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A DYNAMIC MODEL OF A REINFORCED 
THIN PLATE WITH RIBS OF FINITE WIDTH 

1. INTRODUCTION 

Reinforced plates and shells have a variety of applications. For instance, they are present 

in the design of ships, undersea vehicles, and aircraft because reinforcement provides increased 

structural strength with minimal increased weight. While reinforcing a structure will allow it to 

survive in environments in which an unreinforced structure will fail, the resulting dynamic 

response of the structure changes dramatically.  Early work in the area of reinforced plates1"6 

generally modeled the reinforcement of the plate as a line stiffener using a Dirac delta function to 

mathematically represent the effects. Mace1"2 modeled the response of periodically stiffened 

fluid-loaded plates to harmonic loading and to line and point force loading. Mace's work 

involved a transformation into the wavenumber domain and the evaluation of a contour integral. 

Stepanishen modeled the scattering characteristics of a plate with line impedance 

discontinuities. To evaluate the scattered pressure, he used a Fourier integral to calculate the 

relationship between the plate velocity in the wavenumber domain and the spatial domain. 

Eatwell and Butler determined the vibration sound radiation from a fluid-loaded plate stiffened 

by a finite number of beams. Their solution involves an asymptotic evaluation of the pressure 

field by two Fourier integrals. Cray^ determined the response of a sectional ly aperiodic plate to a 

line force in the wavenumber domain. Recently, Hull6 derived the elastic response of a thick 

plate system to harmonic loading with stiffeners. Some work exists where the stiffeners are 

modeled with finite width. Woolley7'* modeled the acoustic scattering from a plate reinforced by 

a single rib and by a finite number of ribs. In these papers, Woolley formulates the problem in 

the wavenumber domain and then solves it using a complicated method of contour integration. 

Woolley allows ribs of finite width in his model; however, he states that another author 

(Stepanishen) has obtained a different result."' The specific problem of a spatial domain response 

I 



of a thin plate reinforced by ribs of finite width subjected to convective loading has not yet been 

addressed. 

This report derives an analytical model of a thin plate of infinite spatial extent stiffened by 

ribs that have a finite width. The model developed here is different from previous models as it is 

based on differential equation theory in the spatial domain only and, thus, does not involve a 

complicated integral to be evaluated. The governing equation is a flexural plate model that has 

an external load and is reinforced by an infinite number of equally spaced ribs. The Heaviside 

step function is used to load the rib forces onto the plate. A Fourier series then replaces the 

Heaviside step function, and it is shown that, with this substitution, the equation decouples using 

an orthogonalization procedure. The resulting system can be represented by an infinite set of 

algebraic equations. These equations are truncated, and a solution to the plate displacement is 

found. An example problem is formulated and the results are compared to finite element theory 

to ensure that the proper analytical solution has been obtained. The results are discussed. 



2. SYSTEM MODEL AND ANALYTICAL SOLUTION 

The equation governing the motion of a plate with an applied external force and an infinite 

set of finite width stiffeners can be derived through a force balance along the length of the plate. 

This differential equation written in the spatial-time domain is 

w=+oo 

-^-+ph V-Z = -/(JC,0—r YM(A-,/)H(.V-nL) + — 
dx* dr n n=_^ b 

(1) 

D    ^f'+ph    3' J=-f(x,t)-T 2>(AV)H(.Y-//L) + T %w(x,t)H(x-b-nL), 

where u(.v,/) is the transverse displacement of the plate in the v-direction (m), x is the spatial 

location on the plate (m), / is time (s), p is the density of the plate (kg m" ), h is the height of the 

plate (m), /(.\V) is the applied external load on the plate (N m"~), K is the stiffness of each rib per 

unit length (N m"~), L is the distance between the left edges of adjacent ribs (m), b is the width of 

each rib (m), H is the Heaviside step function  (dimensionless), and D is the flexural rigidity of 

the plate, which is given by 

n Eh" D = r, (2) 
12(l-tr) 

where u is Poisson's ratio of the plate (dimensionless) and E is Young's modulus of the plate 

(N m"~). In equation (1), the first term with the Heaviside function corresponds to the left edge 

of the ribs and the second term corresponds to the right edge of the ribs. A diagram of the 

system subjected to a continuous spatial force is shown in figure 1. The forcing function and the 

response are harmonic in time (i.e., f(x,t) = F(x)exp(-\col) and w(xj) = W(x)exp(-\(ot)); 

thus, equation (1) can be written in the spatial-frequency domain with an applied force at a 

definite wavenumber as 

D—-^--pb(o2W(x) = -F0exp(\kx)-— V W(x)H(x-nL) + — YW{x)H(x-b-nL) , 
dv4 b ±L> b ntL 

The Heaviside step function, H, also called the unit step function, is a discontinuous function whose value is 
zero for negative argument and one for positive argument.  It seldom matters what value is used for H(0), since H is 
mostly used as a distribution. The function is used in the mathematics of control theory and signal processing to 
represent a signal that switches on at a specified time and stays switched on indefinitely. 
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Figure I. Schematic of Reinforced Plate with an Applied Spatial Force 

where F() is the magnitude of the applied force (N m"~) and A' is the wavenumber of the applied 

load (rad m" ). Because of the spatial periodicity of the system, the magnitude of the response 

can be expressed as' 

m=+ao 

W{x)=  JX exp(iA-„,.v) , (4) 

where 

km=k + 
2/rm 

L 

so that A0 = k , and the W^s are the unknown coefficients whose solutions are sought. 

