blocked process becomes suspended and thus ready to run when its delay expires. Further, a 
running process may be preempted, that is, forcibly suspended against its will, to allow a 
higher-priority process to resume or to be timesliced. 

18.1. Primitives 

18.1.1. Set process preemption 
This primitive changes the preemption state of the calling process.  A process may set only its 
own preemption state. This primitive may be invoked by any process at any time. 

This primitive always succeeds. 
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Figure 18-1:  Process States 

18.1.2. Get process preemption 
This primitive queries the current value of the preemption state of the calling process. A process 
may query only its own preemption state. This primitive may be invoked by any process at any 
time. 

This primitive always succeeds. 

18.1.3. Set process priority 
This primitive changes the priority of the calling process. A Kernel process may set only its own 
priority. This primitive may be invoked by any process at any time. 

This primitive always succeeds. 

18.1.4. Get process priority 
This primitive queries the current value of the priority of the calling process. A process may query 
only its own priority. This primitive may be invoked by any process at any time. 

This primitive always succeeds. 
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18.1.5. Wait 
This primitive allows the invoker to suspend its own execution: 

• Until a specified time, or 

• For a specified duration. 

An optional resumption priority may also be specified.   This primitive may be invoked by any 
process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal priority 

• Illegal duration 

• Illegal time 

18.1.6. Set timeslice 
This primitive sets the timeslice quantum for the processor. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal timeslice 

18.1.7. Enable timeslicing 
This primitive enables the Kernel to perform round-robin, timeslice scheduling among processes 
of equal priority. 

This primitive always succeeds. 

18.1.8. Disable timeslicing 
This primitive disables round-robin, timeslice scheduling.    After execution of this primitive, 
scheduling is priority-based preemption. 

This primitive always succeeds. 

18.2. Blocking primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

1. Wait: Always blocks until the delay (i.e., the specified absolute or elapsed time) 
expires. 

76 CMU/SEI-88-TR-16 



18.3. Status Codes 

1.0K 

2. Illegal duration 

3. Illegal time 

4. Illegal time slice 
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19. Communication Management 
This chapter outlines the primitives provided for communication between Kernel processes (see 
Chapter 15 for details about how the communication model ties into the network model). The 
communication model is based on the following premises: 

• All communication is point-to-point. 

• A sender must specify the recipient. 

• A recipient gets all messages and is told the sender of each. 

• A recipient cannot ask to receive only from specific senders. 

• Messages do not have priorities. 

The purpose of a message is to convey information between processes. To the Kernel, a 
message is just a sequence of uninterpreted bits. The Kernel provides the untyped primitives; the 
users may build above them whatever application-specific functionality is needed. Note that any 
two (or more) communicating processes are free to define a common package containing their 
interface message types. Communication between processes on a single processor will be 
optimized. 

Figure 19-1 illustrates this communication model. In this figure, process Merlin on Processor a 
sends a message to process Vivian on Processor b. This is accomplished by Merlin's informing 
the Kernel of the message content and the logical destination of the message (i.e., Vivian). The 
Kernel on Processor a takes this message, formats the datagram to hold the message, and 
transmits the datagram over the network to Processor b, where it knows Vivian resides. When 
the message arrives at Processor b, the Kernel there rebuilds the message from the datagram 
and queues it for Vivian until Vivian requests the next message. If Merlin had wanted 
acknowledgment of message receipt by Vivian, the Kernel on Processor b would have formatted 
an acknowledgment datagram and sent it back to Processor a after Vivian had asked for (and 
received) the message. 

19.1. Primitives 

19.1.1. Send message 
This primitive is used to send a message from one process to another, without waiting for 
acknowledgment of message receipt. This primitive may be invoked by any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Receiver never existed 

• Network failure 
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19.1.2. Send message and wait 
This primitive is used to send a message from one process to another; the sender blocks while 
waiting for acknowledgment of message receipt by the receiving process. This primitive may be 
invoked by any process at any time. However, it may not be invoked by an interrupt handler. An 
optional timeout may be specified. If a timeout is specified, the Kernel performs a remote 
timeout; that is, the timeout is bundled with the message and executed by the Kernel of the 
receiving process. If the timeout expires, the message is purged from the receiver's message 
queue and the invoking process is notified. The Kernel rejects all calls where the recipient is the 
sender. 

This primitive can give rise to the following status codes: 

• OK 

• Message timed out 

• Receiver never existed 

• Receiver's queue full 

• Message not received 

• Receiver dead 

• Blocking prohibited in this context 

• Receiver is sender 

• Network failure 

19.1.3. Receive message 
This primitive is used to receive a message from another process. This primitive may be invoked 
by any process at any time. If this primitive is invoked by an interrupt handler or with a 
zero-duration timeout, it will not block, but will return immediately with a status code should no 
message be available. The Kernel will automatically perform any required acknowledgments. An 
optional timeout may be specified. If a timeout is specified, the Kernel performs a local timeout. If 
the timeout expires, the invoking process is notified. 

This primitive can give rise to the following status codes: 

• OK 

• Message timed out 

• No message available 

• Messages lost 
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19.2. Blocking Primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

1. Send message and wait: Always blocks until one of the following conditions occurs: 

a. The receiving process has requested and received the message, or 

b. The message timeout expires. 

2. Receive message: Blocks only if there is no message currently available for the 
process. If no message is available, then it blocks until one of the following 
conditions occurs: 

a. A message has arrived for the process, or 

b. The timeout expires. 

19.3. Status Codes 
1.0K 

2. Message timed out: Timeout expired without operation completing. 

3. Message not received: The message was discarded from the receiver's message 
queue. 

4. Receiver dead: Destination process has terminated or been aborted. 

5. Blocking prohibited in this context: Occurs when the invoker has used a primitive 
that is about to block further process execution, but the process is in a state where 
blocking is prohibited (i.e., an interrupt handler). 

6. No message available: Occurs in situations where blocking the invoking process is 
prohibited or a zero timeout is specified. 

7. Receiver never existed. 

8. Receiver queue full: A negative acknowledgment when there is insufficient space in 
the receiver's message queue for the message. 

9. Receiver is sender: A process can not perform an acknowledged send with itself. 

10. Messages lost: Occurs when the Kernel's message buffer overflows and messages 
are discarded. 

11. Network failure: A network problem prevented transmission of the message. 
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20. Interrupt Management 
This section outlines the interrupt control primitives provided by the Kernel. There are two parts 
to the Kernel's view of interrupts: interrupts themselves and interrupt handlers. The interrupt 
model used by the Kernel is based on the following premises: 

• There are devices that can interrupt the processor. 

• There are three classes of interrupts: 

1. Those   reserved   by   the   Ada   runtime   environment   (divide-by-zero, 
floating-point overflow, etc.). 

2. Those reserved by the Kernel (such as the clock interrupt). 

3. Those available to the user (everything not in 1 and 2 above). 

All the primitives described below apply only to the third class of interrupts. 

• The device interrupt may be either enabled or disabled. If the interrupt is disabled, 
the device cannot interrupt, regardless of how badly it might want to. 

• The Kernel does not queue interrupts nor will it hide hardware-level interrupt 
properties, such as queueing of interrupts, interrupt priorities, or non-maskable 
interrupts. 

• Interrupts are events local to a processor and cannot be directly handled or bound by 
processes running on a different processor. 

The model used for interrupt handlers is: 

• An interrupt handler is an Ada procedure with no parameters or some other code 
following the same procedure-call conventions. 

• Interrupt handler code can access procedure local or processor global memory. 

• Interrupt handler code has access to all the Kernel primitives; the only restriction is 
that a handler will not be allowed to block its own execution. 

• If an interrupt is enabled and a handler is bound, then the occurrence of the interrupt 
transfers control to the bound handler, which is code the user has supplied. 

The primitives that implement these two models are discussed below. 

20.1. Primitives 

20.1.1. Enable 
This primitive allows the specified interrupt to occur. No interrupt can be enabled via the Kernel 
unless the Kernel has bound a handler for that interrupt. This implies that there may be handlers 
bound outside the knowledge of the Kernel. This is legitimate, since the Kernel is only 
responsible for those handlers that it binds. This primitive may be invoked by any process at any 
time (including the Main Unit). 

This primitive can give rise to the following status codes: 

• OK 
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• Illegal interrupt name 

• No interrupt handler bound 

20.1.2. Disable 
This primitive prohibits the specified interrupt from occurring. This primitive may be invoked by 
any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal interrupt name 

20.1.3. Enabled 
This primitive queries the status of the specified interrupt, i.e., whether it is enabled or disabled. 
This primitive may be invoked by any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal interrupt name 

20.1.4. Simulate interrupt 
This primitive simulates the occurrence of a specified interrupt in software. An interrupt handler 
must be bound to the specified interrupt for this primitive to have an effect. This primitive may be 
invoked by any process at any time. This primitive returns only after the interrupt handler has 
completed its processing. 

This primitive can give rise to the following status codes: 

• OK 

• Illegal interrupt name 

• No interrupt handler bound 

20.1.5. Bind interrupt handler 

This primitive associates the specified interrupt with the Ada procedure23 identified as the 
interrupt handler. This primitive may be invoked by any process at any time (including the Main 
Unit). Any attempt to bind a different interrupt handler to a bound interrupt results in the old 
handler being replaced. Invocation of this primitive causes the Kernel to construct an execution 
environment for the handler, as shown in Figure 20-1. The environment consists of: 

• Local stack, containing: 

• Stack plug 

• Dummy call frame 

^Or an equivalent procedure in another language. 
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• Local procedure variables 

• Interrupt table entry, containing: 

• Handler stack 

• Handler code 

• Interrupt Vector address 
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Figure 20-1:   Interrupt Handler Execution Environment 

This primitive can give rise to the following status codes: 

• OK 

• Replacing previous interrupt handler 

• Illegal interrupt name 

• Reserved interrupt 

• Illegal interrupt handler address 
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20.2. Blocking Primitives 

None. 

20.3. Status Codes 

1.0K. 

2. Replacing previous interrupt handler. 

3. No interrupt handler bound: An interrupt cannot be enabled for which no handler 
has been defined (i.e., bound). 

4. Illegal interrupt name. 

5. Reserved interrupt. 

6. Illegal interrupt handler address: The address specified for the interrupt handler 
code is not a legal Ada address. 
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21. Time Management 
The concept of time permeates the entire Kernel. Many ot the Kernel concepts and primitives 
rely on time, specifically: 

• Network management uses time for initial clock synchronization and for timeout 
parameters in the primitives: initialize master, initialize subordinate, and start 
subordinates. 

• Process management requires time for setting up the initial process scheduling 
information, in the create process primitive, and for a timeout parameter, in 
initialization complete primitive. 

• Schedule management uses time for round-robin, timeslice scheduling and for 
delays via the wait primitive. 

• Communication management requires time for timeout operations in receive 
message and send message and wait primitives. 

• Alarm management uses time for setting alarms via the set alarm primitive. 

To support these primitives, the Kernel contains facilities for time management, both for its own 
use and to make available to the application code. In all cases, two forms of delay are available 
to the application: 

• Delay For: This computes the delay as elapsed time from the moment the primitive is 
called. The delay is therefore a value of the Ada type DURATION. 

• Delay Until: This delays until a specified time of resumption. The delay is therefore a 
value of the Ada type TIME. 