Substituting equation (4) into equation (3) and evaluating the derivatives yields 

(5) 

W=+30 

/»=—00 

2£(Z**J -phco2)Wm exp(iA,„x) 

l=+OC 

]>V„, exp(iAw.v) 
is- W=+00 

-F0exp(iA:v) + — V [H(.v-/>-wL)-H(jr-wL)] , (6) 

which is an algebraic summation problem free of differentials. 



The presence of the Heaviside step functions in the third term complicates the form of 

equation (6). However, if the Heaviside functions are expressed as a Fourier series, not only are 

the difficulties associated with these discontinuous functions eliminated, but also each term of 

the equation becomes an exponential function of .v. The Fourier series of the Heaviside functions 

is written as 

n=+v. 

£[H(.v - nL) - H(.v - b - nL)] = JY#; exp(i2^/7.v/ L), (7) 

where 

exp(-i 2^/7/>/ L) 

xlnn 
h 

[L 

/7*0 

/7 = 0 
(8) 

Inserting this Fourier series identity into the third term of equation (6) and extracting functions 

independent of n and m from the double summation yields the term 

• • /;- 1 /. 

"I JV,„ exp(i*w*) [H(x-b-nL)-H(x - nL)] 

1^ /;=+cc 

= -— exp(ifo) ]T 
»!=+00 

^W7,,, Qx\)(\2jimx/L) cn exp(\2ffnx/L). (9) 

Furthermore, the double summation in equation (9) can be rewritten as 

K /7=+'X /;;;  t v 

V Wm ex p( i 2 K mx/L) 
m=—ao 

exp(i£v) Y, 
n=-ao 

T   X       HWnCn,. „ CXp(iA'|W.v) • 
11=-A.   111= -a 

cM exp(i2^A7.v/L) 

(10) 

The proof of the double summation identity in equation (10) is presented in the appendix. 

Inserting the second part of equation (10) into equation (6) yields 



K n=+x  m=+ao 

X<DA'» " Pho}1 )Wm exp(iA,„x) = -F0 exp(ifa) -— j     £V„ r „,_„ exp(i*„,.v) ,     (11) 
n=-oo m--rr. 

which is the algebraic equation that models the stiffened plate subjected to an applied force. 

The solution to the unknown W,„ coefficients is now found by an orthogonal expansion of 

equation (11). Specifically, equation (11) is multiplied by the exponential exp(-\k px) and the 

resulting expression is integrated over [0,L]. Because the exponential functions exp(-iA'px) and 

e\p(\kmx) are orthogonal on this interval when m * p, equation (11) decouples into an infinite 

number of individual p-indexed equations, each one expressed as 

4 •> K"P? \-FQ    P = 0 
(Dk J - ph(o~ )W„ + — Yc __„W„ =        °    ' p    H P      b   ^  p n    n 0 0 (12) 

Writing out all the equations from equation (12) for — oo < p < ooand placing them into matrix 

form yields 

u 0 0 
0 'A 0 
0 0 A 

> + 
K 

CQ      C_\      C_2 

C-> 

f     . 

*_i 0 

K > = • 
-FQ 

wx 0 

\               J > 

(13) 

where 

A   = Dk   - pko' (14) 



The first term of equation (13) represents the dynamics of the plate, the second term represents 

the dynamics of the ribs, and the third term represents the external load on the structure. Note 

that, mathematically, the effect of the ribs is the constant {K/b) multiplied by a matrix that 

contains a permutation of the Fourier coefficients of the Heaviside step function. The unknown 

coefficients W,„ in equation (13) can be solved by truncating the matrices and vectors to a finite 

number of terms and analytically evaluating the equation 

A-\ 0 0 
0 A) 0 
0 0 A 

K 
+— 

b 

-I «-0 C_2 

-1 

0 
• -Fo 

0 

(15) 

3. NUMERICAL EXAMPLE 

A numerical example is now formulated and discussed. The problem consists of a thin 

plate that has a Young's modulus of 3 x 10 N m ~, density of 1200 kg m" , Poisson's ratio of 

0.45, and a height of 0.01 m. Each rib has a stiffness per unit length of 1 x 10x N m"2 and a width 

of 0.2 m. The center-to-center spacing of adjacent ribs is 1 m. The applied load has a magnitude 

of 1 N m"2 and a wavenumber of 0 rad m" . These parameters are input into equation (15) to 

determine the coefficients that are, in turn, entered into equation (4) to calculate the displacement 

of the plate. Figure 2 is a plot of the magnitude of plate displacement in the decibel scale versus 

the spatial location at a frequency of 50 Hz. The solid line is the solution derived in this report, 

while the dots are a verification solution determined using the finite element method. The 

dashed line on the plot indicates the spatial position of the right edge of the rib that corresponds 

to n = 0 in equation (I). This specific problem converged using 31 terms ( - 15 < p < 15 ), 

although it is noted that convergence is a function of the specific parameters used in the model. 