The rationale for the two types of delay is that they express fundamentally different concepts. For 
example, if a certain action should be performed daily at midnight, it is not correct to perform the 
action "every 24 hours," since successive midnights are not always 24 hours apart. Similarly, if 
an action should be performed every 5 minutes, it is not correct to schedule three such actions for 
0155, 0200, and 0205, since 65 minutes might elapse between the second and third (i.e., the 
clock might have been reset). 

The application programmer must be able to choose the type of delay needed. Note also that 
resetting the system time affects the two types of delay differently. 

In the current design, the assumption is made that it is feasible for all the target processors to use 
a common time base and to record the passage of time at the same uniform rate. It must be 
recognized that there are some real-time applications for which this assumption is unrealistic, 
since the processors will be distributed across several different inertial frames of reference, but it 
will serve for this prototype. 

It is necessary therefore to describe the local representation of time and the clock synchronization 
mechanisms. 
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Representation of Time 

At any moment, on any processor, the current time is given by a combination of three values 

1. Elapsed. The elapsed time is the number of ticks since the end of the application 
initialization process. 

2. Epoch. The epoch is a value representing the moment at which the processors 
began to compute elapsed time. 

3. Base. The base is the calendar date corresponding to an epoch of zero, i.e., the 
base of the representation of time. Julian Day 1 (started at 1200 on 1 January 
4713BCE) has been chosen.24 

The representation chosen for both epoch and elapsed will be fine enough to allow accurate 
measurement and large enough to allow code to run for a very long time. Thus the current time 
of day = Base + Epoch + Elapsed. 

Time is set initially on some processor in the network by the application. This is done either by 
hand, during operator dialogue, or by reading a continuously running hardware device. The 
processors may then synchronize system time by having this processor use the synchronize 
primitive discussed below. This gives the application complete control over when to synchronize 
system time. Once the clocks are synchronized, the Kernel does not attempt to maintain the 
synchronization. The processors resynchronize only as a result of deliberate action by application 
code. 

Three forms of resynchronization are supported: 

1. The elapsed time for any processor can be changed by an explicit command. This 
is to be used when one processor's time computation has gone awry. It will have 
the effect of changing pending delays of either kind, since increasing the number of 
elapsed ticks will make the machine think both that it has been running longer and 
that it is later in the day. 

2. The epoch time of any processor may be changed. This is to be used if it is 
discovered that the original time setting was wrong. It will have the effect of 
changing any pending delay-until actions, since increasing the epoch will make the 
machine think it is later in the day, but will not change how long it thinks it has been 
running. 

3. The Kernel provides a primitive that explicitly synchronizes all the clocks in the 
network, as defined in Section 21.1.6. 

24Thus, 1 January 88 is JD 2447162. 
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21.1. Primitives 

21.1.1. Package calendar 
The Ada package calendar will be supported. As far as possible, the existing vendor-supplied, 
package will be used. However, some modification will be necessary because the Kernel will be 
in control of the hardware clock. Also, the Kernel does not use the package Calendar internally, 
so applications are not required to include it in the load modules. 

21.1.2. Time constants 
The Kernel will define the constants: 

• TICK: Smallest resolvable interval of time. 

• SLICE: Smallest schedulable interval of time. 

SLICE is defined as an integer multiple of TICK. The Kernel will maintain durations internally 
accurate to the TICK, but all time values that imply scheduling action, such as delay times, are 
truncated to the nearest SLICE. The definition of TICK and SLICE are local to a processor, and 
no relationship between these definitions is assumed or required across the processors in the 
network. 

21.1.3. Adjust elapsed time 
This primitive allows the application to increment or decrement the current local elapsed time by a 
specified number of clock ticks. This primitive may be invoked by any process at any time. 

This primitive can give rise to one of the following status codes: 

1.0K. 

2. Change would reset elapsed time to a negative value. 

3. Change would cause elapsed time to overflow. 

21.1.4. Adjust epoch time 
This primitive allows the application to reset the epoch time of the local processor clock. This 
primitive may be invoked by any process at any time. 

This primitive can give rise to one of the following status codes: 

1.0K. 

2. OK, but requested time has already passed. 

3. Change would reset epoch time to a negative value. 

4. Change would cause epoch time to overflow. 
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21.1.5. Read clock 
This primitive reads the local processor clock and returns the elapsed time in ticks. 

This primitive always succeeds. 

21.1.6. Synchronize 
This primitive forces all local processor clocks on Kernel devices to synchronize time with the 
local clock on the invoking processor. This primitive takes an optional timeout parameter. This 
primitive may be invoked by any process at any time. 

The post-conditions of this primitive are: 

1. If it completes successfully, all clocks are synchronized. 

2. If it terminates with an error, the exact state of network time is not known. 

This primitive can give rise to one of the following status codes: 

1. Network failure. 

2. Multiple synchronization failure. 

3. Synchronization timeout. 

21.2. Blocking Primitives 
This section lists which of the primitives described above may block the invoking process and the 
conditions under which they will block: 

1. Synchronize: This primitive always blocks the invoker until: 

a. All Kernel clocks are synchronized, 

b. An error condition is detected, or 

c. The timeout expires. 

21.3. Status Codes 
1.0K. 

2. OK, but requested time has already passed. 

3. Change would reset elapsed time to a negative value. 

4. Change would reset epoch time to a negative value. 

5. Change would cause elapsed time to overflow. 

6. Change would cause epoch time to overflow. 

7. Network failure: A processor in the network fails to respond appropriately to the 
synchronization protocol. 

8. Multiple synchronization failure: A processor attempts to synchronize time while a 
previous invocation of the synchronization protocol is in progress. 
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9. Synchronization timeout: The synchronization protocol does not complete betore 
the timeout expires. 
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22. Alarm Management 

This chapter outlines the primitives for alarm management. Alarms are: 

• Enforced changes in process state. 

• Caused by the expiration of a timeout. 

• Asynchronous events that are allocated on a per-process basis (each process may 
have no more than one alarm). 

Processes view alarms as a possible change in priority with an enforced transfer of control to an 
exception handler. Alarms are requested to expire at some specified time in the future. When an 
alarm expires, the Kernel raises the alarm_expired exception, which the process is expected to 
handle as appropriate. Note that if a zero or negative duration or an absolute time in the past is 
specified, the alarm expires immediately. Alarms are intended for use in the construction of 
cyclical processes (as shown in the Kernel User's Manual}. 

22.1. Primitives 

22.1.1. Set alarm 
This primitive defines an alarm that will interrupt the process if it expires. An optional resumption 
priority may be specified. If the alarm expires, the Kernel raises the alarm_explred exception 
(when the process is running), and control passes to the exception handler of the process. This 
primitive may be invoked by any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• Resetting existing alarm 

22.1.2. Cancel alarm 
This primitive turns off an alarm that was set but has not yet expired. This primitive may be 
invoked by any process at any time. 

This primitive can give rise to the following status codes: 

• OK 

• No alarm set 

22.2. Blocking Primitives 
None. 
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22.3. Errors 

1.0K 

2. Resetting existing alarm 

3. No alarm set 
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23. Tool Interface 
The Kernel is a utility intended to support the building of distributed Ada applications. As such, it 
is important the the Kernel be able to work in harmony with user-developed support tools. To 
provide that support, the Kernel must provide a window into its internal workings. It is envisioned 
that a tool is simply another Kernel process executing on one or more of the processors in the 
network. As such, the tool has access to all the Kernel primitives. Using these primitives along 
with the tool interface described below, a number of potential tools could be built, such as: 

• Process Performance Monitor: compiles statistics about the runtime performance of 
a process(es). 

• Processor performance monitor: Compiles processor-level statistics. 

• Network performance monitor: Compiles network-level statistics. 

• Interrupt activity monitor: Compiles statistics on the frequency of interrupts and the 
amount of time spent in various interrupt handlers. 

• Message performance monitor: Compiles statistics about the frequency of 
messages, average message length, peak bus usage, etc. 

Given the above motivation for the tool interface, the actual form of the interface is driven by the 
following concepts: 

• The tool needs easy access to all the information of the Kernel. Whether or not the 
tool can make use of the information is not the Kernel's concern. The key is that the 
Kernel must provide visibility into everything it knows intrinsically, without expending 
resources to combine that intrinsic knowledge in any way. 

• The extraction of information based on what the Kernel knows is left to the tool (and 
indeed, it is deemed to be the function of a tool). It is in the domain of the tool where 
the intrinsic Kernel information is combined and presented in some context-specific 
manner. 

• The internal Kernel information must be provided in a manner that does not 
compromise the integrity of the Kernel; this implies a read-only access to the 
Kernel's internal data structures. 

• The performance impact of using the tool interface must be predictable. Obviously, 
the performance impact will not be entirely predictable given the non-determinism 
inherent in the activities being monitored. But the tool interface bounds the impact in 
a way that gives insight into the potential performance impact of a tool (of course, the 
tool is a process that can be monitored like any other process in the system, so its 
performance may be determined empirically). The tool should consume predictable 
resources generally (not just clock cycles), e.g., storage, message bandwidth. 

• An application should never have to be modified simply to use a tool (while this may 
not always be possible, it is nevertheless a desirable goal). Therefore, while some of 
the information made available via this interface could be acquired by having the tool 
communicate directly with an application process, this approach is rejected as bad 
tool design and a distinct detriment to the application software of an embedded 
system. (Note that the Main Unit is used to establish the process topology and is not 
considered application code.) 

In general there are two classes of Kernel information that may be of interest to a tool: process 
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information and interrupt information.   The primitives defined below describe the information 
available and the mechanisms provided to access this information. 

23.1. Primitives 

23.1.1. Process information 
The Kernel knows about all processes in the system; therefore, the tool interface provides the 
following information about processes to the user: 

• Process attributes, including: 

• Process identifier 

•State (see Figure 18-1) 

• Time (the time when the above state was entered) 

• Priority 

• Preemption status 

• Alarm status 

• Primitive identity 

• Primitive return status code 

• Message attributes, including: 

• Sender's process identifier 

• Receiver's process identifier 

• Time the message was sent or received 

• Message length 

• Message tag 

• Message contents 

• Process table, which includes the following information for every declared process: 

• Local process identifier 

• Remote process identifier 

• Process name 

• Device name 

• Local address 

• State (see Figure 18-1) 

• Priority 

• Preemption status 
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23.1.2. Interrupt information 
In a manner analogous to process information, the Kernel knows all there is to know about the 
interrupts in the system. Therefore, the tool interface provides the following interrupt information 
to the user: 

• Interrupt activity, including: 

• Primitive identity 

• Primitive return status code 

• Interrupt table, which includes the following information for every interrupt: 

• Interrupt name 

• Interrupt state (enabled or disabled) 

• Handler state (bound, unbound, unknown) 

• Handler code address 

• Handler stack address 

23.1.3. Begin collection 
This primitive informs the Kernel of: 

• What process or message attribute to collect and for which process to collect it, or 

• Which interrupt on which to collect interrupt attributes. 

The Kernel logs the data asynchronously as the state of the process or interrupt changes: 

• Received message bodies are logged as new messages arrive for the process. 

• Sent message bodies are logged as the process sends messages. 

• Process statistics are logged when the process changes one of its own attributes or 
when the scheduler changes its process state. 

• Message attributes (no bodies) are logged as new messages arrive and leave. 