Several features in figure 2 are now noted.  First, the plate/rib system is softer between the 

ribs and, thus, has a greater displacement at these spatial locations. As a result, if the stiffness of 

the ribs approaches 0, the solution approaches that of an unreinforced plate. Second, even 



though the ribs are fairly stiff in this example, they still exhibit dynamic behavior across their 

spatial extent. As evidence, examine figure 2 in the area from x = Qlox = b = 0.2. Each rib has 

almost 40 dB of motion in this relatively small space, although the displacement is significantly 

lower than the plate displacement between the ribs. Third, although not explicitly shown in 

figure 2, the solution is periodic on x e [0,L]. Sectional aperidocity can be added to the model 

using previously developed techniques.5 
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Figure 2. Magnitude of Plate Displacement Versus Spatial Location Showing the Analytical 
Solution (—) and the Finite Element Solution (•) 

(The dashed line is the location of the right edge of the n = 0 rib.) 



4. CONCLUSIONS 

A model of a reinforced thin plate with ribs of finite thickness was derived and the solution 

was obtained using an orthogonalization procedure. It was shown that the effect of the ribs is, 

mathematically, a constant multiplied by a matrix that contains a permutation of the Fourier 

coefficients of the Heaviside step function. A numerical example was presented and compared 

to a finite element analysis. This new analytical solution was in almost exact agreement with the 

finite element solution. The results of the model and the associated dynamics were briefly 

discussed. 
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APPENDIX 
DOUBLE SUMMATION IDENTITY 

The proof of the double summation identity given in equation (10) is presented in this 

appendix. The identity is critical in transforming the problem into a tractable algebraic equation. 

The first term in equation (10) without the (K/b) coefficient is 

/7=+oo 

exp(ifa) YJ 
ff?=+oo 

"^Wm exp(i2/rm;c/L) cnexp(i27rnx/L) . (A-l) 

To simplify the notation of the following equations, the formula 

//,„ = exp(i2^-/?7.v/L) (A-2) 

is used. This term has the property 

(A-3) 

Expanding the m indexed series results in 

H=+00 

exp(i/t\) Y,l"" + W-2U -2 +W-\u-\ + W()ui) + Wiu\ +^2"2 +'"]CHUn   • (A_4) 
/7=-CO 

Next, expanding the n indexed series yields 

exp(iAar)[--- + (--- + W/_2w_2 +W_^u_\ +W()a() + W]ul +W2u2 + ---)c_2u_2 

+ (--- + lV_2u_2 +W_lu_l +WQU0 +Wlyl +W2u2 +---)c_i«_| 

+ (-- + W_2u_2 +W/_|«/_| +W()u() +W\ii\ +W2u2 +---)c0uQ 

+ (--- + W_2u_2 +W/_|i/_i +W{)u() + W\it\ +W2u2 +---)f|i/| 

+ (••• + W_2u_2 + W_xit_\ + Wfy'o +^\l'\ +w/2"2 +---)c2u2 +•••] ,        (A-5) 

and multiplying through gives 

A-l 



exp(ifcc)[- •• + (••• + W_2c_2li_4 + W_iC_2U_2 + WQC_2U_2 + WiC_2U_] + ^2C-2W0 + "') 

+ (-" + fV_2c_lu_2 +W_lc_lu_2 + #oc-lM-l +W\C_\UQ + W2C_1U] +•••) 

+ (--- + W_2CQU_2 +W_lc0u_] ^-WQCQU^ + W]C0U] +W/
2c()i/2 +•••) 

+ (••• + W_2c]u_\ +PV_]c]u0 + W/ocii,i +^\C\U2 +W2e\ii}) +•••) 

+ (--- + H/_2f2«/0 + W_|C'2», +W0c2u2 + Wxc2u3 +W2c2u4 +•••) + •••] . 

Regrouping equation (A-6) on specific values of W„ yields the equation 

(A-6) 

exp(ifor) 
W = +OC W = -KC m = +00 

w=-x w=-cc w = -oc //; = 

;w = +<x m=+cc 

/» = - / m = -TO 

(A-7) 

which can be rewritten as 

/7 = +co    w = +oc /? = +x    w = +oc 

exp(ifo)  2        Y*UmWncn,-n =   Z        Z   ^«Cm-« exP(^m^) 
» = -co   w = -oo /? = -»    w = -co 

(A-8) 

A-2 
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