• Interrupt attributes are logged as the interrupt handler uses Kernel primitives. 

The Kernel logs data by sending a message to the process that requested the collection 
operation; this process is presumably a part of the tool. 

Nonexistent, aborted, or terminated processes for which information is requested are ignored. 
Nonexistent interrupts for which information is requested are ignored. 

This primitive always succeeds. 

23.1.4. Cease collection 
This primitive disables the collection of the indicated attribute on the indicated process or 
interrupt. 

This primitive always succeeds. 
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23.1.5. Read process table 
This primitive reads the Kernel's process table. 

This primitive always succeeds. 

23.1.6. Read interrupt table 
This primitive reads the Kernel's interrupt table. 

This primitive always succeeds. 

23.2. Blocking Primitives 
None. 

23.3. Status Codes 
None. 
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Appendix A: Glossary 
Absolute (time): 

A synonym for epoch time. 

Ada:  ANSI/MIL-STD-1815A. Related information can be found in Section 4.1. 

Alarm: 
A single timer associated with a process that may expire during process execution. If it 
does expire, a change of process state occurs, and the exception alarm_expired is raised. 
Related information can be found in Chapter 13 and Chapter 22. 

Asynchronous (event): 
An event that occurs while the affected process is performing other work or is waiting for 
the event. 

Blocked (process state): 
A process that is (temporarily) unable to run. All process states are described in Chapter 
18. 

Blocking (primitive): 
A Kernel primitive that causes the process state to become blocked. The "blocked" 
process state is described in Chapter 18. Each chapter in Part 3 has a paragraph 
discussing blocking primitives. 

Cyclic (process): 
A Kernel process with all the following characteristics: it executes repeatedly; it executes 
within a user-defined time limit; if it overruns its execution time limit (i.e., its "frame"), then 
the exception alarm_expired is raised. 

DARK: 
Acronym for the SEI Distributed Ada Real-Time Kernel Project. 

Dead (process state): 
A process that is unable to run again. All process states are described in Chapter 18. 

Device: 
A hardware entity that can interrupt a processor or that can communicate over the system 
bus. 

Distributed: 
Executing on more than one processor in support of a single application. 

Duration: 
The Ada type duration; used to measure elapsed time. Related information can be found in 
Chapter 21 and the Ada Lanuage Reference Manual. 

Elaboration: 
The process by which declarations achieve their effect (such as creating an object}; this 
process occurs during program execution. This definition is from the Ada Language 
Reference Manual. 

Elapsed (time): 
The number of TICKs since the end of the application initialization process. Related 
information can be found in Chapter 21. 

Epoch (time): 
The value representing the moment at which the processors began to compute elapsed 
time. Related information can be found in Chapter 21. 

Event: 
Something that happens to a process (e.g., the arrival of a message, the arrival of an 
acknowledgment, being killed by another process). 
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Exception: 
An error situation which may arise during program execution. This definition is from the 
Ada Language Reference Manual. 

FIFO: 
First in, first out. 

Interrupt: 
Suspension of a process caused by an event external to that process, and performed in 
such a way that the process can be resumed. (This external event is also called an 
interrupt.) 

Interrupt handler: 
Code automatically invoked in response to the occurrence of an interrupt. 

Kernel: 
Basic system software to provide facilities for a specific class of applications. 

NCT: 
Network Configuration Table. 

Network: 
Series of points (nodes, devices, processors) interconnected by communication channels. 

Package: 
A group of logically related entities, such as types, objects of those types, and 
subprograms with parameters of those types. It is written as a package declaration and a 
package body. A package declaration is just a package specification followed by a 
semi-colon. A package is one kind of program unit. This definition is from the Ada 
Language Reference Manual. 

Package body: 
Contains implementations of subprograms (and possibly tasks as other packages that have 
been specified in the package declaration). This definition is from the Ada Language 
Reference Manual. 

Package Calendar: 
The Ada package Calendar. Related information can be found in the Ada Language 
Reference Manual. 

Package specification: 
Has a visible part, containing the declarations of all entities that can be explicitly used 
outside the package. It may also have a private part containing structural details that 
complete the specification of the visible entities, but that are irrelevant to the user of the 
package. This definition is from the Ada Language Reference Manual. 

Postcondition: 
An assertion that must be true after the execution of a statement or program component. 

Pragma: 
Conveys information to the Ada compiler. This definition is from the Ada Language 
Reference Manual. 

Precondition: 
An assertion that must be true before the execution of a statement or program component. 

Primitive: 
Basic Kernel action or datum. 

Process (Kernel): 
An object of concurrent execution managed by the Kernel outside the knowledge and 
control of the Ada runtime environment; a schedulable unit of parallel execution. Related 
information can be found in Chapter 2. 
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Process stack: 
Built by the Kernel when creating a Kernel process. The process stack contains a stack 
plug (to prevent the propagation of unhandled exceptions), a dummy call frame (pointing to 
process termination code), and a place for process-local variables. 

Processor: 
Central processing unit (CPU). 

Real-time: 
"When it is done is as important as what is done." 

Runtime: 
The period of time during which a program is executing. 

Running (process state): 
A process that is executing on its processor. All process states are described in Chapter 
18. 

Semaphore: 
A mechanism for controlling process synchronization, often used to implement a solution to 
the mutual exclusion problem. Related information can be found in Chapters 8 and 17. 

SLICE: 
The smallest schedulable interval of time. The user references time in units of SLICE. 
Related information can be found in Chapter 21. 

Status code: 
Generic term used to indicate the status of the execution of a Kernel primitive. A status 
code may correspond to an output parameter of some discrete type or to an exception. 
Related information can be found in Chapter 4.4. In addition, each chapter in Part 3 has a 
paragraph discussing status codes for each primitive. 

Suspended (process state): 
A process that is able to run but cannot because a process of higher or equal priority is 
running. All process states are described in Chapter 18. 

Synchronous (event): 
An event that happens while a process is looking for that event. 

System bus: 
Communication medium connecting processors and devices into a network. 

Task: 
An Ada language construct that represents an object of concurrent execution managed by 
the Ada runtime environment supplied as part of a compiler. Related information can be 
found in Chapter 2 and the Ada Language Reference Manual. 

TICK: 
The smallest resolvable interval of time. The Kernel references time in units of TICK. 
Related information can be found in Chapter 21. 

Time: 
The Ada type time; used to measure epoch time. Related information can be found in 
Chapter 21 and the Ada Language Reference Manual. 
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Appendix B: Mapping from Kernel Primitives to 
Requirements 
This appendix maps each requirement onto the specific primitive (represented by normal 
facecode) or functional area (represented by italic facecode) to which it applies. It provides a 
definition of the functionality and performance required for each primitive and functional area. 
This mapping is the inverse of the mapping shown in Appendix C. 

Processor Management Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

Processor Management 6.1.6 
6.1.7 
6.1.8 
6.1.9 
6.1.10 
6.1.11 

Initialize Master 6.1.1 
6.1.3 
6.1.4 

6.2.1 

Initialize subordinate 6.1.2 
6.1.3 
6.1.4 

6.2.1 

Create network configuration 6.1.10 
10.1.6 
10.1.26 

6.2.1 
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Process Management Primitives 

Behavior Performance 
Kernel Primitive Requirement Requirement 

Process Management 6.1.9 
7.1.1 
7.1.2 
7.1.13 

Declare process 7.1.3 
10.1.1 
10.1.6 

6.2.1 

Create process 7.1.4 6.2.1 
7.1.5 7.2.1 
7.1.6 7.2.5 
7.1.7 7.2.6 
7.1.8 
7.1.9 
7.1.10 
7.1.11 
7.1.12 
7.1.25 
7.1.26 
9.1.1 
9.1.2 
9.1.7 
9.1.11 

Initialization complete 7.1.15 
7.1.16 
7.1.17 
7.1.25 
7.1.26 

6.2.1 

Die 7.1.18 
7.1.25 
7.1.26 

7.2.2 

Kill 7.1.19 
7.1.20 
7.1.25 
7.1.26 

7.2.3 

Who am 1 7.1.23 

Name of 7.1.24 
7.1.25 
7.1.26 
10.1.1 

Allocate device 7.1.14 7.2.4 
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Semaphore Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

Semaphore Management 

Create 8.1.1 
8.1.2 

8.2.1 

Claim 8.1.3 
8.1.4 
8.1.5 
8.1.6 
8.1.7 
8.1.8 
8.1.9 
9.1.6 
9.1.8 

8.2.2 

Release 8.1.10 
8.1.11 

8.2.3 
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Schedule Management Primitives 

Behavior Performance 
Kernel Primitive Requirement Requirement 

Schedule Management 9.1.3 9.2.4 
9.1.4 9.2.6 
9.1.5 9.2.7 
9.1.10 
9.1.21 
9.1.24 
9.1.26 
9.1.27 

Set process preemption 9.1.12 
9.1.22 

9.2.2 

Get process preemption 9.1.13 

Set process priority 9.1.6 
9.1.8 
9.1.22 

9.2.1 

Get process priority 9.1.9 

Wait 9.1.6 
9.1.8 
9.1.14 
9.1.15 
9.1.16 
9.1.17 
9.1.22 
11.1.12 

9.2.3 

Set timeslice 9.1.18 

Enable time slicing 9.1.19 9.2.5 

Disable time slicing 9.1.20 9.2.5 
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Communication Management Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

Communication Management 6.1.9 
6.1.11 
7.1.14 
10.1.19 
10.1.22 
10.1.23 
10.1.28 
10.1.29 
10.1.30 
10.1.31 

Send message 7.1.21 
7.1.22 
10.1.2 
10.1.5 
10.1.6 
10.1.25 
10.1.26 

10.2.1 
10.2.2 
10.2.5 
10.2.6 
10.2.11 

Send message and wait 7.1.21 
7.1.22 
7.1.25 
7.1.26 
9.1.6 
9.1.8 
9.1.22 
10.1.2 
10.1.3 
10.1.4 
10.1.5 
10.1.6 
10.1.7 
10.1.8 
10.1.9 
10.1.10 
10.1.11 
10.1.25 
10.1.27 
11.1.12 

10.2.3 
10.2.4 
10.2.7 
10.2.8 
10.2.11 
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Behavior Performance 
Kernel Primitive Requirement Requirement 

Receive message 9.1.6 10.2.9 
9.1.8 10.2.10 
9.1.22 
10.1.12 
10.1.13 
10.1.14 
10.1.15 
10.1.16 
10.1.17 
10.1.18 
10.1.20 
10.1.21 
10.1.24 
10.1.26 
11.1.12 
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Interrupt Management Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

Interrupt Management 11.1.1 
11.1.3 
11.1.6 
11.1.12 
11.1.13 

11.2.1 
11.2.2 
11.2.4 

Enable 11.1.4 

Disable 11.1.5 

Enabled 11.1.7 

Simulate interrupt 11.1.8 

Bind interrupt handler 11.1.2 
11.1.9 
11.1.10 
11.1.11 

11.2.3 
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Time Management Primitives 

Behavior Performance 
Kernel Primitive Requirement Requirement 

Time Management 6.1.6 
12.1.2 
12.1.7 
12.1.8 
12.1.9 
12.1.11 
12.1.13 
12.1.14 
12.1.3 

Package Calendar 12.1.1 

Time constants 12.1.4 
12.1.5 
12.1.6 

Adjust elapsed time 12.1.10 12.2.1 

Adjust epoch time 12.1.12 12.2.2 

Read clock 12.1.15 12.2.3 

Synchronize 12.1.16 12.2.4 
12.1.17 12.2.5 
12.1.18 
12.1.19 
12.1.20 
12.1.21 
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Alarm Management Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

Alarm Management 13.1.4 
13.1.5 

13.2.3 

Set alarm 9.1.6 
9.1.8 
9.1.22 
13.1.1 
13.1.2 
13.1.3 
13.1.5 
13.1.6 
13.1.7 
13.1.8 
13.1.9 

13.2.1 

Cancel alarm 9.1.22 
13.1.10 

13.2.2 
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Tool Interface Primitives 

Kernel Primitive 
Behavior 

Requirement 
Performance 
Requirement 

7oo/ Interface 14.1.2 
14.1.3 
14.1.4 
14.1.5 
14.1.21 

14.2.3 
14.2.4 
14.2.5 
14.2.6 

Process information 14.1.6 
14.1.9 
14.1.10 
14.1.12 
14.1.13 
14.1.19 

Interrupt information 14.1.15 
14.1.18 
14.1.20 

Begin collection 14.1.1 
14.1.6 
14.1.9 
14.1.7 
14.1.10 
14.1.12 
14.1.13 
14.1.15 
14.1.16 
14.1.22 

14.2.1 

Cease collection 14.1.8 
14.1.11 
14.1.14 
14.1.17 

14.2.2 

Read process table 14.1.19 

Read interrupt table 14.1.20 
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Appendix C: Mapping from Requirements to Kernel 
Primitives 
This appendix maps each of the specific primitives (represented by normal facecode) or 
functional area (represented by italic facecode) onto the requirements that it implements. It 
provides a definition of where specific functionality and performance requirements are met. This 
mapping is the inverse of the mapping shown in Appendix B. 

General Requirements 

Requirement Kernel Primitive 

5.1.1 all primitives 

5.1.2 all primitives 

5.1.3 all primitives 

5.1.4 all primitives 

5.1.5 all primitives 

5.1.6 all primitives 

5.1.7 all primitives 

5.1.8 all primitives 

5.2.1 all primitives 

5.2.2 all primitives 

5.2.3 all primitives 

5.2.4 all primitives 

5.2.5 all primitives 
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Processor Requirements 

Requirement Kernel Primitive 

6.1.1 Initialize Master 

6.1.2 Initialize subordinate 

6.1.3 Initialize Master 
Initialize subordinate 

6.1.4 Initialize Master 

6.1.5 Initialize Master 

6.1.6 Processor Management 
Time Management 

6.1.7 Processor Management 

6.1.8 Processor Management 

6.1.9 Initialize Master 
Initialize subordinate 
Create process 
Initialization complete 
Die 
Kill 
Send message 
Send message and wait 
Receive message 

6.1.10 Initialize Master 
Initialize subordinate 
Create network configuration 

6.1.11 Processor Management 
Process Management 
Interrupt Management 
Communication Management 

6.2.1 Initialize Master 
Initialize subordinate 
Declare process 
Create process 
Create network configuration 
Initialization complete 
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Process Requirements 

Requirement Kernel Primitive 

7.1.1 Process Management 

7.1.2 Process Management 

7.1.3 Declare process 

7.1.4 Create process 

7.1.5 Create process 

7.1.6 Create process 

7.1.7 Create process 

7.1.8 Create process 

7.1.9 Create process 

7.1.10 Create process 

7.1.11 Create process 

7.1.12 Create process 

7.1.13 Process Management 

7.1.14 Communication Management 
Allocate device 

7.1.15 Initialization complete 

7.1.16 Initialization complete 

7.1.17 Initialization complete 

7.1.18 Die 

7.1.19 Kill 

7.1.20 Kill 

7.1.21 Send message 
Send message and wait 

7.1.22 Send message 
Send message and wait 

7.1.23 Who am I 

7.1.24 Name of 

7.1.25 Create process 
Initialization complete 
Die 
Kill 
Name of 
Send message and wait 
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Requirement Kernel Primitive 

7.1.26 Create process 
Initialization complete 
Die 
Kill 
Name of 
Send message and wait 

7.2.1 Create process 

7.2.2 Die 

7.2.3 Kill 

7.2.4 Allocate device 

7.2.5 Create process 

7.2.6 Create process 
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Semaphore Requirements 

Requirement Kernel Primitive 

8.1.1 Create semaphore 

8.1.2 Create semaphore 

8.1.3 Claim semaphore 

8.1.4 Claim semaphore 

8.1.5 Claim semaphore 

8.1.6 Claim semaphore 

8.1.7 Claim semaphore 

8.1.8 Claim semaphore 

8.1.9 Claim semaphore 

8.1.10 Release semaphore 

8.1.11 Release semaphore 

8.2.1 Create semaphore 

8.2.2 Claim semaphore 

8.2.3 Release semaphore 

CMU/SEI-88-TR-16 117 



Scheduling Requirments 

Requirement Kernel Primitive 

9.1.1 Create process 

9.1.2 Create process 

9.1.3 Schedule Management 

9.1.4 Schedule Management 

9.1.5 Schedule Management 

9.1.6 Set process priority 
Wait 
Claim semaphore 
Send message and wait 
Receive 
Set alarm 

9.1.7 Create process 

9.1.8 Set process priority 
Wait 
Claim semaphore 
Send message and wait 
Receive 
Set alarm 

9.1.9 Get process priority 

9.1.10 Schedule Management 

9.1.11 Create process 

9.1.12 Set process preemption 

9.1.13 Get process preemption 

9.1.14 Wait 

9.1.15 Wait 

9.1.16 Wait 

9.1.17 Wait 

9.1.18 Set time slice 

9.1.19 Enable time slicing 

9.1.20 Disable time slicing 

9.1.21 Schedule Management 

9.1.22 Set process preemption 
Set process priority 
Wait 
Claim semaphore 
Send message and wait 
Receive 
Set alarm 
Cancel alarm 
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Requirement Kernel Primitive 

9.1.23 Schedule Management 

9.1.24 Schedule Management 

9.1.25 Schedule Management 

9.1.26 Schedule Management 

9.1.27 Schedule Management 

9.2.1 Set process priority 

9.2.2 Set process preemption 

9.2.3 Wait 

9.2.4 Schedule Management 

9.2.5 Enable time slicing 
Disable time slicing 

9.2.6 Schedule Management 

9.2.7 Schedule Management 
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Communication Requirements 

Requirement Kernel Primitive 

10.1.1 Declare process 

10.1.2 Create process 
Send message 
Send message and wait 

10.1.3 Send message and wait 

10.1.4 Send message and wait 

10.1.5 Send message 
Send message and wait 

10.1.6 Create network configuration 
Declare process 

10.1.7 Send message and wait 

10.1.8 Send message and wait 

10.1.9 Send message and wait 

10.1.10 Send message and wait 

10.1.11 Send message and wait 

10.1.12 Create process 
Receive message 

10.1.13 Receive 

10.1.14 Receive message 

10.1.15 Receive message 
Create network configuration 

10.1.16 Receive message 

10.1.17 Receive message 

10.1.18 Receive message 

10.1.19 Communication Management 

10.1.20 Receive message 

10.1.21 Send message 
Send message and wait 
Receive message 

10.1.22 Communication Management 

10.1.23 Send message 
Send message and wait 

10.1.24 Receive message 

10.1.25 Send message and wait 

10.1.26 Create network configuration 
Send message 
Receive message 
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Requirement Kernel Primitive 

10.1.27 Send message and wait 

10.1.28 Communication Management 

10.1.29 Communication Management 

10.1.30 Communication Management 

10.1.31 Communication Management 

10.2.1 Send message 

10.2.2 Send message 

10.2.3 Send message and wait 

10.2.4 Send message and wait 

10.2.5 Send message 

10.2.6 Send message 

10.2.7 Send message and wait 

10.2.8 Send message and wait 

10.2.9 Receive message 

10.2.10 Receive message 

10.2.11 Communication Management 
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Interrupt Requirements 

Requirement Kernel Primitive 

11.1.1 Interrupt Management 

11.1.2 Interrupt Management 

11.1.3 Interrupt Management 

11.1.4 Enable 

11.1.5 Disable 

11.1.6 Interrupt Management 

11.1.7 Enabled 

11.1.8 Simulate interrupt 

11.1.9 Bind interrupt handler 

11.1.10 Bind interrupt handler 

11.1.11 Bind interrupt handler 

11.1.12 Interrupt Management 
Wait 
Claim semaphore 
Send message and wait 
Receive message 

11.1.13 Interrupt Management 

11.1.14 Interrupt Management 

11.1.15 Interrupt Management 

11.2.1 Interrupt Management 

11.2.2 Interrupt Management 

11.2.3 Bind interrupt handler 

11.2.4 Interrupt Management 
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Time Requirements 

Requirement Kernel Primitive 

12.1.1 Package calendar 

12.1.2 77me Management 

12.1.3 Time Management 

12.1.4 Time constants 

12.1.5 Time constants 

12.1.6 Time constants 

12.1.7 Time Management 

12.1.8 Time Management 

12.1.9 Time Management 

12.1.10 Adjust elapsed time 

12.1.11 Time Management 

12.1.12 Adjust epoch time 

12.1.13 Time Management 

12.1.14 Time Management 

12.1.15 Read clock 

12.1.16 Synchronize 

12.1.17 Synchronize 

12.1.18 Synchronize 

12.1.19 Synchronize 

12.1.20 Synchronize 

12.1.21 Synchronize 

12.2.1 Adjust elapsed time 

12.2.2 Adjust epoch time 

12.2.3 Read clock 

12.2.4 Synchronize 

12.2.5 Synchronize 
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Alarm Requirements 

Requirement Kernel Primitive 

13.1.1 Set alarm 

13.1.2 Set alarm 

13.1.3 Set alarm 

13.1.4 Alarm Management 

13.1.5 Alarm Management 

13.1.6 Set alarm 

13.1.7 Set alarm 

13.1.8 Set alarm 

13.1.9 Set alarm 

13.1.10 Cancel alarm 

13.2.1 Set alarm 

13.2.2 Cancel alarm 

13.2.3 Alarm Management 
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Tool Interface Requirements 

Requirement Kernel Primitive 

14.1.1 Begin collection 

14.1.2 Tool Interface 

14.1.3 Tool Interface 

14.1.4 Tool Interface 

14.1.5 Tool Interface 

14.1.6 Process information 
Begin collection 

14.1.7 Begin collection 

14.1.8 Cease collection 

14.1.9 Process information 

14.1.10 Process information 
Begin collection 

14.1.11 Cease collection 

14.1.12 Process information 

14.1.13 Process information 
Begin collection 

14.1.14 Cease collection 

14.1.15 Begin collection 

14.1.16 Interrupt information 
Begin collection 

14.1.17 Cease collection 

14.1.18 Interrupt information 

14.1.19 Process information 
Read process table 

14.1.20 Interrupt information 
Read interrupt table 

14.1.21 Tool Interface 

14.1.22 Begin collection 

14.2.1 Begin collection 

14.2.2 Cease collection 

14.2.3 Tool Interface 

14.2.4 Tool Interface 

14.2.5 Tool Interface 

14.2.6 Tool Interface 
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